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Abstract—Optimally extracting the advantages available from
reconfigurable intelligent surfaces (RISs) in wireless commu-
nications systems requires estimation of the channels to and
from the RIS. The process of determining these channels is
complicated when the RIS is composed of passive elements
without any sensing or data processing capabilities, and thus
the channels must be estimated indirectly by a non-colocated
device, typically a controlling base station. In this article, we
examine channel estimation for passive RIS-based systems from
a fundamental viewpoint. We study various possible channel
models and the identifiability of the models as a function of the
available pilot data and behavior of the RIS during training. In
particular, we will consider situations with and without line-of-
sight propagation, single- and multi-antenna configurations for
the users and base station, correlated and sparse channel models,
single-carrier and wideband OFDM scenarios, availability of
direct links between the users and base station, exploitation of
prior information, as well as a number of other special cases.
We further conduct simulations of representative algorithms and
comparisons of their performance for various channel models
using the relevant Cramér-Rao bounds.

Index Terms—Channel estimation, DOA estimation, reconfig-
urable intelligent surface, intelligent reflecting surface, massive
MIMO

I. INTRODUCTION

There has been an explosion of interest in the use of re-
configurable metasurfaces for wireless communication systems
in the last few years [1], [2]. Such reconfigurable intelligent
surfaces (RIS) provide tunable degrees-of-freedom for adjusting
the propagation characteristics of problematic channels (e.g.,
sparse channels with frequent blockages) that make them a
valuable resource for maintaining and enhancing the quality
of service (QoS) for users (UEs) in the network. However,
most techniques that exploit this ability require channel state
information (CSI) to and from the elements of the RIS, which
is a challenge since the number of RIS elements may be very
large, and more importantly, they are often constructed only as
passive devices without active RF receivers or computational
resources. Consequently, channel estimation for RIS-based
systems has been a subject of intense study.

When the RIS is composed of passive elements, the CSI
must be estimated by devices – most often a basestation (BS)
or access point – that are not colocated with the RIS. For
example, training signals transmitted by the UEs are received

by the BS after reflection from the RIS, and possibly also
over a direct path to the BS, and these known signals are
exploited for CSI estimation. In order to estimate the RIS-
based channel components, the reflection coefficients of the
RIS must be varied as well, at least during a portion of the
training period. However, even with variable training from
the UEs and RIS, the fact that the impact of the RIS is
only indirectly viewed in the data means that the complete
structure of the channel is not identifiable. In particular, while
the cascaded or composite channel from the UEs to the BS
can be determined, the individual components of the channel
involving the RIS cannot. Fortunately, this is typically not a
problem for designing beamforming algorithms at the BS or
optimizing the RIS reflection properties, since ultimately the
QoS only depends on the composite channel.

A large amount of work on CSI estimation for passive
RIS-based systems has been published recently. Initially, this
work focused on estimating unstructured models, where the
channels are simply described using complex gains [3–14].
Such models are simple and lead to straightforward algorithms,
but the required training overhead is very large and may render
such approaches impractical. Methods for reducing the training
overhead, for example based on grouping the RIS elements
or exploiting the common BS-RIS channel among the users,
have been proposed, but larger reductions are possible when
the channels are sparse if parametric or geometric channel
models are used instead [15–29]. In these models, the channels
are parameterized by the angles of arrival (AoAs), angles of
departure (AoDs) and complex gains of each propagation path.
As long as the number of multipaths is not large, then the
total number of parameters to be estimated can be 1-2 orders
of magnitude smaller than in the unstructured case, and the
amount of training can be correspondingly reduced. On the
other hand, geometric models require knowledge of the array
calibration and RIS element responses, as well as the model
order; errors in the modeling assumptions will degrade some
of this advantage.

Many CSI estimation techniques have been proposed under
a wide array of assumptions, from Rayleigh fading to line-of-
sight (LoS) propagation, single- to multi-antenna configurations,
single- and multi-carrier modulation, scenarios with and without
a direct link between BS and UEs, and a variety of other
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special cases. In this paper, we take a systematic approach to
the problem and organize the various approaches that have been
proposed – as well as some that have not – under a common
framework. In this way, the advantages and disadvantages of
different assumptions and solution approaches become clearer,
and avenues for future work are elucidated. Consistent with
most work that has been published to date, we will focus on
channel estimation for scenarios involving a single passive
RIS, although a brief discussion about extensions to cases with
multiple RIS or RIS with active RF and digital processing will
be provided at the end.

After stating our general assumptions and notational conven-
tions in Section II, we begin with a discussion of CSI estimation
for unstructured channels in Section III. We will first consider
the narrowband single user MIMO case and the corresponding
least-squares (LS) and minimum mean squared error (MMSE)
solutions, and then we will examine extensions to the wideband
and multi-user cases, as well as special cases involving a
single antenna BS and UEs and methods for reducing the
training overhead. Then in Section IV we focus on estimation
of geometric channel models, and we follow the same format
of beginning with the narrowband single user MIMO case
and then considering the same generalizations and special
cases as in the previous section. We summarize some of the
trade-offs associated with channel estimation for unstructured
and geometric models in Section V, and we include some
representative numerical examples in Section VI to illustrate
their relative performance. Several additional topics will be
briefly considered in Section VII, including the use of some
active transceivers at the RIS, scenarios with more than one RIS,
machine learning approaches, etc. Finally, some conclusions
and suggestions for future research are offered in Section VIII.

II. GENERAL ASSUMPTIONS AND NOTATION

In this paper, we primarily consider scenarios with a single
basestation (BS), a single RIS, and potentially multiple co-
channel UEs. Various assumptions are made about the number
of antennas at the BS and UEs, and the number of UEs that
are active. We assume the BS and UEs employ fully digital
rather than hybrid digital/analog architectures, which to date
is the most common case considered in the literature (see
[20], [24], [25] for approaches using a hybrid RF network).
We also assume a standard time-division duplex protocol in
which pilot symbols transmitted by the UEs in the uplink are
exploited by the BS to obtain a channel estimate, which is
then used for downlink beamforming or multiplexing. This
assumes reciprocal uplink and downlink channels between the
BS, RIS and users, which in turn typically requires some type
of RF transceiver calibration and RIS elements whose behavior
is independent of the angle of incidence. Pilots could also
be embedded in the downlink for channel estimation at the
UEs, but this is similar to the uplink problem and thus is not
explicitly considered.

Matrices and vectors are denoted by boldface capital and
lowercase letters, respectively. In some cases, the k-th column
or row of a matrix A will be denoted by A:k or Ak:,
respectively. The transpose, conjugate transpose, and conjugate
are denoted by (·)T , (·)H , and (·)∗, respectively. The Kronecker,

Khatri-Rao, and Hadamard products of two matrices are
indicated by C = A ⊗ B, C = A � B and C = A � B,
respectively. An N×N identity matrix is represented as IN , and
N×1 vectors composed of all ones or zeros are denoted by 1N
and 0N , respectively. A circular complex multivariate Gaussian
distribution with mean µ and covariance R is denoted by
CN (µ,R). The function vec(A) creates a vector from matrix
A by stacking its columns. The function bac creates an integer
from real number a by truncating its decimal part, and amod b
is the modulo operator that returns the integer remainder of a/b.
A diagonal matrix with elements of vector c on the diagonal is
indicated by diag(c), and a block diagonal matrix with block
entries C1,C2, . . . is written blkdiag ([C1 C2 . . .]).

The reflective properties of an RIS with N elements is
described by the N × N diagonal matrix Φ = {diag(φ)},
where φ = [β1e

jα1 · · · βNejαN ]T . There are a number of
practical issues associated with φ that are important for RIS
performance optimization, such as the dependence of the gains
β on the phases α, the fact that the phases are typically discrete
and frequency dependent, etc. For the most part, these issues
are not directly relevant to the generic channel estimation
problem, which only requires that φ be known and sufficiently
controllable. However, certain simplifying assumptions about
φ are made below for performance analyses or purposes of
illustration.

III. ESTIMATION OF UNSTRUCTURED CHANNEL MODELS

We begin with models where the channel between individual
network elements is described by a complex coefficient in the
case of a narrowband single carrier signal, or a complex-valued
impulse response for wideband transmission. Such unstructured
or nonparametric channel models are appropriate for situations
with rich multipath scattering (e.g., sub-6GHz systems), where
it is difficult to describe the aggregate characteristics of the
propagation environment. We initially focus on the narrow-
band single-user scenario, and then examine cases involving
wideband signals or multiple users. As will become clear, the
limiting factor with unstructured CSI estimation is the large
training overhead that is required. Approaches for reducing the
training overhead are discussed at the end of the section.

A. Narrowband Single User MIMO
The scenario assumed here is as depicted in Fig. 1, with an

M -antenna BS, an N -element RIS, and a single UE with K
antennas. The geometries of the RIS and the arrays at the BS
and UE are arbitrary. If the UE transmits the K × 1 vector xt
at time t, the signal received at the BS is given by

yt =
√
P
(
Hd + HΦtG

H
)
xt + nt , (1)

where Hd,H,G are respectively the channels between the BS
and UE, the BS and RIS, and the RIS and UE, and nt denotes
additive noise or interference. Assuming E{xtxHt } = IK and
nt ∼ CN (0, σ2IM ), P represents the transmit power, and the
signal-to-noise ratio (SNR) is defined as P/σ2. The channels
are all assumed to be block flat fading and constant over a
coherence interval sufficiently long to permit channel estimation
and subsequent data transmission. On the other hand, the
reflection coefficients of the RIS, Φt, can vary synchronously
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Fig. 1: A generic scenario involving an M -antenna basestation, an N -element
RIS, and a K-element user.

with the UE uplink transmission. Some prior work ignores the
direct channel component Hd, assuming that it is either not
present (e.g., due to a blockage), or that it was estimated in a
previous step and its contribution has been removed from the
received data, i.e., yt −→ yt −

√
PHdxt.

It is important to note that not all of the components
of the channel-related term Hd + HΦtG

H are individually
identifiable. In particular, for any invertible N ×N diagonal
matrix Λ, we have

HΦtG
H = HΛΦtΛ

−1GH = H̃ΦtG̃
H , (2)

where H̃ = HΛ and G̃ = G(Λ∗)−1. Thus there is a scaling
ambiguity between each pair of the N columns {hk,gk} of
H and G that cannot be resolved using data obtained as
in (1). Most methods for beamforming, precoding or RIS
reflection optimization do not require this ambiguity to be
resolved, although as briefly discussed later, with certain
additional information the individual channel components can
be identified. For this reason, channel estimation in the context
of RIS-aided communication systems focuses primarily on
determination of the MK × (N + 1) composite or cascaded
channel Hc, defined using properties of the Khatri-Rao product:

vec
(
Hd + HΦtG

H
)

= [hd G∗ �H]

[
1
φt

]
≡ Hcφ̃t ,

(3)
where hd = vec(Hd), φt is a vector containing the diagonal
elements of Φt, and φ̃t is defined implicitly in the last equality.

Given an estimate of Hc, if one wishes to obtain a separate
estimate of H and G, then a method is needed to resolve
the ambiguity in (2). For example, Hc could be uniquely
decomposed if one fixes the first row of H or G to be some
known vector (e.g., all ones). Another method to resolve the
ambiguity will be discussed later in the context of geometric
channel models. Eq. (3) together with further use of the
Kronecker product allows us to rewrite (1) in a compact form:

yt =
√
P
(
xTt ⊗ IM

)
Hcφ̃t + nt (4a)

=
√
P
[
φ̃
T

t ⊗ xTt ⊗ IM

]
hc + nt (4b)

≡
√
PZthc + nt , (4c)

where hc = vec(Hc) and the M ×MK(N + 1) matrix Zt is
implicitly defined.

The composite channel hc is clearly underdetermined in
Eq. (4), and thus multiple pilot symbols must be transmitted
in order for it to be uniquely estimated. Combining the data
from T such pilots together, we have

y =

 y1

...
yT

 =
√
P

 Z1

...
ZT

hc + n ≡
√
PZhc + n . (5)

Provided that T ≥ K(N + 1) and Z is full rank, there are two
common ways to estimate hc, as discussed below.
1) Least Squares

The simplest approach for estimating hc is to use the standard
deterministic least-squares (LS) method,

ĥc,LS = arg min
hc

‖y−
√
PZhc‖2 , (6)

whose solution is given by

ĥc,LS =
1√
P

Z†y , (7)

where Z† =
(
ZHZ

)−1
ZH . Assuming again that nt ∼

CN (0, σ2IM ) and that the noise is temporally uncorrelated,
the LS channel estimate is unbiased and equivalent to the
maximum likelihood (ML) estimate, and its covariance matrix
corresponds to the the Cramér-Rao bound (CRB):

Rĥc,LS
= E

{(
ĥc,LS − hc

)(
ĥc,LS − hc

)H}
(8a)

=
1

P
E
{
Z†nnH(Z†)H

}
=
σ2

P

(
ZHZ

)−1
. (8b)

Ideally, xt and φt should be designed to optimize the
CSI estimation performance. While such an optimization is
generally intractable, a good choice can be found [3] by noting
that for any positive definite matrix B, we have[

B−1
]
ii
≥ 1

Bii
, (9)

with equality for all i only if B is diagonal. Thus, a good
choice for Z would make (8) diagonal. Such a choice may not
be optimal in general, but a diagonal covariance matrix also
greatly simplifies the computation of ĥc,LS in (7).

