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Abstraci—Reconfigurable intelligent surface (RIS) is a promis-
ing device that can reconfigure the electromagnetic propagation
environment through adjustment of the phase shifts of its reflect-
ing elements. However, channel estimation in RIS-aided multiuser
multiple-input single-output (MU-MIS0O) wireless communication
systems is challenging due to the passive nature of the RIS and the
large number of reflecting elements that can lead to high channel
estimation overhead. To address this issue, we propose a novel
cascaded channel estimation strategy with low pilot overhead by
exploiting the sparsity and the correlation of multinser cascaded
channels in millimeter-wave MISO systems. Based on the fact that
the physical positions of the BS, the RIS and osers do not appre-
ciably change over multiple consecutive channel coherence blocks,
we first estimate the foll channel state information (CSI) including
all the angle and gain information in the first coherence block, and
then only re-estimate the channel gains in the remaining coherence
blocks with much lower pilot overhead. In the first coherence block,
we propose a two-phase channel estimation method, in which the
cascaded channel of one typical user is estimated in Phase | based
on the linear correlation among cascaded paths, while the cascaded
channels of other users are estimated in Phase I1 by utilizing the
reparameterized CSI of the common base station (BS)-RIS channel
obtained in Phase [. The minimum pilot overhead is much less than
the existing works. Simulation results show that the performance
of the proposed method outperforms the existing methods in terms
of the estimation accuracy when using the same amount of pilot
overhead.
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I. INTRODUCTION

ECONFIGURABLE intelligent surface (RIS) can en-

hance the coverage and capacity of wireless communi-
cation systems with relatively low hardware cost and energy
consumption [2]-{6]. An RIS is typically composed of a large
number of passive elements, which can assist the wireless com-
munication by reconfiguring the electromagnetic propagation
environment between a transmitter and a receiver. The perfor-
mance gain provided by the RIS relies heavily on the accuracy of
the channel state information (CSI). However, it is challenging
to acquire the CSI since the reflecting elements at the RIS are
passive devices lacking the ability of transmitting, receiving and
processing pilot signals.

It is observed that the CSI of the cascaded base station (BS)-
IRS-user channel, which is the product of the BS-IRS channel
and the IRS-user channel, is sufficient for the transmission de-
sign [7], [8]. As aresult, most of the existing contributions have
focused on cascaded channel estimation [9]-[15]. Specifically,
consider a system containing a BS with N antennas, K single-
antenna users, and one IRS with M reflecting elements. The
authors in [9] proposed a least-squares (LS)-based estimation
method to obtain the cascaded channel estimator which is un-
biased for single-user multiple-input single-output (SU-MISO)
systems. However, the pilot overhead of the L5-based estimation
method is prohibitively high and scales with M, which can
be quite large. To reduce the pilot overhead, [10] divided the
elements of the RIS into P subgroups, and proposed a trans-
mission protocol to successively execute channel estimation
and phase shift optimization with a pilot overhead of P. By
exploiting the common BS-RIS channel and the linear correla-
tion among the RIS-user channels in multiuser multiple-input
single-output (MU-MISO) systems, the authors in [11] further
proposed a channel estimation strategy whose pilot overhead
is inversely proportional to the number of the antennas at the
BS: M + max(K — 1,K [W] ). The estimation method
in [11] requires low pilot overhead in a rich scattering communi-
cation scenario where the cascaded channel is full rank, but this
method is not applicable in millimeter-wave (mmWave) MISO
communication systems where the channel is rank-deficient due
to the spatial sparsity [16].
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To address this issue, the authors in [12]-[15] exploited
the sparsity of the cascaded channel matrix in mmWave com-
munication systems and proposed compressed sensing (CS)-
based channel estimation methods with low pilot overhead. In
particular, [12] directly constructed a sparse signal recovery
problem for cascaded channel estimation, but ignored the com-
mon parameters of the cascaded channel in SU-MISO systems,
which leads to high power leakage. Thus, the adopted on-grid
CS method has high false alarm probability and high estimation
error. In order to suppress the power leakage effect, the atomic
norm minimization method was used in [13] to estimate the
sparse angles and gains. For MU-MISO systems, both [14]
and [15] investigated the double sparse structure of the cascaded
channel and utilized common parameters to jointly estimate
the multiuser cascaded channels with low pilot overhead and
high estimation accuracy. However, these two papers assumed
that the number of B5-RIS channel paths L and the number of
RIS-user channel paths .J are known a priori, an assumption that
is difficult to achieve in practice. Moreover, the pilot overhead
in [14] is proportional to the quotient of the number of RIS
elements divided by the number of cascaded spatial paths, i.e.,
K [45]. which can be excessively large in large RIS systems
with a larce number of reflecting elements. Therefore, this
motivates the development of an efficient channel estimation
stratecy to further reduce the pilot overhead, as well as estimate
the sparsity level, or equivalently the number of spatial paths.

A. Novelty and Contributions

Against the above background, this paper proposes a novel
uplink cascaded channel estimation strategy for RIS-aided mul-
tiuser mmWave systems. The proposed estimation strategy has
the following appealing features: low pilot overhead, low com-
putational complexity, and the ability of estimating the sparsity
level (number of spatial paths) of the cascaded channel. These
appealing features are based on the following three typical
properties:

Property 1: The physical positions of the BS and the RIS
change much more slowly than the channel coefficients [16]-
[18]. Therefore, it is reasonable to assume that the angles-of-
arrival (AoAs) at the BS, and the AoAs and angles-of-departure
(AoDs) at the RIS remain unchanged over multiple channel
coherence blocks. If the angle information is estimated in the first
channel coherence block, only the cascaded channel gains need
to be re-estimated in the subsequent channel coherence blocks.
This can greatly reduce the pilot overhead and computational
complexity of channel estimation in later blocks, since only a
few parameters need to be estimated.

Property 2: The JL cascaded paths are the combination of
J + L independent spatial paths. This means that there is a linear
correlation among the JL cascaded paths, which motivates the
direct estimation of the J 4 L sparse paths, rather than the
JL cascaded sparse paths. Note that the existing contributions
in [12]{15] need to estimate JIL cascaded sparse paths.

Property 3: All users share a common BS-RIS channel. Based
on this property, [14], [15] exploited the common AoA infor-
mation of the BS-RIS channel to simplify the multiuser channel
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Fig. 1. Channel estimation protocol and frame structure.

estimation and reduce pilot overhead. In this work, we exploit the
AoA, AoDand gain information of the common B5-RIS channel
to construct a reparameterized common B5-R1S channel, which
enables us to develop a new multinser channel estimation method
with less pilot overhead.

Based on the above discussion, the main contributions of this

work are summarized as follows:

» We propose a novel uplink channel estimation protocol for
time division duplex (TDD) RI5-aided multiuser mmWave
communication systems, as depicted in Fig. 1. Based on
Property 1, we assume that the angle parameters of the CSI
remain constant over multiple channel coherence blocks,
while the channel gains vary from block to block. In the
first coherence block, we estimate the full CS1, including
all the angle information and the channel gains. Given the
estimated angle information, only the channel gains need to
be estimated in the remaining coherence blocks, which can
be achieved using a simple LS method with a low overhead
of JK pilots. Moreover, the training phase shift matrices
are optimized to minimize the mutual coherence of the
equivalent dictionary for better estimation performance.

