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Abstract—Joint communication and radar sensing (JCR) rep-
resents an emerging research field aiming to integrate the above
two functionalities info a single system, by sharing the majority
of hardware, signal processing modules and, in a typical case, the
transmitted signal. The close cooperation of the communication
and sensing functions can enable significant improvement of spec-
trum efficiency, reduction of device size, cost and power consump-
tion, and improvement of performance of both functions. Advanced
signal processing techniques are critical for making the integration
efficient, from transmission signal design to receiver processing.
This paper provides a comprehensive overview of the state-of-
the-art on JCR systems from the signal processing perspective. A
balanced coverage on both transmitter and receiver is provided
for three types of JCR systems, namely, communication-centric,
radar-centric, and joint design and optimization.

Index Terms—Dual-function radar-communications (DFRC),
RadCom, joint radar-communications (JRC), joint communica-
tions-radar (JCR), joint communication and radio/radar sensing
(JCAS), integrated sensing and communications (ISAC).

I. INTRODUCTION
A. Background

IRELESS communication and radar sensing (C&R) sys-
tems have been advancing independently for decades.
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However, they share many commonalities in terms of signal
processing algorithms, devices and, to a certain extent, system
architecture. They can also potentially share the spectrum. These
have recently motivated significant research interest in the coex-
istence, cooperation, and joint design (or co-design) of the two
systems [1]-[13].

The coexistence of C&R systems has been extensively studied
in the past decade, with a focus on developing efficient inter-
ference management techniques so that the two individually
deployed systems can operate smoothly without interfering with
each other [3], [6], [14]-[18]. Although C&R systems may be
co-located and even physically integrated, they transmit two
different signals which may overlap in time and/or frequency
domains. They operate cooperatively to minimize interference
to each other. Great research efforts have been devoted to mu-
tual interference cancellation in this case, using, for example,
beamforming (BF) design in [18], cooperative spectrum sharing
in [17], and joint co-design and optimization in [14], [15]. How-
ever, effective interference cancellation typically has stringent
requirements on the mobility of nodes and information exchange
between them. The spectral efficiency improvement is hence
limited in practice.

The joint design of colocated C&R systems considers the
integration of these two functions in one system. The initial
concept may be traced back to 1960s [19], and the research had
been primarily on multimode or multi-function military radars
until 2010 s. Recently, we are witnessing a booming interest
from both academia and industry on the joint system, thanks to
its great potentials in emerging defence applications and more
recently in arange of Smart Cities applications such as intelligent
vehicular networks [20], [21] and more general, the Internet of
Things (IoT) [5]. Where there is a recognised congestion of
sensors and transceivers, integrating the two systems in one can
achieve reduced device size, power consumption, and cost, lead
to more efficient radio spectrum usage, and significantly expand
the capabilities and performance of both communication and
radar sensing.

The integration may be classified into the following two
classes: (1) The two functions are physically integrated in one
system, but they use two sets of dedicated hardware components,
and/or two different waveforms, superimposed or separated in
time, frequency or spatial domains [2]; (2) The two functions

1932-4553 @ 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authonzed licensed use limited to: Rutgers University. Downloaded on July 17,2022 at 05:59:11 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-6102-3762
https://orcid.org/0000-0002-5299-9317
https://orcid.org/0000-0002-8259-6615
https://orcid.org/0000-0002-4666-5628
https://orcid.org/0000-0001-5322-222X
https://orcid.org/0000-0001-7380-7815
mailto:andrew.zhang@uts.edu.au
mailto:liuf6@sustech.edu.cn
mailto:c.masouros@ucl.ac.uk
mailto:rwheathjr@ncsu.edu
mailto:fengzy@bupt.edu.cn
mailto:le.2.zheng@aptiv.com
mailto:athinap@rutgers.edu

are more firmly integrated by sharing the majority of hardware
components and are delivered by the same waveform, which
is designed to optimize both communication and radar perfor-
mance [7], [8], [12]. The first class represents a loose integration
and may only achieve limited benefits such as reduction in sig-
nalling overheads and removal of interference [12]. The second
class is a step change beyond collocation, and is the main focus
of this paper.

Based on the design priorities and the underlying signal and
systems, current joint C&R systems may be classified into the
following three categories:

® Communication-centric design. In this class, radar sensing

is an add on to a communication system, where the design
priority is on communications. The aim of such design is to
exploit communication waveform to extract radar informa-
tion through target echoes. Enhancements to hardware and
algorithms are required to support radar sensing. Possible
enhancements to communication standards may be intro-
duced to enable better reuse of the communication wave-
form for radar sensing purposes. In this design, the commu-
nication performance can be largely unaffected, however,
the sensing performance may be scenario-dependent and
difficult-to-tune;

® Radar-centric design. Conversely, such approaches aim

at modulating or introducing information signalling in
known radar waveform. Since the radar signalling remains
largely unaltered, the resulting approaches benefit from a
near optimal radar performance. The main drawback of
such approaches is the limited data rates achieved. Some
performance loss may be tolerated by the radar to enable
better communication functionality; and

® Joint design and Optimization. This class encompasses sys-

tems that are jointly designed from the start, to offer a tun-
able trade-off between C&R performance. Such systems
may not be limited by any of the existing communication
or radar standards.

Owing to the significant differences between traditional C&R
systems, the design problems in these three categories are quite
different. In the first two categories, the design and research
focus is typically on how to realize the secondary radar (com-
munication) function based on the signal formats of the primary
communication (radar) system, in a way that does not signifi-
cantly affect the primary system. The last category considers the
joint design and optimization of the signal waveform, system,
and network architecture, with a flexible tradeoff achievable
between C&R.

These categories of joint systems have been receiving strong
and growing research interest, with results having been re-
ported under various names, such as Radar-communications
(RadCom) [1], joint radar (and) communications (JRC) [7],
[9], [11], joint communication (and) radar (JCR) [20], [22],
joint communication and radar/radio sensing (JCAS) [23], [24],
dual-function(al) radar communications (DFRC) [4], [10], [25],
[26], and more recently, integrated sensing and communi-
cations (ISAC). The first three typically refer to a general
joint system and can be used interchangeably. Sometimes JRC
and JCR are used to differentiate between radar-centric and
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communication-centric designs. The term JCAS is introduced
to stress the evolution of radar towards more general radio
sensing applications of communication-centric joint systems.
These sensing applications go beyond localization, tracking and
object recognition of traditional radar functions, such as human
behaviour recognition and atmosphere monitoring using radio
signals [5]. DFRC is specifically used for joint systems with a
shared, single transmitted waveform. It has been widely used for
radar-centric joint systems [4], [8], and has also been recently
used for communication-centric systems [10], [25]. In the rest
of this paper, we use the term JCR to refer to a general joint
system, and use the term DFRC to refer to joint systems with a
shared single transmit waveform.

B. Contributions and Structure of This Paper

There exist some excellent overview articles on JCR, particu-
larly on system and signal modelling. For example, [1] provides a
foundational review of signal models for basic single carrier and
multicarrier JCR systems; [3], [6], [11] cover C&R systems from
coexistence, cooperation, to co-design; [4], [8] survey radar-
centric DFRC systems, with a focus on signal embedding; [7]
delivers an excellent review on the evolution of JCR systems and
their potential applications; [12] provides an overview on mobile
network JCR systems; [9], [10], [13] overview millimeter-wave
JCR systems for automotive networks, providing detailed signal
models. However, the topic of receiver signal processing, which
is critical for the viability and performance of the JCR systems,
has not been adequately covered by the aforementioned litera-
fure.

The objective of this paper is to provide a comprehensive
overview on JCR from the signal processing perspective, with
balanced coverage on both transmitter and receiver. For each of
the first two categories of JCR designs, we review main sys-
tems and typical signal models, and then discuss critical signal
processing techniques at the receiver. For the third category, we
provide a detailed overview of joint design and optimization
techniques. To reduce the overlap with existing articles, we also
focus on more recent technologies. The detailed structure of the
rest of this paper is as follows.

® Section II describes the signal and channel models of typi-

cal C&R systems, separately. Via comparing these models,
we disclose the connections and differences between C&R,
which are very important for the understanding and devel-
opment of JCR technologies;

® Section III provides a review on communication-centric

JCR technologies. We first introduce two main JCR sys-
tems based on 802.11ad and mobile networks, and then
discuss signal processing technologies on sensing parame-
ter estimation, resolution of clock asynchrony, and sensing
assisted communications;

® Section I'V reviews radar-centric JCR technologies. Well-

known information embedding technologies are first sum-
marized, and the recent promising technology of index
modulation (IM) is elaborated, with reference to several
emerging radar systems. We then describe signal reception
and processing techniques for communications, including
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Fig. 1. Illustration of basic pulsed radar, continuous-wave radar, and commu-

nication systems. Tx: transmitter; Rx: Receiver; BPF: bandpass filter; PRI: Pulse
repetition interval.

information demodulation and channel estimation for IM.
Codebook design for IM is also discussed:;
® A detailed review of joint design and optimization tech-
nologies for JCR is provided in Section V. These technolo-
gies include waveform optimization via spatial precod-
ing, multibeam optimization for analog array, and signal
optimization in other domains. With these technologies,
balanced performance between C&R can be achieved as
desired; and
® Concluding remarks are provided in Section VL.
Notations: C denotes the set of complex numbers. (-)&, (-)*,
()T denote the Hermitian transpose, conjugate, and transpose of
a matrix or vector. ! denotes n factorial and C} = n!/(k!(n —
k)!) denotes the binomial coefficient. | x| rounds towards nega-
tive infinity. {z,, }, m = 1, ..., M denotes a column vector with
elements x1, ...,z .

II. SYSTEM AND SIGNAL MODELS

In this section, we describe some typical C&R systems and
their signal models. Since these systems and models are gen-
erally well known in respective areas, we only provide brief
descriptions as necessary to illustrate the JCR technologies. The
basic pulsed radar, continuous-wave radar, and communication
systems are illustrated in Fig. 1. We first present a beamspace
channel model that can be used for both C&R. We then describe
signal models for C&R separately, and highlight the differences
between them. Signal models for JCR will be described in later
sections, based on the models presented here. For the simplicity
of notation, we assume the total transmitted power of all systems
is 1, unless noted otherwise.

We consider a general system with @ > 2 nodes and each
node has a uniform linear antenna array (ULA). Let B denote the
total signal bandwidth. For MIMO-OFDM systems, B is divided
into NV subcarriers and the subcarrier interval is fy = B/N. The
OFDM symbol period is T, = T, + T, where Ty = N/B and
T.p is the period of cyclic prefix.

In this section, for the clarity of illustration, we describe the
signal models with reference to a general transmitter and receiver
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without indexing them. Later, when these models need to be
differentiated for different nodes, we will add a subscript of the
node index to the variables in the models.