The most common training approach that meets the above
design goals breaks the training interval T into T/K subblocks
of length K, where T/K is assumed to be an integer. For each
subblock, b = 1, · · · , T/K, φt = φ̄b is held constant, while
the pilots xt are chosen as an orthonormal sequence that repeats
itself for each subblock. For example, the subblock sequence
for the UE is X = [x1 · · · xK ], where XXH = KIK , which
is then repeated T/K times:

xt pilots = [ X X · · · X︸ ︷︷ ︸
repeated T/K times

] (10a)

φt pilots = [ φ̄1 · · · φ̄1︸ ︷︷ ︸
repeated K times

· · · φ̄ T
K
· · · φ̄ T

K︸ ︷︷ ︸
repeated K times

] (10b)
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Using this approach, we have

ZHZ =
T∑
t=1

[
φ̃
∗
t φ̃

T

t ⊗ x∗tx
T
t ⊗ IM

]
(11a)

=

(
T∑
t=1

[
φ̃
∗
t φ̃

T

t ⊗ x∗tx
T
t

])
⊗ IM (11b)

=

T/K∑
b=1

˜̄φ∗b
˜̄φTb

⊗ (XXH)∗ ⊗ IM (11c)

= K
(
ΨHΨ

)∗
⊗ IMK , (11d)

where ˜̄φHb = [1 φ̄
H
b ] and

Ψ =


1 φ̄

H
1

...
...

1 φ̄
H
T/K

 . (12)

To achieve a diagonal ΨHΨ, the columns of the T
K × (N + 1)

matrix Ψ must be orthogonal, with T
K ≥ N + 1. If ΨHΨ can

be made proportional to an identity matrix, then ZHZ is also
a scaled identity matrix.

For the above training protocol, the general solution in (7)
is implemented by taking data from the b-th pilot subblock,

Yb =
√
P
(
Hd + HΦ̄bG

H
)
X + Nb , (13)

and multiplying on the right by XH/(K
√
P ) to obtain

yb ≡
1

K
√
P

vec
(
YbX

H
)

= Hc
˜̄φb + n̄b , (14)

where Φ̄b = diag(φ̄b) and n̄b = vec
(
NbX

H
)
/(K
√
P ). The

result yb from each of the T/K subblocks then forms a column
of the following combined equation:

Yc = Hc

[
˜̄φ1 · · · ˜̄φ T

K

]
+ N̄ = HcΨ

H + N̄ , (15)

where N̄ = [n̄1 · · · n̄T/K ], from which an estimate of the
composite channel is obtained by multiplying Yc by Ψ on the
right, assuming ΨHΨ ∝ IN+1.

Several methods have been proposed to choose the RIS
training sequence to satisfy ΨHΨ ∝ IN+1:
• When the direct path is absent (i.e., the first column of

Ψ is removed), a simple approach is to set T
K = N and

“turn on” one RIS element at a time for each K-sample
pilot subblock, with all other elements “turned off”1 [7],
[30]. This results in ΨHΨ = diag{β2

1 , · · · , β2
N}. If the

RIS elements are identical, and each active element is
tuned to the same phase, then βi = β, which results in
ZHZ = β2KIMKN . This in turn leads to an estimate
variance of σ2/(β2PK) for each element of hc.

• Better performance is achieved by activating all RIS
elements over the entire training interval, in order to
benefit from the RIS array gain. One approach for doing

1“Turning off” an RIS element assumes it becomes a perfect absorber of RF
energy, which in practice is not possible. Thus, such elements will still reflect
a small amount of energy and thus degrade the orthogonality assumption.

so assigns the RIS phase shifts such that the N+1 columns
of Ψ equal the columns of the T

K ×
T
K matrix that defines

the T
K -point Discrete Fourier Transform (DFT) [3], [7]:

[Ψ]mn = ej2π(m−1)(n−1)/(T/K) (16)

for m = 1, · · · , TK and n = 1, · · · , N+1. If the RIS gains
are assumed to be phase-independent and satisfy βi = β,
then this leads to ΨHΨ = Tβ2

K IN+1 and the variance of
the channel coefficient estimates is σ2/(β2PT ), a factor
of T/K ≥ N + 1 smaller than in the first approach. In
addition to the need for phase-independent RIS element
gains, which is difficult to achieve in practice, the RIS
phase shifts would have to be tunable with at least
log2(T/K) bits of resolution, which may be problematic
for large N .

• An alternative that achieves the same performance is to
choose the columns of Ψ from among the columns of
a T/K-dimensional Hadamard matrix, whose entries are
constrained to be ±1 [6], [31]. This achieves orthogonality
for Ψ, and has the advantage of requiring only two phase
states for each RIS element (one bit of resolution). In
addition, a diagonal ΨHΨ only requires that the RIS
gains be equal at these two phase values. In this approach,
T/K must be a multiple of 4 for the Hadamard matrix
to exist, but this is not a significant issue for large N .

2) Linear Minimum Mean Squared Error
The LS approach assumes a deterministic channel with no

prior information. On the other hand, the minimum mean-
squared error (MMSE) estimator assumes a stochastic model
for {Hd,G,H}, usually in terms of correlated Rayleigh
fading with prior information of the second-order statistics.
However, the composite channel is composed of products of
the Gaussian elements in H and G, which makes the MMSE
estimate E{hc|y} difficult to compute, although message-
passing algorithms have been proposed for this problem [5],
[32–34]. Instead, the linear MMSE, or LMMSE, estimate given
by ĥc,LM = Wy can be found by solving [35], [36]

W = arg min
W̃
E
{
‖W̃y− hc‖2

}
. (17)

Assuming spatially and temporally white Gaussian noise
uncorrelated with hc, the LMMSE estimate is given by

ĥc,LM =
√
PRhc

ZH
(
PZRhc

ZH + σ2IMT

)−1
y , (18)

where Rhc = E{hchHc } and we have assumed E{hc} = 0.
Using orthogonal pilot and RIS reflection sequences like

those discussed above also simplifies computation of the
LMMSE estimate. For example, let I = IMK(N+1) and assume
the Hadamard reflection pattern so that ZHZ = T I. Then the
LMMSE estimate simplifies to

ĥc,LM =
1√
PT

Rhc

(
Rhc +

σ2

PT
I

)−1
ZHy . (19)

The matrices in (19) involving Rhc
are data independent, and

can be computed and stored offline since Rhc changes relatively
slowly. The resulting error covariance is given by

Re,LM = Rhc
−Rhc

(
Rhc

+
σ2

PT
I

)−1
Rhc

. (20)
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For the above training protocol, Re,LM converges to Re,LS =
(σ2/(PT ))I for high SNR (i.e., σ2/P → 0) or long training
intervals (T →∞).

A bigger issue than the computational complexity of (19)
is how to determine the composite channel covariance Rhc .
In theory, the covariance could be estimated by taking sample
statistics of ĥc obtained over a long period of time, or
using simulations involving detailed propagation models of
the environment. However, the size of hc means that such
procedures would require a large amount of data. At first
glance, a more reasonable approach might be to determine
Rhc

based on covariance information about its constituent
parts. For MIMO channels, it is commonly assumed that the
multipath scattering at the source is uncorrelated with the
scattering at the destination, which would normally lead to the
following descriptions:

H = R
1
2

HBH̃R
H
2

HR (21a)

G = R
1
2

GUG̃R
H
2

GR (21b)

Hd = R
1
2

HdB
H̃dR

H
2

HdU
, (21c)

where the subscripts {B,R,U} respectively correspond to BS,
RIS, and UE, and indicate which side of the link the correlation
matrix is associated with (e.g., RHB is the correlation matrix
for the BS-side of the channel H). The matrices {H̃, G̃, H̃d}
are of the same dimensions as {H,G,Hd} respectively, and
are composed of uncorrelated CN (0, 1) elements. Under this
model, it can be shown that the composite channel covariance
matrix would have the following form:

Rhc =

[
RT
HdU
⊗RHdB 0T

0 RR ⊗RT
GU ⊗RHB

]
, (22)

where we define RR = RGR �RT
HR.

However, there are problems with the use of the so-called
Kronecker product channel correlation model for H and G
in (21a)-(21b). First, it has been shown that the model is
not accurate for RIS channels, especially when N is large
or the spacing between RIS elements is small [37]. Second,
the inherent ambiguity illustrated in Eq. (2) poses a difficulty
for describing H or G as in (21a)-(21b). Even if the actual
channels followed a Gaussian model described by (21a)-(21b),
we do not have access to the actual channels (or even estimates
thereof), only versions for which the ambiguity in (2) has
been removed. For example, resolving the ambiguity by fixing
the first row of H to be a vector of ones corresponds to
dividing each column of the BS-RIS channel by its first element,
rendering an H – and also a G – that will no longer be Gaussian.
Thus, estimation of the covariance matrices in (21a)-(21b) is
problematic. Various assumptions could be made to simplify
direct calculation of Rhc , such as assuming for example that
the multipath scattering at the RIS is isotropic, in which case
RGR and RHR could be taken as identity matrices, and Rhc

would be block diagonal with identical block entries except
for the block associated with Hd. This would greatly simplify
computation of Rhc and the estimate in (19). However, the
fact that the RIS multipaths are confined to only the half
space associated with the active side of the RIS means that,

even with isotropic scattering in that half space, an identity
covariance for RGR and RHR only holds for certain special
RIS geometries, none of which correspond to the standard
uniform planar array (UPA) architecture assumed for RIS [37].
Furthermore, assumptions of uncorrelated fading are hard to
justify in RIS-aided wireless systems, which are often motivated
by propagation environments with sparse propagation paths
and frequent blockages. In these environments, the BS and RIS
installations are envisioned to be in elevated positions away
from nearby RF scatterers. This leads to low-rank channel
correlation matrices and consideration of geometric models, as
discussed in Section IV.

B. Wideband Single User MIMO
In wideband scenarios where the channel is frequency

selective, we assume the UE transmits an OFDM signal
composed of Nc subcarriers from each of its K antennas.
The symbols are given by the rows of the K × Nc matrix
XF
t =

[
xFt,1 · · · xFt,Nc

]
in the frequency domain, where here

t is the OFDM symbol index. Prior to transmission, the data XF
t

is first converted to the time domain using the Nc×Nc matrix
FH that denotes the Nc-point inverse DFT: Xt = XF

t FH , and
then is appended with a cyclic prefix of length Lcp that is
longer than the maximum delay spread of the channel, L. At
the BS, the cyclic prefix is removed, and the data are converted
back to the frequency domain through multiplication by the
DFT matrix F. This generates a model essentially identical
to (1) for each subcarrier n:

yFt,n =
√
P
(
HF
d,n + HF

nΦt,nGFH
n

)
xFt,n + nFt,n , (23)

where {HF
d,n,H

F
n ,G

F
n } represent the DFT at subcarrier n for

the UE-BS, RIS-BS, and UE-RIS channel impulse responses,
respectively. Thus, one can employ the same estimation
methods discussed above on a per-subcarrier basis, although
to exploit the channel correlation in frequency and reduce
the training overhead, pilot data is normally transmitted only
on a subset of the subcarriers, and interpolation is used to
construct channel estimates for others [4]. An alternative
approach proposed in [13] is to use shorter OFDM symbols
during the training period.

Note that most prior work on RIS channel estimation with
OFDM signals has assumed that the RIS reflection properties
are frequency independent, i.e., Φt,n = Φt, but this is generally
true only for relatively narrow bandwidths [38], [39]. If one
sets φt,n to have desirable properties (e.g., Z with orthogonal
columns) at a particular subcarrier n, then in general those
properties will not be inherited at other subcarriers. This issue
motivates the design of RIS circuit architectures that have
invariant properties across wider frequency bands.

An alternative to estimating the channels in the frequency
domain and using interpolation is to directly estimate the
channel impulse response. In the time domain, we represent
the data received for sample s of OFDM symbol t as

yt,s =
√
P
L−1∑
k=0

(
Hd(k) + H(k)Φt,s−kG

H(k)
)
xt,s−k + nt,s ,

(24)
where {Hd(k),H(k),G(k)}L−1k=0 represent the channel im-
pulse responses and L is the maximum number of
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taps. Defining hd(k) = vec(Hd(k)) and hc(k) =
vec ([hd(k) G∗(k) �H(k)]), after removal of the cyclic prefix
we can write

yt,s =
√
P
L−1∑
k=0

[
φ̃
T

t,s−k ⊗ xTt,s−k ⊗ IM

]
hc(k) + nt,s (25a)

=
√
P
L−1∑
k=0

Zt,s−khc(k) + nt,s (25b)

=
√
P
[
Zt,s Zt,s−1 · · · Zt,s−L+1

]
hc + nt,s (25c)

yt =

 yt,1
...

yt,Nc

 =
√
PZthc + nt , (25d)

where hc =
[
hTc (0) · · · hTc (L− 1)

]T
is the LMK(N+1)×

1 vector containing all unknown channel coefficients, and Zt
is an MNc × LMK(N + 1) block-circulant matrix with first
block row [Zt,1 Zt,Nc · · · Zt,Nc−L+2]. Finally, assuming the
channel is stationary over To total OFDM symbols, we have

y =
√
P

 Z1

...
ZTo

 hc + n =
√
PZhc + n . (26)

The time-domain approach assumes only pilot data is transmit-
ted first, followed by payload data. The total number of pilot
symbols required is T = ToNc ≥ KL(N + 1). While more
OFDM symbols are likely required for the frequency domain
method to obtain the same channel estimation accuracy, this
is offset by the fact that data and pilots can be transmitted
together.

