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AbstractÐ State-of-the-art state estimation routines of elec-
trical grids are reliant on dynamic models of fossil fuel-
based resources. These models commonly contain differential
equations describing synchronous generator models and alge-
braic equations modeling power flow/balance equations. Fuel-
free power systems that are driven by inertia-less renewable
energy resources will hence require new models and upgraded
estimation routines. In this paper, we propose a robust estimator
for an interconnected model of power networks comprised of
a comprehensive ninth order synchronous generator model,
advanced power electronics-based models for photovoltaic (PV)
power plants, constant power loads, constant impedance loads,
and motor loads. The presented state estimator design is
based on Lyapunov stability criteria for nonlinear differential
algebraic equation (DAE) models and is posed as a convex semi-
definite optimization problem. Thorough simulations studies
have been carried out on IEEE 39-bus test system to showcase
the robustness of the proposed estimator against unknown
uncertainty from load demand and solar irradiance.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

P
OWER systems are moving rapidly toward a greener and

more sustainable future through the widespread installa-

tion of renewable energy resources (RERs). The intermittent

and volatile nature of RERs has created challenges in modern

power systems and made the secure and reliable operation of

the grid more difficult. To gain network-wide observability of

systems with large penetration of renewables, dynamic state

estimation (DSE) for the next generation of smart power

grids will be essential to perform realtime frequency and

voltage regulation. In particular DSE can provide accurate

estimates of the physical states of electrical grid which can

be highly beneficial for the realtime feedback control and

health monitoring of renewables-heavy grids [1].

In this regard, thorough research has been carried out

in the past two decades in power system DSE mainly

focusing on estimating generator internal states (rotor angle

and frequency) and algebraic states (voltage and current

phasors). All of the current DSE algorithms can be divided

into two broad categories: (i) deterministic observers and (ii)

Kalman filters, its variants, and other statistical and stochastic

estimation algorithms. In deterministic observers the basic

idea is as follows: First, a dynamical model for the error

dynamics is computed (this model explains the evolution of

error between original and estimated state variables), then

an observer gain is designed based on Lyapunov stability
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notions. For example, [2] proposed L∞ based observer

design for a two-axis fourth-order synchronous generator

model while considering nonlinearities as Lipschitz contin-

uous. However, the algebraic constraint (power flow/balance

equations) related to the power network has been neglected.

This study has been improved later on in [3] and generator

power flow/balance equations have been modeled while

performing DSE, however a linear power system model has

been considered, which is not realistic as power systems

never really operate linearly and are highly nonlinear systems

because of the stochastic nature of generation and demand

[4]. In [5] a multiplier based observer has been proposed

for a nonlinear DAE model of power system, however a

simplified synchronous generator model (modeling generator

rotor angle only) has been used while performing DSE.

Similarly in [6] a 2nd order sliding mode observer for a

nonlinear DAE model of power system has been proposed.

However, a linearized and simplified generator model has

been used and also the reactive power balance equations have

been neglected.

On the other hand Kalman filters (KF) are iterative algo-

rithms that require repetitive change of gain matrices while

exploiting statistical properties (such as normal distribution)

of the noise/disturbances. Such as in [7] researchers have

proposed an extended Kalman filter (EKF) for a nonlinear

DAE model of power system. Since EKF cannot handle un-

known inputs and non-Gaussian process/measurement noise,

H∞ based EKF (HEKF) and extended EKF (EKF-UI) have

been proposed in [8], [9]. Moreover, since EKF linearizes

the nonlinearities around a certain equilibrium point, thus

to avoid linearization, unscented Kalman filter (UKF) and

extended particle filter (EPF) have been proposed in [10],

[11].

A thorough summary of the techniques used for power sys-

tem DSE can be found in this recent survey paper [1], while a

thorough comparative study between different derivatives of

Kalman filter can be found in [12]. Similarly, a comparative

analysis between Kalman filters and deterministic observers

is presented in [13].

In the aforementioned literature, DSE algorithms are based

on a simple power system model capturing only dynami-

cal model of synchronous generators. Thus, the monitoring

scope of DSE is mainly limited to the estimation of generator

internal states and subsequently algebraic states. However,

with the rapid deployment of solar PV power plants and

dynamic loads, traditional power systems models are grad-

ually becoming less representative of the dynamics [1]. To

achieve grid-wise situational awareness in the future power



systems, it is hence important to model solar PV power plants

and dynamic loads with advanced synchronous generator

models and algebraic power constraints. This would result

in a representative model of power models via a large-scale,

nonlinear DAE model to be used for performing DSE.