A. Beam-Space Channel Models

Let the angle-of-departure (AoD) and angle-of-arrival (AoA)
of a multipath be 6, and ¢, £ € [1, L], respectively. Assume
a planar wave-front in signal propagation. The array steer-
ing/response vector of a ULA is given by

a(M, a) . [l’ejilw'd/.ksin(a), — ej(M—1)2'.rrd/J\sin(a)]T.
where M is the number of antennas, A is the wavelength, d is
the interval of antennas, and « is either AoD or AoA.

For My transmitting and M receiving antennas, the Mp x

M7 time-domain baseband channel matrix at time £ can be
represented as

L
H(t) = Z bed(t — ¢ — To(t))eF2 Ut Lo,
£=1
a(Mg, ¢¢)a” (Mr, 6), (1)

where for the /-th multipath, b is its amplitude of complex value,
accounting for both signal attenuation and initial phase differ-
ence; 7y is the propagation delay; fp . is the associated Doppler
frequency; and 7,(#) and f,(¢) denote the potential time-varying
timing offset and carrier frequency offset (CFO) due to possibly
unlocked clocks between transmitter and receiver, respectively.
Here, we ignore the “beam squint” effect in BF and assume b,
is frequency independent.

Equation (1) represents a general channel model that can be
used for both C&R, although the physical meaning and names
of these parameters are slightly different. Our description above
is mainly based on the terminologies in communications. For
radar sensing, {7¢, fp ¢, ¢, 0¢, b} are the sensing parameters
to be estimated. These parameters can be used to determine a
target/reflector’s spatial and moving information. In particular,
¢¢ and @, are the AoA and AoD of the target in relation to the
receiving and transmitting ULA, resepctively; 7, = R;/c and
fps =vefe/c where R, is the signal propagation distance, ¢
is the speed of light, v, is the radial velocity of the reflector,
and f, is the carrier frequency; and b, is related to the radar
cross-section (RCS) and material property of the target. We
define a coherent processing inferval (CPI) when all these pa-
rameters remain almost unchanged. The length of CPI depends
on the mobility of objects in the channels and is typically a
few milliseconds when objects move at speeds of tens of meters
per second. Note that this model can represent JCR channels
corresponding to the setup of both mono-static and bi-static
radars. For a mono-static setup, the AoAs may be the same
with AoDs, and 7,(¢) = f,(¢) = 0; while for a bi-static setup,
synchronization and waveform sharing become important issues
to be addressed, particularly in communication-centric JCR
systems.
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For a broadband OFDM system, the frequency-domain chan-
nel matrix at the n-th subcarrier corresponding to (1) is

T
ﬁn (t) = Z bee—:f??m(n+Ta(t))foe,f?ﬁ(fa,z—i-fo(t))t_

£=1

a(Mpg, ¢)a” (Mr,6;), (2)

where we have approximated the slightly varying phases due to
Doppler frequency and CFO over one OFDM block as a constant
value. For the k-th OFDM symbol with ¢ = kT, we denote
H, i =Hu(t)i—st..

Note that for communications, we generally only need to
know the composite values of the matrix H(z) or H,,(t). They
can typically be obtained by directly estimating channel coeffi-
cients, or for OFDM, directly estimating at some subcarriers and
obtaining the rest via interpolation. For radar sensing, however,
the system needs to resolve the detailed channel structure and
estimate the sensing parameters. Note that this beam-space
channel model is also widely used in millimeter wave (mmWave)
communication systems.

When the oscillator clocks of the transmitter and receiver are
not locked/synchronized, both the timing offset 7,(¢#) and CFO
fo(t) are nonzero. The values of 7,(¢) can also be fast time-
varying in terms of ranging due to crystal oscillator’s instability,
while CFO changes relatively slower. For example, for a typical
clock stability of 20 parts-per-million (PPM), the accumulated
maximal variation of 7,(¢) over 1 ms can be 20 nanoseconds,
which translates to a ranging error of 6 meters. For communi-
cations, these offsets are generally not a big problem, as 7,(¢)
can be absorbed into channel estimates after synchronization,
and f,(¢) can be estimated and compensated. Their residual
values become relatively small compared to the baseband signal
parameters. However, for radar sensing, when these offsets are
unknown to the receiver, they can cause ambiguity in range and
speed estimation, and become obstacles for processing signals
across packets coherently.

B. Basic Communication Systems and Signals

We consider a node transmitting Mg spatial streams with
Myt > Mg antennas. The description here is with reference to a
single user MIMO system, and it will be extended to multiuser
MIMO later.

1) Single Carrier MIMO: For a general single carrier (SC)
MIMO system, we can represent the baseband signal vector at
time ¢ from the transmitter as

x(t) = Ps(t), (3)

where P is the spatial precoding matrix of size My x Mg and
is typically fixed over a packet, and s(¢) is the data vector of
Mg x 1. The symbols s(t) can be either the directly modulated
constellation points that are unknown to the receiver, or known
pilots. In the case of spread spectrum signals, each element
in s(t) can be the product of a pseudo-random code and the
constellation point (or pilot).
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For a narrowband system, after propagating over the channel
H(¢), the received signals are given by

y(t) = H(t) ® x(t) + z(t), 4

where @ denotes convolution, and z(t) is the AWGN.

2) Mimo-Ofdm: For a MIMO-OFDM system, the baseband
transmitting signals at subcarrier n in the k-th OFDM symbol
over all antennas can be represented as

5kn,k = Pn.ksn,k: (5)

where these variables are similarly defined as those in (3), but
could have different values for different subcarriers. In the case
of MIMO-OFDMA, each node may be allocated to a resource
block occupying groups of the antennas, subcarriers, and OFDM
symbols, that are typically non-overlapping. These blocks can be
discontinuous and irregular in these domains, which can cause
significant challenges in sensing parameter estimation, as will
be discussed in Section IT1-C.

After propagating over the channel, the received frequency-
domain baseband signals at subcarrier n over all antennas are
given by

S}n.k == Hn,kin,k =% in.k; (6)
where Z, j, is the AWGN.

C. MIMO Radar Signals and Systems

In a MIMO radar, the waveforms transmitted from differ-
ent antennas are typically orthogonal, and the waveform can
be either pulsed or continuous waveforms. The MIMO radar
baseband waveform at a transmitter with M7 antennas can be
expressed as

Mr
Xp(t) =) Wmim(t) = Wip(t), @)
m=1
where xp(t) = {zrm(t)},m =1,..., My with zp m(t) be-
ing the signal at the m-th antenna, v, (t) is the basic radar
waveform, Wy, is the Mt x 1 precoding/BF vector, and W =
[Wi,...,War,] and ¥(t) = {m(t)}, m=1,..., Mr. Note
that in radar, the peak to average power ratio (PAPR) of the
transmitted signal is typically required to be very low, so that
high power efficiency can be achieved. Thus W is typically an
identity matrix.

The basic waveforms v/,,, (¢) can be any set of signals that are
orthogonal in either one or multiple domains of time, frequency,
space, and code. It can also take any waveform of pulsed and
continuous-wave radars [27], [28]. In pulsed radar systems, short
pulses of large bandwidth are transmitted either individually or
in a group, followed by a silent period for receiving the echoes
of the pulses, as can be seen from Fig. 1. Continuous-wave
radars transmit waveforms continuously, typically scanning over
a large range of frequencies. In both systems, the waveforms are
typically non-modulated.

Referring to the channel model in (1), 7,(¢) and f,(¢) are
zeros for radar since the clocks for transmitter and receiver are
typically locked. With the transmitting signal in (7), the received
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noise-free radar signal is given by

Mr L

yR() = Y Y bep (t — mo)es2m IR0,

m=1 =1
a(Mg, ¢e)a” (Mr, 0¢) W, (3)
Applying matched filtering with ¥,/ (¢) to y g(¢), we obtain

L

T (t) == Z bﬁ'pm (t _Tf)ejzwa‘fta(MR: d)f)aT(MT': ef)wmv
=1

where p;,(t) is the non-zero output of the matched filtering of
¥m (t) when m = m/, as all other outputs for m # m’ are zeros.

Assume that py,(t) = p(t) is the same for all m € [1, M7].
Staking all v, (¢), m = 1, ..., My to a matrix, we get

L
R(t) =) bep(t — ) *™P-t'a(Mp, ¢s)a” (Mr, 0,)W.
=1

When W is an identity matrix (if not, multiplying both sides
with W—1), we can vectorize R(t) and get

L

vec(R(t))=) _ bep(t—re)e?>™P*a(Mp, ¢y) ® a(Mr, ;)
£=1

where ® denotes the Kronecker product.

In MIMO radars, particularly mono-static radars, the antenna
intervals of transmitter and receiver, dr and dp, are typically
setas dr = Mrdp ordg = Mydy. Then when ¢, = 6,, which
is generally true for a monostatic radar, we have a(Mpg, ¢;) ®
a(Mr,0;) = a(MrMr, ¢¢). This enables a MIMO radar to
achieve the spatial resolution corresponding to a virtual ULA
with MMy, antennas [28]. Note that the increased aperture of
the virtual array is only meaningful when ¢, is related to €, in
some way, although ¢, = @, is not a necessary condition.

In this paper, we mainly consider the following emerging
MIMO radars, which have not been widely implemented in
practice, but have great potentials for realizing JCR systems
with balanced C&R performance.

1) MIMO-OFDM Radar: In a MIMO-OFDM radar, the
waveform 1y, (¢) is in the form of time-domain OFDM signals.
Without considering the cyclic prefix, the baseband signal of
¥, (£) can be represented as

Ym(t) = Y timne " olg(t — KTp), ©)

neESm

where Sy, is the set of used subcarriers, g () isa windowing func-
tion, and w,, ,, can be a complex variable combining orthogonal
coding, subcarrier-dependent spatial precoding/BF, and/or other
processing such as PAPR reduction.

To achieve orthogonality, S8 are typically selected to be
orthogonal for different m. The set of subcarriers can be al-
located in various forms, such as the interleaved pattern [29],
and nonequidistant subcarrier interleaving [30]. Different allo-
cations may lead to different signal properties and ambiguity
functions. Alternatively, the orthogonality may also be achieved
over time domain via the use of orthogonal codes, while different
antennas share the subcarriers.
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MIMO-OFDM signals for radar are very similar to those for
communications, except that they are typically non-modulated
and/or orthogonal across antennas. Hence MIMO-OFDM sig-
nals are excellent options for JCR systems. In particular, the
training sequence in the preamble of MIMO-OFDM communi-
cation systems holds the desired characteristic of orthogonality,
and can be directly used for radar sensing.