C. Single Antenna Scenarios
1) Single Antenna UE

The single-antenna UE case is often considered in the litera-
ture, since it simplifies the notation and reduces the algorithm
complexity, but there is fundamentally little difference with the
general multi-antenna UE case described above. The channel
G becomes a 1×N row vector that we denote by gT , while
the direct channel Hd is simply an M ×1 vector hd. The pilot
data received at the BS is given by

yt =
√
P (hd + H diag(g∗)φt)xt + nt , (27)

where the composite channel is now Hc = gH � H =
H diag(g∗). The training overhead in this case is reduced
to N + 1 samples.

2) Single Antenna BS and UE
When both the BS and UE have only a single antenna, we

denote the RIS-BS channel as the N × 1 row vector hT , and
write the BS output and composite channel as

yt =
√
PhTc φ̃txt + nt (28a)

hTc =
[
hd gH � hT

]
=
[
hd h̄Tc

]
, (28b)

where only h̄c is identifiable.

D. Multiple User Scenarios
The models and approaches discussed above are easily

generalized to the multiple UE case. Assuming UE u has
Ku antennas for u = 1, · · · , U , then the model in (1) holds
if we simply set K =

∑
uKu and all UE antennas transmit

orthogonal pilot sequences. Some prior work has proposed that
the users take turns transmitting pilots, in which case there
is no change to the algorithms described above, but this only
makes sense if one exploits the fact that each user’s composite
channel shares a common RIS-BS component H. This idea
will be explored further in the next subsection. For multicarrier
signals, a scheme is required to allocate the pilot subcarriers
to the UEs, but otherwise the channel estimation is the same.
One implication for the LMMSE approach is that, assuming
the channels for different UEs are uncorrelated, the matrices
RGU and RHcU will be block-diagonal.

E. Reducing the Complexity and Training Overhead
As noted already above, one of the key hurdles to overcome

in CSI estimation for RIS-aided systems is the large required
training overhead. Consequently, recent work has focused on
a variety of methods to reduce this overhead, some of which
is described below. The use of geometric channel models to
reduce pilot overhead is reserved for Section IV.
1) RIS Element Grouping

A simple approach to reduce the number of pilots and
estimation complexity is to assign identical phases to RIS
elements with highly correlated channels [4], [6]. High channel
correlation occurs when adjacent RIS elements are closely
spaced; retaining the flexibility of arbitrary phase shifts for
such elements does not provide a significant increase in degrees
of freedom for beamforming design, since the designed phases
would likely be nearly identical. Suppose groups of size J
are identifed, and assume for simplicity that N ′ = N/J is an
integer and no direct channel Hd is present. Then we define
φt = φ′t ⊗ 1J , where φ′t is N ′ × 1, and write

Hcφt = Hc(φ
′
t ⊗ 1J) = Hc(IN ′ ⊗ 1J)φ′t = H′cφ

′
t , (29)

where the effective composite channel H′c is now MK ×N ′.
Each column of H′c is thus a unit-coefficient linear combination
of the columns of Hc corresponding to a given group of
RIS elements. The revised model is identical in form to the
general case, and thus the methods described above can be
implemented to estimate H′c with a reduction in the required
training overhead by a factor of J .

A generalization of this idea presented in [6] successively
reduces the size of the groups over multiple blocks of pilot
and payload data in order to eventually resolve the channels
for all of the RIS elements.
2) Low-Rank Channel Covariance

We see from the noise-free part of (5), y =
√
PZhc, that

in the general case, the MT ×MK(N + 1) data matrix Z
should be full rank MK(N + 1), since otherwise components
of hc in the nullspace of Z could not be identified. Like the
LS approach, this requires T ≥ K(N + 1) training samples.
However, if Rhc is rank deficient, then it would be enough for
the column span of Rhc to lie within the column span of ZT .
In particular, suppose Rhc

is rank r < MK(N + 1), and thus
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can be factored as Rhc
= UUH , where U has r columns.

Then in principle it would be sufficient to choose

ZT = UV (30)

for some full rank r ×MT matrix V, and thus theoretically
it would be sufficient that T ≥ r/M . Unfortunately, due to
constraints on the possible values for φt, finding a V that
exactly satisfies (30) is generally not possible if T < K(N+1).
It may, however, be possible to approximately solve (30) for
larger values of T that are still much smaller than K(N + 1),
provided that r is not too large. In addition to reducing the
training overhead, the low rank channel covariance can be
exploited to significantly reduce the amount of data required
to estimate Rhc

as well as the cost of computing the LMMSE
solution in (18), since only an r × r inverse rather than an
MT ×MT inverse is required:

ĥc =

√
P

σ2
U

[
Ir −W

(
W +

σ2

P
Ir

)−1]
UHZHy, (31)

where W = UHZHZU.
3) Exploiting Common Channels

The LS method in Section III-A1 ignores the Kronecker
product structure of the composite channel, which can be
exploited to reduce the training overhead. The key observation
is that in the uplink, the composite channel for each user
shares the same RIS-BS channel H [10]. To explain how this
information can be exploited, assume without loss of generality
a scenario with K single-antenna users. The approach is divided
into two steps [9], [12]. In the first, one of the users is selected
and the composite channel for this user is estimated in the
normal way, while the other users do not transmit. Then, in
the second step, the other users transmit and the estimate of
the RIS-BS channel obtained in the first step is exploited to
reduce the training required for the remaining channels.

Assume the users are ordered such that the user correspond-
ing to the first row of G, denoted by gT1 , is the one selected for
the first step. The LS method is used to estimate the composite
channel H diag(g1) and the direct channel hd,1, which requires
at least T1 = N + 1 training samples. Recall that only the
product H diag(g1) is estimated and not the individual terms
H and g1. In fact, we can treat diag(g1) as Λ in (2), so step 1
provides us with an estimate of H̃, and we can set the first
row of G̃H to 1K . With the estimate ˆ̃H, during step 2 the
training data model is approximately given by

yt '
√
P
(
H̃d + ˆ̃HΦtG̃

H
)

xt + nt (32a)

'
√
P xTt ⊗

[
IM

ˆ̃HΦt

]
︸ ︷︷ ︸
M×(K−1)(M+N)

[
h̃d
g̃∗

]
+ nt (32b)

'
√
P Z̃th̃c + nt , (32c)

where we drop the first column of Hd to create H̃d, and we drop
the first row of ones in G̃, since UE 1 does not transmit. We also
have defined g̃ = vec(G̃T ) and h̃Tc =

[
h̃Td g̃H

]
. Stacking T2

of these training vectors together, we get an equation analogous
to (5), where in this case Z is MT2 × (M + N)(K − 1).

Assuming linearly independent pilots xt and RIS reflection
vectors φt are chosen, we can solve for the remaining channel
parameters using ˆ̃

hc = Z†y/
√
P provided that MT2 ≥ (K −

1)(M + N), or equivalently, T2 ≥ (K − 1)(NM + 1). Given
the N + 1 samples needed for step 1, the minimum required
training time is thus

Tmin = (N + 1) +

(
N

M
+ 1

)
(K − 1) , (33)

which for large M is significantly less than the value K(N+1)
required by the standard LS method.

IV. ESTIMATION OF STRUCTURED CHANNELS

The large training overhead required for unstructured channel
estimation motivates the consideration of channel models that
are described by fewer parameters. Such models are often used
in millimeter wave or higher frequency bands, where multipath
scattering is sparse and propagation is often dominated by
strong specular components. In such cases, the channels can be
described by a small number of propagation paths defined by
path gains, angles of arrival (AoAs), and angles of departure
(AoDs)2. The resulting number of parameters is often more 1-2
orders of magnitude less than that required in the unstructured
case, and the training overhead is correspondingly reduced.

Parametric channels are described by the array response or
“steering” vectors associated with the angle of an incoming
(AoA) or outgoing (AoD) signal. For example, the response of
an Mx-element uniform linear array (ULA) to a signal arriving
with azimuth angle θaz is described by the Vandermonde vector

ax(ωx) = [1 ejωx ej2ωx · · · ej(Mx−1)ωx ]T , (34)

where the spatial frequency ωx is defined by ωx =
2π∆x sin(θaz), and ∆x is the distance in wavelengths between
the antennas3. For an Mx×My UPA with antenna separations
of ∆x and ∆y in the x and y directions, the array response
vector can be written as

a(ω) = ax(ωx)⊗ ay(ωy) , (35)

where the vertical array response component is similar to (34),

ay(ωy) = [1 ejω2 ej2ω2 · · · ej(M
′
y−1)ω2 ]T , (36)

but defined by ωy = 2π∆y sin(θel) cos(θaz) with elevation
AoA θel. The vector ω = [ωx ωy]T corresponds to a 2D spatial
frequency. For either a ULA or UPA, there is a one-to-one
correspondence between the angles and spatial frequencies as
long as both ∆x and ∆y are no more than one-half wavelength.
This is important for applications involving localization, since
the angles provide useful information for locating a signal
source. However, from the viewpoint of channel estimation, it
is enough to know ω, and any ambiguities in determining the
angles need not be resolved.

2For very large RIS, where the BS or UEs are in the Fresnel region of
the RIS, the channel parameterization must also include range or the 3-D
coordinates of the various devices, and the large scale fading becomes antenna-
dependent. However, here we focus on the more common far-field scenario.

3Note that we assume a narrowband propagation model here where time
delays can be represented by phase shifts. For large arrays, ignoring the
frequency dependence of the model leads to the beam-squint effect [26].
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In this section we focus on estimation of structured or
geometric channel models. To simplify the discussion, we
assume that the direct UE-BS channel is absent. This assump-
tion is often made for scenarios with low-rank near-specular
propagation at high frequencies, where blockages are common.
However, such blockages may not be permanent, and given the
lower path loss that a direct path signal would likely undergo,
the direct channel Hd can make a significant contribution to
the received signal. In such cases, Hd could be estimated
using standard algorithms and relatively little pilot data with
the RIS switched off. Consequently, we will not explicitly
consider estimation of Hd in this section. We will further
assume that the BS and the UEs (when they have multiple
antennas) employ ULAs, so that their array response depends
on a single angle/spatial frequency, and we assume that the
RIS elements are arranged as a UPA, so its spatial response
depends on two spatial frequencies. Generalizations to arbitrary
array geometries are straightforward.

A. Parametric Estimation
The structured channel estimators that we will consider

assume parametric channel models of the following form, which
we describe first for the RIS-BS channel:

H =

dH∑
k=1

γH,kaB(ωBH,k)aHU (ωRH,k) (37a)

= AB(ωBH)ΓHAH
R (ωRH) , (37b)

where the columns of

AB(ωBH) = [aB(ωBH,1) · · · aB(ωBH,dH )] (37c)
AR(ωRH) = [aR(ωRH,1) · · · aR(ωRH,dH )] (37d)

respectively represent the steering vectors for the prop-
agation paths with AoA spatial frequencies ωBH =
[ωBH,1 · · · ωBH,dH ]T at the BS and AoD spatial frequencies
ωRH = [ωTRH,1 · · · ωTRH,dH ]T from the RIS. The diagonal
matrix ΓH = diag{γH} = diag{γH,1 · · · γH,dH} contains
the complex path gains γH = [γH,1 · · · γH,dH ]T . The RIS
AoDs for path k, denoted by ωRH,k, are written as vectors
since the RIS spatial frequencies are two-dimensional:

ωRH,k =

[
ωRH,k,x

ωRH,k,y

]
. (38)

Parametric models like (37) are usually employed when the
number of paths dH is smaller than the array dimensions M
and N , and thus the channel H is low-rank.

Parametric CSI estimation involves finding the spatial
frequencies of signals collected by an array. For example,
suppose n observations are available from an arbitrary M ′-
element array receiving signals from d directions:

Y′ = A(ω′)S′ + N′ , (39)

where Y′ is M ′ × n, S′ is d × n, N′ is noise, A =
[a(ω′1) · · · a(ω′d)] is the M ′ × d array response matrix.
The matrix S′ is not typically assumed to be known. This is
the classical model assumed for AoA estimation, and many
methods have been developed to estimate ω′ = [ω′1 · · ·ω′d]T
from Y′. The simplest method is based on (matched filter)

beamforming, which involves searching for d peaks in the
spectrum

pB(ω) = aH(ω)RY ′a(ω) , (40)

where RY ′ is the sample covariance matrix

RY ′ =
1

n
Y′Y

′H . (41)

Alternatively, one can employ higher resolution algorithms such
as MUSIC [40] or ESPRIT [41], which require computation
of the eigendecompositon of RY ′ . If N′ is spatially and
temporally white, the (deterministic) maximimum likelihood
(ML) method [42] finds the AoA estimates from the d-
dimensional (or 2d-dimensional for azimuth/elevation angles)
problem

ω̂′ML = arg min
ω

trace
(
P⊥A(ω)RY ′

)
, (42)

where P⊥A(ω) = IM ′ − A(ω)
[
AH(ω)A(ω)

]−1
AH(ω).

