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ABSTRACT

Let A be a residually finite dimensional algebra (not necessarily associative) over a field k.
Suppose first that k is algebraically closed. We show that if A satisfies a homogeneous almost
identity @, then A has an ideal of finite codimension satisfying the identity Q. Using well known
results of Zelmanov, we conclude that, if a residually finite dimensional Lie algebra L over k
is almost d-Engel, then L has a nilpotent (resp. locally nilpotent) ideal of finite codimension if
char k = 0 (resp. char k > 0).

Next, suppose that k is finite (so A is residually finite). We prove that, if A satisfies a
homogeneous probabilistic identity @, then @ is a coset identity of A. Moreover, if @ is
multilinear, then @ is an identity of some finite index ideal of A.

Along the way we show that, if Q € k(z1,...,z,) has degree d, and A is a finite k-algebra
such that the probability that Q(a1,...,an) =0 (where a; € A are randomly chosen) is at least
1—-27% then Q is an identity of A. This solves a ring-theoretic analogue of a (still open)
group-theoretic problem posed by Dixon.
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1. Introduction

In this paper, we prove three theorems concerning residually finite dimensional algebras A
and polynomial identities. The common theme is that if a (non-commutative) homogeneous
polynomial @ in n variables vanishes on a large enough subset of A™, then it is actually a coset
identity, that is, it holds identically on (a; +I) x -+ X (a,, + I) for some two-sided ideal I of
finite codimension in A and some aq,...,a, € A. Under some assumptions we obtain stronger
conclusions, namely, that @ is an identity of the ideal I.

Let k be an algebraically closed field, V' a k-vector space, possibly of infinite dimension, and
n a positive integer. We recall [LS|] that the codimension of a subset X C V™ is the smallest
integer ¢ for which there exists a direct sum decomposition of k-vector spaces V"™ =V; ® V5,
where V5 is finite dimensional, and an algebraic set X5 of codimension ¢ in V5, such that
X D Vi x Xo. We say that X is of infinite codimension if no such decomposition exists.

Let A be an associative k-algebra, possibly non-unital. Each non-commutative polynomial
Q € k{z1,...,x,) defines the evaluation map eg: A" — A. We define cdgA to be the
codimension of 651(0). We say that @ is an almost identity if cdgA < co. If cdgA =0, or,
equivalently, eq(A™) = 0, we say @ is an identity for A.

We can likewise consider a Lie (resp. Jordan) algebra A over k and a Lie (resp. Jordan)
polynomial @) and define the codimension of the zero set of @) in A™ and an almost identity in
the analogous way. In fact the same definition applies for an arbitrary algebra A, namely a linear
space over k with a bilinear map A X A — A as multiplication (possibly but not necessarily
satisfying some extra-conditions). In this case the polynomial @) is an element of a free algebra
in the respective category. Note that an ideal of A will always mean a two-sided ideal, and A
residually finite dimensional means that the intersection of all ideals of A of finite codimension
is the zero ideal.

Our first main result is the following:

THEOREM 1. Let A be a residually finite dimensional algebra over k and () a homogeneous
polynomial as above. Then the following are equivalent:
(i) The polynomial Q) is an almost identity for A.
(ii) The polynomial @ is an identity for some ideal I of A of finite codimension.

The non-trivial part is that (1) implies (2). The reverse implication follows from the fact
that I™ is of finite codimension in A™.
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We now compare the theorem above with the main result of [LS| (see Theorem 1 there and
the comments on p. 10). The latter result shows that an associative/Lie/Jordan algebra with
an almost identity @ satisfies some identity P (usually different and more complex than Q).
Theorem [T]above holds for all algebras A, and the identity satisfied by the ideal I is the original
almost identity Q.

Our second main result concerns the case that k is a finite field I, for a prime power g.
Any residually finite algebra A over F, is a dense subalgebra of its completion A, and as an
additive group, A is profinite. For each n, we endow A" with its Haar measure and consider the
condition on a subset X C A" that X has non-zero measure. We say that @ is a probabilistic
identity if the closure of 651(0) has positive measure.

THEOREM 2. Let A be a residually finite dimensional algebra over k=F, and @Q a
homogeneous polynomial as above. Then the following are equivalent:
(i) The polynomial @ is a probabilistic identity of A.
(ii) The polynomial @ is a coset identity of some finite index ideal I of A.
Furthermore, if () is multilinear, then these conditions are equivalent to
(3) Q is an identity of some finite index ideal I of A.

Again, the non-trivial part is the claim that (1) implies (2).

