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ABSTRACT

We consider multi-input multi-output (MIMO) dual function
radar communication (DFRC) systems, and design a transmit
beamforming matrix that optimizes a weighted combination
of the radar estimate Cramér-Rao bound (CRB) and the com-
munication rate. A hybrid beamforming structure is consid-
ered, with fewer RF chains than antennas, to achieve the ben-
efits of MIMO systems while maintaining low cost. However,
such a structure may have a rank-deficient beamforming ma-
trix, resulting in degraded estimation performance. We pro-
pose antenna selection as means to ensure a full-rank beam-
forming matrix, and also select the communication channels
so that high communication rate can be achieved. A learning
approach is employed to optimally select antennas and de-
sign the corresponding beamforming matrix. By leveraging
a combination of softmax neural networks, the proposed so-
lution is able to optimize the joint performance metric for a
DFRC system.

Index Terms— MIMO, DFRC, antenna selection, CRB

1. INTRODUCTION

Incorporating a sensing functionality in communication sys-
tems is an emerging trend in next-generation wireless sys-
tems [1], such as vehicular networks, WLAN indoor posi-
tioning, and unmanned aerial vehicle (UAV) networks [2]. In
all those scenarios, sensing and communication are a pair of
intertwined functionalities, often required to be carried out
simultaneously for the purpose of increasing the spectral effi-
ciency and reducing costs.

The demand for low cost, light weight, energy and hard-
ware efficiency gave rise to Dual Function Radar Commu-
nication (DFRC) systems, which can perform sensing and
communication from the same platform and using the same
waveform [3]. There are various ways via which information
can be conveyed in the sensing process. It can be embed-
ded directly in the radar waveforms [4—8],or in the way the
waveforms are paired with transmit antennas [8—10], or in the
phase of the sidelobes in the array beampattern [11], or in the
antenna activation pattern [7,12]. Most of the aforementioned
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designs of DFRC signaling strategies consider the transmitter
side only. However, the key performance metric for a radar
system is the target estimation error at the receiver side.

Recently, [3] considered multi-input multi-output (MIMO)
DFRC system design based on a criterion that combines the
Cramher-Rao bound (CRB) of the target estimate with the
signal to interference and noise ratio (SINR) at a number of
single-antenna receivers. In particular, [3] considers the prob-
lem of detecting a near-field target that encompasses multiple
point-like scatters, in which case, depending on the number of
communication streams as compared to the number of avail-
able antennas, the beamforming matrix may be rank-deficient
and the resulting target estimation performance degraded.
To tackle this issue, [3] proposed to transmit extra probing
streams, which do not contain any information and are to be
used for sensing only, and correspondingly add beamformers
to the beamforming matrix to increase its rank. However, this
introduction of extra probing streams generates interference
to the communication receivers and increases the complexity
of the system. Further, more radio-frequency (RF) chains are
required to generate those streams, which would increase the
hardware cost.

Here, we propose an alternative method for ensuring a
full-rank beamforming matrix, that does not require addi-
tional probing streams, or equivalently, additional RF chains.
In particular, we propose to use antenna selection to reduce
the size of the beamforming matrix, so that the matrix natu-
rally becomes full-rank. Antenna selection has been widely
used in recent radar works [13-15] to improve the system
performance. In this paper, in addition to helping with the
rank of the beamforming matrix, antenna selection also re-
sults in selecting the communication channels between the
communication transmitter and receiver, thus bad channels
can be avoided for achieving high communication rate. The
optimization problem is solved by modifying the softmax
learning approach learn to select (L2S) in [16] where the
selection of antennas is modeled by softmax neural networks.
While machine learning for antenna selection has been in-
vestigated in [17, 18], those works treat antenna selection as
a classification problem. However, the combinatorial explo-
sion problem renders those methods impractical even in cases
with a moderate number of antennas. On the other hand,
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L2S in [16] can be efficiently scaled to larger problems as
it avoids the combinatorial explosion of the selection prob-
lem. It also offers a flexible array design framework as the
selection problem can be easily formulated for any metric.