¢ In the first coherence block, we propose a two-phase
channel estimation method that makes use of Property
2 and Property 3. In particular, in Phase 1, a typical user
sends a sequence of pilots to the BS for cascaded chan-
nel estimation. The required theoretical minimum pilot
overhead can be made as low as 8J — 2 by exploiting
the linear correlation among the cascaded paths based on
Property 2. Based on Property 3, we extract the reparame-
terized CSI of the common BS-RIS channel from Phase 1,
which can help reduce the pilot overhead for estimation
of the CSI of other users. In Phase II, the other users
successively transmit pilots to the BS for channel esti-
mation. With knowledge of the reparameterized common
BS-RIS channel, the minimum required pilot overhead
can be reduced to (K — 1) [(8J — 2) /L. Therefore, the
minimum pilot overhead in the first coherence block is
BF -2+ (K -1)[(87-2)/L].

* We demonstrate through numerical results that the pro-
posed cascaded channel estimation strategy outperforms
the existing orthogonal matching pursuit (OMP}-based
channel estimation algorithm in terms of mean squared
error (MSE), the pilot overhead and the computational
complexity. Moreover, the MSE performance of the pro-
posed estimation algorithm is close to the performance
lower bound at low SNR.

The remainder of this paper is organized as follows. Section I1

introduces the system model and the cascaded channel sparsity
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model. The cascaded channel estimation strategy is investigated
in Section II1. Training phase shift matrices are optimized in
Sections IV. Section V compares the pilot overhead and com-
putational complexity between the proposed algorithm and the
existing algorithms. Finally, Sections VI and VII report the
numerical results and conclusions, respectively.

Notations: The following mathematical notations and sym-
bols are used throughout this paper. Vectors and matrices are
denoted by boldface lowercase letters and boldface uppercase
letters, respectively. The symbols X*, X7, X", and ||X||F de-
note the conjugate, transpose, Hermitian (conjugate transpose),
Frobenius norm of matrix X, respectively. The symbol |[x||2
denotes 2-norm of vector x. The symbols Tr{-}, Re{-}.| - |. and
Z(-) denote the trace, real part, modulus, and angle of a complex
number, respectively. Diag(x) is a diagonal matrix with the
entries of vector x on its main diagonal. [x]m, denotes the m-th
element of the vector x, and [X|, » denotes the (m, n)-th ele-
ment of the matrix X. X, n; and Xy, -) denote the n-th column
and the m-th row of matrix X. The Kronecker and Khatri-Rao
products between two matrices X and Y are denotedby X & Y
and X ©Y, respectively. Additionally, the symbol C denotes
complex field, R represents real field, and i £ /=1 is the imag-
inary unit. The inner product (s, e} : CM*N x CM*N L R s
defined as (X, Y) = R{Tr{X"Y}}.[] rounds up to the nearest
integer, and [ | rounds to the closest integer.

II. S¥STEM AND CHANNEL MODEL
A. Signal Model

We consider a narrow-band TDD mmWave massive MISO
system where K single-antenna users communicate with an
N-antenna BS. To enhance the spatial diversity and improve
communication performance, an RIS equipped with M passive
reflecting elements is deployed.

In this paper, we consider quasi-static block-fading channels,
where each channel remains approximately constant in a channel
coherence block with B time slots. Due to channel reciprocity,
the CSI of the downlink channel can be obtained by estimating
the CS1 of the uplink channel. We assume that T" time slots of
each coherence block are used for uplink channel estimation and
the remaining B — T time slots for downlink data transmission.
Here, we assume that the direct channels between the BS and
users are blocked!. Therefore, we only focus on the uplink
channel estimation of the user-RIS links and the RIS-BS link.

Let hy € CM=! denote the channel from user & to the RIS
and H € CV*M denote the channel from the RIS to the BS.
Moreover, denote by e, € CM*! the phase shift vector of the
RIS at time slot ¢ in the considered coherence block, which
satisfies |[e¢}m|® =1 for 1 < m < M. We divide the uplink
time slots T" into T subframes and each subframe contains K time
slots, i.e., T = 7K. In each subframe, K users simultaneously
transmit an orthogonal pilot sequence sf' = [sg1,..., 56k €
C*K where slls; =1 for k=g and sf'ls, =0 for k£ g
when 1 < k, g < K. The RIS phase shift changes over different

UIf the direct channels between the BS and users are available, then the CS1
of the direct channels can be obtained by tuming off the RIS [11].
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subframes. Then, the received signal at the BS after removing
the impact of the direct channel at subframe ¢, 1 < ¢ < 7, can
be expressed as

K
Y(t) = ) HDiag(e,)hy/psy + N(2), (1
k=1
where N(t) € CV*7 denotes the additive white Gaussian noise
(AWGN) following the distribution vec(N(t)) ~ €N(0,4°I).
The quantity p denotes the transmit power of each user, which
is assumed to be the same for all users. Let us define the user set
as X = {1,...,K}. Accordingly, the measurement signal for
user k can be seperated by right multiplying (1) by s, as

Y(t)s; = /pHDiag(e; )b + N(#)s
= /pHDiag(h)e, + N(t)se, Yk e X.  (2)
This indicates that the joint design of the active beamforming

at the BS and the passive reflecting beamforming at the RIS
depends on the cascaded user-RIS-BS channels [7], [3]:

Gy — HDiag(h) € CV*M, (3)

Owr work focuses on the estimation of the cascaded channels in
(3).

By stacking + subframes of (2), the overall measurement
matrix Yi = [Y(1)8g,...,Y(7)se] € CV*" received at the
BS for user k is expressed as

Yi = /pGEe + N € CV, (4)
where
B = feryeaey) e O, (5a)
N = [N(1)sk, ..., N()s] € CV*. (5h)
According to [9], the LS estimator
Gl %Ykmi.* (ELEL)! ®)

of G, is unbiased when the design of the phase shift matrix
E;. is chosen in a particular way. However, the required pilot
overhead T' = Kt (v = M) is unacceptable due to the fact that
the RIS is generally equipped with a large number of elements.
Therefore, it is of interest to investigate more efficient channel
estimation strategies with reduced pilot overhead by exploiting
the sparsity of the mmWave massive MISO channel.

B. Cascaded Channel Sparsity Model

It is assumed that both BS and RIS are equipped with a
uniform linear array (ULA) with antenna spacing dgs and dgs,
respectively. By using the geometric channel model typically
used for mmWave systems [ 16], channels H and hy, are modeled
as

L

H="> oay () ah (@), (7)
=1
T

by = Brsaum (k) Yk € X, (8)
j=1
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where L and .J. denote the number of propagation paths between
the BS and the RIS and between the RIS and user k, respectively.
The complex gains of the [-th path in the BS-RIS channel and
the j-th path in the R15-user-k channel are represented by o; and
Br 4. respectively. Denote by ay (x) € C* *! the array steering
vector, i.e.,

ax(zr) = [1,e7 2", ...

where X € {M, N} and x € {wr, 91, 0k 5} wi = % cos(f)),
1 = 58 cos(¢y), and . ; = S cos(dy ;) are the directional
cosines, where #; and ¢ respectively denote the AoD and AoA
of the I-th spatial path from RIS to BS, and 1 ; is the AoA of
the j-th spatial path from uvser k to the RIS. ). is the carrier
wavelength. It should be emphasized here that the channel gains
oy and 5 ; change at each channel coherence block, while the
angles {f;, ¢y, ¥r 3} vary much more slowly than the channel
pains, and generally remain invariant during multiple channel
coherence blocks.