The corresponding ML estimate of S′ is given by Ŝ′ =
A†(ω̂′ML)Y′, where (·)† represents the pseudo-inverse, al-
though estimates of ω̂′ from other algorithms can be substituted
for ω′ML to estimate S′. MUSIC and ESPRIT require that
rank(S′) = d and thus that n ≥ d, but the beamforming and
ML methods are theoretically viable for smaller values of n.
The theoretical limit for identifiability is d < (M ′ + n)/2,
so for large enough M ′, n can be as small as 1 [43]. For a
massive antenna array where M ′ is large, all of the above
methods provide asymptotically efficient AoA estimates [44],
and thus a simple technique such as beamforming is preferred
due to its low computational load and minimal assumptions. A
key requirement for all of the above methods is that the value
of d be known or estimated from the data.

B. Compressive Sensing
Compressive sensing (CS) formulations of the geometric CSI

estimation problem are also possible, using sparse representa-
tions from an overcomplete dictionary [45–48]. For example,
we can represent the array response vectors for the BS side as

AB(ωBH) = ABDQBH , (43)

where ABD is an M ×NBD matrix whose columns are BS
array response vectors sampled on an NBD grid of frequencies
corresponding to the possible BS AoAs, and QBH is an
NBD × dH matrix whose k-th column has a single 1 in the
position corresponding to ωBH,k, assuming it is one of the
grid points. If ωBH,k is not on the grid, then the model in (43)
is an approximation. While the error can be made small by
making NBD large, increasing the coherence of the dictionary
eventually leads to computational and numerical issues. More
will be said on this topic below. The RIS also has a similar
overcomplete representation:

AR(ωRH) = ARDQRH , (44)

where ARD is N ×NRD and QRH is NRD × dH . Because
the RIS AoDs are two-dimensional, a two-dimensional grid is
necessary to specify the AoD pairs. Substituting (43) and (44)
into (37), we can write

H = ABDQBHΓHQT
RHAH

RD (45a)
h = vec (H) = (A∗RD ⊗ABD)γHD , (45b)
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where γHD = vec(QBHΓHQT
RH) is a dH -sparse vector of

length NBDNRD whose dH non-zero elements are equal to
γH . The MN×NBDNRD matrix A∗RD⊗ABD can be thought
of as an overcomplete dictionary for the vectorized channel h.

Consider an overcomplete representation of the data in (39):

Y′ = ADQ′S′ + N′ = ADC′ + N′ , (46)

where the dictionary AD is M ′ × ND and the matrix Q′

is ND × d, with one non-zero element per column equal to
one. As before S′ is d × n. The matrix C′ = Q′S′ exhibits
common row sparsity; only d rows have non-zero elements,
and these rows are equal in some order to the rows of S′. If
C′ can be estimated, then the location of its non-zero rows
would correspond to the AoAs, and the entries in those rows
to the rows of S′. Provided that M ′ ≥ O(d log(ND/d)), the
problem of finding the sparse entries in C′ can be solved by
a number of different CS approaches, such as Iterative Hard
Thresholding (IHT) [49], Orthogonal Matching Pursuit (OMP)
[50], Alternating Direction Method of Multipliers (ADMM)
[51], or using AMP-based algorithms [52], [53]. As mentioned
above, the accuracy of dictionary-based approaches is limited
by the resolution of the sampled grid, which cannot be made
infinitely fine due to numerical and computational issues. Off-
grid AoAs create a basis mismatch that leads to leakage of
energy into adjacent rows of C′. One approach to refine the
grid-based AoA estimates is to apply a small angular rotation
to each selected column of AD that maximizes the correlation
with the received data [21]:

ω′k = arg max
ω

∥∥∥diag (a(ω)) aD,kY
′H
∥∥∥
2

(47)

for k = 1, · · · , d, where aD,k is the k-th column of ADQ̂′.
The final estimate of ωk is the spatial frequency corresponding
to aD,k plus the estimated rotation ω′k. A more fundamental
approach to solve the basis mismatch problem for one-
dimensional spatial frequencies is to recast the sparse recovery
problem using the atomic norm [22], [54].

C. Single User MIMO Single Carrier
In this section, we consider structured channel estimation

for the case involving a single multi-antenna UE. As with the
RIS-BS channel, we can define parametric and overcomplete
representations of the RIS-UE channel as follows:

G = AU (ωUG)ΓGAH
R (ωRG) (48a)

= AUDQUGΓGQT
RGAH

RD (48b)

g = vec (G) = (A∗RD ⊗AUD)γGD , (48c)

where we assume dG paths with gains γG =
[γG,1 · · · γG,dG ]T and ΓG = diag{γG}. In this case,
γGD = vec(QUGΓGQT

RG) is a dG-sparse vector of length
NUDNRD whose non-zero elements correspond to γG.

Recall the general model in (5), where the BS data from the
T training samples is stacked together in a single vector:

y =
√
PZhc + n , (49)

where

Z =

 φT1 ⊗ xT1 ⊗ IM
...

φTT ⊗ xTT ⊗ IM

 (50)

is MT ×MKN and involves φt instead of φ̃t since we are
assuming no direct UE-BS channel is present, which also
implies that hc = vec(Hc) = vec (G∗ �H). Using various
properties of the Kronecker and Khatri-Rao products, the
composite channel can be decomposed using either a parametric
approach or via overcomplete dictionaries as follows:

Hc = (A∗U (ωUG)⊗AB(ωBH))︸ ︷︷ ︸
MK×dHdG

ΓGH︸ ︷︷ ︸
dHdG×dHdG

×
(
AT
R(ωRG) �AH

R (ωRH)
)︸ ︷︷ ︸

dHdG×N

(51a)

= (A∗UD ⊗ABD)︸ ︷︷ ︸
MK×NUDNBD

QGH︸ ︷︷ ︸
NUDNBD×N2

RD

(
AT
RD �AH

RD

)︸ ︷︷ ︸
N2

RD×N

,

(51b)

where

ΓGH = Γ∗G ⊗ ΓH (52a)

QGH =
(
QUGΓ∗GQT

RG

)︸ ︷︷ ︸
NUD×NRD

⊗
(
QBHΓHQT

RH

)︸ ︷︷ ︸
NBD×NRD

(52b)

= (QUG ⊗QBH)︸ ︷︷ ︸
NUDNBD×dHdG

ΓGH (QRG ⊗QRH)T︸ ︷︷ ︸
dHdG×N2

RD

. (52c)

As in the non-parametric case, not all of the parameters or
decompositions shown in (51) are identifiable. To see this, let

Λ = diag (aR(ω′)) (53)

be a diagonal matrix formed from an arbitrary RIS array
response vector for 2× 1 DOA ω′. Then,

AT
R(ωRG) �AH

R (ωRH) = AT
R(ωRG)Λ �AH

R (ωRH)Λ∗

= AT
R(ω′RG) �AH

R (ω′RH) (54)

where the elements of ω′RH and ω′RG are defined as ω′RH,k =
ωRH,k + ω′ and ω′RG,k = ωRG,k + ω′. Thus, if the RIS
AoA and AoD spatial frequencies are shifted by the same
amount, there is no change to the composite channel response.
In addition, since the channel gains for H and G always appear
together as Γ∗GΓH , there is a scaling ambiguity; in particular
γH and γG yield the same composite channel as αγH and
γG/α

∗. To obtain an identifiable parameterization η for the
composite channel in (51), one could for example set ωRH,1 =
[0 0]T so that aR(ωRH,1) is a vector of ones, and set γH,1 = 1.
With these assumptions, the set of unique parameters η that
describe the composite channel matrix are given in Table I. The
total number of parameters is thus dim(η) = 5dH + 5dG − 4,
which for typical values of dH and dG is much smaller than
the number of parameters 2MKN that must be estimated for
a non-parametric Hc, which could be in the thousands.
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VARIABLE PARAMETERS DESCRIPTION
ωBH dH AoA frequencies at BS
ωRH 2(dH − 1) AoD frequencies at RIS
γH 2(dH − 1) complex gains for BS-RIS channel
ωRG 2dG AoA frequencies at RIS
ωUG dG AoD frequencies at UE
γG 2dG complex path gains for RIS-UE channel

TABLE I: Composite Channel Parameterization for Single User MIMO Single
Carrier Case. The elements of these vectors form the elements of the parameter
vector η for geometric channel models.

1) Channel Estimation for the General Case
Using (51), the composite channel is given by

hc = A(ω)γGH (55a)
= ADqGH , (55b)

where γGH = γ∗G ⊗ γH , qGH = vec(QGH),

A(ω) =
(
AT
R(ωRG) �AH

R (ωRH)
)T

� (A∗U (ωUG)⊗AB(ωBH)) (56a)

AD =
(
AT
RD �AH

RD

)T ⊗ (A∗UD ⊗ABD) . (56b)

and ωT =
[
ωTBH ωTRH ωTRG ωTUG

]
. Similarly, there are two

forms of the general data model in (49):

y =
√
PZA(ω)γGH + n (57a)

=
√
PZADqGH + n . (57b)

At first glance, Eq. (57a) has the standard form assumed in
AoA estimation problems, where A(ω′) = ZA(ω), but there
are some caveats. First, γGH is not arbitrary, but is instead a
nonlinear function of γH and γG. Second, note that the k-th
column of A(ω) can be expressed as

[A(ω)]:k =
[
CT (ωRG,ωRH)

]
:k
⊗a∗U (ωUG,`)⊗aB(ωBH,p),

(58)
where ` = bk/dHc, p = moddH (k), and

C(ωRG,ωRH) = AT
R(ωRG) �AH

R (ωRH) . (59)

Each column of CT (ωRG,ωRH) only depends on a pair of
2D angles, one each from ωRG and ωRH [21]:[

CT (ωRG,ωRH)
]
:k

=
[(

AT
R(ωRG) �AH

R (ωRH)
)
k:

]T
(60a)

=
[
aTR(ωRG,`)� aHR (ωRH,p)

]T
(60b)

= aR(ωRG,` − ωRH,p) . (60c)

Thus, from (58), we see that the k-th composite steering vector
in (57a) is parameterized by different pairs of entries from
ωRG and ωRH , and from ωBH and ωUG:

[A(ω)]:k = aR(ωRG,`−ωRH,p)⊗a∗U (ωUG,`)⊗aB(ωBH,p) .
(61)

The fact that A(ω) only depends on the differences between
the elements of ωRG and ωRH is a direct consequence of
the fact that they are not separately identifiable, as mentioned
above. An AoA estimation algorithm that takes the special
structure of γGH into account is difficult to formulate, and one-
dimensional methods such as beamforming and MUSIC cannot
exploit the inherent relationship between the columns of A(ω).

However, assuming A(ω) is full rank4 for all possible ω, one
could ignore the structure of γGH and use the deterministic
ML (DML) criterion to estimate ω, setting ωRH,1 = [0 0]T

to make the model identifiable:

ω̂ = arg min
ω

yHP⊥ZA(ω)y , (62)

where P⊥ZA(ω) is the projection orthogonal to the columns
of the effective array response ZA(ω). This would require
a non-convex optimization over the 3(dG + dH) − 2 spatial
frequencies in ω.

One special case worth mentioning occurs when dH = dG =
1, or when the UE-RIS and RIS-BS channels are LoS. In this
case, (57a) simplifies to hc = γa(ω), where

a(ω) = aR(ωRG)⊗ a∗U (ωUG)⊗ aB(ωBH) , (63)

with 4 angle parameters of interest: ωBH , ωUG,ωRG. This
results in a standard single-snapshot AoA estimation problem,
and the vector ω can be determined either by maximiz-
ing the beamforming criterion |yHZa(ω)|2 or minimizing
the DML criterion yHP⊥Za(ω)y, and in either case setting
γ̂ = (Za(ω̂))

†
y/
√
P . Another way that beamforming can

be applied in the general case with arbitrary dH and dG is
to ignore the interdependence of the columns of A(ω) on
different combinations of the elements of ω, and just treat the
angle parameters of each column as if they were independent
variables. This reparameterizes the model in (57a) and (61) as

y =
√
PZA(ω′)γ + n (64a)

A(ω′) =
[
a(ω′1) · · · a(ω′dHdG)

]
(64b)

a(ω′k) = aR(ω′k,1)⊗ a∗U (ω′k,2)⊗ aB(ω′k,3) , (64c)

where γ is an arbitrary dHdG vector, and ω′ has 4 elements,
one each for ω′k,2 and ω′k,3 since they are 1D spatial frequen-
cies, and two for ω′k,1 since it is 2D. While this increases the
number of angle parameters that must be estimated to 4dHdG,
the beamforming criterion ‖yHZa(ω′)‖2 can be applied since
the columns of A(ω′) are identically parameterized. This would
require a search for dHdG local maxima in a 4-dimensional
space. In this case, γ̂′ =

(
ZA(ω̂′)

)†
y/
√
P .