2. PROBLEM FORMULATION

We consider a hybrid beamforming MIMO DFRC system
equipped with NV, transmit and NV, receive antennas and N
RF chains. The antennas formulate a uniform linear array,
with spacing between adjacent antennas denoted by d. As the
cost of RF chains is high, the transmitter comprises a small
number of RF chains, which are connected to a large number
of antennas through a network of phase shifters [19]. Such a
hybrid beamforming structure enjoys the benefits of an fully
digital MIMO system in terms of high-throughput commu-
nication and high-accuracy sensing performance while it has
reduced cost.

The DFRC system is tracking a distributed target, e.g.,
nearby pedestrians or vehicles, and also communicates with
a single user with [N, antennas. The transmitter performs hy-
brid beamforming, with beamforming matrix F € CN¢*XNs,
by transmitting the signal

V = FX, ey

where X € CM+*L consists of N, unit power data streams
of length L, which are orthogonal to each other so that
1E{(XX"} =1y,.

At the communication receiver, the received signal can be
expressed as

YC - HV + Nc7 (2)

where H € CM+*™ denotes the channel matrix and N, is
additive white Gaussian noise matrix with zero mean and co-
variance 02Iy,. Assuming Gaussian signalling, the achiev-
able rate equals

1
G =log, |In, + HRH"|, 3)
UC
where R = 1 VV# = FF# is the sample covariance matrix
of V. The upper bound of communication rate subject to a
trasnmit power constraint, i.e., tr(R) < P, equals [20]

Ny
Gmaz = »_(log i), “)
where (a)™ = max{a,0}, the \;’s are the eigenvalues of
HPH, and p satisfies tr(R) = Zivf (p—AHt <P
For an extended target encompassing M distributed,
point-like scatters, the radar echoes can be written as

where complex «,, represents the combined effect of path
attenuation and radar cross section (RCS) of the m-th scatter
at direction 6,,,; N, has similar definition to N, with each
entry having variance o2; a(f) € CN+*! b(f) € CNr*! are
the transmit and receive steering vectors towards direction 6;
C= Zﬁf:o amb(0,,)al (6,,) is the target response matrix.
For target estimation, C is estimated first, and then used to
extract the parameters of the scatters via various approaches
such as MUSIC and APES algorithms [21]. The CRB corre-
sponding to matrix C is given as [22]
2
CRB(C) = "T]iVT wr(R1). %

Let us for simplicity assume that Ny < N,.. As the rank
of R is N,, one can see that if Ny < Ny, R is singular
and the CRB of C is not defined. In that case, the estimate
of the rank Ny matrix C will be degraded due to the rank-
deficient matrix F. To avoid the problem, [3] proposed the
use of extra probing streams X, € C(M:=Ne)*L which are
orthogonal to X, along with the corresponding beamformers
F, € CNex(Ne=Ne) quch that F = [F,F,] € CN*Ne s a
full rank matrix. However, the use of dedicated sensing sig-
nals would cause interference to the communication user and
further, it would require additional RF chains, thus increasing
the system cost.

In our proposed solution to the rank deficiency problem,
we ensure that the F is full rank by performing transmit anten-
nas selection. Let S € R¥s*Nt be a selection matrix where
all the elements in S are 0, except for exactly one element per
row which is equal to 1. Correspondingly, one can see that
S#S is a diagonal matrix where the diagonal entries are 1 if
the corresponding antennas are active, and 0 otherwise. The
selection matrix S satisfies SS¥ = Iy,. Then, the selected
channel matrix is

H, = HS”. (8)

The CRB of the target response matrix can be written as

2
CRB(C) = U’“TMtr((SFFHSH)-l), )

and the communication rate becomes

G =log, Iy, + O_%NSHSSFFHSHHEL (10)
One can see that in (10), the selection matrix basically se-
lects the channels along which the signal will propagate to
the communication receiver, therefore, its choice will affect
the communicate rate.

We propose a DFRC system design by optimally select-
ing matrices F and S, so that the weighted sum of the com-
munication rate and the inverse CRB is maximized, subject to
transmit power constraints and a special structure for S, i.e.,

C

M max G, + A1/tr((SFFHSH) 1Y)
Y, = amb(0m)a (0,,)V + N, 6) ’
’ mz::() e " st. tw(SFFASH) < p (1)
= CV+N,, (6) S is a valid selection matrix.
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where )\ is the coefficient to trade-off between communica-
tion and radar. A larger coefficient means focusing more on
minimizing the CRB.