From (7) and (8), the geometric model of the cascaded chan-
nels in (3) is formulated as

E—iﬂ?rt X-1 )::] T

L J

G = Z Z 0B, gan (dn)apy (wr — w ), Yk € K. (9)
I=1 j=1

Note that anr(w; — e ) is the steering vector of the jl-
th cascaded subpath of user k, and the corresponding term
cos(fl) — cos{d ;) is named as the cosine of the cascaded AoD
for the jl-th cascaded subpath from user k.

The channel model in (9) illustrates the low rank property
and the spatial correlation characteristics of RIS-aided mmWave
system. Thus, C5-based sparse cascaded channel estimation
methods are widely used based on the expression in (9) [12],
[14], [15]. In particular, (9) is approximated using the virtual
angular domain (VAD) representation, i.e.,

Gk = AREL‘XFEA'I]-!ruj {I.D)

where dictionary matrices { A g, Arp, } can be drawn from the
array steering vectors [12], [14] or from the DFT matrix [15].
The matrix X is the angular domain cascaded channel matrix
containing J;. L complex channel gains, which exhibits sparsity.
The CS-based estimation methods in [12], [14]. [15] need to
estimate I. AoAs, J.L cascaded AoD cosines, and J.L cas-
caded complex channel gains. The number of parameters to be
estimated in [12], [14], [15] is much less than that in the LS
estimator of [9], since the number of spatial paths is usually much
less than the number of antennas, i.e., JpL. < N and J. L < M.
However, we can further reduce the number of parameters to be
estimated by exploiting the structure of the cascaded channel.
Specifically, (7) is reformulated as

H=AyAAL, (11)
where
Ay = [an(¥1),...,an(¥)] € CV*E, (12a)
A = Diag(m, a3, ...,ar) € CX*E (12h)
Anr = [an(wi),. .., an(wg)] € CH*E, (12¢)
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(8) is rewritten as
hy = Ap B, VE € X, (13)
where
Anrk = [an(r), -0 (k)] €TV, (14a)
B = [Brps- .. Br, )T €T, (14b)
Hence, (3) becomes
G = AyAAY Diag (Ap ), Wk € K. (15)

It is observed from (15) that there are actually only Ji + L
complex gains and 2L + .J;, angles (or directional cosines) that
need to be estimated for each user. In addition, due to the fact that
all the users share the common BS-RIS channel H, they share
the same L complex gains {ay }1- | and 2 L angles {6, ¢} ,.
Based on this observation, we develop a novel channel esti-
mation strategy in this work. We remark that the contributions
in [14] and [15] only take advantage of the information from the
common angles {¢;} , and ignore the information from the
common gains {o }-_; and the common angles {8 }= ;.

III. CHANNEL ESTIMATION
A. Channel Estimation Protocol

In this section, we develop a novel uplink channel estimation
protocol by exploiting the sparsity of the RIS-aided mmWave
channel, as shown in Fig. 1.

In most situations, the BS and the RIS are in fixed positions,
and the users do not move a significant distance over mil-
liseconds or even seconds, which corresponds to many channel
coherence blocks. Based on this observation, we assume a model
in which the angles remain unchanged for multiple coherence
blocks, while the gains change from block to block [16]-[18]. In
the first coherence block, we estimate the full CSI information,
including all the angle information and the channel gains. We
then only need to estimate the channel gains in the remaining
coherence blocks, which can be obtained using a simple LS
method with a significantly smaller set of pilot symbols.

The most difficult aspect of the algorithm is the estimation
of full C51 in the first coherence block. The main idea is
explained as follows. First, a typical user,” denoted as user 1 for
convenience, sends a pilot sequence of T symbols to the BS for
channel estimation using CS techniques. With knowledge of the
estimated AoAs, cascaded AoD cosines, and cascaded gains of
user 1, we construct a reparameterized common B5-RIS channel
with known CSI, which can be exploited to reduce the channel
estimation overhead associated with users 2 through K. Then,
the remaining users simultaneously transmit the orthogonal pilot
signal in the remaining Ty — 7y time slots to the BS for channel
estimation, where T denotes the length of the uplink time slots
at the first channel coherence block. Note while the channel
estimation in the first coherence block is time consuming, it will
only be performed once at the start of the transmission.

2The user closest to the BS is generally chosen as the typical user since it can
transmit strong signals to the BS to ensure high channe] estimation accaracy.
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Fig. 2.

B. Channel Estimation for User 1 in the First Coherence Block

In this subsection, we provide the channel estimation method
for user 1 with low pilot overhead by exploiting the properties of
massive antenna arrays and the structure of the cascaded channel.
In this step, only user | needs to send pilot signal in the first =
time slots, and is assumed to send symbol “17 for simplicity.
Accordingly, the received signal from user 1 at the BS at time
slot ¢, 1 < ¢ < 7, can be expressed as

¥1(t) = HDiag(e; )by /p + my (£),
where ny(t) € CV*! ~ @N(0,4°I) denotes the noise vector.

By stacking 7y time slotsof (16)as Yy = [y1(1),...,¥1(m1)] €
CV =71 we have

(16)

Y1 = /PG1E; + Ny e €V 7, (17)
where Ny = [my(1),...,my(m1)).

1) Estimation of the Common AoAs: Due to the large number
of antennas at the BS, the discrete Fourier transform (DFT)
approach can be applied efficiently for AoA estimation from
Y in (17). We first present the asymptotic properties of Ay in
the following lemmas, whose proofs are provided in Appendix
A and Appendix B.

Lemma I: When N — oo, the following property holds

{1 Yy =

: 1
lim —alf (¢;)an (4) = (18)

N s 0 otherwise’
and AﬁAN = N1, where I, is the identity matrix of dimen-
sion L = L.

Lemma 2: When N — co, if the condition -'iﬁ- < 1 holds,

then the DFT of Ay, i.e., U!‘{,AN, is a tall sparse matrix with
one nonzero element in each column

: H
PPfx[UNANlmJ # 0,9,

Cascaded channel estimation strategy for multiple users.

where Uy is the normalized DFT matrix with the (n, m)-th
entry given by [Uy Jnm = ?‘Ee—i“ﬁ{n—mm—i}, il

1 d
. {Nr,bi +1 dreo,9=) i

N+Nip+1 ¢ €[-55,0)

Based on Lemma 2, any two nonzero elements are not in the
same row, i.e., n; # ny forany I £ 4.

Remark I: It is observed from (19) that when ¢y £ [0, Ef},
the range of n; ismy € [1, N%ﬂ: +1). When ¢y [——dﬁ,ﬂ}, we
haven; € [N — N%f + 1, N + 1).Inorder to avoid ambiguous
angles where the same n; comesponds to two AoAs, we must
have N9 41 < N — N +1, which leads to dgs < 3.
Therefore, dpg should generally be restricted to be no larger
than A, /2 to avoid AoA ambiguity.