CSI estimation for the dictionary-based model in (57b)
also requires an unconventional approach, due to the sparsity
pattern in qGH [15], [21], [23]. The first issue is again
due to the ambiguity in specifying the spatial frequencies
of the RIS AoAs and AoDs; any circular shift in the columns
of ARD or the rows of QRG and QRH will leave AD

unchanged in (56b). As before, this ambiguity can be rectified
by forcing the first column of QRH to have its non-zero
element in the position corresponding to ωRH = [0 0]T . The
second issue is most easily understood via Eq. (52b). The
matrix Q1 =

(
QUGΓ∗GQT

RG

)
has dG non-zero elements at

4The matrix A(ω) will generically be full rank as long as the BS, RIS,
and UE arrays have unambiguous array manifolds (e.g., elements spaced no
more than λ/2 apart for a ULA or UPA). However, there are pathological
cases where A(ω) can drop rank. This could occur, for example, if any RIS
angle differences are repeated, i.e., ωRG,` − ωRH,p = ωRG,`′ − ωRH,p′

for ` 6= `′ or p 6= p′, or if the BS and UE arrays have identical manifolds
and share an angle between the vectors ωBH and ωUG. Although such cases
occur with probability zero, A(ω) will become ill-conditioned if they are
approximately true, and numerical problems would ensue.
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the row/column coordinates corresponding to the AoA/AoD
pairs of G, while Q2 =

(
QBHΓHQT

RH

)
has dH non-zero

elements at positions corresponding to the AoA/AoD pairs of
H. The Kronecker product of Q1 with Q2 then repeats the
sparse structure of Q2 at the block rows/columns in QGH

corresponding to the non-zero elements of Q2. In addition, the
non-zero values in these repeating blocks are scaled versions of
one another; the dH non-zero elements in Q2 correspond to γH ,
and each time they are repeated in QGH they are multiplied
by a different element of γG. This structure in QGH in turn
creates a corresponding repeated pattern in qGH . Thus, qGH
is dHdG-sparse, but it depends only on dH + dG − 1 unique
complex values. While cumbersome, imposing the required
structured sparsity constraint on qGH is possible [15], [23].

A bigger issue with the CS approach in the general case is
the size of the dictionary in (57b), which has NBDNUDN2

RD

elements. A smaller dimensional problem can be formulated
based on the parameterization in (64), such that

y =
√
PZA′Dq′ + n , (65)

where q′ is dHdG-sparse and unstructured, and the dictionary
ZA′D is composed of NRDNUDNBD entries defined by

ZA′D = Z (ARD ⊗A∗UD ⊗ABD) . (66)

While the dictionary is now a factor of NRD smaller, the
resulting problem is likely still intractable. Assuming LoS
propagation only serves to reduce the sparsity level, without
reducing the dimension of the dictionary. Consequently, a more
tractable approach is needed, as described next.
2) A Simpler Decoupled Approach

In this approach, the channel estimation is decoupled into
two stages; in the first, the BS and UE components of the
channel are determined from an initial set of pilot data and
then removed from the composite channel, and in the second
additional pilot data are used to estimate the remainder of the
channel [22], [25]. In particular, Stage 1 assumes that the UE
transmits a K × T1 matrix of orthogonal (T1 ≥ K) pilot data
X1 while the RIS holds a fixed reflection pattern φ, which
results in the following received signal at the BS:

Y1 =
√
PHΦ̄GHX1 + N1 (67a)

=
√
PAB(ωBH)ΞAH

U (ωUG)X1 + N1 (67b)

=
√
PABDQBHΞQT

UGAH
UDX1 + N1 , (67c)

where
Ξ = ΓHAH

R (ωRH)ΦAR(ωRG)Γ∗G . (68)

We see immediately that (67b)-(67c) are in the form of a
standard AoA estimation problem as in (39), and as long as
M ≥ max{2dH − T1, dH + 1} [43], ωBH could be estimated
from Y1 using an AoA estimation algorithm5. Similarly,
estimation of ωUG can also be performed separately based

5Note that in some work it is assumed that the BS-RIS channel changes
slowly since the BS and RIS are in fixed locations. In such cases ωRH can be
estimated infrequently and thus may already be known, and hence the above
estimation step may not always be necessary [5], [8], [17], [55].

on the following equation, provided that K ≥ dG + 1 since
presumably M > dG:

X1Y
H
1

T1
√
P

= AU (ωUG)ΞHAH
B (ωBH) +

X1N
H
1

T1
√
P

(69a)

= AU (ωUG)S +
1

T1
√
P

X1N
H
1 . (69b)

For the second stage, the UE repeatedly sends T2/dG blocks
of the pilot signal matrix X2 ∈ CK×dG during T2 time slots,
while the reflection shift Φb varies from block to block. The
observed signal in the b-th pilot block (b = 1, ..., T2/dG) is
given by

Yb =
√
PHΦbG

HX2 + N2,b. (70)

With sufficiently accurate estimates of ωBH and ωUG from
Stage 1, we have

YB,b =
1√
P

A†B(ω̂BH)YbB
†

' ΓHAH
R (ωRH)ΦbAR(ωRG)Γ∗G + NB,b, (71)

where NB,b = 1√
P

A†B(ω̂BH)N2,b

(
AH
U (ω̂UG)X2

)
and B =

AH
U (ωUG)X2. The b = 1, · · · , T2/dG blocks defined in (71)

are gathered together to form

YB =[vec(YB,1), ..., vec(Y
B,

T2
dG

)]T (72a)

=Ψ∗
(
AT
R(ωRG) �AH

R (ωRH)
)T︸ ︷︷ ︸

CT (ωRG,ωRH)

ΓGH + NB (72b)

=Ψ∗
(
AT
RD �AH

RD

)T
(QRG ⊗QRH)ΓGH + NB,

(72c)

where ΨH = [φ1, ...,φ T2
dG

], C(ωRG,ωRH) is defined in (59).
and NB is defined similarly to YB.

A sparse estimation problem could be set up for ωRG
and ωRH based on vectorizing (72c), and while the resulting
dictionary is significantly smaller than in (57b), it still has N2

RD

elements. Instead, a much simpler solution can be found by
noting the structure of C(ωRG,ωRH) described in (60), which
indicates that each of the dGdH columns of (72b) depends
only on a pair of 2D angles, one from ωRG and one from
ωRH . In particular, for the k-th column,

yB,k ' γkΨ∗aR(ωRG,` − ωRH,p) + nB,k , (73)

where γk is the k-th element of γ∗G ⊗ γH and k = (` −
1)dH + p for ` = 1, · · · , dH and p = 1, · · · , dG. Each of the
dHdG columns of YB is thus approximately equivalent to a
single snapshot from a T2-element “array” with a single 2D
spatial frequency. As before, the gains and 2D frequencies of
the columns are interrelated, but if one ignores this fact, the
unknown part of the channel in (70) can be reconstructed in a
suboptimal way by solving a series of dHdG one-dimensional
AoA estimation problems on each of the columns of YB . In
particular, if cTk represents the k-th row of ΓGHC(ωRG,ωRH),
then cTk is estimated using the estimates of γk and ωk =
ωRG,` − ωRH,p obtained for the k-th column of YB :

ĉk = γ̂kaR(ω̂k) . (74)
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For LoS channels with dH = dG = 1, only a single sparse
estimation problem needs to be solved.

D. Wideband Single User MIMO
As in Section III-B, for geometric channel models with

OFDM signals, either time- or frequency domain approaches
can be employed. We will focus on the time-domain approach
here as it is a bit more straightforward (see [17] for methods
that focus on estimating the individual subchannel responses).
Our starting point is (26), which differs from (57) in that the
wideband channel parameter vector hc is composed of L single-
tap terms like hc stacked together. Partition the columns of
Z into L blocks, each block corresponding to one of the taps
hc(k), k = 1, · · · , L, in hc:

Z = [Z(0) Z(1) · · · Z(L− 1)] . (75)

Using (55), we can write

y =
√
P A(Ω)

 γGH(0)
...

γGH(L− 1)

+ n (76a)

=
√
P AD

 qGH(0)
...

qGH(L− 1)

+ n , (76b)

where

A(Ω) =
[
Z(0)A(ω(0)) · · · Z(L− 1)A(ω(L− 1))

]
(77a)

AD =
[
Z(0)AD · · · Z(L− 1)AD

]
, (77b)

Ω =
[
ω(0)T · · · ωT (L− 1)

]T
, and where ω(k),γGH(k)

and qGH(k) are the spatial frequencies, path gains and sparse
vectors associated with the channel for tap k. Note that we have
assumed the general case where the AoAs/AoDs are potentially
different for each tap. Consequently, while we see from (76)
that the full-scale parameterization of the problem is similar
to that in (57), the dictionary size and parameter dimensions
are all a factor of L larger.

The decoupled approach described in Section IV-C2 can
be exploited to significantly reduce the required complexity.
As before, we ignore the direct channel and assume an initial
training period of T1 = To1Nc samples from To1 OFDM
symbols where the RIS reflection state is fixed at φ. Using (24),
after removal of the cyclic prefix we can collect all Nc samples
from OFDM symbol t in the matrix Y1,t as follows:

Y1,t =
√
P
[
H(0)ΦGH(0) · · · H(L− 1)ΦGH(L− 1)

]
×X1,t + N1,t (78a)

=
√
PAB(ΩBH)ΠX1,t + N1,t (78b)

where X1,t is block circulant with first block row
[xt,1 · · · xt,Nc

], ΩBH =
[
ωBH(0)T · · · ωTBH(L− 1)

]T
, and

AB(ΩBH) =
[
AB(ωBH(0) · · · AB(ωBH(L− 1)

]
(79a)

Π = blkdiag
({

Ξ(k)AH
U (ωUG(k))

}L−1
k=0

)
, (79b)

where Ξ(k) is the matrix corresponding to (68) for tap k.
Concatenating data from the To1 OFDM symbols yields

Y1 =
√
P [Y1,1 · · · Y1,To1 ] (80a)

=
√
P AB(ΩBH)︸ ︷︷ ︸

M×LdH

ΠX1︸ ︷︷ ︸
LdH×T1

+N1 , (80b)

where X1 and N1 are defined like Y1. Assuming M > LdH ,
the BS AoAs for each tap of the impulse response can be
estimated using standard approaches. The AoDs at the UE can
be found by noting that

(Y1X
†
1)H√

PT1
=

 D(0)
...

D(L− 1)

+
(N1X

†
1)H√

PT1
, (81)

where D(k) = AU (ωUG(k))Ξ(k)AH
B (ωBH(k)). Assuming

K > dG, the UE angles are found by solving AoA estimation
problems on the L blocks in (81).

In Stage 2, To2 additional OFDM training symbols are
transmitted, for a total of T2 = To2Nc samples. As in (70), the
received signal in the b-th symbol block (b = 1, ..., To2/LdG)
is given by

Yb,s =
√
P

L−1∑
k=0

H(k)Φb,sG
H(k)Xs−k + Nt,s

= AB(ΩBH)blkdiag
(
{Vk}L−1k=0

)
BH
s + Nt,s (82a)

Vk = ΓH(k)AH
R (ωRH(k))Φb,sAR(ωRG(k))Γ∗G(k)

(82b)

Bs =
√
P [XH

2,sAU (ωUG(0)) · · ·
XH

2,s−L+1AU (ωUG(L− 1))] , , (82c)

where Xs−k is K × LdG. Replacing ωUG(k) and ωBH(k)
with their estimates from Stage 1, and assuming M ≥ LdH
and K ≥ dG, we multiply each Yb,s on the left by the
estimate of the pseudo-inverse of AB(ΩBH) and on the right
by the estimate of the pseudo-inverse of BH

s , and we stack
the vectorized Vk together as

yB,b,s =

 vec(V0)
...

vec(VL−1)

+ nB,b,s

=

 ΓGH(0)C(0)φb,s
...

ΓGH(L− 1)C(L− 1)φb,s−L+1

+ nB,b,s,

(83)

where C(k) = C(ωRG(k),ωRH(k)). We stack the Nc vectors
defined in (83) together and take the transpose as in (72):

YB,b︸ ︷︷ ︸
Nc×LdHdG

= [ YB,b,0︸ ︷︷ ︸
Nc×dHdG

· · · YB,b,L−1]

YB,b,k ' Ψ∗b,k︸︷︷︸
Nc×N

CT (k)ΓGH(k)︸ ︷︷ ︸
N×dHdG

+NB,b,k

Ψ∗b =
[
Ψ∗b,0 · · · Ψ∗b,L−1

]
,
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where Ψ∗b is block circulant with first set of columns
defined by ΨT

b,0 = [Ψb,1 · · · Ψb,Nc ]. Stacking the re-
sult from all To2/LdG training symbol blocks YT

B =[
YT
B,1 · · · YT

B,To2/LdG

]
and partitioning them into L blocks

of dHdG columns each, we have

ȲB,k '

 Ψ∗1,k
...

Ψ∗Nc,k

CT (k)ΓGH(k) + NB,k , (85)

where ȲB,k holds columns k + 1 through k + L of YB . This
equation is equivalent in form to (72b), and thus the methods
discussed previously can be used to solve for the remaining
channel parameters for path k. The process is then repeated
for all L paths, k = 0, · · · , L− 1.