Key literature gap. Unfortunately, the literature on state

estimation of multi-machine power network models with

synchronous machines, solar PV power plants, and motor

loads (or a combination of these three) while considering

PMU measurements models and algebraic constraints is

virtually non-existent. In the recent study [14] DSE has been

extended and state estimation for a detailed PV power plant

model has been reported. However, the study is limited to

distribution network only and does not estimate algebraic

variables and synchronous generators’ internal states. To

the best of the authors’ knowledge, this paper is the first

study that considers DSE of power networks comprised of

traditional generators, solar farms, and motor loads while still

considering algebraic power/current balance constraints.

Paper Contributions. The paper’s contributions are:

• We present a simple DSE method for an advanced

model of a power system having ninth-order syn-

chronous generator model, power electronics-based

models of solar farms, motor loads, constant power and

impedance loads. The proposed DSE algorithm can si-

multaneously estimate all the states of the power system

that include dynamic states of solar farm, loads and

algebraic states. To the best of the authors’ knowledge,

this contribution is the first of its kind in the power

systems literature.

• To design an estimator that can handle load fluctuations

and uncertainty from RERs, we propose an H∞-based

state estimation technique. The advantage of H∞-based

state estimator over statistical methods is that no prior

knowledge of the uncertainty statistics is required and

the observer gain is time-invariant.

• We showcase the performance of the proposed estimator

on Case 39 power system which is widely used for DSE

studies in power systems.

The rest of the paper is organized as follows: Section II

summarizes the solar and load integrated DAE model of

power systems; Section III discuses the proposed estimator

design; Section IV showcases simulation studies and the

paper is concluded in Section V.

Notation. The notations O and I denotes the zero and

identity matrix of appropriate dimensions respectively. The

notation R
n represent a set of row vector with n elements.

Similarly R
m×n represent a real matrix of size m-by-n. The

set of symmetric n-byn matrices are denoted by S
n and

S
n
+ denotes the set of positive semidefinite matrices. The

operators Diag(·) create a diagonal matrix while the symbol

∗ denotes symmetric entries in a symmetric matrix.

II. SOLAR AND LOAD INTEGRATED DAE MODEL

We consider a graphical model of the electrical grid

with N number of buses, N = {1, ..., N} set of nodes

and E ⊆ N × N set of transmission lines. The overall

power system is assumed to have: G number of synchronous

machines, R number of PV power plants, and Lp, Lz and K

number of constant power, constant impedance, and motor

loads respectively. Notice that N = G ∪ R ∪ L, where

G,R and L denotes a set of buses containing synchronous

machines, renewables, and loads respectively. To that end,

we model the solars- and loads-integrated synchronous

machines-DAE (SLS-DAE) model of power systems using

a set of differential-algebraic equations as follows:

system dynamics: ẋ(t) = f(xd,xa,u,w) (1a)

algebraic constraints: 0 = h(xd,xa,u,w) (1b)

where xd ∈ R
nd denotes differential variables, xa ∈ R

na

denotes algebraic variables, w ∈ R
nw models the exogenous

disturbances to the system, and u ∈ R
nu models a set of

commands that are used to drive the grid to a desirable state.

In (1) we model xa as:

xa(t) := xa =
[
V ⊤

Re V ⊤
Im I⊤

Re I⊤
Im

]⊤
(2)

where V Re = {VRei}i∈N,V Im = {VImi
}i∈N, IRe =

{IRei}i∈N and IIm={IImi
}i∈N denotes the real and imag-

inary part of voltage and current phasors respectively. The

vector u contains reference inputs to the generators and PV

plant and is modeled as: u =
[
u⊤
G u⊤

R

]⊤
where uG con-

tains voltage reference set points V ref and steam/hydro valve

reference positions P vref
for the synchronous machines, such

that uG =
[
V ⊤

ref P⊤
vref

]
. Similarly uR =

[
V ⊤

ref P⊤
ref

]
,

where V ref is the voltage reference and P ref is the power

reference set points for PV power plants. Similarly, vector w

in (1) is expressed as follows w =
[
P⊤

d I⊤
r

]⊤
where P d

is the disturbance in load demand and Ir is the disturbance

in the sun’s irradiance. Furthermore in (1) we model xd as:

xd(t) := xd =
[
x⊤
G x⊤

R x⊤
m

]⊤
(3)

where xG denote states of synchronous generators, xR de-

note dynamic states of PV plant, and xm represents dynamic

states of motor load. To that end, we model synchronous ma-

chines using a comprehensive ninth order generator model,

thus xG can be given as follows [15], [16]:

xG =
[
e⊤d e⊤q ω⊤

sg δ⊤sg T⊤
m P⊤

v E⊤
fd v⊤

a r⊤f

]
∈ R

9G (4)

where ed, eq denotes transient voltages along q- and d-axis,

ωsg is the rotor speed, δG is the rotor angle, Tm represents

prime mover torque, P v defines valve position, Efd depicts

field voltage, va is the amplifier voltage, and rf denotes

stabilizer output [15], [16].

The model for the PV power plant has been obtained from

[16] and thus the state vector xR can be expressed as follows:

xR=
[
i⊤dqf v

⊤
dqc

E⊤
dc P

⊤
e Q⊤

e δ⊤inv z
⊤
dq0

z⊤
dqf

]
∈ R

12J (5)

where idqf =[i⊤df
i⊤qf ] denotes the dq-axis current at the

terminals of the inverter of the PV plant, vdqc= [v⊤
dc

v⊤
qc
]

is the dq-axis voltage across the AC capacitor, Edc denotes

energy stored in the dc-link capacitor of the PV plant, P e and



Qe are the filtered real and reactive power at the terminals of

the PV power plant, δinv is the relative angle of the PV power

plant, zdqo= [z⊤
d0

z⊤
q0
] and zdqf= [z⊤

df
z⊤
qf
] are the states of

the voltage and current regulators used in the grid-forming

controller of the PV plant. Readers are referred to [16] for

further details and complete in-depth description about the

PV power plant model used in this study.

The dynamics of the motor loads are detailed as [17]:

ω̇motk =
1

2Hmk

(Tek − Tmk
) (6)

where Hmk
is the motor inertia constant and Tek , Tmk

denotes electromagnetic and mechanical torques in the k-th

motor [17, p. 244]. Thus xm = [wmot].
To take into account the topological effect of power sys-

tems, the power flow/balance or the current balance equations

need to considered. These can be expressed as follows [15]:


ĨG

ĨR

ĨL




︸ ︷︷ ︸
I

−



Y GG Y GR Y GL

Y RG Y RR Y RL

Y LG Y LR Y LL




︸ ︷︷ ︸
Y



Ṽ G

Ṽ R

Ṽ L




︸ ︷︷ ︸
V

= 0 (7)

where I is the net injected current vector, Y is the admittance

matrix, and V is the bus voltage vector. In (7), ĨG =
{IRei}i∈G+j{IImi

}i∈G denotes phasor currents injected by

synchronous generators and Ṽ G= {VRei}i∈G+j{VImi
}i∈G

represents voltage phasors at the terminal of generator buses.

Similarly Ṽ R, Ṽ L, ĨR, and ĨL denotes voltage and current

phasors of all loads and PV power plants.

To that end, by considering (2)±(7) and incorporating the

associated dynamics, we can represent the overall SLS-DAE

model of a power system in a state-space format:

SLS-DAE: Eẋ = Ax+ f (x,u,w) +Bu+Bww (8a)

y = Cx+ v (8b)

where x =
[
x⊤
d x⊤

a

]⊤
∈ R

n denotes the overall state

vector; E encodes algebraic constraints with rows of zeros;

C maps state vector x to what PMUs usually measures

(i.e., current and voltage phasors) and v ∈ R
p denotes

measurement noise on PMU measurements y ∈ R
p. Since

vector xa contains voltage and current phasors, we define

C as: C =
[
O C̃

]
, where C̃ is a diagonal binary matrix

with ones only at those locations where PMUs are connected

and voltage and current phasors are measured. The other

state-space matrices A,B and Bw are obtained by capturing

the linear components of the SLS-DAE model. The vector-

valued function f(·) captures the encompassed nonlinearities

in the dynamics.

III. ESTIMATOR FOR THE SLS-DAE MODEL

In this section, we propose a Luenberger type observer de-

sign for the SLS-DAE model depicted in (8). First, we focus

on modeling the uncertainties in loads and renewables and

present a technique to parameterize the nonlinear function

f(·) in the power system dynamics.