2) Frequency-Hopping MIMO Radar and Frequency Agile
Radar: The frequency-hopping (FH) MIMO radar [31] and the
frequency agile radar (FAR) [32], as well as its extensions to
multicarrier [33], all use the FH technologies - the total band-
width is divided into many subbands, only a subset of subbands
are used at a time, and the subset at each antenna randomly
varies over time. FH can be implemented in either fast time or
slow time, and in the form of either pulse or continuous-wave.
We consider pulsed fast FH here, i.e., the signals are continu-
ously transmitted with frequencies being changed rapidly and
in multiple times over a PRI, followed by a silent period. Using
FH leads to major advantages such as better security, and lower
implementation cost by avoiding the use of costly instantaneous
wideband components, while with negligible degradation in
sensing performance, compared to using full bandwidth signals.
FH-MIMO radar and FAR and its variants differ in how the
frequencies are used at each antenna. Next, we briefly present
their signal models, using notations similar to those for OFDM:
B for the radar bandwidth, N for the number of sub-bands, and
T for the hop duration.

In a FAR, all antennas use one common frequency at a hop,
and a BF weight is applied to each antenna so that the array
forms steerable beam [32]. The basic concept of FAR is extended
to multi-subband signaling in [33], that is, a subset of more
than one frequencies are used in each hop. In particular, in
the multi-Carrier AgilE phaSed ArrayRadar (CAESAR) scheme
proposed in [33], the whole array is divided into multiple
non-overlapped subarrays, and each antenna in one subarray
only uses one common frequency from the frequency subset.
CAESAR randomizes both the frequencies and their allocation
among the antenna elements, and induces both frequency and
spatial agility. It also maintains narrowband transmission from
each antenna and introduces the BF capability. These capabilities
make CAESAR more attractive than the original FAR. Let A,
denote the index set of the antennas in the s-th subarray, and S
be the number of total subarrays. Let J;, be the set of frequencies
selected for hop k, and f% ., € F denote the centroid frequency
of the sub-band selected by antenna m at hop k. The transmitted
signal of CAESAR at the m-th antenna can be represented as

Vm(t) = g me? > emtg(t — kT)

o

where wy i, is the BF weight.

Although FH-MIMO was developed before CAESAR, it can
be treated as a special case of CAESAR where each subarray
has only one antenna and each frequency is only used by one
antenna, that is § = My and | A;| = 1. CAESAR can also be

fk_.m S fk,mHWhen {m} m!} = AS:‘V‘S;

fi,m # frme, otherwise. (10)
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TABLEI
BRIEF COMPARISON BETWEEN C&R SIGNALS AND SYSTEMS
Properties Radar Communications
Typical Signals are unmodulated and have large bandwidth and Low PAPR; | Mix of unmodulated (pilots) and modulated symbols; High
Signal Orthogonal if MIMO-radar. PAPR; complicated and diverse signal waveforms.
Waveforms
Structure » A silent period follows each pulse transmission in pulsed radar to » Typically packet-based. Typically no repetition;

allow the reception of echo signals;
enabled by special hardware designs;

power and enable Doppler frequency estimation.

» In continuous-wave radar, signals can be transmitted continuously,

» Signal repeats every PRI within CPI to increase received signal

» Packet length and interval can be time-varying;
» Signal may occupy discontinuous resources in time,
frequency and space domains.

Transmission
Capability .
(Duplex)

following each pulse transmission,

In continuous-wave radar, transmitted signal is used as local
oscillator input at Rx to realize full duplex. This outputs “beat”
signals only, characterizing the variation of the signals;

o Pulsed radar operates in half duplex mode with a silent period

Time division duplex or frequency division duplex mode, Full
duplex is immature for communications. Short-term solutions
can be used to enable communication-centric JCR [12].

Clock Transmitter and receiver are clock-locked in most radar setups, including | Co-located transmitter and receiver share the same timing
Synchro- monostatic, bistatic and multi-static systems. clock, but non-colocated nodes typically do not.
nization
Receiver A conventional continuous-wave radar samples received signals at a rate | Sampling rate corresponds to the signal bandwidth. Full-
Signal much smaller than the scanning bandwidth, proportional to the desired | bandwidth information available.
Sampling detection capability of the maximal ranging and moving speed. This

makes information conveying difficult.
Performance | Detection probability, Cramer-Rao lower bound (CRLB), Mutual infor- | Capacity, Rate, Spectral efficiency, Signal-to-interference-
Metrics mation (MI), Ambiguity function and-noise ratio (SINR), and Bit error rate (BER)

regarded as a generalization of FH-MIMO radar by introducing
the BF capability.

Both FH-MIMO radar and CAESAR are based on frequency
division. They can also be realized on the framework of MIMO-
OFDM, with the frequency hopping concept being introduced
to subcarriers.

D. Major Differences Between C&R Systems and Signals

As can be partially observed from the signal models in
preceding subsections, there are some significant differences
between C&R systems and signals, despite of their potentials for
integration. A brief comparison is summarized in Table I, where
radar waveforms are mainly referred to traditional pulsed and
continuous waveforms such as chirp. Next, we elaborate two as-
pects that have considerable impacts on the joint system design.

Firstly, it is a fundamental challenge to address the potential
requirements for full duplex operation of JCR systems in the
mono-static setup'. On one hand, mono-static radar addresses
the requirement for full duplex operation in mainly two ap-
proaches, as illustrated in Fig. 1, which may not be replicable
in communication systems. One approach is typically applied
in a pulsed radar, by applying a long silent period to receive
echo signals, which essentially bypasses full-duplex operation
and makes the radar work in a time-division duplex mode; the
other is typically used in a continuous-wave radar, via using the
transmitter signal as the local template signal to the oscillator at
the receiver, and detecting only the “beat” signal, the difference
between the transmitted and received signals. Such designs
enable low-complexity and efficient radar sensing. However,
they constrain the options of integrating communications and

! Although the full-duplex requirement is bypassed in a bi-static radar setup,
the synchronization problem poses new challenges in JCR systems.

limit the achievable communication rates. For example, there
is large uncertainty with the availability and bandwidth of the
beat signal, hence information conveying will be unreliable.
On the other hand, full-duplex operation is still immature for
communications, and there is typically clock asynchronism
between spatially separated transmitting and receiving nodes.
These impose significant limits on integrating radar sensing into
communications.

Secondly, C&R signals are originally designed and optimized
for different applications, and are generally not directly ap-
plicable to each other. Radar signals are typically designed to
optimize localization and tracking accuracy, and enable simple
sensing parameter estimation. The following properties of radar
signals are desired: low PAPR to enable high-efficiency power
amplifier and long-range operation; and a waveform ambiguity
function with steep and narrow mainlobes for high resolution;
Comparatively, communication signals are designed to max-
imize the information-carrying capabilities, and are typically
modulated and packet-based. To support diverse devices and
meet various quality-of-services requirements, communication
signals can have complicated structures, with advanced modu-
lations applied across time, frequency, and spatial domains, and
being discontinuous and fragmented over these domains.

These differences make the integration of C&R an interesting
and challenging task. As we will see from the following three
sections, a good JCR design always seek and exploit the com-
monalities between C&R, while taking these differences into
consideration.

III. JCR: COMMUNICATION-CENTRIC DESIGN

In communication-centric JCR systems, radar sensing is in-
tegrated into existing communication systems as a secondary
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function. Revision and enhancement to communication infras-
tructure and systems may be required, but the primary commu-
nication signals and protocols largely remain unchanged.

Considering the topology of communication networks,
communication-centric JCR systems can be classified into two
types, namely, those realizing sensing in point-to-point commu-
nication systems and in large networks such as mobile networks.
Two good examples are the IEEE 802.11ad JCR systems for
vehicular networks [13], [22], [34] and the perceptive mobile
networks [12], [24], respectively. They use the single carrier and
multiuser-MIMO OFDM signals as described in Section II-B,
respectively. Both are DFRC systems where a single transmitted
signal is used for both C&R.

In this section, we first describe the two types of DFRC
systems, and then review some signal processing techniques for
general communication-centric JCR systems.

A. 802.11ad DFRC Systems

The 802.11ad standard defines a millimeter-wave packet com-
munication system operating in the 60 GHz unlicensed band.
There are three types of physical-layer (PHY) packets: single-
carrier, OFDM, and control, with OFDM being optional. The
preamble in each packet is the main signal that has been exploited
for radar sensing [13], [20], [22], [34], [35] in an 802.11ad
DFRC system. Although the DFRC system can be applied in
many scenarios, it has been mainly investigated for vehicular
networks. In a typical setup, the sensing receiver is co-located
with the DFRC transmitter, using two separated analog arrays.
The DFRC device can be located either on the road side unit
(RSU) or on a vehicle.

Referring to (1), the noise-free time-domain echo signal at the
sensing receiver can be represented as

L
y(t) = he(t)s(t — 7o)er?mIo.et,

=1

(11

where hy(t) = bewg(t)Ta(MRg, 0¢)aT (Mr, 0¢)wr(t), wr(t)
and wg(t) are the beamforming vector in the transmitter and
receiver respectively, and the AoA and AoD are assumed to
be the same. Note that the clock between the transmitter and
sensing receiver is locked, therefore 7,(¢) =0 and f,(¢) =0
in(1). The primary goal of sensing here is estimating the location
and velocity of objects via estimating 7, 0, and fp .

The three PHYs in 802.11ad have a similar preamble struc-
ture, consisting of short training field (STF) and channel esti-
mation field (CEF). The STF consists of tens of repeated 128-
sample Golay sequences, followed by its binary complement.
The CEF consists of two 512-sample Golay complementary
pairs, which has the property of perfect aperiodic autocorre-
lation, i.e., s({ — 7) ® s(¢) # 0 if and only if 7 = 0. Both the
STF and CEF can be used for sensing, in either a hierarchical or
joint manner [20]. The hierarchical strategy processes the STF
and CEF separately, exploiting their respective properties. For
example, the repetition pattern of STF is typically used for packet
detection in communications, and hence it is ideal for target
detection in sensing; while the perfect aperiodic autocorrelation
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Fig. 2. Network setup of PMNs (top subfigure) and the brief system block
diagram of a DFRC transceiver based on MIMO-OFDM (bottom subfigure).

of CEF can lead to excellent channel estimation and sensing
performance, based on, e.g., the generalized likelihood ratio
test [35]. The joint strategy uses both STF and CEF for common
tasks of sensing, based on, e.g., matched filtering [20]. The
sensing performance bounds are also derived in [20], [35]. More
advanced sensing algorithms will be discussed in Section ITI-C.

Both the single-carrier PHY, which has an identical preamble
with the OFDM PHY, and the control PHY have been explored
for sensing [20], [35]. There are some differences between their
sensing efficiency. On one hand, in the standard, a beamforming
training protocol is defined to align the transmit and receive
beams, using beam scanning and the control-PHY signals.
Single-carrier or OFDM PHY signals are typically used after
beamforming training. On the other hand, the control PHY has
a longer STF. So in terms of sensing, the control PHY enables a
wider field-of-view (FoV) and potentially better accuracy, while
the other two are generally limited to the fixed direction of
communications. A multibeam approach, as will be discussed
in Section V-B, can be applied to relax this limitation.