Based on Lemma 2, matrix UﬁAN can be regarded as a
row sparse matrix with full column rank. Thus, the DFT of
Y, e, Yprr = U§Y1 = xﬁUﬁAmﬂA%DﬁE{h1]E1 +
U N, is an asymptotic row sparse matrix with L nonzerorows,
each corresponding to one of the AoAs as shown in Fig. 2. Based
on the above discussion, ¢y can be immediately estimated from
the nonzero rows of Y ppr. However, N is finite in practice,
and thus Ny is usually not an integer. Most of the power
of Y prr will be concentrated on the (| Nyy] + 1)-th or the
(N + | Ny | + 1)-th row, while the remaining power leaks to
nearby rows. This is known as the power leakage effect [19]-
[22]. Due to the fact that the resolution of the DFT is 1/N,
there exists a mismatch between the discrete estimated angle
and the real continuous angle. To improve the angle estimation
accuracy, we adopt an angle rotation operation to compensate
for the mismatch of the DFT [19]-[21].

The angle rotation matrices are defined as

&y (Avy) = Diag{1,% ... VD% gy,
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Fig. 3. An example of the row sparse charactenistic of ¥ ppr and optimal
angle rotation, when L = 1 and N = M = 100.

where Ay € [—5, %] are the phase rotation parameters. Then,
the angle rotation of Y for ¢y is defined as

Y15 = ®N(Ady) Y. (20)

The aim of the angle rotation in (20) is to rotate Ay in the
angle domain such that there is no power leakage for estimating
iy. For better illustration, we take UR & (Aqdy) Ay as an
example, whose (n, [}-th element is calculated as

[UN &} (Ad) AN]M—”' Z —iam(m—1)(Ye+ SR =Ly

It can be readily found that the channel power of vy is
concentrated on the n;-th row without power leakage when the
phase rotation parameter satisfies

|
mN = ‘i") f

For Y, the optimal phase rotation parameter for «fy can
be found based on a one-dimensional search by solving the
following problem

(21)

ﬂ'!,l_'lg = E'N(

Aoy = arg I ,]llfUN}H BN (AY)Y,|5.  (22)
Fig. 3 is an example of the row sparse characteristic of Y ppr
and the Y-axis is the power of each row of Y ppr. The cascaded
channel of size N = M = 100 contains one (L = 1) path be-
tween the BS and the RIS with ¢ = 14°. It can be seen from the
blue curve that although the beam covers several points because
of power leakage, we can locate the power peak of the beam,
which can be utilized for initial AoA estimation. The orange
curve demonstrates the effect of the optimal angle rotation
for ¢ = 14°. It is obvious that more power is concentrated on
¢ = 147, which makes the AoA estimation more accurate.
Algorithm 1 summarizes the estimation of the common AoAs.
After calculating the sum power of each row of Y ppr in Step
2, we find the set of row indexes with peak power in Step 3. I'(z)
denotes the operation of finding the indices with peak power in
vector &, Oy = {n, I =1,... . L} is a set to collect the indices
of the non-zero rows, and L is the number of non-zero rows.
We note that L is the estimated number of the propagation paths
between the BS and the RIS, and also the estimated number of
common AoAs. For each n;, Problem (22) is solved to find the
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Algorithm 1: Common AoA Estimation.
Input: Y.
1: Calculate DFT: Y ppr = T Yh
2: Calculate the power of each row:
#(n) = |[Yprrln: % ¥ =1,2,...,N;
3: Find the rows with the power peak (Qn, L) =T(z),
where Oy = {ny,l =1, ..”L}f
4: Calculate the optimal angle rotation parameters
{Adhi e, via (22); )
5: Estimate ADAsfor1 <[ < L:
ny < j\f%ﬂ

.::1_';; _ arccos %—v—zl‘ ;'J_l = %ﬁﬂ%ﬁt) ; L
sy Cihu) s s

arccos
(23)

Output: {31} ;.

optimal angle rotation parameter in Step 4. Finally, the common
AOAs are estimated in Step 5.

2) Estimation of the Cascaded AoD Cosines and Gains:
With the estimated AoAs {-:}f; hr=1 from Mgmiﬂun 1, we obtain
the estimated steering matrix Ay = [ay (1), . .. wﬂ}] B
CN=L Based on the orthogonality of the massive sleermg
matrix, i.e., ﬁﬁAN 72 N1 due to Lemma 1, the measurement
matrix Y; can be projected onto the common AoA steering
maltrix subsp&ce as

ANYj =} ﬂAMDl&g{hﬂ ]El + ANN]_

T
ANNI:a

"

1
NP
where Hpjs = Diag(h;) A A, Based on (12b) and (12c), the
I-th column of Hpgys is given by

hypis; = Diag{hj }an (wi)ay, (25)

where Hgis = [hms 1,:-- BRIS L} We claim that hms; can
be estimated by tmnsfnrmmg each row of (24) mtu a sparse
signal recovery problem. In particular, define ANYl

[P1,--.,pc|Y, where
pi = Ef'hpis g + Nggise € C!
— Ei'Diag{ans (w) hiaj + Nagise
— E{'Diag{an (w) } Al 1Biaf + Nuise
= EY [ans (wr an (wr —1,5) | Bla
(26)

with ns. representing the corresponding noise vector. To ex-
tract the cascaded directional cosine {w; — ¢y J} L, and gains
Bia; from p;, (26) can be approximated by using the VAD
representation as

—ip1,1)

+ Dppise s

p1 = ET Ab; + Dugise, (27)
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where A € CM*P(M < D) is an overcomplete dictionary
matrix, each column of which represents the array steering
vector for possible values of wy — 41 ;. Since w; — 15 €
[—EEE,EEE], A can be constructed as

o = g (S B
e ((2-3)%)]

Recall that 8, = [B1.1,.-.,51.n]T in(14b), by € CP*! isthen
a sparse vector with .J; cascaded gains {a] 5 }_‘;;1 a5 NONZero
elements. (27) can be cast as a sparse signal recovery problem
that can be solved using CS techniques, such as OMP. Note that
the phase shift matrix [Ey in (27) will be designed for better
estimation in Section IV. It has been proved that - = 8J; — 2
measurements are sufficient to recover a Jy-sparse complex-
valued signal vector [23].

However, if OMP is used L times for solving py(1 <1 < L),
we need to estimate Jy I independent sparse variables with high
complexity. In order to reduce the complexity, we exploit the
following scaling property. Specifically, we observe from (25)
that there is an angle and gain scaling between the cascaded
multipaths formed by different AoDs {w;}£ , from the RIS.
That is, there is the following relationship between hgs; and
hpsrforl <Ir < L:

(28)

e . [
hgis; = Diag{ay,(w, — w,)}Diag{h; }3M{Wr}ﬂ:—ﬂ—f
.
~ Diag{ans (w; — wr) s r =L (29)

x
(29) is called the angle-gain scaling property, which implies that
hgs; for all [ can be represented by one arbitrary hygs . Let

Moy = wyp — wy, (30a)
5=t (30b)
&'F'
29 is then re-expressed as hps; = Diag

{hgis - }an (Awy)r;. Denote the estimate of hgg, as
hgis- obtained from (27) uvsing OMP Further defining
g L) = EIfDiag{hms,,.}aM{&w;], (26) can be rewritten as
(31)

It is observed from (31) that only two variables A and x;
need to be estimated. Since Ay € [—ngf., E%'ii}f Sy can then
be estimated via a simple correlation-based scheme

l{P1, To(Luw)}] -

Pr = Z( L )xp 4 Dagise.