In [D| Dixon asks whether, for every group-word w € F,, (the free group of rank n) there
exists € = e(w) > 0 such that if G is a finite group, and the word map w : G™ — G attains the
value 1 with probability > 1 — €, then w is an identity of G. In spite of some positive results
for special words w, Dixon’s Problem is still very much open. Here we obtain a general positive
solution of an analogous question on finite algebras A. The solution is effective in the sense
that € is given explicitly; in fact, if d is the degree of the ambient polynomial map, then e = 2-¢
will do.

THEOREM 3. Let A be any finite-dimensional algebra over a finite field and eg: A™ — A

a polynomial map associated with a polynomial () of degree d in n variables in the respective

—1
category. If le‘QA‘(,?)‘ >1—2"% then Q is identically zero.

For d > 2 consider the degree d Engel polynomial E4_1 := [z,y,...,y], a left-normed Lie
product where y appears d — 1 times, as an element of the free Lie algebra on x,y over the
underlying field k. By [MM, 2.1], if L is a finite Lie algebra in which the Engel condition
E4_1 = 0 holds with probability greater than 1 —27¢, then E;_; is an identity of L. Theorem
above extends this for any finite algebra and any polynomial.

2. Algebras over algebraically closed fields

We recall that every subset S of k™ = A™(k) defines the ideal Z(S) of elements in
klx1,...,Zm] which vanish on S and every ideal I C k[x1, ..., 2] defines the algebraic set V(I)
of common zeroes of I. By Hilbert’s Nullstellensatz, these two maps give a bijection between
algebraic sets in k™ and radical ideals I. Radical ideals I are in bijective correspondence with
reduced closed k-subschemes Spec k[x1,...,2,]/I. The bijection between algebraic sets and
reduced closed k-subschemes is given in one direction by taking the Zariski closure with its
reduced closed subscheme structure and in the other by taking k-points.

Each linear transformation T: V — W of finite dimensional k-vector spaces defines a
homomorphism of commutative graded k-algebras T*: Sym*W* — Sym*V*. If Sy, C V, St C
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W, and T(Sv) C Sw, then T*(Z(Sw)) C Z(Sy). Thus, T determines a morphism of affine
k-schemes

Spec Sym*V*/Z(Sy) — Spec Sym*W* /Z(Sw)

which, at the level of k-points, gives the restriction of T'.
We now prove the key proposition:

PRrROPOSITION 4. If A is an arbitrary algebra over k, I is an ideal of A of finite codimension,
and @) is a homogeneous polynomial as above, then

CdQA > cdol + CdQA/I.

Proof. There is something to check only if @) is an almost identity for A. Let V; & V5 be a
direct sum decomposition of A™ such that 651(0) contains V; x X, for some algebraic set Xo
of codimension cdgA in the finite-dimensional space V,. Let V{ = V3 NI", and let V{" denote
a complementary subspace to V{ in V5. Let Vi = V2 @ VY’ and X} = X5 x V{’. Then X} is of
codimension cdg A in V3, and V/ x X4 = Vi x X5 C e;,'(0). Replacing Vi, Va, X3 by V{, Vi, X5,
we may therefore assume that V; C I™.

We identify V5 with the k-points of the variety A4™ V2, Let X, denote the Zariski closure of
Xy in AYmV2 g0 we can identify Xo with X,(k), and dim X, = dim Va — cdgA. We identify
(A/I)"™ with the k-points of A" 4™ A/T and denote by Y the Zariski closure of the algebraic set

Y ={(ai,...,an) € (A4/)" | eq(@u,...,an) =0},

so the algebraic set is identified with Y (k).

The projection map A™/V; — A™/I™ maps the algebraic set Xo to the algebraic set Y, and
it follows that the associated projection morphism AdmV2 —y Andim A/T defines a morphism
m: Xo =Y. As 0 € X,(k) = X2 maps by 7w to 0 € Y (k) =Y, the fiber Z of 7 over 0 is non-
empty. Now, Z(k) is Xo N (I™/V1), so cdol < dim(I™/V;) —dim Z. By [Stacks| Tag 02JS],

dim X, <dimY + dim Z.
Thus,

cdgA =dim A" /V; —dim X, = dim A"/I" + dim I /V; — dim X,
> dim A" /I" —dimY +dim I"/V} —dim Z > cdg(A/I) + cdgl.