A. Modeling uncertainty and bounding nonlinearity

In Eq. (8) the vector w encapsulates load demand and

irradiance; both quantities are time-varying and fluctuating.

To that end, herein we assume that hour- or minute-ahead

predictions of loads and irradiance are available while the

fluctuation/disturbances in these quantities are unknown.

Notice that this is realistic as power systems operators record

and publish these quantities on a daily basis (see daily hour-

and minute-ahead predictions of load and renewables pub-

lished by California independent system operator [18]). How-

ever, the prediction may be inaccurate. In particular, high

fidelity estimate of RERs are difficult to obtain. Accordingly,

we can write w = w̄+∆w, where w̄ is the predicted/known

values and ∆w defines all the disturbances/uncertainties in

these quantities. The goal of the estimator is to provide

accurate state estimation results under unknown uncertainty

∆w. To that end, the SLS-DAE model (8) can be rewritten

as follows:

Eẋ=Ax+f (x,u,w)+Bu+Bww̄+Bw∆w (9a)

y = Cx+ v. (9b)

To synthesize a robust estimator, it is crucial to identify

and parameterize the nonlinearities in the dynamical system.

Hence, to express the nonlinear function f(·) in a better way

in the SLS-DAE model we assume that f(·) is Lipschitz

continuous, which means f(·) is differentiable everywhere

and the rate of change is bounded above by a real number.

Smallest such real number is called Lipschitz constant.

With that in mind we assume x ∈ X , where X define

the operating region of state vector x, then the Lipschitz

bounding condition for f(·) can be written as follows:

∥f(x,u,w)− f(x̂,u,w)∥2 ≤ α∥(x− x̂)∥2 (10)

where α ∈ R
+ is the Lipschitz constant. In the case

of power systems the Lipschitz constant can be assumed

based on operator knowledge and by looking at the overall

size/topology of the grid or it can also be computed using

much more sophisticated ways as shown in [19], [20]. Also,

since the Lipschitz constant provides an operational bound

on grid state variables, its value can be varied to consider

anomalies and deviations from steady state values and vice

versa [2]. Showcasing methods to compute Lipschitz con-

stant is beyond the scope of this paper.

B. H∞ based state estimator design

In this study we are designing a Luenberger type state

estimator for SLS-DAE model of power systems depicted

in (9). The overall estimator design is primarily based on

Lyapunov stability criterion and H∞ estimation concept is

used to achieve robust performance under unknown fluctua-

tions/disturbances from loads and RERs.

In state estimation literature, the H∞ concept was pro-

posed in [21] to synthesize a robust estimator for linear

systems subject to unknown uncertainty. The main advantage

of H∞ based state estimation is that no prior knowledge or

assumptions are required about the statistical properties of



uncertainty. In H∞ based state estimation the uncertainty is

considered as a random bounded signal and then the observer

is designed such that it ensures a particular H∞ performance

for the error dynamics for all such bounded uncertainty, such

that ∥e∥2L2
≤ γ2∥∆w∥2L2

with performance level γ.

That being said, we now focus on presenting the structure

of our observer design for the SLS-DAE model of power sys-

tem depicted in (9). To begin, let ŷ be the estimated outputs

and x̂ be the estimated states variables. Then Luenberger

type state estimator for (9) can be expressed as follows:

E ˙̂x=Ax̂+f (x̂,u, w̄) +L(y − ŷ) +Bu+Bww̄ (11a)

ŷ = Cx̂ (11b)

where L ∈ R
n×p is the estimator gain matrix (a design

variable). Even if the estimator starts from different initial

conditions, using measurement provided by PMUs y, the

gain matrix L ensures the convergence of estimated states x̂

to their true values x̂. The main objective of this study is to

design an appropriate gain matrix L such that robust DSE

can be achieved from the estimator dynamics (11).

To that end, we define the error between actual and true

values of state variables as e = x − x̂. Then using (9) and

(11) the model for the error dynamics can be computed as:

Eė = Ace+∆f +Bw∆w (12)

where Ac = (A−LC) and ∆f = f (x,u,w)−f (x̂,u,w).
The primary objective of the estimator is to drive the DAE

of the error (12) near zero under unknown uncertainty ∆w.

Before we proceed to the theory of designing the gain matrix

L, we present key assumption that is critical in developing

the proposed methodology.