Ay = arg 32)

= o d|
Auwe[-2988 odps |

The parameter x; can be found as the solution of the LS problem
ming ||p; — Zi( Ay )x||2:
Ty = (27 (Al m(AD)) 2 (A pe. (33)

Let s, = Diag{hpis - yans(AG)&, (1 <1< Ll # 1),
so that the final estimated cascaded channel of user 1 is
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given by

G: = AyHis, (34)
where Hyis = [his 1, .- -, Bus 2]

Algorithm 2 summarizes the complete estimation of 4. The
common AocA steering matrix Ay is estimated by using the
DFT and the angle rotation techniques in Stage 1. In Stage 2
consisting of Steps 3-12, OMP is used to estimate hys . Here,
r is determined according to Problem (37) such that the SNR of
Pr is the maximum value among {p; }~ , (assuming they have
the same noise power) for better estimation accuracy for the
OMP method. The remaining hgs; (1 <1 < L and! # r) are
estimated using the simple LS method and correlation-based
scheme in Stage 3 shown in Steps 13-16. Finally, we obtain
the estimate G; = A [hps 1, ..., ERE,E]H' The flow chart of
Algorithm 2 is shown in Fig. 2.

We emphasize that the cascaded AoD cosines and cascaded
gains can also been obtained in Algorithm 2, which facilitates
the cascaded channel estimation of other users in the next sub-
section. In particular, the cascaded AoD cosines and cascaded
gains from Ems,r in Step 12 are given by

[anr(wr — @1.1) -~ A (wr — 91 7,)] = Aca, ), (350)
Bia; = b1. (35b)

Based on (30) and (35), the cascaded AoD cosines and cascaded
gains from hy,g, (1 <1 < L and [ # r) in Step 16 are given by

s (wr — @1,1) -~ A (wn = gy 3,)]

= Diag{an (L) A a; ), (36a)
Biof = Blor 3. (36b)

Algorithm 2 estimates I. AoAs in Stage 1, J; cascaded AoD
cosines and J; cascaded gains in (35), and 2L — 2 scaling
parameters in Step 14 and Step 15. Therefore, Algorithm 2
uses a total of mp = 8J; — 2 time slots to estimate 3L 4+ 2J; — 2
parameters to recover channel Gy of dimension N x M. Note
that the number of time slots required is not related to L, which
evidences the advantage of our proposed estimation method.

C. Channel Estimation for Other Users in the First
Coherence Block

Algorithm 2 can also be used for the channel estimation of
the other users, where Stage | can be omitted because all users
share the common AoA steering matrix Ay . Inadditionto Ay,
all users also share the common matrices A and A,s in their
channel matrices Gy, k. Note that for the cascaded channel
G = HDiag(hg),2 < k < K in (3), we might expect that if
the common channel H is known, channel hg can be readily
estimated using a sparse signal recovery problem. However, it is
intractable to obtain H from the estimated cascaded channel Gy
due to the coupling of angles cos(f;) — cos(; ;) and channel
gains oy, ; with each cascaded subpath of user 1. However, we
can construct a substitute for H (denoted by H..) by only using
. The substitute H, contains reparameterized information
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Algorithm 2: DFT-OMP-based Estimation of G.

Input: Y, A.

1:  Stage 1: Return estimated common AoA steering
matrix Ay and L using Algorithm 1.

2: Calculate [py, ..., Pg] = wp Y1 AN

3. Stage 2: Estimate hys » from p, using the OMP
algorithm, where r is determined according to

(37)

r = arg max [[pif3.
1=i=L
Calculate equivalent dictionary D = EY A,
Initialize Oy =@, 1y =p,. i = 1.
repeat
dy = arg maxg—1,2,....p |Df.;l,d]r1—l |
0y =0y Ud,.
LS solution: by = (D{! o \Dy:.a,)) ' Dil g \Pr-
r; =Py — D n,by
i=i+1.
until ||ry_y||z <threshold.
Obtain the estimates:

Ji=i—1,

—
W= oS 00 -1l

(38a)

Ems,r =A;n b (38b)

14: Stage 3: Estimate hys; from p; for 1 <1 < L and
[£r:

15: Calculate iy according to (32).

16: Calculate T; according to (33).

17: Obtain the estimates for 1 <1< L and [ # :

s = Diag{hys - Jans (AD) (39
Output: é’] = .E.N [ER]S,]_, S ER]B,E]H‘
about H. Then, (3) can be rewritten as
Gy = HcDiag(h.x),2 <k < K, (40)

where h.; is the corresponding reparameterized CSI of hy.
In the following, we first construct H,. based on the estimated
channel information from Algorithm 2 and then estimate the
reparameterized channel information h. ;.

1) Construction of He: In the following, we show how to
construct H,. by exploiting the structure of Gy. In particular,
(11) is reformulated as

H=AyAAlL
1 :
— Ay ﬁﬂcﬁé' Diag(ay (7))
= ﬁﬁcmaﬂam{ﬁﬂa (41)
with
H. = AyAcAY, (42a)
A.=BA, {42b)
A, = Diag(an (7)) A, (42c)
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e
F=—g Yo (42d)
=1
1 I3
B= 1581, (42¢)

where 1;, is an all-one vector with dimension Jy = 1, and 3,
is defined in (14b).

Using (12b), (30b) and (42e), A. in (42b) can be
re-expressed as

A.=FA
= FDiﬂg{ﬂ‘h PR ,&L:I

= [Fu,‘,[)iagl[rh < ,IL}] f (43a)
- [Jlﬂl 3;a;Diag(xy, .. .,IL]I ., (43b)
1

where the estimate of 3ja} is given in (35b), and the estimate
of [z, z2,...,xL] is given in (33). Then, the estimate of A. is
obtained as

S [Jill'ijﬁDiag([fh.. .,i_,:]]] 7Y

For A., by substituting (12c), (30a) and (42d) into (42c), we
have

A,

= Diag(ay (%)) Ay

= Diag(an (%)) [an(w1), ..., an (wi)]

= Diag(an(wr + 7))[an (Awi), ..., an (Awg)]

J1
- Ding(ay(wy — 33 91 ane(Bwr), .., age (B )]
1=1
1 it
= Diagiar.f{J—l Z{wr — p1,9)))[an (Dan ), . .. an (Lo )],
1=1

(45)

where the estimate of {w, — 14}7%; and { Aw }-, are
given by (32) and (35a), respectively. Then, we can obtain the
estimate of A, as

g 18—
A, = Diag (EIM (?1; (“""" K "Ql'j)))
- [an (A1), - - - an (Aidg)]

— Diag(ans (&r + 2))[an (AD1), - - ang(ADg)]. (46)

With Ay, (44) and (46), the estimate of H. is given by ﬁc =
Awﬁcﬁf.
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2} Estimation of Reparameterized CSI h. g In this sub-
section, we discuss how to use the reparameterized common
channel H,. to help the channel estimation of other users
with low pilot overhead. In particular, by substituting H =
< H.Diag(ay (7)) in (41) into (3), we have

G = HDiag(hg)

s %HEDiag (2 (%)) Diag(hg)

e %H.:Diag (Diag (ay (7)) hy)

= H.Diag(hc k), A7
where
| )
be = EDlﬁg (20 (7)) b (48)
contains reparameterized CSI of hy..