We can now prove Theorem

Proof. It suffices to prove that, if condition (2) does not hold, then for all ¢ > 0 there exists
an ideal I of finite codimension in A such that cdgA/I > i. We proceed by induction on 7, the
statement being trivial for ¢ = 0. If the induction hypothesis holds, as @ is not an identity for I,
there exists a € I"™ with eg(a) # 0. As A is residually finite dimensional, there exists an ideal
J of A of finite codimension such that eg(a) ¢ J. If @ denotes the image of o in (I/INJ)",
then eg(@) # 0, so Q is not an identity for I/I N J. By Proposition

cdgA/(INJ) > cdgA/T+cdol/(INJ)>i+1,

and the theorem follows by induction. ]

We now discuss some consequences of the theorem.
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COROLLARY 5. Let k be a field of characteristic 0, A a finitely generated algebra over k,
and ) a homogeneous polynomial in n variables defined over k. If V' is a subspace of A™ of
finite codimension, @ = (a1, ...,a,) € A", and eg(d+ V') = 0, then Q) is an identity on an ideal
of A of finite codimension.

Proof. As A®y k is finitely generated over k, it is residually finite-dimensional. As k is
infinite, if Q is an identity on @ + V/, then it is an identity on @ + V ®; k, which is a subset of
finite codimension in A ®j, k. Therefore, there exists an ideal I of finite codimension in A ®;, k
such that @ is an identity on I.

Let {a1,...,am} be a generating subset for A over k. Let @; denote the image of a; ® 1 under
the quotient homomorphism

Ak — (A k)/I.

The k-algebra (A ®j, k)/I is finite-dimensional, so fixing any basis, the structure constants lie
in a finite extension K of k. We fix a finite-dimensional K-algebra B and an isomorphism of
K-algebras 1: B®x k — (A ®j k)/I. There exists a finite extension L/K such that .~!(a;) €
B ®y, L for all i. Enlarging L, we may assume L/K is Galois. There is a unique L-algebra
homomorphism ¢: A ® L — B @ L such that the diagram

% 1

commutes.
We consider the L-algebra homomorphism

AeyL— @ BexlL
oc€Gal(L/k)

which in the o-coordinate is given by (Idp ® o) o ¢. The kernel is invariant under the action
of Gal(L/k) on A ®y, L, so by Galois descent for vector spaces |Bl Chap. 5, §10 Prop. 6] it is
of the form W ®y, L, where W is the kernel of the composition of A — A ®; L and ¢. Thus W
is a finite codimension ideal of A.

O

COROLLARY 6. Let A be a residually finite dimensional associative algebra over k. Let
d > 1 and suppose x% is an almost identity for A. If k has characteristic p > 0 suppose also
p > d. Then A has an ideal I of finite codimension satisfying I/(Y) = 0, where f(d) is a suitable
function of d.

Proof. By Theorem A has an ideal I of finite codimension satisfying the identity 2 = 0.
The well known Nagata-Higman Theorem applied for the associative (non-unital) k-algebra I
shows that I7(4) = 0. See for instance [DF}, Chapter 6] for the theorem and for explicit bounds
on the function f. |

Our next result describes almost d-Engel Lie-algebras.

THEOREM 7. Let L be a residually finite dimensional Lie algebra over k. Let d > 1 and
suppose The Engel polynomial E, is an almost identity for L. Then
(i) If k has characteristic zero then L has a nilpotent ideal of finite codimension.
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(ii) If k has positive characteristic then L has a locally nilpotent ideal of finite codimension.

Proof. By Theorem[I] L has an ideal I of finite codimension satisfying the identity F; = 0.
The conclusion now follows from well known theorems of Zelmanov on the nilpotency of d-
Engel Lie algebras in characteristic zero |[Z1] and the local nilpotency of d-Engel Lie algebras
in positive characteristic [Z2, ?]. O

3. Algebras over finite fields

From now on, we assume k = F,. For every positive integer d, we write d = m(q¢ — 1) +r,
where 0 < r < g — 2, and define

fad) = Z,;’;.

LEMMA 8. We have

CTT 4
fq(d)zmlnH pa
i=1

where the sum ranges over all infinite real sequences x1,x2,x3, ... € [0,q — 1] summing to d.

Proof. As log(q — x) is concave, the value of the product can only decrease if we replace
the sequence with

oo
LlyeeesyLpn—1, E .TZ',O,O,...
i=n

Thus, we may consider only sequences which are eventually zero. If any two non-zero terms
x; and x; satisfy x; +x; < ¢ — 1, then we can decrease the product by replacing x; and z; by
x; +x; and 0 respectively, so we may assume any two non-zero terms sum to more than ¢ — 1.
If¢g—1>z;>x; >0and z; +x; > g — 1, then we can decrease the product by replacing z;
and z; by ¢ — 1 and z; + z; — (¢ — 1) respectively. Thus, we may assume that there is at most
one xz; which is neither 0 nor ¢ — 1. Without loss of generality, the sequence can be taken to
be non-increasing, so the minimum is achieved for