Assumption 1: The effect of uncertainty ∆w on the norm

of f(·) is negligible, meaning:

∥f(x̂,u, w̄)∥2 ≈ ∥f(x̂,u,w)∥2.
Assumption 1 is crucial as it is required while applying

the S-procedure lemma [22] in the derivation of estimator

gain in a tractable way. Notice that Assumption 1 is mild

as the nonlinear function in the power systems models

are commonly independent of uncertainties and are mostly

dependent only on state vector [15], [23]. To validate this

on the SLS-DAE model (11), we test different IEEE test

power systems such as WECC 9-bus system and IEEE 39-

bus system. We notice that by varying P d in w, the norm

of f(·) does not change while by adding uncertainty in Ir

the norm of f(·) changes slightly, such as by decreasing

the irradiance by 40% the percentage change in ∥f(·)∥2 is

0.09×10−3%. Hence Assumption 1 is empirically satisfied.

Proving Assumption 1 theoretically is an interesting research

question beyond the scope of this paper.

We can now find sufficient condition for the existence of

observer gain matrix L. To that end, we assume a Lyapunov

candidate function V (e) = e⊤E⊤Pe, where V : Rn → R+,

P ∈ R
n×n, and E⊤P = P⊤E ⪰ 0, then its derivative

along the trajectories of (12) yields:

V̇ (e) = (Eė)⊤Pe+ (Pe)⊤(Eė).

For any bounded disturbances ∆w, the H∞ stability condi-

tion can be satisfied as

V̇ (e) + e⊤e− γ2∆w⊤∆w < 0 (13)

the above equation can be rearranged as: Υ
⊤
Θ1Υ < 0,

where

Υ =




e

∆f

∆w


 ,Θ1 =



A⊤

c P+AcP
⊤+I P⊤ P⊤Bw

P O O

B⊤
wP O −γ2I


 .

Now from Lipschitz continuity assumption (10) we obtain

∆f⊤∆f − αe⊤e ≤ 0 (14)

which can be written as Υ
⊤
Θ2Υ ≤ 0, with Θ2 =

diag
([
−αI I O

])
, where diag denotes a diagonal ma-

trix. Now applying the S-procedure Lemma [22], then Θ1−
(ϵ)Θ2 ≺ 0 for some scalar ϵ > 0, which is equivalent to:



A⊤

c P+P⊤Ac+I + ϵαI P⊤ P⊤Bw

P −ϵI O

B⊤
wP O −γ2I


 ≺ 0. (15)

Now lets suppose there exists two non singular matrices U ∈
R

n×n and V ∈ R
n×n such that:

U−⊤PV =

[
P1 P2

P3 P4

]
, UEV =

[
I O

O O

]
(16)

where P1 ∈ R
nd×nd , P2 ∈ R

nd×na , P3 ∈ R
na×nd and

P4 ∈ R
na×na . Then we can write:

E = U−1

[
I O

O O

]
V −1 (17a)

P = U⊤

[
P1 P2

P3 P4

]
V −1. (17b)

From Eq. (17), P⊤E and E⊤P can be written as:

E⊤P = V −⊤

[
P1 O

O O

]
V −1

P⊤E = V −⊤

[
P1

⊤ O

P2 O

]
V −1.

We need to make P⊤E=E⊤P and it can be done if P2=0
and P1 = P1

⊤. Thus from (16) we can write:

P=U⊤

[
P1 O

P3 P4

]
V −1

=U⊤

([
P1 O

O O

]
+

[
O O

P3 P4

])
V −1

=U⊤

([
P1 O

O I

] [
I O

O O

])
V −1+U⊤

[
O O

P3 P4

]
V −1

Defining X ∈ S
n×n
++ as:

X = U⊤

[
P1 O

O I

]
U (19)

P = XE +U⊤

[
O

I

]

︸ ︷︷ ︸
E⊥⊤

[
P3 P4

]
V −1

︸ ︷︷ ︸
Y

(20a)

P = XE +E⊥⊤Y (20b)



where Y ∈ R
na×n and E⊥⊤ ∈ R

n×n is the orthogonal

complement of E. Finally, defining N = L⊤P ∈ R
p×n

and substituting the value of P from (20b) in (15) then the

sufficient condition for the existence of observer gain L can

be written in term of strict linear matrix inequality (LMI) as

follows:



Ω11 ∗ ∗

E⊥⊤Y +XE −ϵI ∗

Bw
⊤XE +Bw

⊤E⊥⊤Y O −γ2I


 ≺ 0 (21)

where Ω11 is given as:

Ω11 = A⊤XE +A⊤E⊥⊤Y +E⊤X⊤A+ Y ⊤E⊥A−

C⊤N −N⊤C + ϵαI.