B. Mobile Network DFRC Systems

In [24], the framework of perceptive mobile networks (PMNs)
is introduced by applying the JCR, more specifically DFRC,
techniques, to cellular networks. Downlink sensing and uplink
sensing are defined, corresponding to sensing using the received
downlink and uplink communication signals, respectively, as il-
lustrated in Fig. 2. In the scenario of cloud radio access networks
(CRANS) where distributed remote radio units (RRUs) coop-
eratively communicate with user equipment (UE), the received
downlink communication signals from one RRU itself and other
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cooperative RRUs can be used for downlink active sensing and
downlink passive sensing, respectively.

Extend the single user MIMO-OFDM model in Section II-B
to multiuser MIMO-OFDMA. Suppose that one node receives
signals transmitted from a set of nodes g, ¢ € Qr, and uses the
signals for sensing. Let Qr be the cardinality of Qr. Referring
to the transmitting signal model in (5) and the channel model in
(2), we can represent the received noise-free k-th OFDM symbol
at the n-th subcarrier as

Lq
Vo= Z Z by pe 12T (Ta b4 To,0.k) fo eI 2TK(SD g, ¢+ o0, k)T,
geQr £=1

a(Mg, ¢q.e)a” (Mg, 0q.e)%q.nx (12)
Scenarios represented by this model are exemplified below:

1) Downlink sensing in a standalone base station (BS): This
is the case where the BS uses its own reflected transmitted
signals for sensing, similar to a mono-static radar. In this
case, Qr = land 75 gk = fo,q.x = 0;

2) Uplink sensing in a standalone BS: Qr denotes the set
of Q7 UEs sharing the same subcarriers via SDMA, and
To,q.k 7 0 and f, g & 7 0.. Each UE only occupies partial
of the total subcarriers;

3) Downlink sensing in an RRU: Qr denotes the set of RRUs
whose downlink communication signals are seen by the
sensing RRU, including its own echo signals.

The sensing can be based on (12) with the signals Xg 5 &
corresponding to both the pilots and data symbols, as will be
detailed next. For more details on the signals usable for sensing,
as well as solutions to the full-duplex problems in PMNs, the
readers are referred to [12], [24].

C. Sensing Parameter Estimation

Sensing parameter estimation in communication-centric JCR
is generally different to that in traditional radar systems, due to
the significant differences between the two types of signals as
described in Section II. Next, referring to the MIMO-OFDM
signal models in Section III-B, we review key techniques in
sensing parameter estimation. Most of them are also applicable
to single carrier systems such as the IEEE802.11ad DFRC. We
first discuss two important problems to be resolved, before we
review optional sensing algorithms.

1) Direct and Indirect Sensing: The first problem is how to
deal with X, ,, ; in the received signals, which can represent
either known pilots or (unknown) data payload in a packet.
Both can be used for sensing. For unknown data payload, it
can be demodulated after channel estimation, as in conventional
communications. Using data payload can significantly extend
the sensing capability such as the range, as it is much longer
than the pilot. Here, the receiver is assumed to know X4,k
or its estimate via demodulating S, ,, . For multiuser-MIMO
signals, for example, signals received at an RRU from multiple
RRUs in downlink sensing, or signals received at a standalone
BS from multiple UEs, we can use two methods to formulate
the estimation problem.
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One method, which may be called as direct sensing, directly
feeds the received signals to sensing algorithms. In some cases,
e.g., sensing using the data payload in a MIMO system, this is
the only option as X4 ,, » cannot be readily removed even when
they are known. The presence of X , x often limits the optional
algorithms for sensing parameter estimation.

Let us have a look at one example in [24], where direct
sensing is conducted via the block compressive sensing (CS)
techniques [36], and the symbols X, ,, ; are used as part of the
sensing matrix. For the clarify of presentation, we consider the
caseof Q. = 1in(12), and ignore the timing offset 7, 4 «. Ignore
the noise and rewrite (12) in a more compact matrix form as

(13)

where A(Mg, ¢,) and A(M,,6,) are matrices with the /-th
column being a(Mpg, ¢, ) and a(Mg, 6, ). respectively, and
Dy, and C,, are diagonal matrices with the diagonal element
being by €72k /D.a.tT= and =277 fo_ respectively.

In order to apply sensing algorithms, we need to re-organize
signals so that we can stack more measurements over the same
domain. Consider the case of collecting samples from all the
subcarriers for the estimation of delay and AoA. Take the
transpose of ¥, x in (13), and rewrite it as

Yok =%b o i(ch @Iy, ) VAT (Mg, ¢,).

where c,, is a column vector containing the diagonal elements
of Cy, Ing, is an M, x M, identity matrix, and V, is a block
diagonal matrix

y’n,.k = A(MR-: qbq)CnDkAT(Mq: Gq)iq,n?ku

(14)

V, = diag{be 7*™*IPatToq(M, 0,4)},£=1,...,Lq.

We have now separated signals X, ; (], ® Ins,) that depend
on n from those on other variables. We can then stack the row

vectors y1 . from all available subcarriers to a matrix, and obtain
Yo 2 [Fipoos Tnpoe [T = WV AT (Mg, &), (15)

where the n-th row of Wis X7 , (¢ ® Ins, ).

The signal model in (15) enables the applications of both 1-D
multi-measurement vector (MMV) CS and 2-D CS techniques.
For 1-D MMV CS, c, is expanded to a quantized on-grid
vector, and then W is used as the sensing matrix. The delay
and VoAT (Mg, ¢,) will then be the outputs of the algorithm,
and the Doppler frequency and AoA can be further estimated
from the estimates of VAT (Mg, ¢,). For 2D CS, both delay
and AoD can be estimated together by expanding both ¢, and
A (Mg, ¢,) to on-grid models. It is easy to see that if we swap
the terms of Doppler frequency and delay in (14), samples across
OFDM symbols can be stacked and the Doppler frequencies can
be estimated first.

The direct sensing method has a high computational com-
plexity. Due to the presence of X4, &, the applicable sensing
solutions are also limited. However, it is the only option, when
X4 n,x cannot be removed due to, e.g, insufficient measurements.

The other method, indirect sensing, first estimates the ele-
ments of channel matrix for each node. It decorrelates signals
from multiple nodes, removes Xy ,, ¢ Of Sq ,, . from the received
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signals, and applies sensing parameter estimation to the esti-
mated channel matrix. In multi-user MIMO systems, referring
to (12), this can be achieved by decorrelating signals collected
from K ynis, k=E'E +1,... K+ K -1,K > MrQrat
subcarrier n. Mathematically, this can be represented as

[ﬂm,k, i -7ﬁQT‘!1,k]

= [t el [y o5 W w1 (16)

where Xy k = [X] 45+ X, nil” 18 @ MpQr x 1 vector,
and { denotes the pseudo-inversion operator. Note that the
channel matrix is assumed to be constant over this interval.
Equation (16) indicates that the decorrelation is only possible
when K > MrQr X, ks are available during a CPI and the
inversion of [Xp 1, ..., Xn k| exists.

The decorrelation involves high computational complexity
due to matrix inversion and may cause significant noise enhance-
ment, unless Xg 5k OF Sqn % are orthogonal. Hence indirect
sensing is particularly suitable for training and pilot symbols
which are typically orthogonal. After X; ,, i is removed, we can
equivalently work on the single user channel matrix ﬂn(t) in
(2). This can largely simplify sensing parameter estimation, and
offer great flexibility in problem formulation. Note that if the
precoding matrix P, x is unknown to the receiver, aT (Mz, 6;)
in (2) will be replaced by aT (Mr, 6;) Py, &. This will make the
estimation of AoD challenging.

2) Clutter Removal: The second problem is how to deal
with clutter signals that are useless for sensing. Communication
systems are typically deployed in an environment with dense
multipath, where many signal propagation paths involve static
objects only and are not of the interest of sensing. Removing
clutter before sensing may distort the signal, however, it can
largely reduce the number of parameters to be estimated. In this
sense, it is generally a better strategy to remove clutter before
the application of sensing algorithms, using, e.g., background
subtraction or filtering techniques. For detailed discussions on
potential clutter removal techniques, the readers are referred
to [24].

3) Sensing Algorithms: We now discuss options for sensing
algorithms based on the indirect method. Traditional radar typi-
cally applies matched filtering for sensing parameter estimation,
which has also been adopted in some DFRC systems, e.g.,
802.11ad DFRC [20], [22], [34]. However, the accuracy and
resolution capability of these methods largely depend on the
signal correlation properties (i.e., ambiguity functions). More
options that are less affected by the correlation property can be
explored for communication-centric DFRC signals.

From the decorrelated estimates of I:In'ks in (2), we can

represent the (mpg, mr)-th element in H,, ;. as
L
i —j2mnT, 2wk T
hﬂ,k,mg,mj" 15t E :bgf! J 1fo J2mkfp i T,
=1

. ejQ?rdRmR sin(ee) /2 ej2'.lrdr msin{f¢) /A
3

a7

where mp and mr represent the indexes of the receiving and
transmitting antennas, respectively. This is also known as a 4-D
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Harmonic retrieval problem [37], where the observation signals
in each domain can be represented as a Vandermonde matrix
when the samples are equally spaced. The 4-D harmonic retrieval
problem can be reduced to multiple-snapshot lower-dimensional
problems by combining one or more of the exponential functions
with the unknown variable b;. Thus, we can rewrite them to
different matrix and Tensor forms so that sensing parameters
can be estimated in different ways and orders.

Since solutions to the classical harmonic retrieval problems
are generally well studied, we ignore the details and only provide
a comparison of typical techniques in Table Il with reference to
our sensing problems. More details of such techniques for JCR
can be referred to [24], [37]-[40]. In Fig. 3, we also show an ex-
ample of AoA, distance (delay) and speed (Doppler frequency)
estimation by the 2D-DFT and on-grid 2D-CS methods with the
orthogonal matching pursuit (OMP) recovery algorithm [39].
The 2D-CS method directly estimates delay and AoA using
the CS formulation, and then obtains the Doppler frequency
estimates from the phase differences of the estimated amplitudes
in 2D-CS between two packets. From the figure, we can see
that the simple 2D-DFT method can capture coarse distance
and AoA information, although only 128 out of 512 subcarriers
are used. Estimation ambiguity in distance can be seen with
the repeated values due to the pseudo-interleaved pattern in the
used subcarriers. However, speed estimation is not good enough
to meet the requirement of a practical application. The 2D-CS
provides estimates with much better resolution for all the three
parameters, without ambiguity.

When selecting sensing algorithms, the following issues need
to be further considered:

1) Modern communication signals are typically very com-
plicated in terms of resource usage, and they may be dis-
continuous in one and more domains of space, frequency,
and time. See [12] for the available sensing signals and
their properties in 5G-based PMNs. This requires sensing
algorithms with the capability of processing discontinuous
and varying-interval samples;

2) Higher-dimension algorithms can generally identify more
parameters and achieve better estimation performance at
the cost of higher complexity. However, some sensing
algorithms such as ESPRIT, require more samples than
the unknown variables in each domain. Therefore, when
there are insufficient samples in one domain, it could be
better to use lower-dimension algorithms. For example,
when the number of receiving antennas is small, it is
hard to get accurate AoA estimation via directly using
spatial-domain measurements as an independent domain
in problem formulation. In such cases, as shown in [41],
we can augment the spatial-domain measurements with
those obtained in other domains, such as the frequency
and Doppler domains, or vice verse. This makes high-
resolution AoA estimation possible.