As shown in Fig. | and similar to (1)-(4), the remaining
T, — 7y time slots are divided into 72_x subframes and each
subframe contains K — 1 time slots for user 2 to user K transmit
orthogonal pilot signal s = [sga,..., sk x| € C*K -1 where
sig; =1fork=gandslls, =0fork£gwhen2 <k, g <
K. Then, (4) corespondingly becomes

Yi = /PGrEx + Nj € CV*™2-x WE € X/{1}, (49)
where

B = leiiaymy o ] e CYoRE, (50a)

N = [N(1)8g, ..., N(mo_g)se] € CV*™2-5 . (50b)

Similar to (24), Y}, in (49) is first projected onto the common
AoA steering matrix subspace as

1 - i - )
Nﬁ‘q‘ﬂY" - mﬁﬂ{q’iﬂcﬂwg{hc,k}ﬁlk + Np)
~ AcA{Diag(he &) Ex + Lﬁﬁm. (51)

N./P
Recall that E. = [ey,...,e,, .| in (50a). By utilizing the
property vec{XDiag(e;)Y") = (Y ¢ X)e; [24] and defining
Ty = vnc{-mi—ﬁﬁﬂYk} € CT2-xLx1_the vectorization of (51)
is given by

2 = Zphe i 4 Dooise, (52)
where ng.. represents the corresponding noise and
Zp =Ef o (AcAY). (53)

By replacing hy with hy = Aps 23, from (13), he g in (48)
can be unfolded as

(e
Bep = EDlﬁg (an (F)) by

= %EQM (oe1 +%) - am (k0 +7)|Be.  (54)
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Algorithm 3: Estimation of G, 2 < k < K.
Input: A, Y, 2 <k <K.
: Return Ay from Algorithm 1.
Construct ﬁ_{ according to (44).
Construct A, according to (46).
Calculate equivalent dictionary R = Z; A according
to (53) with A, and A..
5 for2<k<Kdo
6:  Calculate 7 = vac{ﬁ.ﬁﬁ;} Y.
7:  Initialize Oy = B, rg = Zp, i = 1.
E.-
9

o lad a =

repeat
© dy = argmaxg—; 2
10: ﬂ; = ﬂ;_] L d{.
11: LS solution: b, = (R:‘flﬂ‘_}R[zln‘.}j"Rﬁﬂi}p,..
12: Iy =Py — R[i.ni }b{.
13: 1=i+1.
14:  until ||r;_1||2 <threshold.
15:  Calculate the estimated reparameterized common
channel H. = Ay A Al
16:  Obtain the estimates:

Ec,ir =A¢n, b,
G, = H.Diag(h ).

-----

(57a)

(57b)

Ii: Endfgr
Output: G, 2 < k < K.

Since k.1 +F € 24, 298], (54) can be further approxi-
mated by using the VAD representation as
hey = Ac, (55)
where A is defined in (28), and ¢, € C%*! is a sparse vector
with J;. gains {18 ;}7*, as the nonzero elements.
With (55), {55) can be approximated as a sparse signal recov-
ery problem

Z = Zip ACk + Dygise. (56)
Note that Zj. is determined using (44) and (46). Hence, Problem
(56) could be solved by using CS technique, such as OMP. Note
that the phase shift vectors {e; };21* in Zj will be designed in
Section IV to achieve high estimation accuracy.

Algorithm 3 summarizes the OMP-based estimation of
Gy, 2 < k < K. Toeffectively recover the .Ji.-sparse signal ¢y,
the dimension of z € C™-x%*1 should satisfy the requirement
To_g L = 8Jp — 2 [23]. Thus, the pilot overhead required by
user k is m_pg = (8Jp — 2) /L.

We highlight the fact that the cascaded AoD cosines can
also be obtained after [an (wr1 +F) - anr (kg + 7)) =
A n, ) is determined from (54) when using OMP, which
facilitates the cascaded channel estimation in the subsequent
channel coherence blocks in the next subsection. In particu-
lar, the cascaded AoD cosines of user k for 2 < k < K and
1 <[ < L are given by
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[ans (wi — @k,1) -+ - A (w1 = @k, )]
— Diag(ans (w1 + 7)) [ake (er1 +3) - -~ a3 (00,7 + 7))
— Diag(A,(.p))ak(vr1 T ) ---al(pes, + 7)), (58

where Eﬂ:,;} is given in (46).

D. Channel Estimation in the Remaining Coherence Blocks

The channel gains need to be re-estimated for the remaining
channel coherence blocks as shown in Fig. 1. With knowledge
of the angle information obtained in the first coherence block,
only the cascaded channel gains need to be re-estimated.

For the remaining coherence blocks, the measurement matrix
for user k at the BS in (4) is considered again:

Yi = PGEx + N € CV*. (59)

Following the same derivations as in (24) and (26), we define
wp AN Y = (@1, Qe ], where

Qi = EF By 1 85.0] + Daise, (60)

By = [ans (wr — k1) - - - ang (Wi — @k, 2. )], and Dggise TEpre-
sents the corresponding noise vector. Denote the estimate of By, 1
as By = [anr(wr — k1) - - A (wr — g, )] obtained from
(35a), (36a) for k = 1, and from (58) for 2 < k& < K in the first
coherence block. Then the LS estimate of 3}.q; is given by
Bia; = (B EeEYBy) "Bl Erqyy, (61)
Note that Ef' By, ; € C™*= must be a matrix with full row rank
to ensure the feasibility of the pseudo inverse operation in (61),
which means the pilot length must satisfy 7 > max{Jp H*_,.
Define Hyis x = [Bi 184}, .. .. B o Bral]. The uplink
channel of the k-th user can then be reconstructed using the
updated cascaded channel gains obtained in this coherence block

and the angle information obtained during the first coherence
block as

Gi=Ay ITIEIS,&' (62)

IV. TrAINING REFLECTION COEFFICIENT OPTIMIZATION

The performance of OMP-based channel estimation is closely
related to the orthogonality of its equivalent dictionary. There-
fore, in this section, we optimize the training phase shift matrices
to generate approximately orthogonal equivalent dictionaries.
Specifically, Ep, vk € X are designed to improve the ability
of OMP to recover the sparsest signals b; and c; from the
sparse recovery problems p; = EY Ab; + nggie in (27) and
Zj = Zp Acy + Dpgse in (56), respectively. In the following, we
first investigate the design of [y in (27), and then extend the
solution to the design of By (2 < k < K).

Our approach is motivated by the theoretical work of [25]
which shows that the sparse siznal by can be recovered success-
fully by OMP only when the following condition holds:

1 1
[Iby||o < 3 (1 + ;) ; (63)

where p is the mutual coherence of the equivalent dictionary
D = E}' A defined by
— IDE 4D :
#1 || Degll2lDe pll2
The condition in (63) suggests that I should be as incoherent
{orthogonal) as possible, which leads to the following design
problem

min |[D¥D — I3
1

(64)

at. |[Bfma|=L1<m<M,1<n<n. (65)

The solution for the unconstrained version of Problem (65)
has been investigated in [26], and the method designed therein
is extended to solve the constrained Problem (65) in [14]. Based
on [14] and [26], we propose a more concise solution in the
following. To begin, note that

ID"D — I3
— ir{D"DDYD — 2DYD + 1}
— tr{DD"DD" - 2DD" 4+ 1.} + (D —7)

= ||DD" — L, |7 + (D — 7). (66)
Using (66), Problem (65) reduces to
min IIDD® — 1., |12 = |[E¥AAPE, - L, | 12
gt |[Ellmal=L1l1<m<M1<n<m. (67)

Define the eigenvalue decomposition AAY — UYUH, where
T is the eigenvalue matrix and U is a square matrix whose
columns are the eigenvectors of AAY. Next we construct a
matrix T' € C**™ with orthogonal rows, i.e., | i i I;,: for
example, wecanselectI' = [I, 0]. Then, Problem (67) becomes

min |[EFUY? - T}
1

st [Ejma|=L1<m<M,l<n<n. (68)

The unconstrained LS solution of Problem (68) is ]EI,-S =
(T'Y2UH)". By mapping EL® to the unit-modulus constraint,
the final solution to Problem (68) is given by
E; = exp (i_—qrr-éu"]H) : (69)
For the design of ;. (2 < k < K), it is straightforward to
formulate a problem similar to (68) as follows:

min ||Z,UT? - T} (70a)
ke

st Exlmnl =L1<m<M,1<n<n k. (70b)

Due to the structure of Zj in (53), I' should be carefully
constructed for better performance in solving (70). Here, we
propose an AQ method to alternately design I" and E;..