1= =Ty =q— 1, Tmp1 =7, Typg2 = =0.
|
LEMMA 9. For1<k<g—1andd>k,
q—k
fq(d) < qu(d — k).
Proof. This follows immediately from the description of f, in Lemma ]

LEMMA 10. For ¢ > 2, we have f,(d) > 27

Proof. 'We have f,(0) =1, and writing d = m(q — 1) +

r,
fq(d+1)_q—r—1>1
fold) — q—r T2

with 0 <r < ¢ — 2, we have
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O

THEOREM 11. Let F, be a finite field and P(x1,...,z,) € Fylz1,...,2,] a polynomial of

degree d. If
Np = [{(a1,...,a,) €Fy | P(as,...,a,) # 0}
is non-zero, it satisfies
Np > fy(d)g" > 27"
Proof.
As a function on F', P depends only on its residue class modulo (z{ — 21, ..., 2 — x,). Each

such residue class contains a unique element which is of degree < ¢ in each variable separately,
and the (total) degree of this representative achieves the minimal degree of all polynomials
in the residue class of P. As f,(d) decreases monotonically in d, we may assume that P is of
degree less than ¢ in each variable separately.

We use induction on d, the base case d = 0 being trivial. Without loss of generality, we may
assume that, as a function on Fy, P is not constant in the variable z,,. Since the z,-degree of
P is less than ¢, this means that the z,-degree is [ € [1,q — 1]. We write

l
P(xy,...,xq) = ZPi(xl,...,a:n_l)xﬁl.
i=0

As | +deg P, = deg 2!, P, < deg P, we have deg P, <d — . If (a1,...,a,_1) € F7—! satisfies
P(ay,...,a;—1) # 0, there are at least ¢ — I solutions of P(ai,...,an—1,2,)# 0. By the
induction hypothesis,

Np > (q—)Np > (g - Dfgld — g = ‘%‘ﬁ;(d “ g = fy(d)a"

U
We can now prove Theorem
Proof.
We have to show that, if the evaluation map eq associated with ) is not identically 0, then
leg' (0] —d
<1l-27%

[A["
I{’J eq does not vanish on A, then there exists a linear functional f: A — F, such that foeg
does not vanish on A™. If @ is of degree d, then f o eg has degree < d. Theorem [3|now follows

from Theorem [T11 O
Let n be a positive integer and consider Fy(z1, ..., x,), the algebra over Fy of the free magma
on n generators. This is a graded Fg-algebra. Let Q € Fy(z1, ..., z,) denote a non-zero element

of degree d. If I is any ideal of A of finite codimension, then ) induces a map (A4/1)" — A/I,
which we denote Q7 . Let

Q' (0)]

f(Q,I) = —=——.

|A/T|"
Regarding A/I as a finite-dimensional vector space, 1 is given by a polynomial of degree < d,
so either it maps (A/I)™ to 0, or

@I <1-277

We now prove Theorem
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Proof. We first prove that condition (1) implies condition (2). We have to show that if @
is not a coset identity of A then for all € > 0, there exists an ideal I of finite codimension such
that f(Q,I) < e. We first prove that it implies that for any ideal I of finite codimension, there
exists an ideal J C I of finite codimension such that

f(QvJ) < (1 - 2_d)f(Q’I)'

For each element a € QI_I(O), we choose a representative & = (ay,...,a,) € A™ such that
eg(ai,...,a,) # 0 and an ideal of finite codimension I, to which eg(a1,...,a,) # 0 does not
belong. Let

J=1In ﬂ I,

which, by construction, is of finite codimension. Again by construction, @ ; does not map any
n-tuple of cosets of I/J to 0. Therefore, for each such n-tuple, the number of elements mapping
to 0 by Q is at most (1 —279)|I/J|". If the coset maps to an element of (A/I)" which is
not in Ql_l(O), then no element of that coset maps to 0 by @ ;. This proves the claim, and the
equivalence of conditions (1) and (2) follows immediately.

Now, suppose @ is multilinear. We will show that condition (2) implies condition (3) with
the same ideal I. Assuming (2) we have

eglar +y1,...,an +yn) =0
for all y1,...,y, € I. By the multilinearity of Q) we have, for all y; € I,

0=eglar +y1,a2,...,a,) =eqlar,as,...,an) +eq(y1,az,...,a,)

=eq(y1,az2,...,an).

Similarly we have, for all y5 € I,
0 = eQ(yl,ag +y2,a3,. . 7an) = 6Q(y1,a2,a3,. . ,an) + eQ(yl,yg,ag,. . .,an).

Proceeding in this way we obtain

eQ(ylu"'7yn) =0

for all y1,...,y, € I.
This completes the proof.
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