D. Resolution of Clock Asynchrony

As described in Section II-A, when the oscillator clocks
between the transmitter and the sensing receiver are not locked,
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TABLE I
COMPARISON OF SENSING PARAMETER ESTIMATION ALGORITHMS
Algorithms Advantages Main limitations
Periodogram such as » Low resolution;
2D-DFT  (typically | Traditional technique. Simple and easy to implement. May be » Generally require a full set of continuous samples in

based on the outputs
of matched filtering)

used as the starting point for other algorithms.

each domain, which may not always be satisfied.

Maximal Likelihood
Estimation [35]

Statistically optimal formulation; Particularly suitable for low-
dimension signals.

Typically require searching to find the solutions and hence
complexity is high; Complexity also increases with signal
dimensions exponentially.

Subspace  methods
such as ESPRIT and
MUSIC [40], [41]

« Separate signal and noise subspaces and hence is re-
silient to noise;

e ESPRIT can achieve very high resolution and can do
off-grid estimation;

e« MUSIC can flexibly work with non-continuous samples.

o ESPRIT requires a large segment of consecutive sam-
ples, which may not always be satisfied;

» Resolution of MUSIC depends on searching granularity;

o High complexity associated with singular value decom-
position.

Compressive sensing
(On-grid) [24], [38]

« Flexible and does not require consecutive samples;

e Various recovery algorithms available, allowing good
tradeoff between complexity and performance;

« Different dimensions of formulation can be used, adapt-
ing to sensing requirements and conditions;

¢ Dense dictionaries can be used to improve resolution.

Although it may even work well for estimating a small amount
of off-grid parameters, performance can degrade significantly
when the number of parameters to be estimated is large.

Compressive Sensing
(Off-grid) such
as  atomic  norm
minimization [38]

Have all the advantages of on-grid CS algorithms. Capable of
estimating off-grid values.

Limitation in real time operation due to very high complexity.
Still require sufficient separation between parameter values.

Tensor based algo-
rithms [37]

High-dimension formulation and estimation are made easy.
Reduce computational complexity and provide capability in
resolving multipath with repeated parameter values.

Need to be combined with other algorithms such as ESPRIT
and CS, thus facing their inherent problems.
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An example of sensing parameter estimation, where red circles denote the ground truth, and blue stars in Fig. 3.(b) represent the estimates. The channels

are randomly generated with continuous-value sensing parameters. Signals used for sensing are emulated from the 5G-NR DMRS type2 subcarrier allocation,
with subcarrier indexes [1,2, 7, 8] in each resource block of 12 subcarriers. The total signal bandwidth is 100 MHz. The total number of subcarriers is 512 and
32 continuous resource blocks are used. Signals are for 16 receiving antennas and 1 transmitting antenna. The 2D-DFT method uses 16 packets, and the 2D-CS
method only uses 2 packets. Packet interval is assumed to be 0.1 ms. The average SNR of the received sensing signals is about 30 dB.

the timing offset 7,(¢t) and CFO f,(¢) in (1) and (2), are
typically non-zero and time-varying. They can directly cause
ambiguity in range and speed estimation. They also prevent from
aggregating measurements over a relatively long interval, e.g.,
preamble signals from two packets, for joint processing, which
is otherwise important for parameter estimation, particularly
Doppler frequencies. This is a critical and challenging problem
in communication-centric JCR systems.

There have been a limited number of works that address
this problem in passive WiFi sensing [42]-{44], based on the
cross-antenna cross-correlation (CACC) method. The basic as-
sumption is that timing offsets and CFO across multiple antennas
in the receiver are the same, as the same clock is used. Therefore
these offsets can be removed by computing the cross-correlation
between signals from multiple receiving antennas. Considering a
single transmitter with a single antenna and referring to (12), the

Authonzed licensed use limited to: Rutgers University. Downloaded on July 17,2022 at 05:59:11 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: OVERVIEW OF SIGNAL PROCESSING TECHNIQUES FOR JOINT COMMUNICATION AND RADAR SENSING

received noise-free signal at the m-th antenna can be rewritten
as

L
Z bge—j??m(n +70,k)fo gJ2Tk(fD e+ fo k)=

£=1

@n,k,m e

e’,‘mﬁ sin(¢g):-fﬂ e
Let the mg-th antenna be the reference. Computing the cross-
correlation between ¥y, ¢ and Yn k. m, yields

R(n,k,m) = Yn k,m¥n kmo

L L
— E: §: by, b e 12Tt —Temg ) fo
mp
1

b=18,,—
. 12TR(fD.tn = FD.tm, ) Te gImm(sin(bey )—sin(dem, ) |Zn.k |2 _
(18)

Note that in (18), 7, % and f, x are removed. However, cross-
correlation causes doubled terms and sensing parameters be-
come relative.

Two assumptions, which limit the applications, are necessary
for subsequent processing: (1) The transmitter and sensing re-
ceiver are relatively static and the relative location of the trans-
mitter is known to the receiver; and (2) there exists a line-of-sight
(LOS) path between them and it has much larger magnitude than
non-LOS (NLOS) paths. The LOS path and some NLOS paths
reflected from static objects are time-invariant. Hence, their
cross-products are invariant over the CPI and can be removed by
passing R(n, k,m) through a high pass filter. The cross-terms
between the LOS path and time-varying NLOS paths thus dom-
inate in the output of the filter. The sensing parameters can then
be estimated, with respect to the known parameters of the LOS
path.

However, the outputs after CACC contain cross-product terms
that include signals and their images, and hence the number
of unknown parameters to be estimated is actually doubled.
This will not only cause degraded estimation accuracy, but also
ambiguity between the actual value and its image. The authors
in [43] proposed an add-minus method to suppress the image
signals by adding a constant o gy k., and subtracting another
one to Yk, m,- However, this method is found to be susceptible
to the number and power distribution of static and dynamic
signal propagation paths. To resolve these problems, a method
is proposed in [41] by introducing a mirrored MUSIC algorithm.

Observing from (18), we can see that the relative delays and
Doppler frequencies have values symmetric to zero. Exploiting
this symmetric, the mirrored MUSIC algorithm first constructs
new signals from the CACC outputs, or the outputs of a further
high pass filter to remove the dominating static components, and
then define new basis vectors for MUSIC algorithms. Both of
the new signals and basis vectors are constructed by adding the
original ones with their sample-reversed versions. The mirrored
MUSIC algorithm equivalently reduces the number of unknown
parameters by half, and is shown to significantly improve the
estimation accuracy, and simplify the ambiguity resolution prob-
lem associated with image signals.
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E. Sensing Assisted Communications

In many location-aware services and applications, e.g., V2X
network, sensing and communication are recognized as a pair
of intertwined functions, where communication-centric JCR can
be applied so as to reduce the costs and improve spectral-,
energy-, and hardware-efficiency. In addition to those general
advantages, one may also leverage the sensing results to facil-
itate communication, where significant performance gain can
be obtained over that of the conventional communication-only
schemes. Examples are sensing-assisted BF [13], [45], [47], [48]
and sensing-assisted secure communications [49]. Below we
briefly review the recent state-of-the-art on sensing-assisted BF.

BF for high-quality mmWave communications involves con-
figuring the Tx and Rx beams of the communication links. As
in 5 G, this may be performed through beam fraining. The
idea is to send pilots from the Tx to Rx with each pilot being
beamformed in a different direction. The Rx then listens on dif-
ferent beams and feeds back the Tx-Rx beam pair that gives the
best performance. Alternatively, the beamforming could be done
based on CSI (made possible with, e.g., compressive sensing
methods [50]), or from information about the channel like the
AoA and AoD parameters of signal propagation paths. With
such angular information at hand, the Tx and Rx can accurately
align their beams, such that a high-quality communication link
can be established. In general, the process of beam training or
CSI estimation may consume a substantial amount of overhead,
which tends to grow with the larger arrays found at mmWave
and higher frequencies.

Leveraging radar sensing is one approach to reduce the over-
heads associated with configuring a mmWave communication
link. This may be conceived in different ways as for example
an active radar in a different frequency band co-located with
the base station [45], [51], leveraging information obtained by
overhearing radar signals on a device [52], or as side benefit
of JCR [47], [48]. Co-locating sensing with the infrastructure
has many advantages for automation applications like vehic-
ular communication systems [13]. The core idea is that there
is congruence between the multipath channels and the radar
channels as validated through analysis, simulations and mea-
surements [13], [53], so that information from the radar can be
exploited to reduce CSI or beam training overheads. Of course,
the radar also provides a more accurate source of position, which
can add in position-aided beam training methods. For example,
overhearing automotive radar signals can be used to achieve
reduced overheads by 77% and achieve higher rates than beam
training [52].

As a step beyond using stand-alone radar sensors, JCR sig-
nalling is envisioned to play a unique role in V2I communica-
tions, offering not only considerable reduction in the overhead,
but also the capability to beamform towards predicted directions
of the vehicles, in order to adapt the fast-changing vehicular
channels. To show this, let us consider ammWave RSU equipped
with My transmit and My receive antennas, which acts as a
mono-static radar, and is serving a single-antenna vehicle driving
at a nearly constant speed on a straight road. We assume that the
RSU communicates with the vehicle over a single LoS path, and

Authonzed licensed use limited to: Rutgers University. Downloaded on July 17,2022 at 05:59:11 UTC from IEEE Xplore. Restrictions apply.



1306

that all the antenna arrays are adjusted to be parallel to the road.
As a consequence, the AoA equals to the AoD in the V2I LoS
channel.

At the kth epoch, the RSU transmits a DFRC signal x(t) =
frsi(t) from the RSU to the vehicle, with f; being the JCR
beamformer, and si(¢) being the data stream. The signal is
partially received by the vehicle’s antenna array, and is partially
reflected back to the RSU. The received echo signal can be
expressed in the form of

yR(t) = bkeﬂﬁf’:’"‘ta (MR, Qk) al (ﬂffT, 9];)

fpsp (t— ) +2R(1), (19)

where the beamformer f; is designed based on a predicted
angle, which is f; = a (MT,Bka 1). Moreover, €k|k 1 is the
kth predicted angle based on the (k — 1)th estimate, and by,
fp.ks Ok, and 73 denote the reflection coefficient, the Doppler
frequency, the AoA, and the round-trip delay for the vehicle
at the kth epoch, respectively. In particular, fp x and 7, can
be further written as functions of the distance dy, the velocity
vk, and the AoA 6y, which are fpj = Lﬂ’fa‘“&,n‘ M‘“
By matched-filtering (19) with a delayed and Doppler shlftecl
counterpart of si(¢), one obtains the estimates of the Doppler
and the time-delay, denoted as fD,k and 7. Let us denote the
vehicle’s state as qx = [0k, dg, vk, bx|T . The sensing measure-
ment and the vehicle state can be connected by a function
Ty = h(qx) + 2z, which can be expanded as [47]

¥ = beBia (Mp, 04) a” (Mr, 05) a* (Mr, i1 ) + 2o,

O fe
ka —f—”"ms kle 1 z¢,
%k - +z‘l’1

(20)
where Ej. is the matched filtering gain, and zx = [2] , zf, 2-]7
denotes the measurement noise.