E. Single Antenna Scenarios
1) Single Antenna UE

When the UE has only a single antenna, ωUG = ∅ is the
empty set and AU (ωUG) = 1TdG . The matrix A(ω) in (57a)
still has dHdG columns, now given by

[A(ω)]:k = aR(ωRG,` − ωRH,p)⊗ aB(ωBH,p) , (86)

where ` = bk/dHc and p = moddH (k). We assume without
loss of generality that xt = 1, ∀ t, so (50) simplifies to

Z =

 φT1 ⊗ IM
...

φTT ⊗ IM

 . (87)

Ignoring the structure of γGH in (57a), the DML criterion
in (62) can be applied to estimate the 3dh+2dG−2 spatial fre-
quencies in ω, which represents only a slight savings compared
with the multi-antenna UE case. The simpler beamforming
criterion can be used if one ignores the relationship between
the columns of A(ω) as in (64), treating them as independent
vectors that are a function of three frequency variables, one for
the BS and two for the RIS. This results in a search for dHdG
local maxima in a 3D space. In the LoS case, the problem is
solved by optimizing a function of three frequency variables
in either the DML or beamforming approach.

The CS-based model in (57b) for single-antenna UEs can
also be approached in two ways. The first retains the full
geometric structure of the channel, with

AD =
(
AT
RD �AH

RD

)T ⊗ABD (88a)

QGH =
(
γHGQT

RG

)︸ ︷︷ ︸
1×NRD

⊗
(
QBHΓHQT

RH

)︸ ︷︷ ︸
NBD×NRD

. (88b)

In this case, the dHdG-sparse vector qGH = vec(QGH) has a
similar structure as before, and the dictionary has NBDN2

RD

elements. The second approach ignores the sparse structure as
in (65), except in this case the dictionary ZA′D = Z(ARD ⊗
ABD) has only NRDNBD terms.

Further complexity reduction is possible using the decoupled
approach described in Section IV-C2. In Stage 1, ωBH is
estimated from Y1 as before, but estimation of ωUG is not

required. Stage 2 proceeds as before, but the solution is obtained
in a different way. In particular, in this case we define

yt =
√
PAB(ωBH)

(
γHG ⊗ ΓH

)
C(ωRG,ωRH)φt + nt

YB =
1√
P

[
A†B(ω̂BH)Y1

]T
(89a)

' Ψ∗CT (ωRG,ωRH) (γ∗G ⊗ ΓH) + NB , (89b)

and note that the dH columns of YB are now linear combina-
tions of RIS array response vectors:

yB,k ' γH,kΨ∗
dG∑
n=1

γ∗G,naR(ωRG,n − ωRH,k) + nB,k

(90a)

' γH,KΨ∗diag
(
AR(ωRG)γ∗G

)
aR(−ωRH,k) + nB,k,

(90b)

This special structure allows for a simpler solution than
that required in the multi-antenna UE case considered in
Section IV-C2 [21]. To see this, note that because of our
identifiability conditions γH,1 = 1 and ωRH,1 = 0, the first
column of YB is given by

yB,1 ' Ψ∗AR(ωRG)γ∗G + nB,1 . (91)

It is clear that the parameters ωRG and γG can be esti-
mated from yB,1 using an AoA estimation algorithm such
as beamforming or DML, or using a dG-sparse CS approach.
Once estimated, these parameters can be substituted into (90),
and yB,k can be used to estimate γH,k and ωRH,k for
k = 2, · · · , dH . Thus, for Stage 2, instead of solving dHdG
1-sparse AoA estimation problems that ignore the underlying
structure of the data as in Section IV-C2, for single-antenna
UEs we can estimate the channel with one dG-sparse estimation,
followed by dH − 1 1-sparse problems, that when combined
provide estimates of ωRH ,ωRG,γH ,γG.
2) Single Antenna UE and BS

Here there is no need for a first stage, as there are no angles
to estimate at the BS or UE. Instead, we simply collect T
observations at the BS and stack them together in a T × 1
vector y = [y1 · · · yT ]T , which yields

y = Ψ∗CT (ωRG,ωRH)(γ∗G ⊗ γH) + n (92a)

= Ψ∗
dG∑
k=1

dH∑
n=1

γ∗G,kγH,naR (ωRG,k − ωRH,n) + n . (92b)

This leads to an equivalent single-snapshot AoA estimation
problem, although with a nonlinear dependence on the gains
via the Kronecker product. Ignoring this as before, the spatial
frequencies can be determined using a 2dH + 2dG − 2
dimensional DML search, or a single dHdG-sparse CS problem
with or without application of the special row structure induced
by the model.

F. Multi-User Scenarios
Multiple users in the geometric model can be accounted for

by redefining G as follows:

G =

 AU (ω1
UG)ΓG1AH

R (ω1
RG)

...
AU (ωUUG)ΓGU AH

R (ωURG)

 ≡
 G1

...
GU

 , (93)
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where the superscripts indicate the user index. UE u is assumed
to have Ku antennas and the corresponding channel has dGu

propagation paths, so that dG =
∑
u dGu . The composite

channel and its vectorized form is given by

Hc =

 G1 �H
...

GU �H

 (94a)

hc =

 h1
c
...

hUc

 = Jvec(Hc) , (94b)

where the permutation matrix J is implicitly defined to group
the blocks of hc by user rather than by RIS elements. Compact
expressions for the multi-user case can be found for the general
data model that parallel those in (57):

y =
√
PZJ

 A(ω1)γG1H
...

A(ωU )γGUH

+ n (95a)

=
√
P Z

[
J1A(ω1) · · · JUA(ωU )

]︸ ︷︷ ︸
A(ω)

 γG1H
...

γGUH


︸ ︷︷ ︸

γGH

+n

(95b)

=
√
P Z [J1AD · · · JUAD]︸ ︷︷ ︸

effective dictionary

 qG1H

...
qGUH


︸ ︷︷ ︸

qGH

+n, (95c)

where {ωu,γGuH ,qGuH} are the angle parameters, channel
gains, and sparse vectors for UE u as in (55). The block column
Ju of the permutation matrix J = [J1 · · · JU ] is of dimension
MKN × MKuN . General methods can be developed for
simultaneous estimation of all the channel parameters based on
these equations and the approaches discussed in Section IV-C,
but as before the dimension of the resulting optimization
problems is likely prohibitive except for certain simple cases.

The decoupled approach of Section IV-C2 can be applied to
reduce the estimation complexity. Provided that M ≥ dHdG,
the BS AoAs ωBH are estimated as before, while the equation
for estimating the UE AoDs is slightly different than (69):

X1Y
H
1

T1
√
P

=

 AU (ω1
UG)

. . .
AU (ωUUG)

S +
X1N

H
1

T1
√
P

(96)
where S = ΞHAH

B (ωBH) and

ΞH = ΓG

 AH
R (ω1

RG)
...

AH
R (ωURG)

Φ∗AR(ωRH)Γ∗H . (97)

Assuming Ku > dGu , UE AoD estimates can be found
separately for each user by processing different block rows

of (96). Once estimates of ωBH and ωuUG are determined, we
collect additional training data and proceed as in (71) where

B = blkdiag
(
AH
U (ωuUG)

U

u=1

)
X2. (98)

Stacking the vectorized block columns of (71) together, we
have

yB,b =

 vec(ΓHAH
R (ωRH)ΦbAR(ω1

RG)Γ1,∗
G )

...
vec(ΓHAH

R (ωRH)ΦbAR(ωURG)ΓU,∗G )

+ nB,b

=ΓGH

 AT
R(ω1

RG) �AH
R (ωRH)

...
AT
R(ωURG) �AH

R (ωRH)


︸ ︷︷ ︸

C(ω1
RG,··· ,ωU

RG,ωRH)

φb + nB,b . (99)

Collecting the vectors from (99) together as columns of a
matrix as in (72) leads to

YB ' Ψ∗C
(
ω1
RG, · · · ,ωURG,ωRH

)
ΓGH + NB . (100)

As before, each column of (100) involves only the difference
between only one spatial frequency from {ω1

RG, · · · ,ωURG}
and one from ωRH . There are dHdG such combinations, and
thus the remainder of the channel parameters can be found
by solving dHdG single spatial frequency estimation problems.
Note also that when the UEs have only a single antenna, the
simplification discussed in Section IV-E1 holds, where only
one dG-dimensional AoA estimation followed by dH − 1 one-
dimensional AoA estimation problems are necessary.

G. Reducing the Complexity and Training Overhead
The methods discussed in Section III-E can be used to

further reduce the training required even for geometric channel
models. The availability of prior knowledge of low-rank channel
covariance matrices is useful for geometric models, although
less for reducing the amount of training than for designing the
pilot symbols xt and RIS training φt to improve the received
SNR. Also, the common channel H associated with multiple
UE antennas can be exploited as before to reduce the algorithm
complexity. For geometric channel models, this approach could
be implemented as follows [21]:

1) Choose one antenna from one of the UEs, and transmit
training data while the other antennas are silent to estimate
the channel Hdiag(g1).

2) Transmit training data from the remaining UE antennas,
and estimate the UE AoDs ωkUG as in (69) if there is only
one user with multiple antennas, or as in (96) if there are
multiple multi-antennas users.

3) Set the RIS reflection vector to a fixed value φ̄ and send
at least dG additional training symbols xt to obtain

Y = HΦ̄AR(ωRG)ΓGAH
U (ωUG)X + N . (101)

Then, multiply on the right by
(
AH
U (ω̂UG)X

)†
. Since

we have an estimate of H, the resulting matrix is
approximately in the standard form for AoA estimation,
using either steering vectors drawn from ĤΦ̄AR(ωRG),
or an overcomplete dictionary ĤΦ̄ARD.
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Use of the geometric model offers a further opportunity
for dramatic reductions in both computational complexity and
training overhead. The AoAs and AoDs in the geometric model
change very slowly, and can be considered to be stationary over
multiple coherence blocks. Only the complex gains γG and γH
change substantially from block to block. This suggests that,
once estimated, the spatial frequencies for subsequent blocks
can be considered constant, and only the gains need to be
re-estimated [21]. For CS-based methods, this means that the
support of the sparse solution is already known. Consequently,
with at least dHdG training samples, the channel gains in
equations (57), (76), or (95) can be estimated using least-
squares; e.g., for (57a) we have

γ̂GH =
1√
P

(
ZA(ω̂)

)†
y . (102)

V. UNSTRUCTURED VS. GEOMETRIC MODELS: THE
TRADE-OFFS

The choice of channel model and estimation algorithm
for RIS-based systems depends on many factors including
estimation accuracy, training overhead, algorithm complexity,
and robustness to the modeling assumptions. We will examine
these factors in this section, and then focus on estimation
performance for some specific scenarios in Section VI. The
discussion below in this section will assume the case of either
a single K-antenna UE or K single-antenna UEs.

A. Estimation Accuracy
Rather than study the performance of individual algorithms,

of which there are too many examples to consider comprehen-
sively in this paper, we can get a sense for what is achievable
by examining performance bounds based just on the models
themselves. The most common example is the CRB of the
composite channel h̆Tc =

[
Re(hc)

T Im(hc)
T
]
, where Re(hc)

and Im(hc) respectively represent the real and imaginary parts
of hc.

In the unstructured case, the parameters to be estimated are
the 2MKN elements of the channel itself: η = h̆c. Assuming
temporally and spatially white Gaussian noise with variance
σ2 as in (1) and (5), the log-likelihood is given by

fu(h̆c) = −MT ln(πσ2)− 1

σ2

∥∥∥y−√PZhc

∥∥∥2 , (103)

where the subscript u denotes “unstructured.” The CRB is
defined in terms of the Fisher Information Matrix (FIM):

CRBu(h̆c) = FIM−1u (h̆c) (104)

FIMu(h̆c) = E

∂fu(h̆c)

∂h̆c

(
∂fu(h̆c)

∂h̆c

)T , (105)

where E(·) denotes expectation with respect to the noise
distribution. It is straightforward to show that the CRB for the
unstructured model is given by

CRBu(h̆c) =
σ2

2P

(
Z̆T Z̆

)−1
, (106)

where
Z̆ =

[
Re(Z) −Im(Z)
Im(Z) Re(Z)

]
(107)

and Z is as defined in (5). If Z is designed to be orthogonal
as in Section III-A1, then the CRB simplifies to

CRBu(h̆c) =
σ2

2PT
I2MK(N+1) , (108)

signifying that the lower bound is identical for every element
of h̆c (note that we have assumed the RIS element gains
are β = 1). An important observation is that the CRB in the
unstructured case is independent of the number of BS antennas,
RIS elements, and UEs (although T ≥ K(N + 1) must hold
for the model to be identifiable, and hence for the FIM to be
invertible).