If LMI (21) is solved and there exist matrices N , Y , X ,

and γ and ϵ > 0, then the estimator gain can be retrieved as

L =
(
NP−1

)⊤
.

Notice that, since γ denotes performance level, then

one can minimize γ to achieve robust performance. Also,

minimizing ∥N∥2 can provide estimator gain of reasonable

magnitude. Furthermore, as our Lyapunov candidate function

can be written as V (e) = e⊤E⊤XEe then to achieve quick

convergence of x̂ to x one can minimize the maximum

eigenvalue of E⊤XE which can be written as a convex

SDP optimization problem:

(P1) minimize
κ,X

a3κ; s.t; κI −E⊤XE ≻ 0, κ > 0.

Hence, the sufficient condition of computing L given in Eq.

(21) can be converted to a convex semidefinite optimization

problem expressed as follows:

(P2) minimize
κ,ϵ,γ,N ,X,Y

a1∥N∥2 + a2γ + a3κ

subject to κI −E⊤XE ≻ 0,LMI (21),

X ≻ 0, κ > 0, ϵ > 0, γ > 0

where a1, a2, a3 ∈ R++ are predefined weighting constants.

Calculating estimator gain matrix L by solving P2 ensures

that the performance of state error dynamics (12) is bounded

in the H∞ sense, such that ∥e∥2L2
≤ γ2∥∆w∥2L2

. In other

words, solving P2 guarantees that ∥e∥2L2
always lies in a

tube of radius γ2∥w∥2L2
. In the next section we present case

studies to assess the performance of the estimator.

IV. SYSTEM SETUP AND CASE STUDIES

The proposed estimator has been tested on modified IEEE

39-bus system [24]. This system consists of two PV power

plants at Buses 34 and 36, a motor load at Bus 14, eight

synchronous generators, constant power loads and constant

impedance loads. The one-line diagram of this system is

depicted in Fig. 1. All the parameters for the synchronous

generator and its excitation systems are detailed in [15],

while the parameters of PV power plants and a complete

in-depth description of the system can be found in [16].

To ensure observability of the test power system we follow

the literature and deploy optimal number of PMUs on

buses [2, 6, 9, 10, 13, 14, 17, 19, 20, 22, 23, 25, 29] as given in

Fig. 1. IEEE 39-bus system with two PV Power Plants at Buses 34, 36
and a motor load at Bus 14.

[25]. Each PMU at a bus is measuring the total current

demanded/injected and voltage phasors of that bus. The

dynamic states that we are estimating are xa and xd as given

in (2) and (3). The uncertain quantities for the estimator are

assumed to be the overall load demand and irradiance from

the sun. Moreover, for all the case studies Gaussian noise

with diagonal covariance matrix and variance of 0.0012 has

also been added to the PMU measurements.

Both the estimator and power system SLS-DAE models

are simulated using MATLAB differential algebraic equa-

tions solver ode15s, whereas the SDP optimization problem

P2 is solved in YALMIP [26] with MOSEK [27] as opti-

mization solver. The initial conditions for the power system

are computed using power flow solutions, while the estimator

is initialized from random initial conditions having 10%
variation from the steady state values of power system.

A. Case 1: Estimation under demand disturbance

In power systems the overall load demand is usually

fluctuating and the exact estimate of the load demand of

any power network is difficult to predict. To that end, herein

we demonstrate the performance of the proposed estimator

in performing DSE under unknown disturbances in power

demand. To showcase the robustness of the estimator we

provide only steady state values of loads to the estimator and

the actual transient/fluctuating values are kept unknown. To

generate random fluctuations in the constant power loads we

provide step disturbances at t = 3s to the loads connected at

Buses [7, 8, 12, 14, 15, 16, 18, 20], while the loads connected

at Buses 3 and 4 are assumed to be changing sinusoidally

with some Gaussian noise as shown in Fig. 3.