Recalling the assumption that the vehicle is driving on a
straight road with a nearly constant speed, the state transition
can be modeled as q; = g(qx_1) + wg, which can be expressed
in the form of [47]

O = Ok—1 + dit vk_1 AT sin Ox_1 + wo i,

dy = dp—1 — vp_1AT cos 01 + wa k.

Vg = Vp—1 T Wy k»

b =be_1 (1 +d; ' jvr_1AT cosOp_1) + wo i,

21

where wy = [we k, Wk, Wo k, Wb, x| represents the state noise,
and A is the duration of one epoch.

With both models (20) and (21) above, the RSU can predict
and estimate the vehicle’s state at each epoch via various ap-
proaches, e.g., Kalman filtering and factor graph based message
passing algorithms [47], [48], [54]. The predicted angle is then
employed to design the JCR beamformer for the next epoch. At
the kth epoch, the received signal at the vehicle can be written
as

yo(t) = Bra” (Mr,0) a* (Mr, fue_1 ) sk(®) + 20 (),

where 3, is the path-loss of the LoS path, and z¢(¢) is the noise
with variance 0. Accordingly, the achievable rate is obtained
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as
Ry =log (1 + ‘5kaT (Mrp,0;)a* (MTsékm—l)‘sz/U%) >

where p; is the power of the data stream s (). It can be
seen that the achievable rate relies critically on the sensing and
prediction accuracy of the AoA. Once the next AoA is accurately
predicted, the RSU can keep tracking the vehicle while offering
high-quality communication service when it is within the RSU’s
coverage.

Remark: We conclude here the superiorities of the JCR
based predictive BF over conventional communication-only ap-
proaches, i.e., beam training and tracking:

® First of all, JCR signalling removes the necessity of dedi-

cated downlink pilots, as the whole JCR downlink block is
exploited both for beam sensing and communication. This
reduces the downlink overhead.

® Secondly, the uplink feedback is not required, since the

RSU estimates the angle from the returned target echo
signal instead of from the feedback, which reduces the
uplink overhead.

® Thirdly, the quantization error generated in the uplink

feedback is avoided. As such, the estimation of the vehicle’s
state can be performed in a continuous manner.

® Finally, JCR signalling achieves higher matched-filtering

gain than that of beam training and tracking approaches,
as the whole downlink frame, rather than a part of it, is
tailored for both downlink sensing and data transmission.

IV. JCR: RADAR-CENTRIC DESIGN

Radar systems, particularly military radar, have the extraordi-
nary capability of long-range operation, up to hundreds of kilo-
meters. Therefore, a major advantage of implementing commu-
nication in radar systems is the possibility of achieving very long
range communications, with much lower latency compared to
satellite communications. However, the achievable data rates for
such systems are typically limited, due to the inherent limitation
in the radar waveform [3], [4]. [8], [55].

Research on radar-centric JCR has been mainly focused on the
information embedding technologies, and there are only limited
works on other aspects such as communication protocol and
receiver design based on the radar-centric JCR signals. In this
section, we concentrate on more recent DFRC systems based on
MIMO-OFDM, CAESAR and FH-MIMO radar, because of the
remarkable benefits they can offer as described in Section II-C.

A. Embedding Information in Radar Waveform

Realization of communication in radar systems needs to
be based on either pulsed or continuous-wave radar signals.
Hence information embedding with little interference on radar
operation is one of the major challenges. This topic has been
widely investigated, as reviewed in, e.g., [4], [6], [8]. Here, we
summarize these techniques in Table III.
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TABLE 1T

SUMMARY OF INFORMATION EMBEDDING METHODS IN RADAR-CENTRIC DFRC SYSTEMS
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Advantages

Disadvantages

The chirp signal form remains when the
inter pulse modulation is used, which is
prefered in many radar applications.

The waveform can be implemented in
many existing radar systems with only
modifications fo the software.

The slow time coding is restricted by the
PRF of the radar, thereby limiting the
maximum rate of communication.

Naturally coexist with the CDMA / DSSS
communication signal form.

Enables covert communication by spread-
ing the signal over the bandwidth of radar.

Phase modulation will inevitably lead to
spectrum alteration of the radar waveform,
which may result in energy leakage out-
side the assigned bandwidth

Has little impact on the radar sensing
performance in the mainlobe.

The performance is sentive to the accuracy
of array calibration and BF

The multi-path of radar signal may incur
interference to the communication.

Naturally coexist with the radar function-
ality, with negligible impact on radar per-

Generally achieve higher data rates com-
pared to modulation with modified wave-

Demodulation may be complicated;
Demodulation performance is sensitive to
channel if IM is applied to spatial domain;
Codebook design could be a challenge.

Modulations Methods
Apply various combinations of
Time- amplitude, phase andfor fre-
frequency quency shift keying to radar
o | Embed- chirp signals [4]_, [6], [56], or
E ding map data to multiple chirp sub-
=) carriers via the use of frac-
g tional Fourier Transform [57].
=z Code- Modulate binary/poly-phased
E domain codes in radar signals us-
g | Embed- ing direct spread spectrum se-
= | ding quences [58].
Spatial Modulate information bits to
embed- the sidelobes of the radar
ding beampattern [4], [6].
Index
Modulation | Represent information by the p )
(No indexes of antennas, frequen- rnance;
waveform cies, and/or codes of the sig-
modifica- nals [8], [10], [59], [60].
tion) form.

One of the particular techniques of interest is index mod-
ulation (IM) [61]. IM embeds information to different com-
binations of radar signals’ parameters, over one or more do-
mains of space, time, frequency and code [8], [10], [26], [61].
Thus IM does not change the basic radar waveform and signal
structure, and has negligible influence on radar operation. For
MIMO-OFDM, CAESAR and FH-MIMO radar, IM can be real-
ized via frequency selection/combination and/or antenna selec-
tion/permutation [59], [60], [62], [64]. Frequency combination
selects different sets of frequencies, and antenna permutation
allocates the selected frequencies to different antennas. Infor-
mation is represented by the combinations and permutations.
Let the number of combinations and permutations be N, and
Ny, respectively. Then the number of bits can be represented is
logs N, and log, N, respectively. Mathematically, frequency
combination and antenna permutation can generally be com-
bined. However, decoupling them is consistent with the way
that the information is demodulated, as will be discussed later.

For MIMO-OFDM radar with orthogonal frequency alloca-
tion, frequency combination allocates the total NV subcarriers to
My groups without repetition, with each group having at least
one subcarrier [62], [65]. If without additional constraint on sub-
carrier allocation, there are a total of N, = Cjy _ MY M7 com-
binations (i.e., Selecting M7 out of N subcarriers first to ensure
each group to have at least one, and then the remained N — M
subcarriers can go to any of the My groups); if each antenna
needs to have the same number of L, = N /My subcarriers, the
total number of combinations is N, = C} Cﬂ_l‘s Sk Cf“: =
N!/(L.")Mr . The number of permutations of allocating My
groups of subcarriers to M7 antennas is N, = M7l

The DFRC system extended from CAESAR is proposed
in [59], where each virtual subarray is assumed to have the same
number of antennas and use one frequency. Hence frequency
combination selects S out of N frequencies, and N, = C¥.

| One hop with freq f1

} preamble
o [EIESEEREEIRE

we AR

e ——————— PRI-——————=

time
One packet -

Fig. 4. A simple example showing the packet structure of FH-MIMO DFRC
with N = 8 and M7 = 2, consisting of a preamble with two identical hops and
3 hops with embedded information. A total of 4 bits can be conveyed in each
hop with IM.

The number of total antenna permutations is shown to be
Np = Mr!/((Mz/S)1)5.

For FH-MIMO DFRC systems [64], [66], the total number
of frequency combinations and antenna permutations are N, =
Cff?‘ and N, = Mr!, respectively. This corresponds to S =
My in [59]. Let By, denote the Mt x My antenna permutation
matrix at hop k, which has only a single non-zero element, 1, in
each row and column. The transmitted signal of the FH-MIMO
DFRC can be represented as

xgr(t) = By ().

Note that both Bj, and the frequency set F;, vary with k£ and
are determined by the information bits. One simple example of
information embedded FH-MIMO DFRC for packet communi-
cation is shown in Fig. 4.

It is noted that the values of N. and N, above define the
maximum achievable bit rates only, without considering the
communication reception performance. In practice, the number
of actually used combinations and permutations may be reduced,
due to the overall system design and the consideration of the de-
modulation complexity and performance. In particular, demod-
ulating the bits embedded in antenna permutation is much more

2)
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difficult and subject to higher demodulation error, compared to
demodulating those embedded in frequency combination. These
issues will be discussed in detail in Section IV-B and IV-C.
In addition, the impacts of information embedding on radar
performance should also be evaluated, such as the ambiguity
functions in the time domain [60] and in the angular domain [65].

B. Signal Reception and Processing for Communications

Since IM in all the three systems involve FH, and their receiver
processing methods are similar in many aspects, we use FH-
MIMO DFRC as an example to illustrate the signal reception and
processing for its relative simplicity. Overall, the research on the
receiver design for these systems are still limited. Our overview
here is mainly based on [60], [66], [67], and also incorporates
works on MIMO-OFDM and CAESAR DFRCs [59], [65] into
the framework of FH-MIMO DFRC.

Consider a receiver with Mg antennas. The signal received
from each antenna is passed to a mixer with local oscillator
frequency f., which is generally the central frequency of the N
subbands. Assume narrowband communications and the differ-
ence between multipath delays |7z — 7| < T. Referring to (1)
and (4) and ignoring the variation of Doppler frequencies, the
noise-free baseband received signal can be approximated as

My L
y(t) =D ) e rm—te)t-r-7o(1)
m=1 ¢=1
a(Mp, ¢e)a” (Mr, 0¢) By mg(t — T — To(t) — KT),

(23)

where 3y r, is the m-th column of By, ¢, € C is the equivalent
path coefficient, subsuming multiple terms, and 7; =~ 7 is used.
The baseband signal is then sampled at T, = 1/B, generating
L, = |T/T,| samples per hop. Let

L
H 2" cia(Mg, ¢e)a” (Mr,6).

=1

(24)

For the simplicity of presentation, assume that g(¢) is a rectan-
gular windowing function. Assume that synchronization is done
perfectly. We can stack L, measurements from all Mp antennas
to a matrix Y, which is given by

M

Yk = HBki"T — Z Hﬁk,mwima

m=1

(25)

where @ = [thy 1, ..., ¥y ar, s By m is the m-th column of By,
and ¢y ,,, = {e/¥"Uem—S)bp} 0, =0,...,L, — 1.