3. SOFTMAX CO-DESIGN

Given the selection matrix, one can easily find the optimal
matrix F. However, finding the selection matrix is not easy.
Here, we propose to use the learning approach in [16] to co-
design F' and the antenna selection matrix S.

Each row of selection matrices S can be modeled by a sep-
arate softmax neural network [23]. Taking the antenna selec-
tion matrix S as an example, the outputs of the m-th network
will be

exp(wlx + bin,i)
Smyi = ;

N,
Zj:l exp(wfx + bm,j)

i=1,...,N, (12)

where w;, by, ; are respectively the weights and biases, and x
is the input. Note that 0 < s, ; < 1 and

Ny

i=1

Essentially, s, ; represents the probability that antenna ¢ will
be our m-th selected antenna.

Since the selection matrix does not depend on time ¢, the
input x should be constant, and thus, the constant value b; =
wl'x can be merged into the bias term b;. Without loss of
generality, such a model is equivalent to a softmax model with
x = 0, where the only trainable parameters are the biases.

The approximate selection matrix, S is formed based on
the outputs s; = [Sim.1, - - ., Sm,n,] Of all the softmax models
as its rows. Clearly, S will be a soft selection matrix since the
values s,, ; range between 0 and 1. By the end of the training,
the matrix should converge very close to hard binary values
so the approximation will be successful.

In order to achieve a realistic solution, the softmax models
must produce hard binary values. The following constraint
enforces this requirement:

Z s2.;=1¥Ym. (14)
i=1

Indeed, (14) holds iff s,,; € {0,1}. The ‘if* part of this state-
ment is obvious. The ‘only if” part comes readily from (13)
since

|:Z Sm1:| ’ — 572ni =0=2 Z SmiSmj — 0

i=1 i=1 i#j

implying that at most one element of s, can be equal to 1
and all other elements must be equal to 0. Combined with
(13) this means that exactly one element of s,, is equal to 1
and all other elements are equal to 0.

We also need to impose another constraint since the same
antenna can not be selected more than once, i.e.

Smi=1=>5,;,=0,Vn#m
If $,,,; € {0, 1} then the above constraint is equivalent to

sis, = 0. (15)
Combining (14) and (15) it follows that S must be a valid
selection matrix.

Using Lagrange multiplier, we can define the total loss
function as

L(S,F) = -G, — \/(tr((SFFSH)~1))

+ Ao (tr(SFFESH) — P)2 4 \3]|SSH — 1y ||F.
(16)

where A1 A9 and A3 are the Lagrange multipliers, || - ||z de-
notes the matrix Frobenius norm and tr((SFF#S)~1) is re-
placed by —1/tr((SFFS)~1) to better balance the terms
in the total loss function. Note that for the third term of (16),
to ensure that the difference between power budget and trans-
mit power is positive, and to have a differentiable loss func-
tion, square is taken of the difference.

The trainable sets are the biases, b, = [bym.1,- - -, bm,N,]
in the softmax neural networks, and matrix F. Both, b,,,, F
are randomly generated in the initial stage. We propose a two-
stage optimization approach, by alternating between optimiz-
ing over one set of parameters while fixing others. The al-
gorithm runs for N¢pocn learning epochs and each alternating
stage runs for a small number of steps N;.,. The proposed
scheme is shown in Algorithm 1. One can improve the speed
of convergence by using other optimizers instead of gradient
descent. In the simulations shown next we used the Adam
optimizer [24].