The CRB for the geometric channel model depends on the
parameter vector η defined by the angles and gains listed
in Table I, and is of much smaller dimension than for the
unstructured model when the channels are dominated by a
small number of propagation paths. The CRB for the structured
η is more difficult to compute, requiring a large number of
tedious derivative calculations which we do not include here
(for an example of such derivations, see [19] for a detailed
derivation for the special case of a single-antenna BS and UE).
When one forms an estimate of the composite channel hc from
the estimate of the parameters in η, the resulting CRB for the
channel is given by

CRBs(h̆c) =
∂h̆c
∂η

CRB(η)

(
∂h̆c
∂η

)T
, (109)

where here the subscript s is for “structured.” Simplification
of (109) for the general RIS-based model in (57a) is still
an open problem, but some general observations based on
studies from traditional AoA estimation can be made (e.g.,
see [56]). In particular, like the unstructured case, CRB(η)
and hence CRBs(h̆c) are inversely proportional to T and the
SNR P/σ2. However, unlike the unstructured case, whose
performance cannot be improved by increasing the number of
antennas (except in the sense that T must increase with N to
maintain identifiability), the geometric CRB will improve as
either M or N increases. For example, the CRB for estimation
of the AoAs at the BS decreases proportional to M3. In
Section VI an example will be given to show the decrease with
N . The examples in Section VI all show that the geometric
model provides a much smaller channel estimation error for
all of the scenarios considered. However, as discussed below
in Section V-C, some of this performance advantage will
inevitably be lost in practice due to modeling errors.

For large arrays such as those considered in RIS-based
systems, the CRB is achievable by standard AoA estimation
algorithms under the ideal model, even for small (non-
asymptotic) values for T [44]. Such algorithms estimate the
spatial frequencies as continuous variables, unlike CS-based
methods that employ a dictionary on a finite grid. Since the
density of the grid cannot be made arbitrarily fine due to the
resulting computational complexity and ill-conditioning, for
CS-based AoA estimation algorithms the grid spacing becomes
the limiting factor rather than the noise, and thus the CRB is an
optimistic performance indicator. The examples in Section VI
will demonstrate that even with the loss due to the use of
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an AoA grid, the geometric model still provides a sizable
performance advantage.

B. Training Overhead
When considering the amount of training required for a

given model, there are two aspects to consider: the minimum
number of samples required for unique identification of the
channel model, and the number of samples needed to obtain
some desired level of performance. In many cases, these
two quantities may be quite different. Some performance-
related issues were discussed above and will be illustrated
in Section VI, so here we focus on the uniqueness of the
models. A more comprehensive analysis of the impact of the
training would account for its impact on the system throughput,
both in terms of time lost for data transmission and the impact
of the resulting channel estimation errors on the achievable
rate (see [57] for a recent study that addresses this question).

We know from our discussion in Section III-A1 that
identifiability of the unstructured model requires T ≥ K(N+1)
pilot symbols. Establishing a similar condition for the general
geometric model in (57) is difficult since it amounts to a single-
snapshot multi-dimensional frequency estimation problem, with
a complicated inter-relationship between the frequency dimen-
sions. A simple dimensionality analysis gives the necessary
condition that the number of observations MT must exceed the
number of parameters to be estimated, which is 5dH +5dG−4.
For typical values of dH and dG assumed for sparse channels
and a large BS array, this condition could be satisfied for T as
small as 1 or 2. However, the complexity of directly using (57)
for estimating the channel parameters is prohibitive due to
the non-convex optimization required for ω based on (57a)
using classical AoA estimation methods, or the huge dictionary
needed by CS methods for the model in (57b).

Instead, consider the simpler decoupled approach discussed
in Section IV-C2, which assumes the more stringent case for
identifiability with a single K-antenna UE where the channel
depends on the dG AoDs at the UE. This approach assumes
K ≥ dG + 1 and a training interval divided into two parts:
T = T1 + T2. For large enough M , the first stage requires at
least T1 ≥ K pilot symbols to estimate the BS AoAs and the
UE AoDs, while the second stage requires that T2/dG ≥ 4 in
order to uniquely estimate the 2D angle and gain for each of
the dHdG columns defined in (73) [58]. Together, this implies
that a minimum of T = 5K = 5dG + 1 pilots are required to
identify the composite channel. Note that for the case where
there are K single-antenna UEs rather than one K-antenna UE,
the condition K ≥ dG+1 can be eliminated since estimation of
ωUG is no longer required. In this case, the minimum number
of training samples is T = K+4dG. In either case, the training
overhead is considerably less than for the unstructured model.

In addition to the identifiability conditions that must be
satisfied for unique AoA/AoD estimation, CS-based methods
must also satisfy conditions that will guarantee with high
probability the existence of the desired sparse factorization.
Unfortunately, such conditions are not possible to specify
precisely. For the decoupled approach with a single K-
antenna UE, sparse estimation of QBH in (67c) requires
M ≥ O(dH log(NBD/dH)), while estimation of QUG in (67c)

and (69) requires K ≥ O(dG log(NUD/dG)), neither with a
specific requirement for T1. Stage 2, on the other hand, requires
T2 ≥ dGO(log(NRD)) to find a sparse factorization for the 1-
sparse problems in (69), which is still likely much smaller
than for the unstructured model. As before, the condition
K ≥ O(dG log(NUD/dG)) can be dropped when the scenario
involves K single-antenna users.

C. Robustness
While geometric methods typically enjoy an advantage in

terms of training overhead, their reliance on a more detailed
parameterized model makes them subject to performance
degradation when the actual system deviates from the assumed
model. In particular, the geometric model requires that one
determine the number of propagation paths in each link,
and relies on prior knowledge of the array response or
calibration in order to determine the AoAs and AoDs. Errors in
determining the model order or inevitable deviations of the array
response from the nominal model will lead to a corresponding
performance loss. To get a sense for the magnitude of this
loss compared to that due to background noise, consider the
following simple model involving a single source with spatial
frequency ω that transmits T pilot symbols:

Y =
√
P (a(ω) + ã) x + N , (110)

where Y and N are M × T matrices containing the received
signal and noise, respectively, x is a 1×T vector of pilot data,
and ã is a vector that represents the deviation of the M × 1
array response from the nominal model a(ω). A conventional
matched filter beamformer steered to angle ω produces the
following statistic

1

MT
aH(ω)YxH =

√
P︸︷︷︸

desired

+

√
P

M
aH(ω)ã︸ ︷︷ ︸
ζa

+
1

MT
aH(ω)NxH︸ ︷︷ ︸

ζn
(111)

assuming unit amplitude symbols and antenna gains. For
simplicity, assume that the elements of ã are uncorrelated
random perturbations with variance σ2

a. Then the variance of
the calibration error term ζa is σ2

aP/M , while that of the noise
term ζn is σ2/MT . Thus, the impact of the array calibration
error boils down to the relative size of σ2

a compared with
σ2/PT . For example, if we assume that the antennas are
calibrated to within a 5% accuracy (σa = 0.05), then the array
calibration errors would dominate the effects of the noise when
T > 400 for an SNR of 0dB, and when T > 125 for an SNR
of 5dB. This simple analysis suggests that array calibration
errors, while not negligible, are only an important source of
error at higher SNRs not typical of scenarios envisioned for
RIS-based systems (especially those at millimeter wave and
higher frequencies). But further study is needed to confirm this
result for the more complicated channel conditions when RIS
are involved.

D. Algorithm Complexity
Another important factor to consider in choosing the type

of channel model is the complexity required to compute the
channel estimate. For the LS approach described in (13)-(15)
and implemented with orthogonal X and Ψ, the required
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number of operations is O(M(K+N)T ) ≈ O(MNT ), where
the approximation is due to the fact that typically N � K.
Since T = O(KN) is needed for identifiability, the complexity
order is O(MKN2), which is quadratic in the number of RIS
elements. If non-orthogonal RIS phase sequences are employed,
computation of the pseudo-inverse of ΨH requires O(N3)
operations in addition to the O(MKN2) needed to calculate
the channel estimate, and hence the relative values of MK
and N determine the overall computational load.

For the geometric case, tackling the estimation problem
implied by the general data model in (57a) via classical AoA
estimation methods is only practical for very small values of
dH and dG. The sparsity-based model in (57b) is difficult to
implement even for small dH and dG since the size of dictionary
is NBDNUDN2

RD, which is usually of order O(MKN2) if we
assume the resolution of the grid points is inversely proportional
to the number of antennas on each side of the link. Since the
overall complexity order would involve the product of the
dictionary size with the sparsity level dHdG and the number
of measurements MT , it is clear that this direct approach is
not feasible.

Instead, we again consider the decoupled approach of
Section IV-C2 as a practical alternative. We will focus on the
complexity of CS-based approaches since they have been most
frequently considered for RIS-based channel estimation. For a
single K-antenna user, the steps involved in the decoupled
approach are a dH -sparse estimation with an M × NBD
dictionary, followed by a dG-sparse estimation with a K×NUD
dictionary, and concluding with dHdG 1-sparse problems with
an N ×NRD dictionary. The total complexity is thus of order

O(dHMNBD) +O(dGKNUD) +O(dHdGNNRD)

≈ O(dHM
2) +O(dGK

2) +O(dHdGN
2) ,

(112)

where our approximation again assumes grid resolution on the
order of the reciprocal of the number of antennas. We see that
the decoupled CS-based approach will have a lower complexity
provided that dH � KN2/M , dG �MN2/K, and dHdG �
MK, all of which would be considered reasonable for large
RIS and BS arrays. The computational load is lower for the
case where there are K single-antenna users, based on the
approach described in Section IV-E1.

VI. NUMERICAL EXAMPLES

The examples below compare CRBu(h̆c) and CRBs(h̆c)
for several different scenarios. The first set of examples
also includes the performance of the LS algorithm and an
implementation of the decoupled estimator for the geometric
channel model described in Section IV-C2, referred to as “CS-
Geom” in the plots and discussion below. The CS optimizations
were implemented using OMP on a grid with M points for
the BS and N points for the RIS. The performance metric
adopted in all numerical examples is the average of the
diagonal elements of the CRB over a large number of different
(geometric) channel realizations with random AoAs/AoDs and
path gains.

The first case considers a single-UE with K = 1 antenna,
orthogonal pilot signals, and uniformly distributed RIS phases

Fig. 2: Channel estimate NMSE and CRB for various channel models vs. SNR.
Channel parameters are M = 30, N = 30, T = 31,K = 1, dF = 5, dG =
5, dH = 2.

during training. The AoAs/AoDs were generated using a
uniform distribution over [−90◦, 90◦] for azimuth and [0◦, 90◦]
for elevation. The path gains were generated as unit-variance
Rayleigh random variables. Since the path gains are inde-
pendent of the number of paths, a channel with more paths
will generally make a larger contribution to the overall SNR.
The path gain distribution is the same for all three channels
Hd,H,G, which corresponds to a case where the BS, RIS and
UE are approximately located at the vertices of an equilateral
triangle with similar propagation characteristics. Also, this
assumption means that, even though during channel estimation
the RIS phases Φt are not chosen to maximize the coherent
gain offered by the RIS, the RIS provides sufficient combining
gain such that ‖HΦtG‖ � ‖Hd‖. The SNR in the examples
below is defined as P/σ2, but the effective SNR will be a
function of the channel gain ‖Hd+HΦtG‖, which will change
as a function of the number of antennas, RIS elements, and
path gains.

Figs. 2-4 assume a BS with M = 30 antennas and an RIS
with N = 30 elements. Fig. 2 plots the performance as a
function of SNR for a case with dH = 2, dF = dG = 5, and
T = 31 training samples, which is the minimum required for
the case of a K = 1 antenna UE. The CRB for the unstructured
model and the geometric model with and without the direct BS-
UE channel Hd are included, along with the performance of
the LS and CS-Geom algorithms. The CRB curves are plotted
with solid lines, while the performance of the algorithms is
plotted with dashed lines. We see that the performance of the
LS algorithm exactly matches the unstructured CRB, while
for CS-Geom there is a significant gap between the bound
and the accuracy of the algorithm. This is due to a number of
factors, the most important being the rather coarse grid that
was used to estimate the AoAs and AoDs. Despite this gap,
the CS-Geom approach still provides a 10dB improvement in
channel estimation accuracy across all SNRs. It is important to
note that this gap can be closed considerably using a technique
that estimates the AoAs/AoDs as continuous variables.

The advantage of the geometric model in terms of training
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Fig. 3: Channel estimate NMSE and CRB for various channel models
vs. number of training samples T . Channel parameters are M = 30, N =
30, SNR = 5dB,K = 1, dF = 5, dG = 5, dH = 2.

data is apparent from Fig. 3 for the same scenario with an SNR
of 5dB; we see that the same performance can be achieved
with more than order of magnitude fewer training samples.
Note that the plots show a degradation in geometric channel
estimation performance when the direct channel is present; this
is due to the observation above that for the assumed model,
we have ‖HΦtG‖ � ‖Hd‖. In effect, when Hd is present,
we are faced with the task of estimating additional parameters
that are observed more weakly in the data.

Fig. 4 plots performance as a function of the number of paths
present in the geometric channel model, again assuming M =
N = 30 and the minimum number of T = K(N + 1) = 31
training samples. The unstructured model is unaffected by these
changes, and both the CRB and LS algorithm show constant
accuracy versus the number of paths. While the presence of
more paths increases the power of the received signals in this
example, this gain is offset by the fact that more parameters
must be estimated, and hence the geometric CRB and NMSE
of CS-Geom increase with the number of paths. It is clear from
this example that the geometric model can include a relatively
large number of paths before its performance degrades to the
level of the unstructured case.