1) Demodulation: The task of demodulation is to retrieve
information bits from Y. We assume perfect synchronization
and channel estimation here. It will become clear that channel
estimation may not be necessary if only frequency combination
needs to be identified.

An optimal formulation of the demodulator can be based on
the maximum likelihood principle [59]. But it has very high
computational complexity and is infeasible for practical im-
plementation. Alternatively, we can apply sub-optimal methods
such as CS techniques.
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The patterns of both frequency combination and antenna
permutation can be identified by formulating a sparse recovery
problem. The basic idea is to construct an L, x N dictionary
matrix &, by expanding ® to cover all N subband frequencies.
Each column of ®4 has the similar expression with ¢ ., for
each subband frequency. Then we can get a 1-D MMV-CS
formulation as

Y7 = ®aAmmy,

where only M7 out of N rows in Aymv are non-zero, corre-
sponding to (HB})T. The M7 frequency estimates, which cor-
respond to the frequency combination pattern, can then be found
by using one of the well-known MMV-CS recovery algorithms.
The estimate of the M+ non-zero rows of Aypyy. obtained in the
recovery process, can be used to find the antenna permutation
pattern, by matching them with (HB,)T . This matching process
can be realized in either a simpler row-wise way or a more
complicated process jointly across all rows.

Another simpler sub-optimal method is to exploit the orthogo-
nality of frequencies across antennas and apply a discrete Fourier
transform (DFT) matrix F':

Y.F = HB;®]F,

(26)

27

where each row of @{F is the windowed DFT output of a single
tone signal and its waveform has the shape of an impulse with a
single peak. Thus each row of Y, F represents the weighted sum
of these impulses. Therefore, the frequency combination pattern
may be identified via locating the peaks. This is particularly
effective when either the inverse of H exists or when the LOS
path is dominating in H. In the former, we can compute H 1Y
and obtain B;®] F. This leads to simple identification of both
frequency combination and antenna permutation patterns, as By,
is a permutation matrix. In the latter, the frequency combination
pattern can be found via the peaks and the antenna permutation
pattern is determined via exhaustive searching, even in a single
antenna receiver [60], [66].

2) Channel Estimation: An accurate estimate of H is critical
for demodulation. However, it is challenging to design and
incorporate long training sequences, which is essential for esti-
mating H, in FH-MIMO DFRC systems. This is because training
sequence requires certainty, which will affect the randomness of
FH radar operation.

There are very limited results on channel estimation for
FH-DFRC systems with IM. In [60], both synchronization and
channel estimation are investigated for a single antenna receiver,
with the consideration of packet communications. For channels
with a dominating LOS-path, which could be a typical operating
condition for radar-centric DFRC, a frame structure is proposed
with two identical hops serving as preamble followed by hops
with embedded information. The two identical hops are designed
to enable effective estimation of timing offset, carrier frequency
offset and channel. To simplify synchronization and channel
estimation, re-ordered hopping frequencies are used, which
slightly reduces the information embedding capability in terms
of antenna permutation. Timing offset and channel estimators
are proposed by exploiting the signal differences between two
neighbouring antennas. The work is also extended to NLOS
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channels by using incomplete sampled hops and judiciously
designed hopping frequencies to combat inter-hop and inter-
antenna interference.

C. Codebook Design

In IM systems, the Euclidean distances between modulated
IM constellations may not be sufficiently large to ensure good
demodulation performance, particularly in high-dimension IM
systems that combine multiple domains [61]. Such an identi-
fiability problem is important in IM systems. One method to
improve identifiability is via codebook design that excludes IM
constellation points that may cause small Euclidean distances.
For the considered IM here, the codebook determines how the
patterns of frequency combination and antenna permutation are
selected and mapped to information bits. As was disclosed
in [59], the achievable communication rates are largely con-
strained by antenna permutation, as its demodulation perfor-
mance is sensitive to the differences between different columns
of H.

The design criterion can hence be formulated based on the
distance between two codewords of antenna permutation:

Am,m') =|| HBj m — HBj e I3 - (28)
Maximizing the minimal distance among all A(m,m') is a
typical design criterion. Since directly searching via (28) is
computational complicated, a method of projection into a lower
dimensional plane is proposed in [59]. However, given that the
design needs to be updated once H is changed, the complexity
is still very high.

Such a complicated design may be avoided by using pre-
compensation. For example, for LOS-path dominating channels,
the channel differences between antenna permutations will be
small when the AoD is small. In [66], an element-wise phase
compensation method is proposed to remove the AoD depen-
dence of demodulating antenna permutation. Thus the distances
between different codewords become identical.

In addition to its impact on communication performance,
codebook may also affect the radar performance, for example,
the ambiguity function as evaluated in [60], [67]. More specif-
ically, it is demonstrated in [67] that the probability of radar
waveform degeneration can be reduced by spreading the avail-
able frequency hops between waveforms as evenly as possible;
and in [60], it is shown that by constraining the codewords, the
receiver processing can be largely simplified, with negligible
impact on the radar ambiguity function.

V. JCR: JOINT DESIGN AND OPTIMIZATION

Although no clear boundary exists between the third category
of JCR and the other two, there is more freedom here in terms
of signal and system design. That is, JCR technologies can be
developed without being constrained to existing C&R systems,
and they can be designed and optimized to balance the require-
ments for C&R, potentially providing a better trade-off between
the two functions.

1309

Joint waveform optimization is a key research problem here.
It can be conducted in multiple domains, using various perfor-
mance metrics jointly for C&R. In this section, we review several
typical DFRC waveform optimization schemes. For simplicity,
we will mainly consider underlying signals based on narrowband
single carrier communications, and the extension to OFDM
signals is generally straightforward.

To avoid confusion, we use H- and Hp for communication
and radar channels, respectively; and for simplicity, we assume
Mr = Mg = M. Note that He # Hp in downlink sensing
and He = Hp in uplink sensing, as detailed for PMNSs in [12],
[24]. Referring to (4), collect K received signal vectors over a
CPI and stake them to a matrix, generating Yo = HeX + Ze
for communications, and Y = HpX + Zp for sensing. We
assume the AWGN matrices Z p and Z both have zero mean
and element-wise variance o2

z-

A. Waveform Optimization via Spatial Precoding

When different beams are needed for C&R, the precoding
matrix P can be optimized. The basic optimization formulation
is as follows:

a;rgmlz)axl{P): s.t. Constraints 1,2 -+, (29)
where A(P) is the objective function. There could be various
methods and combinations in defining the objective functions
and the constraints. Each can be either for communication or
sensing individually, or a weighted joint function. Next, we
review three types of optimizations that consider mutual infor-
mation (MI), waveform mismatch, and estimation accuracy for
the sensing performance, respectively.

1) Mutual Information (MI) Based: MI is well known for
communication systems, and the usage of M1 for radar waveform
design can also be traced back to 1990s [68]. MI for radar
sensing measures how much information about the channel,
the propagation environment, is conveyed to the receiver. The
conditional MI is defined as the entropy between the sensing
channels and the received signals, conditional on the transmitted
signal. Mathematically, this can be represented as [69]

Ir(Hp; Yg|X) = Mlog, (det (%XHEHRX + IK)) :
Jz

where Ik is an identity matrix of size K x K, and X, =
E[HzHZ]/M. The conditional MI for communication is given
by

To(X; YolHe) = Klog, (det (25 HERxHo +Tu ) ).
z
where ¥y = E[XX”]/K.

Based on the two MI expressions, we can formulate various
optimization problems. In [3], the estimation rate, defined as the
MI within a unit time, is used for analyzing the radar perfor-
mance, together with the capacity metric for communications.
In [70], a weighted sum of MI for both C&R is formulated as the
objective function of optimization for a single-antenna OFDM
DFRC system. In [69], a more complicated MI-based joint
optimization is conducted for MIMO DFRC systems, by taking
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into consideration practical packet structure with orthogonal
training sequences and random data symbols, and the channel
estimation error.

A general and flexible formulation can be based on a weighted
sum of the two MIs [69], [70]

w 1—w

F= F—EIR(HR; YrlX)+ —
where Fz and F are the maximal MI for C&R individually,
and are treated as two known constants in the optimization, and
wg € [0, 1]isaweighting factor. The function in (30) is concave,
and can be maximized by using, e.g., the Karush-Kuhn-Tucker
(KKT) conditions. The optimal P turns out to be a water-filling
type of solution that jointly considers the distributions of the
eigen-values of ¥ x and X ,.

2) Waveform/Beampattern Similarity Based: The DFRC
waveform is typically expected to possess some useful prop-
erties that are beneficial for radar sensing, e.g., good auto- and
cross-correlations, high peak-to-sidelobe level ratio (PSLR), low
peak-to-average power ratio (PAPR), and resilience to clutter
and interference. Nevertheless, it could be quite challenging to
implement all these features simultaneously in a single wave-
form, especially in the case of JCR, where the randomness in the
communication data and channels may break down the structure
of the waveform tailored for sensing.

To cope with this issue, one may consider to optimize
the DFRC waveform/beampattern while approximating a well-
designed benchmark radar signal, which is known to have the
desired characteristics above. This could be achieved by impos-
ing a figure-of-merit for the waveform/beampattern similarity,
either in the objective function or in the constraints. As an
example, the JCR BF design in [16] aims to approximate a
baseline radar beampattern while guaranteeing the individual
signal-to-interference-and-noise ratio (SINR) «; for K single-
antenna downlink users. Accordingly, the optimization problem
can be formulated as

i 2
min PP — AR,
s.t. }8 = 0'.! TE = Fk:‘vk; dlag (PPH) = A_-PJ];T]-IUT:

Ic(X; Y(_‘,'|Hc), (30)

(31)

where P € CM7*K i the DFRC BF/precoding matrix to be de-
signed, R € CMr*Mr represents the spatial covariance matrix
for a benchmark radar waveform, which generates a favorable
MIMO radar beampattern P;(f), given by

Py (0) = a” (Mr,0)Ra (Mr,0). (32)

It can be readily observed that the cost function in (31) is the
Euclidean distance between covaraince matrices for the DFRC
waveform and its pure radar benchmark. Moreover, 5 > 0 is
a scaling factor. The remaining constraints aim to ensure the
SINR for each user, as well as to restrict the per-antenna transmit
power, with Pr being the overall power budget available. While
problem (31) is non-convex, it can be sub-optimally solved via
the semidefinite relaxation (SDR) approach or manifold based
algorithms [16].