The estimation results for the PV Power Plant 1 are shown

in Fig 2. We notice that although the estimator starts from

initial conditions different than system steady state values
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Fig. 3. (a) Estimation error norm for all the case studies (b) Unknown
variation in real power demand at Buses 3 and 4.

and after t = 3s the fluctuations in load demand are not

known to the estimator, it can still accurately track the

different states of the PV power plant. This can also be

corroborated from the estimation error norm given in Fig. 3

from which we can validate that the estimator is successfully

driving the error between true and estimated values near zero

for all of the system dynamic and algebraic states, under

uncertainty. Similar performance from the estimator has been

achieved in predicting the dynamic states of PV Power Plant

2, internal states of the synchronous machines, and algebraic

variables of all the buses as shown in Figs. 4 and 5.

B. Case 2: Estimation under irradiance and reactive power

uncertainty

To further assess the robustness of the estimator toward

different sources of uncertainty, in this section we demon-

strate the performance of the estimator under disturbances

from renewables. To that end, right after t > 0 we decreased

the irradiance from the sun on both of the PV power plants

by 20%. Also, to create further unknown transient conditions

we added step disturbances in the overall reactive power

demand of the system. Note that, the estimator is completely

unaware of these disturbances and only knows the steady

state value of these quantities. This can be validated from

the structure of the proposed estimator design (11). We can

see that the estimator only has access to w̄ which contains the

steady state/predicted values of load demand and irradiance.
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Fig. 4. State estimation results for PV Power Plant 2 under disturbances
in real power demand.
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Fig. 5. Estimation results for Generator 6, real current at Bus 21, and
motor speed under disturbance in real power demand.

The estimation results for the dynamic state of motor load

and Generator 1 are depicted in Fig. 6. We can see that

after starting from different initial conditions the observer

can successfully converge to the true values of the states

variables. Similarly the estimation results for PV Power Plant

1 and algebraic states of Bus 7 are presented in Figs. 7 and

8. We can see that although PMU sensors are not deployed

at these buses, the proposed observer can accurately track

the true values of state variables. This can also be validated

from the estimation error norm given in Fig. 3, we can see

that the observer is successfully driving the error norm near

zero.

C. Case 3: Estimation under high level of noise from PMU

sensors

In this section we briefly assess the robustness of the

estimator under higher noise levels from PMU sensors. To

that end, we add Gaussian noise with a diagonal covariance
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Fig. 7. Estimation results for PV power plant 1 under irradiance and
reactive power disturbances.

matrix and having variance 0.01 to the PMU measurements.

The estimation results are shown in Figs. 9 and 10. We can

see that the observer can still provide good estimation results

and is also driving the error norm near zero as shown in Fig.

3. We also notice that with a high level of noise in the PMU

measurements, although the estimated states converge to their

true values, the quality of state estimation gets poorer. This is

because in H∞ based observer design as discussed in Section

III, the observer tries to keep the norm of the estimation error

norm less then a constant times the norm of the uncertainty,

such that ∥e∥2L2
≤ γ2∥∆w∥2L2

. Now if the magnitude/level

of the uncertainty is higher, then H∞ condition may not be

strict enough and thus providing more room for the observer

to give poor estimation results [28]±[30]. Hence in H∞

based observer design although the observer does not require

any statistical properties of the disturbances/uncertainty, the

uncertainty should be bounded and its magnitude should be
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Fig. 8. Estimation results for the complex voltage and current of Bus 7
under irradiance and reactive power disturbances.
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Fig. 9. Estimation results for Case 3 with higher PMU noise of PV Power
Plant 2 and algebraic variables of Bus 11.

smaller for the observer to provide accurate results.

V. SUMMARY AND FUTURE WORK

In this paper, we present a robust estimator for solar and

load integrated model of power systems. The observer design

is posed as a convex optimization and works as a one step

predictor. Using a few measurements provided by PMUs

the proposed estimator can provide accurate estimates of all

the states of a power system including dynamic states of

PV power plants, motor loads, and algebraic states of all

buses. The presented estimator does not require any prior

knowledge about the statistical properties of the uncertainty

and can provide accurate estimation results as long as the

uncertainty/disturbance is bounded.

The limitations of this study are twofold: First, the pro-

posed estimator performs DSE in a centralized fashion, thus

for a very big power network it needs to be extended to a

decentralized framework. Second, the theory of the proposed

estimator is based on continuous models, however PMUs
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Fig. 10. Estimation results for Case 3 with high level of noise in the PMU
sensors: PV power 1, Generator 3, and algebraic variables of 5.

measurements are commonly transmitted via a digitized

network, thus a discrete time version of this estimator will be

more appropriate. To that end, as a future work the proposed

estimator will be extended to a discretized and decentralized

framework.
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