The last example for the first scenario is depicted in Fig. 5,
which shows the channel estimation performance as a function
of N assuming that M +N = 70, with the other parameters
set as before (K = 2, dF = 5, dG = 5, dH = 2, SNR =
5dB). The curve for the unstructured model assumes that T
is increasing with N according to T = KN , which explains
why the performance improves as the size of the RIS increases.
The blue curves for the geometric model assume the same
increasing values for T , while the red lines assume a fixed
value of T = 30. For fixed T , the best performance is achieved
when M ' N , while larger values of T favor the use of a
larger RIS and a smaller number of BS antennas.

The second scenario is different from the first in a number of
ways, but the conclusions are essentially the same, so for these
plots we include only the CRB results. Unlike the previous
case, there are U = 2 users with 2 antennas each (K = 4),

Fig. 4: Channel estimate NMSE and CRB for various models vs. number of
propagation paths. Channel parameters are M = 30, N = 30, T = 31,K =
1, SNR = 5dB.

Fig. 5: Channel estimate NMSE and CRB for various channel models
vs. number of RIS elements N , where M + N = 70. Channel parameters
are SNR = 5dB,K = 2, dF = 5, dG = 5, dH = 2. For the unstructured
model and the blue curves (geometric model), we have T = KN . For the
red curves (geometric model), T = 30.

the RIS training sequences are not random but rather chosen
such that the diagonal CRB in (108) holds, the BS has M = 6
antennas, and there are dH = dF = 2 paths in the BS-RIS and
BS-UE channels. Except for Fig. 8, dG = 3. In addition, the
Rayleigh distributed path gains in this example have a variance
equal to the reciprocal of the number of paths. Figs. 6-8 assume
a larger RIS with N = 64 elements, and thus the LS channel
estimator requires at least T = K(N + 1) = 260 training
samples in order to obtain a unique estimate. This value for
T will be assumed, except for the case where performance is
plotted versus T .

Figs. 6-9 each show the CRB for five different cases: (1)
“Geometric Hd” - bound for estimate of Hd assuming geometric
model and with the RIS channel present, (2) “Geometric Hc”
- bound for estimate of Hc using geometric model with Hd

included, (3) “Unstructured” - bound for unstructured model
(independent of Hd), (4) “Geom. Hd only” - bound for Hd

assuming geometric model when no RIS is present, and (5)



19

Fig. 6: CRB for various channel models vs. SNR. Channel parameters are
M = 6, N = 64, T = 260, U = 2,K = 4, dF = 2, dG = 3, dH = 2.

Fig. 7: CRB for various channel models vs. number of training samples
T . Channel parameters are M = 6, N = 64, SNR = 0dB, U = 2,K =
4, dF = 2, dG = 3, dH = 2.

“Geometric no Hd” - bound for Hc assuming geometric model
without Hd present. In all cases, the results for “Geometric
Hd” and “Geom. Hd only” are essentially identical, indicating
that the presence or absence of the RIS should not impact the
quality of the estimate of Hd.

Fig. 6 shows the CRB versus the SNR, and as in the
previous case, we see an estimation gain of about 15dB for
the geometric model in the ideal case. Achievable performance
versus T is illustrated in Fig. 7 for 0dB SNR. The curve for
the unstructured case is only shown for T ≥ 260 where the
channel is identifiable, and as before there is at least an order of
magnitude reduction in training data required for the geometric
model. Fig. 8 provides results versus dG for 0dB SNR, and we
still see a considerable gap between the achievable performance
of the unstructured and geometric models even as the number
of propagation paths grows larger. The CRB versus the number
of RIS elements N = N2

x for 0dB SNR is shown in Fig. 9
with T = K(N+1) = 788 in order for the unstructured model
to be identifiable for the case of the largest RIS.

VII. EMERGING TOPICS

A. Alternatives to Passive Reflection-Only RIS
The methods discussed above have all assumed a passive

reflecting RIS with elements that only apply a tunable phase

Fig. 8: CRB for various models vs. number of propagation paths dG. Channel
parameters are M = 6, N = 64, T = 260, U = 2,K = 4, SNR =
0dB, dF = 2, dH = 2.

Fig. 9: CRB for various channel models vs. number of columns Nx in a
square RIS with N = N2

x elements. Channel parameters are M = 6, T =
788, SNR = 0dB, U = 2,K = 4, dF = 2, dG = 3, dH = 2.

shift to the impinging signal, together with a phase- and
frequency-dependent attenuation factor. Recently, several new
RIS devices and architectures have been introduced that include
active receivers, local baseband processing, or the ability
to perform passive “transmission” through the RIS (akin
to refraction) rather than just reflection. Proponents argue
that the resulting benefits of such implementations outweigh
the resulting increase in hardware complexity and power
consumption at the RIS. The work focusing on active RIS
elements has assumed only active receivers and not active
transmission, hence the additional required power is still
significantly less than a similarly-sized active relay. Instead of
the lower SNR data at the BS that has propagated from the
UEs and is reflected by the RIS, data collected by an active
RIS elements will have higher SNR due to lower path loss
and could lead to higher fidelity channel estimates. In addition,
data from the active receivers would allow the channels H and
G to be separately identified, which as we have seen above is
useful in cases where one component varies less rapidly than
the other, and need not be estimated as frequently.
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The most common channel estimation scenario considered
thus far involves an RIS with a few dedicated active receivers
whose collected data are used to estimate the gains and angles of
the geometric channel model. These estimates are then used in
turn to infer the full H and G channel matrices using the known
RIS geometry [59–61] or a deep neural network (DNN) [62].
This matrix completion approach is similar to methods proposed
for channel estimation in hybrid digital/analog systems. A
tensor completion approach is proposed in [63], and also
extended to the wideband OFDM case. The active elements
can either be embedded in fixed positions with a separate RF
chain for each as in the methods above, or different linear
combinations of the RIS outputs can be combined together
through a single RF chain over the training interval to achieve
a similar result [64].

A more general hybrid architecture is proposed in [65],
[66], where each RIS element is designed to act as both a
passive reflector and an active receiver. In such designs, not
only is the reflected phase a tunable parameter, but also the
fraction of the power absorbed at each element and applied to
the receiver. The development of channel estimation methods
that exploit this additional flexibility is an interesting open
problem. Simultaneous Transmit and Receive (STAR)-RIS
are another recently proposed RIS architecture in which each
element can split the received energy into reflected or refracted
(“transmitted”) signals in a controllable way. LS-based channel
estimators for a STAR-RIS system are presented in [67] for two
cases, one where the elements time-switch between reflection
and refraction (a simple extension of existing methods), and
one where the received energy is split between reflection and
refraction. We also mention here the related work of [68]
which, instead of active RIS elements, proposes deploying
active anchor nodes in known locations near the UEs to reduce
the CSI estimation complexity as discussed in Section IV-G
and resolve the ambiguity of the composite channel.

B. Double RIS Systems
We have only considered communication links between a

BS and UEs that include a single RIS, but channel estimation
for scenarios with two RIS has been studied for certain special
cases. In [69], a double RIS scenario is considered where a BS
communicates with a single UE over an indirect channel that
passes from the BS to RIS 1 to RIS 2 to the UE, assuming all
other channels are blocked. They propose an unstructured LS
channel estimator that requires at least N1N2 training samples,
assuming the two RIS have N1 and N2 elements respectively.
They also consider the special case of an LoS channel between
the two RIS, which reduces the training overhead to N1+N2. A
more general scenario is considered in [70], in which both RIS
have unblocked channels with the BS and UEs, in addition to
the direct link between the two RIS. A two-stage unstructured
LS approach is proposed where, in the first stage, the phase
shifts of RIS 1 are held fixed while those of RIS 2 are varied,
and the composite single-bounce (UE-IRS 2-BS) and double-
bounce (UE-IRS 2-IRS 1-BS) channels are estimated. In Stage
2, the phase of both RIS are varied in order to estimate the
corresponding components of RIS 1, which are superimposed
on the composite channels estimated in Stage 1. Assuming

K single-antenna UEs, the required training overhead for this
approach is of the following order:

T = O
(KN1N2

M
+K(N1 +N2)

)
, (113)

which can be large when the number of BS antennas M is small.
An earlier approach to the double-RIS problem in [71] assumes
LoS propagation between two RIS that both possess active
receivers, which allowed the individual channel components
to be determined. It is unclear if a geometric model could be
used for a purely passive double-RIS scenario to achieve an
identifiable parameterization.

C. Learning-Based Methods
The application of machine learning to RIS systems and

channel estimation has also been growing recently. For example,
the approach in [72] designs a DNN that directly takes the
received training data and produces the channel estimate. The
DNN is trained using synthetic uplink data generated assuming
the direct and composite channels are Rayleigh fading. As has
been noted in other work, the performance improves if not only
the real and imaginary parts of the input data are provided,
but also a third component related to the data, in this case its
magnitude. Other work has employed the phase of the data
as the third component [73]. However, [73] uses a federated
learning approach in the downlink, in which the UEs generate
local channel estimates using a learning-based optimization,
and the gradients of the local networks are fed back to the BS
to update the global model.

A common learning-based approach for RIS systems involves
denoising an initial channel estimate with a DNN. The initial
estimate can be found using the methods described above, such
as LS [35], [74] or compressive sensing in the geometric model
[75]. Multi-stage DNN denoising networks are proposed in
[76], [77], where separate DNNs are used to first denoise the
direct channel (if present) with the RIS switched off, then to
denoise a reduced-dimension version of the composite channel
with only a subset of the RIS elements active, and finally to
map the sampled composite channel to its full dimensions. A
similar technique is proposed in [62] that uses a DNN to map
the channel estimated with a few active RIS elements to the full
RIS array. The approach in [60] also assumes the availability of
active RIS receivers, but instead of attempting to estimate the
channel with the full RIS, the sampled channels from the active
RIS subarray are used as “environment descriptors” during
training to find the best codebook of RIS phases that yields
the highest sum rate. Finally, we mention here the approach of
[78], which uses deep unfolding of the LS fit of the channel
to the data with a nuclear norm regularization to promote a
low-rank estimate.

The primary advantage of the above learning-based methods
is that, once the neural networks are trained, the channel esti-
mates are obtained with relatively little computation. However,
since the training is performed using synthetic data, the ability
of the network to handle non-idealities not present in the
simulated training data is still an open question.
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Reference Geometric Wideband Multi UE MIMO BS MIMO UE Active Rcvr Double RIS Learning
3 

4, 39 

5, 8, 9, 11, 
12, 14, 32, 

36, 68
 

6
7 

10  

13  

15, 21, 23   

16    

17    

18, 24  

19  

20, 22, 25, 
27, 29, 30, 

34
  

26  

28   

33   

35  

59    

60   

61     

62      

63     

64  

69 

70   

71  

72, 74   

73     

75    

76 

77, 78  

TABLE II: Summary of topics covered by references related to channel estimation.

VIII. CONCLUSIONS AND FUTURE WORK

Wireless channel estimation for RIS-based systems provides
a rich source of interesting research problems. We have high-
lighted some of the solutions to these problems for two general
classes of channel models: unstructured models that make no
assumptions about the propagation environment or the RIS or
array geometries, and structured or geometric models that rely
on the assumption of sparse propagation paths and calibrated
antenna arrays and RIS element responses. Algorithms for
estimating unstructured channels are conceptually simple and
robust, but for RIS-based systems they require a large training
overhead, they have a higher computational complexity, and
their achievable accuracy is limited due to the large number of
channel coefficients that must be estimated. On the other hand,
geometric channel models lead to estimation of many fewer
parameters and hence have a much smaller training burden,
lower overall complexity, and can achieve dramatically better
performance. However, this improvement comes at the cost

of determining the model order (i.e., number of propagation
paths), and some of the performance gain will be lost in
practice due to the use of grid-based estimators and inevitable
modeling errors. We have highlighted these issues using both
theoretical derivations and numerical CRB examples, and we
have also briefly discussed on-going research related to RIS
with active elements, double-RIS systems, and machine learning
algorithms. In Table II, we summarize the references related
to channel estimation that we have discussed in this work, and
to aid those seeking more details, we indicate if these papers
consider channel estimation for geometric channel models,
wideband channel models, multiple UEs, multi-antenna BS,
multi-antenna UEs, active receivers, double RIS, and learning-
based algorithms.

In addition to these emerging topics discussed in Section VII,
many open research problems related to RIS remain. For
example, while we have considered only relatively simple
scenarios involving a single RIS, a challenging question to
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answer is how to efficiently coordinate the estimation of
channels for multiple RIS when they are visible to multiple
basestations and their reflections interact. We have considered
only simple models for RIS element behavior, but future work
should investigate the implications of more realistic models
that account for the coupled dependence of the RIS element
gains and phases, their variation in frequency for wideband
scenarios, mutual coupling, nonlinear properties, etc. More
work is also needed to further reduce the training overhead
and computational complexity associated with RIS channel
estimation. Possible topics include reducing the complexity of
compressive-sensing based approaches that normally require
large dictionaries for RIS-based CSI estimation, exploiting
available side information such as knowledge of the local
propagation environment or known channel statistics for
optimal design of pilots and RIS phases during training, and
advancing the application of learning-based methods. Finally, a
systematic study of the impact of modeling errors on RIS-based
systems is needed to more rigorously establish the potential
benefits of geometric models.
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