Algorithm 1: Learn to select.

for epoch=1to N.pocns do
Fix R and optimize £ w.r.t. b:
for step=1to Nyieps do

| Updateb,,, m=1,...,N,

Fix b and optimize £ w.r.t. F:
for step=1to Nycps do
| Update F

4. NUMERICAL RESULTS

Here we demonstrate the performance of the proposed method.
In all experiments, the transmitting power constraint is set to
20dBm and we take o, = o, = 1. The length of DFRC
symbols L = 30. The transmit array has N; = 16 anten-
nas spaced apart by half wavelength, and the communication
receive array is equipped with N, = 24 antennas, spaced
apart by half wavelength. In the training process, the Adam
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Fig. 1. Comparison of communication rate and CRB between
schemes that (i) only optimize communication rate [20], (ii)
only optimize CRB [25], (iii) apply L2S with optimum an-
tenna selection, and (iv) apply L2S with random antenna se-
lection.

stochastic optimization procedure of learning rate 0.1 is used
with a total of N¢p,cn, = 50 epochs. In each epoch Ngsep, = 2
steps are executed. The weights of CRB, power constraint
and selection error are \; = 0.75, Ao = 0.05 and \3 = 0.1,
respectively. These weights indicate the importance of each
loss term during the learning process.

In the first experiment, N, = 8 antennas are selected to
be active. In order to validate the performance of L2S, com-
parisons are made between three schemes: (i) use Eq.(4) to
find the mean of maximum communication rate of all possi-
ble antenna combinations and the corresponding CRBs, i.e.,
optimizing only w.r.t. communication rate; (ii) use the closed-
form solution from [25] to compute the mean of minimal
CRBs of all antenna selection patterns and the corresponding
communication rates, i.e., optimizing only w.r.t. CRB; (iii)
randomly select antennas and only optimize the beamform-
ing matrix F using L2S. In the third scheme, 10 trials are
repeated with same weights, where the X-axis is the square
root of CRB which equals to the mean square error in an-
gle estimation with an unbiased estimator, and Y-axis shows
the spectrum efficiency of the communication system. As
shown in Fig.1, L2S optimally selects the antenna activation
pattern and designs the corresponding beamforming matrix
which has the largest spectrum efficiency and a very small
CRB. The root-CRB for L2S is only 1 x 10~ larger than the
minimum CRB value while L2S is 2.12 more in communica-
tion rate than considering CRB only.

In the second experiment, in order to show that L2S can
be efficiently scaled to larger problems as it avoids the com-
binatorial explosion of the classification problem, 32 out of
64 antennas are selected and same configuration is used ex-
cept that the number of epochs is increased to 150. Fig.2
shows the values of loss terms during the training where the

Loss term during training

—— Communication Rate ]
——CRB 1

Relative value

100 150
Epochs

Fig. 2. Communication and CRB loss terms during training

orange line is the maximum communication rate from closed
form solution divided by the computed communication rate
and the blue line is the computed CRB divided by the closed
form solution, respectively. For both loss terms, a value close
to 1 means a smaller difference towards its extremum. From
Fig.2 one can see that in the first 10 epochs both commu-
nication rate and CRB are jointly and efficiently optimized
as both curved lines dropping fast. Then after the first 40
epochs, communication rate first reaches convergence since
we assign a larger weight to communication rate as compared
with CRB. Last, CRB reaches convergence after the first 50
epochs.

In a classification problem, such a selection would result
in selecting one from 1.8 x 10'® possible combinations, and
for each choice we would need to optimize with respect to
the beamforming matrix. This would take an unacceptably
long time to compute. On the other hand, running on a 2019
MacBook pro with 2.3 GHz 8-Core Intel Core 19, the first
experiment takes 3 minutes to select 8 out of 16 antennas in
50 epochs while the second experiment takes 18 minutes to
select 32 out of 64 antennas in 150 epochs.

5. CONCLUSION

In this paper, we have proposed a joint design of MIMO
DFRC system with antenna selection. In the scenario where
the radar detects a distributed target, the use of antenna se-
lection leads to a beamforming matrix which is naturally
full-rank and avoids bad communication channels. The pro-
posed L2S method leverages softmax neural networks to
approximate a valid selection matrix and optimizes the train-
able parameters in an alternating fashion. Compared with
the classification method, the complexity of the softmax se-
lection does not grow exponentially. Numerical results have
been provided to validate the performance of the proposed ap-
proach, showing that the L2S method can achieve the desired
joint radar and communication system design via selecting a
limited number of antennas and optimizing the beamforming
matrix with respect to the joint performance metric.
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