In particular, with a pre-designed E; derived from a DFT

matrix, I' can be constructed by solving the following problem
lIZeUYTE —T|2. (71

min

— argrr“

=iy &
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TABLE1
PrLor OvERHEAD AND CoMPLEXITY COMPARISON OF DNFFERENT ESTIMATION ALGORITHMS
Algorithm Filot Overhead Complexity
] First coherence block BJ -2+ (K -1)[(BJ-2)/L] | O({Ng+8DJ 4+ EKDJ%)
Proposed sl gontun g o Ting coberence Hodks TR oK T
Conventional-OMP algorithm [12] K [{8JL — 2)/N] OBRKMJDEIEL)

CS5-hased algorithm [14] K [M}{JL)] ON? + DF + KM
D5-0OMF algonthm [15] KigJ-17) OEND + KMDLJ)

A : "
—-| Design I, I—P| Estimate & I—- Extract partial
commaen channel
 Estimate |4 Design le—| = . = ap
G 2<k=< K Eu2<k= K H. = Ay A A

Fig. 4. Flow chart of training reflection matnx design and cascaded channel

Problem (71) is an orthogonal Procrustes problem [27]. Define
the singular value decomposition of Z&UT‘} = P=QY, where

€ C™-xLxM g 3 diagonal matrix whose diagonal elements
are the singular values of Z,UY?, P € CT2-xLxT2xL gpd
Q € CM*M gare unitary matrices. Then, the optimal solution
to Problem (71) is given by I" = PQ[ Vorg kL) [27].

The complicated structure of (53) does not lead to a direct
solution for the design of E;. To address this difficulty, we
reconstruct (70a) via several mathematical transformations so
ﬂlal E; can be wntlen in quadratic form. In particular, denote

=[IY,...., T |7, where T, € C**M for 1 <t < m_k.
Wlh the determmnd T and (53), (70a) is equivalent to

Elﬂ AFDiag (e,) UT? — T3

M3

¥
=

= || Te; — vec (T:) |I3, (72)

™
1
-

where T = {UT%]T ® A-Al. Eugation (a) is due to the
property vec(XDiag(e,)YT) = (Y @ X)e, [24]. By stacking

= [vec(Ty),...,vec(Tr, . )], (72) is further equivalent to
|| TEx. — F||3. Therefore, Problem (70) is reformulated as

in ||TE. — F||3
u;inii x — Fl|F

gt |[Eglmn|l =L,1€<m <M l1<n<n g (73)

The unconstrained LS solution to Problem (73) is E'f' =

(THT)~'THF. By mapping ELS to the unit-modulus constraint,
the final solution to Problem (73) is given by

E; = exp [iﬁ{{THT}‘lT"F}} A (74)

Problem (71) and Problem (73) are optimized alternately until

a stopping criterion is satisfied. Fig. 4 shows the flow chart of

the training phase shift matrix design and the cascaded channel
estimation.

V. ANALYSIS OF PILOT OVERHEAD AND
COMPUTATIONAL COMPLEXITY

In this section, we analyze the pilot overhead and the compu-
tational complexity of our proposed channel estimation method.
We also compare our results with the other existing algorithms
summarized in Table I In this section, we assume Jy = Ja =

.- = Jg = J for simplicity.

A. Pilot Overhead

In the first coherence block, all users need to estimate the
full CS1. The theoretical minimum pilot overhead of user 1 is
71 =8J — 2, andthatofuserk, 2 < k< K,is (K — 1) =
(K —1) [(8J —2)/L]. Therefore, the total pilot overhead is
BJ — 2+ (K —1)[(8J — 2)/L]. In the remaining channel co-
herence blocks, each user needs to simultaneously transmit
K+ =K J pilots for the estimation of the cascaded channel
gains. Thus, the total pilot overhead in these coherence blocks
is JK.

Compared with the existing estimation algorithms in Table 1,
the proposed algorithm has a very low pilot overhead for es-
timating the full CSI in the first coherence block. When the
angle information of the cascaded channel is estimated, the pilot
overhead is further reduced for the re-estimated cascaded gains
in the remaining coherence blocks.

B. Complexity Analysis

We first calculate the computational complexity of Algorithm
2 for user 1. The complexity of Stage 1 in Algorithm 2 mainly
stems from the angle rotation operation (22) which has com-
plexity order of ({Ng), where g denotes the number of grid
points in the interval [—4, #|- For a very large N, a small
value of g is enough with high accuracy and low complexity. The
complexity of the OMP algorithm is given by O{nml), where
n is the length of the measurement data, m is the length of the
sparse signal with sparsity level [ [28]. Thus, the complexity
of the OMP algorithm in Stage 2 is @(8D.J?). Stage 3 can be
regarded as an OMP with one sparse signal, thus its complexity
is on the order of @ (8 D.J). Therefore, the estimation complex-
ity for user 1 is @(Ng + 8DJ + 8DJ?). The computational
complexity for user k, 2 < k < K, arises from the use of OMP
for solving Problem (56), and this estimation complexity for
userk, 2 < k < K, is @(8D.J?). Therefore, the total estimation
complexity for K users in the first coherence block is given by
O(Ng+8DJ + 8K DJ?).

In the remaining coherence blocks, only cascaded channel
gains need to be updated by using the LS solutions in (60), the
computational complexity of which is on the order of @(J%).
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Therefore, the total estimation complexity for K users in these
coherence blocks is on the order of O(K J?).

Since L < N(M), J <. N(M) and g <. N, the complexity
of the proposed algorithm in every coherence block is much
lower than the other estimation algorithms in the existing liter-
ature, as shown in Table 1.

VI SIMULATION RESULTS

In this section, we present extensive simulation results to
validate the effectiveness of the proposed channel estimation
method. All results are obtained by averaging over 1000 channel
realizations. The uplink carrier frequency is set as f. =28
GHz. The channel complex gains are penerated according to
ay ~ BN(0,10-3dg2-?) and By ; ~ ENI(0, 10—3dg "), where
dgg represents the distance from the BS to the RIS and is
assumed to be dzy = 100 m, while dg;;, denotes the distance
between the RIS and users and is set as dpy = 10 m. The
SNR is defined as SNR = 10 log(10~8dgs *dp " p/8%), and the
transmit power for all users is set as p =1 W. The angles
{, 81, P ; } are uniformly generated from the discretized grid
within region [0, ). The number of users is K = 4. The number
of paths in the mmWave channels is equal to 4 according to
the experimental measurements in dense urban environments
reported in [16], thus the number of paths in the cascaded chan-
nel are setas L. = 5 and Jy = --- = Jx = 4 unless otherwise
stated. The antenna element space at the BIS and RIS are set
as dpg = i,; and dps = 52‘, respectively. The normalized mean
square error (NMSE) of the cascaded channel matrix is defined
as

NMSE = E{||Ge — Gl3}/E{||Gl|%}.