In addition to the above design that approximates the MIMO
radar beampattern, a more straightforward method is to directly
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approximate the MIMO radar waveform itself. Under the same
K -user MU-MIMO downlink scenario, let us first rewrite the
MIMO communication signal model (4) in a discrete matrix
form as
Ye=HX+Z-=S+ (H(_‘;X = S) -}—Zc,
N—-—

MUI

(33)

where S € C¥*L contains the information symbols intended for
K communication users. The second term at the right-hand side
of the second equality is known to be the multi-user interference
(MUTI). If the MUI is minimized to zero, then (33) boils down to
an AWGN transmission model, where the fading effect incurred
by the channel H¢ vanishes. By noting this fact, [25] formulates
the following optimization problem to design a DFRC waveform
matrix X

min |[HcX — 8|5

sit. |lvec(X) —vec (Xo)lly, < & |zig|* = H&, Vi, 4,

(34)
where the first constraint is to explicitly control the distance
between X and the benchmark X in an L..-norm sense, with a
given similarity coefficient . The second constraint, on the other
hand, requires X to be constant-modulus (CM), i.e., witha 0 dB
PAPR. X could be any CM radar signal matrix, e.g., orthogonal
chirp waveform. While problem (34) is again non-convex and
NP-hard in general, a branch-and-bound (BnB) algorithm is
developed in [25], which finds its global optimum within only
tens of iterations.

3) Estimation Accuracy Based: The accuracy of sensing pa-
rameter estimation is important for radar sensing. Since the re-
ceived signals are not a linear function of the sensing parameters,
it is generally difficult to get closed-form expressions for, e.g.,
the mean square error (MSE) of the estimates, and to apply them
in the optimization directly. Alternatively, we can derive and use
the CRLBs of the estimates, which are low bounds of the MSE.
The CRLBs of signal estimates can be derived via the inverse
of the Fisher information matrix (FIM). For estimates based on
radar signals, they are well known, e.g., as reported in [71]. For
communication signals, the CRLBs for some sensing parameters
based on the beamspace channel models have also been derived,
e.g., in [72].

DFRC waveform optimization based on the CRLBs for sens-
ing performance has also been studied in the literature. How-
ever, due to the complicated expressions of the CRLBs, it is
generally challenging to obtain closed-form solutions in such
optimizations. In [73], considering a single-antenna OFDM
DFRC system, Pareto-optimal waveform design approaches are
proposed to simultaneously improve the estimation accuracy of
range and velocity and the channel capacity for communications.
The Pareto-optimal solutions are obtained for a multiobjective
optimization problem, and cannot be improved with respect
to any objective function without deteriorating other objective
functions, and hence the solutions are suboptimal. In [74],
waveform optimization is studied with the application and com-
parison of multiple sensing performance metrics including MI,
MMSE and CRLB, together with an approximated SINR metric
for communications. It is shown that there are close connections
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between MI-based and CRLB-based optimizations, and the MI-
based method is more efficient and less complicated compared
to the CRLB-based method. Specific to the CRLB-base method,
a closed-form solution is obtained for some special cases, while
an iterative algorithm is proposed as a general solution.

B. Multibeam Optimization for Analog Array

Steerable analog array, which is also the basic component of a
hybrid array, could be widely applied in mmWave JCR systems.
A JCR system may need to support communication and sensing
at different directions, which is challenging to address given the
limits on the BF capability of analog array. A good solution
is the multibeam technology [23], [75], [76]. The multibeam
consists of a fixed subbeam dedicated to communication and a
scanning subbeam with directions varying over different com-
munication packets. By optimizing the beam with multiple sub-
beams, communication and radar sensing at different directions
can be supported simultaneously with a single signal. This can
largely extend the field of view of sensing, for example, in the
802.11ad DFRC with the single carrier PHY. The multibeam can
be applied at both transmitter and receiver, while transmitter is
considered here.

Two classes of methods have been proposed for the multibeam
optimization: the subbeam-combination method [23], [75], [76]
via constructively combining two pre-generated subbeams ac-
cording to given criteria, and the global optimization [76] by
jointly considering the C&R BF requirements and optimizing a
single BF vector directly. These methods can also be extended
to full digital arrays.

1) Subbeam Combination: In the subbeam-combination
method, two basic beams for C&R are separately generated
according to the desired BF waveform, using, e.g., the iterative
least squares method [23]. The two beams are further shifted
to the desired directions by multiplying a sequence, and then
combined by optimizing a power distribution factor p and a
phase shifting coefficient (.

The BF vector w; in (35) can be represented as

wr = \/pWr,r +/1— pe??Wr s,

where wr r and wr s are the BF vectors that are predetermined,
corresponding to the fixed subbeam and scanning subbeam,
respectively. The value of p can typically be determined via bal-
ancing C&R distances [75], and the optimization is conducted
mainly with respect to ¢, which can ensure the pre-generated
subbeams are coherently combined when generating the multi-
beam.

The multibeam optimization problem can then be formulated
with desired objective functions and constraints. Consider one
example of maximizing the received signal power for commu-
nications with constrained BF gain in scanning directions. Let
the threshold of the BF gain in the i-th sensing direction ¢;
be CZ(1 — p)My, where C; € [0,1] is a scaling coefficient,
representing the ratio between the gain of the scanning subbeam
in the interested direction and the maximum gain that the array
can achieve, i.e., (1 — p) M. We can formulate the constrained

(35)

optimization problem as

[}0(1) = arg max —W{!HCHHCWT
L @ Wl

¥

|aT(MT's ¢§)WT|2
llwr|?

s.L. Ecg(l_P)MT:é:LZ---:Ns:

(36)

where N, is the number of the total constraints, ¢;s are the angles
of interest where the BF gain is constrained, and a maximal
ratio combiner is assumed to be applied at the communication
receiver.

With wr p, Wr g and p being predetermined, the optimiza-
tion problem can be solved by first finding the unconstrained
optimal solution for the objective function and then looking for
its intersection with the intervals determined by the constraints.
Closed-form solutions can then be obtained as detailed in [76].

The subbeam-combination method enables simple and flexi-
ble multibeam generation and optimization, and hence is promis-
ing for practical applications that require fast adaptation to
changing BF requirements. It is particularly useful for mmwave
systems where directional BF is used.

2) Global Optimization: The subbeam-combination method
is an efficient low-complexity solution, but it is suboptimal. A
globally optimal solution can be obtained by solving a problem
formulated directly with respect to wr. Considering a similar
example of maximizing the received signal power for commu-
nication with constraints on BF waveform, the formulation can
be represented as

Wiopt = Argmax,, iy wHlHAHewr, (37a)
st. ||A(Mr,¢))wr — dy)||? < &4, and/or (37b)
|aT(MT1¢?-)TWT|2 Zgi:‘ 2’ == 1!21"'IN81I (3?0}

where (37b) bounds the mismatches between the generated BF
waveform and the desired one d,, (37¢) constrains the gain of
the scanning subbeam in N, directions, and &, and &; are the
thresholds for these constraints. These constraints can be applied
individually or jointly.

The optimization in (37) is generally a nonconvex NP-hard
problem. In [76], this problem is converted to a homogeneous
quadratically constrained quadratic program (QCQP), which is
then solved by the SDR technique.

The global optimization method provides a benchmark for
suboptimal multibeam optimization schemes. In Fig. 5, we show
some results comparing the performance of several different
multibeam optimization schemes. The simulated system has a
ULA with 16 antennas, and the channel has a dominating LOS
path and 8 NLOS path uniformly distributed within 14 degrees
of the LOS direction. In the figure, the mean received power is
normalized to the power value when the whole transmitter array
generates a single beam pointing to the dominating AoD. The
figure demonstrates that (1) Global optimization can generally
better meet performance requirements by communications and
sensing; there exist a loss up to 10% in the received signal power
for communications and up to 50% in the BF waveform, when
the subbeam combination method is applied; and (2) Optimized
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Fig. 5. Comparison of different multibeam optimization methods in terms

of the achieved received signal power and the mean square error (MSE) of
beamforming waveform between the desired and the actual ones. p = 0.5.
Legends- (M1:) minimizing the difference of BF waveform only, (M2:) subbeam
combination for maximizing the objective function (Rx power) in (36) without
applying the constraint, (M3:) subbeam combination based on (36), (M4:) global
optimization based on (37) with the constraint (37c).

waveform can lead to overall better balanced performance. More
detailed simulation results can be referred to [76].

C. Signal Optimization in Other Domains

In addition to spatial optimization, communication signals
can also be optimized across the time and frequency domains,
to improve the estimation accuracy of sensing parameters. For
example, non-uniform preamble is proposed to improve the
Doppler estimation performance in [22]; a modified Golay
complementary sequence is proposed for 802.11ad-based JCR
systems in [34] to reduce the sidelobe and achieve improved
ranging and Doppler estimation; and the idea of using and
optimizing nonequidistant subcarriers in MIMO-OFDM radar
in [30] can also be extended to a JCR MIMO-OFDM system.
Here, we briefly illustrate the idea by referring to the work
in [22].

In [22], for a single data-stream single-carrier JCR system
based on 802.11ad, non-uniformly placed preambles are pro-
posed to enhance velocity estimation accuracy. The signal has
a packet structure, consisting preamble and data payload. Radar
sensing uses the preamble only. A novel metric of distortion
MMSE (DMMSE) is developed for communications in [22]. A
log-scale is then applied to the DMMSE and the CRLB for radar,
to achieve proportional fairness between C&R, such that the two
log-scaled metrics can directly be added up in the optimization
objective function. The objective function is given by

1 1
we ETrﬂogz DMMSE] + w RCDnV(L—Tr[log2 CRLB]),
o

where K is the number of symbols, L,, is the number of velocities
to be estimated, Tr[-] denotes the trace of a matrix, Conv(-)
denotes the convex hull operation, and w¢ and wp are weighting
factors for C&R, respectively.

Based on the objective function and some constraints, the
number and position of preambles are optimized in [22]. It is
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found that when preambles are equally spaced, the performance
of radar or communications cannot be effectively improved with-
out affecting the other. Comparatively, non-uniform preambles
are found to achieve a better performance trade-off between
C&R, particularly at large radar distances.

VI. CONCLUSION

JCR is a promising technology that can be used to revolution-
ize both traditional communication and radar systems. Although
the potentials and prospects for integrating C&R are great, there
are many challenges and open research problems to be addressed
due to the inherent differences of the signal formats, and sys-
tem and network structures between them. Signal processing
techniques are key enablers to make the integration happen.
For communication-centric JCR, accurate and practical sensing
parameter estimation algorithms are the key, and a viable solu-
tion to the clock asynchrony problem can relax the full-duplex
requirement. Sensing assisted communications is a great way
of exploiting the benefit of integration. For radar-centric JCR,
how to improve the communication rates without notable impact
on radar operation is a big challenge. While it is shown that
applying index modulation to frequency-hopping DFRC is an
attractive solution, more signal processing techniques are needed
for improving the communication receiver. For joint design and
optimization, the journey is just started, with most work being
focused on waveform optimization in existing systems. A fresh
look at the joint requirements for C&R may lead to more efficient
solutions, particularly those underlying frequency hopping and
millimeter wave signals that have excellent potentials for both
high data rates and radar resolution.
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