The estimation algorithms considered in the simulations are

as follows:

* Proposed-full CSI: The channels are estimated using the
proposed DFT-OMP-based algorithm in Algorithm 2 in
the first coherence block.

= Proposed-gains: When the angle information estimated in
the first coherence block is fixed, the channels are deter-
mined by only estimating the cascaded channel gains via
the LS method in (60).

* (Oracle-L5: The angle information is perfectly known at
the BS, and the cascaded channel gains are estimated by
(60). This algorithm can be regarded as the performance
upper bound of the Proposed-gains method.

= Comventional-OMP [[12]: After approximating the cas-
caded channel using the VAD representations in (10), a
sparse signal reconstruction problem is constructed by
vectoring the measurement matrix. Then, the cascaded
channels are estimated directly using OMP.

= DS-OMP [15]: The double-sparse structure of the angular
domain sparse cascaded channel matrix X in (10) is
exploited. The cascaded channels are estimated using OMP
for each non-zero row of X..

Fig. 5 illustrates the impact of pilot overhead on the esti-

mation performance when the SNR is () dB. Since the number
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Fig.5. NMBSE versus pilot overhead, when &V = 100 M = 100, L. =5, J =
4 and SNR = 0 dB.

of time slots allocated to each user for channel estimation
in the Proposed-full CSI algorithm is different, we choose
the averape number of time slots for each user as the x-axis
measurement, denoted as T'. It is obvious that a larger pilot
overhead leads to better NMSE performance for all channel
estimation algorithms. It is observed from Fig. 5 that the es-
timation performance of the Proposed-full CSI algorithm and
the Proposed-gains algorithm is much better than the two ex-
isting OMP-based benchmark algorithms under the considered
pilot region (T < 32). However, the Conventional-OMP algo-
rithm in [12] completely ignores the double sparse structure
of the cascaded channels, resulting in numerous false alarm
estimates under low pilot overhead. The DS-OMP algorithm
in [15] ignores the impact of power leakage in the DFT pro-
cedure and ideally assumes that the number of multipaths is
known, resulting in the real low-power paths being replaced
by virtual high-power paths under low pilot overhead. The
impact of power leakage is addressed in the Proposed-full CSI
algorithm by using the angle rotation operation, designing the
optimal phase shift matrix, and enlarging the dimension of the
dictionary.

Fig. 6 displays NMSE performance as a function of SNR
for different channel estimation methods. Obviously, the two
proposed algorithms and the two OMP-based benchmark algo-
rithms perform poorly at low SNR region, because the noise
power seriously deteriorates the estimation performance. When
the SNR is above 0 dB, the two proposed algorithms perform
well such that the angle information estimated by the Proposed-
full C51 algorithm in the first coherence block can provide strong
support for the gain estimation in the subsequent coherence
blocks, so that the performance of the Proposed-gains algorithm
is very close to that of the Oracle-LS algorithm. Moreover,
the NMSE of the two OMP-based benchmark algorithms can
be greatly improved by increasing SNR, only when the pilot
overhead reaches 32, which is much higher than that of the
proposed algorithms (i.e., T' = 16).
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Fig.7. NMSE versus the number of antennas, when M = 100, L =5, J =4
and SNR = 0 dB.

We next show the NMSE performance with various numbers
of antennas N when SNR= 0 dB in Fig. 7. From the figure,
when N is larger than 110, the Proposed-gains algorithm has
similar performance as the Oracle-LS algorithm, which im-
plies that the Proposed-full CS1 algorithm in the first channel
coherence block provides accurate angle estimation informa-
tion for the remaining channel coherence blocks to update
the gains. In addition, when the pilot overhead increases from
T=2JwT =4J (ie., from 8 to 16), the performance of the
Proposed-gains algorithm improves since more pilot overhead
can provide more measurement data diversity for the algorithm.
Furthermore, the OMP-based benchmarks consistently perform
poorly due to their serious power leakage effect under the low
pilot overhead (T" = 22), while perform well when T is up to
32

Fig. 8 shows the impact of the number of spatial paths between
the BS and the RIS on the NMSE performance. It can be seen that
the performance of the proposed algorithms degrades when the
number of spatial paths increases under the given pilot overhead,
due to the fact that the number of parameters (sparsity level) to
be estimated increases.
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Fig. 8. NMSE versus the number of paths from the BS to the RIS L, when
N =100, M = 100, J = 4 and SNR =0 dB.

VII. CoNCLUSION

In this paper, we developed a cascaded channel estimation
method for RIS-aided uplink multiuser mmWave systems with
much less pilot overhead. Our algorithm takes advantage of
angle information that remains essentially static for many co-
herence blocks, exploits the linear correlation among cascaded
paths, as well as the reparameterized CS1 of the common BS-RIS
channel. The theoretical minimum pilot overhead was character-
ized, and training reflection matrices were designed. Simulation
results showed that the NMSE performance of the proposed
algorithm outperforms the existing OMP-based algorithms and
the pilot overhead required by the proposed algorithm is much
less than that of the existing methods.

APPENDIX A
THE PROOF OF LEMMA 1
We calculate
N ™
aﬁ {ul‘ll }B.N {ili‘,f} == Z 6_127”: m—1)(y0—n)
m=1

1 — e 2T ()
N P T

(75)

The product afl (yy)ax () is bounded for any [ #£ i as N —
oo and thus himpy_.. %aﬁ{tﬁgjawi‘tﬁd = 0. When [ = i, di-
rect calculation yields that aﬁ(:;'u}aw{ﬂjjj = N and hence
im0 +-a% (¥r)an (1) = 1. Therefore, when N — co, the
limit of (73) is

Jim all(an () =6 —), 6

where 4(-) is the Dirac delta function.
The proof is completed.
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APPENDIX B
THE PROOF OF LEMMA 2

Let us first consider the case vy € [0, & 5i). Then, the (m, I)-th
element of UY Ay is calculated as

[UNAnng = [URan()],
= \/Ii ei%{n—lhim—i}e—m[m-n.;.,
N =~
W= 20
= \/; Z —iZm{m—1)(—=gt)
m=1
2T [ 25E —ay)

_f11-
VN gl

According to the proof in Appendix A, when N — oo, the limit
of (77) is

(7"

Jim |[URay ()| = VIS (“T‘l . 1'-'11) . @

Hence, there always exist some integers ny = Ny + 1 such that
[[URay (34)]n,| = +/N, and the other elements of Ut ay (v)
are zero. In other words, Uﬁ Ay is a sparse matrix with all
powers being concentrated on the points (ng, [), Wi.

When 4 € [—555,0), using the fact that '™ = £1(*+27)_(77)
is equivalent to

[UNAN]n = [URan ()],

." Z —I.[E'I{m Diwn—=t )+ 2w (m—1)]

N
— e Y e m @y
V& .
m=1

When N — oc, the limit of (79) is

(79)

Jim |[USan ()| = VRS (- 2= +1). 60

Hence, there always exist some integers my = N + Ny +
1 such that |[U¥an(41)]n| = v/N, and the other elements of
[URay(44)]n are zero. Combining (78) with (80), we arrive at
(19).

The proof is completed.
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