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Abstract

Let A be a residually finite dimensional algebra (not necessarily associative) over a field k.
Suppose first that k is algebraically closed. We show that if A satisfies a homogeneous almost
identity Q, then A has an ideal of finite codimension satisfying the identity Q. Using well known
results of Zelmanov, we conclude that, if a residually finite dimensional Lie algebra L over k
is almost d-Engel, then L has a nilpotent (resp. locally nilpotent) ideal of finite codimension if
char k = 0 (resp. char k > 0).

Next, suppose that k is finite (so A is residually finite). We prove that, if A satisfies a
homogeneous probabilistic identity Q, then Q is a coset identity of A. Moreover, if Q is
multilinear, then Q is an identity of some finite index ideal of A.

Along the way we show that, if Q ∈ k⟨x1, . . . , xn⟩ has degree d, and A is a finite k-algebra
such that the probability that Q(a1, . . . , an) = 0 (where ai ∈ A are randomly chosen) is at least
1− 2−d, then Q is an identity of A. This solves a ring-theoretic analogue of a (still open)
group-theoretic problem posed by Dixon.
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1. Introduction

In this paper, we prove three theorems concerning residually finite dimensional algebras A
and polynomial identities. The common theme is that if a (non-commutative) homogeneous
polynomial Q in n variables vanishes on a large enough subset of An, then it is actually a coset
identity, that is, it holds identically on (a1 + I)× · · · × (an + I) for some two-sided ideal I of
finite codimension in A and some a1, . . . , an ∈ A. Under some assumptions we obtain stronger
conclusions, namely, that Q is an identity of the ideal I.
Let k be an algebraically closed field, V a k-vector space, possibly of infinite dimension, and

n a positive integer. We recall [LS] that the codimension of a subset X ⊂ V n is the smallest
integer c for which there exists a direct sum decomposition of k-vector spaces V n = V1 ⊕ V2,
where V2 is finite dimensional, and an algebraic set X2 of codimension c in V2, such that
X ⊃ V1 ×X2. We say that X is of infinite codimension if no such decomposition exists.
Let A be an associative k-algebra, possibly non-unital. Each non-commutative polynomial

Q ∈ k⟨x1, . . . , xn⟩ defines the evaluation map eQ : An → A. We define cdQA to be the
codimension of e−1

Q (0). We say that Q is an almost identity if cdQA < ∞. If cdQA = 0, or,
equivalently, eQ(A

n) = 0, we say Q is an identity for A.
We can likewise consider a Lie (resp. Jordan) algebra A over k and a Lie (resp. Jordan)

polynomial Q and define the codimension of the zero set of Q in An and an almost identity in
the analogous way. In fact the same definition applies for an arbitrary algebra A, namely a linear
space over k with a bilinear map A×A → A as multiplication (possibly but not necessarily
satisfying some extra-conditions). In this case the polynomial Q is an element of a free algebra
in the respective category. Note that an ideal of A will always mean a two-sided ideal, and A
residually finite dimensional means that the intersection of all ideals of A of finite codimension
is the zero ideal.
Our first main result is the following:

Theorem 1. Let A be a residually finite dimensional algebra over k and Q a homogeneous
polynomial as above. Then the following are equivalent:

(i) The polynomial Q is an almost identity for A.
(ii) The polynomial Q is an identity for some ideal I of A of finite codimension.

The non-trivial part is that (1) implies (2). The reverse implication follows from the fact
that In is of finite codimension in An.
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We now compare the theorem above with the main result of [LS] (see Theorem 1 there and
the comments on p. 10). The latter result shows that an associative/Lie/Jordan algebra with
an almost identity Q satisfies some identity P (usually different and more complex than Q).
Theorem 1 above holds for all algebras A, and the identity satisfied by the ideal I is the original
almost identity Q.
Our second main result concerns the case that k is a finite field Fq for a prime power q.

Any residually finite algebra A over Fq is a dense subalgebra of its completion A, and as an
additive group, A is profinite. For each n, we endow A

n
with its Haar measure and consider the

condition on a subset X ⊂ An that X has non-zero measure. We say that Q is a probabilistic
identity if the closure of e−1

Q (0) has positive measure.

Theorem 2. Let A be a residually finite dimensional algebra over k = Fq and Q a
homogeneous polynomial as above. Then the following are equivalent:

(i) The polynomial Q is a probabilistic identity of A.
(ii) The polynomial Q is a coset identity of some finite index ideal I of A.

Furthermore, if Q is multilinear, then these conditions are equivalent to
(3) Q is an identity of some finite index ideal I of A.

Again, the non-trivial part is the claim that (1) implies (2).
In [D] Dixon asks whether, for every group-word w ∈ Fn (the free group of rank n) there

exists ϵ = ϵ(w) > 0 such that if G is a finite group, and the word map w : Gn → G attains the
value 1 with probability ≥ 1− ϵ, then w is an identity of G. In spite of some positive results
for special words w, Dixon’s Problem is still very much open. Here we obtain a general positive
solution of an analogous question on finite algebras A. The solution is effective in the sense
that ϵ is given explicitly; in fact, if d is the degree of the ambient polynomial map, then ϵ = 2−d

will do.

Theorem 3. Let A be any finite-dimensional algebra over a finite field and eQ : An → A
a polynomial map associated with a polynomial Q of degree d in n variables in the respective

category. If
|e−1

Q (0)|
|A|n ≥ 1− 2−d, then Q is identically zero.

For d ≥ 2 consider the degree d Engel polynomial Ed−1 := [x, y, . . . , y], a left-normed Lie
product where y appears d− 1 times, as an element of the free Lie algebra on x, y over the
underlying field k. By [MM, 2.1], if L is a finite Lie algebra in which the Engel condition
Ed−1 = 0 holds with probability greater than 1− 2−d, then Ed−1 is an identity of L. Theorem
3 above extends this for any finite algebra and any polynomial.

2. Algebras over algebraically closed fields

We recall that every subset S of km = Am(k) defines the ideal Z(S) of elements in
k[x1, . . . , xm] which vanish on S and every ideal I ⊂ k[x1, . . . , xm] defines the algebraic set V (I)
of common zeroes of I. By Hilbert’s Nullstellensatz, these two maps give a bijection between
algebraic sets in kn and radical ideals I. Radical ideals I are in bijective correspondence with
reduced closed k-subschemes Spec k[x1, . . . , xm]/I. The bijection between algebraic sets and
reduced closed k-subschemes is given in one direction by taking the Zariski closure with its
reduced closed subscheme structure and in the other by taking k-points.

Each linear transformation T : V → W of finite dimensional k-vector spaces defines a
homomorphism of commutative graded k-algebras T ∗ : Sym∗W ∗ → Sym∗V ∗. If SV ⊂ V , ST ⊂



Page 4 of 9 MICHAEL LARSEN AND ANER SHALEV

W , and T (SV ) ⊂ SW , then T ∗(Z(SW )) ⊂ Z(SV ). Thus, T determines a morphism of affine
k-schemes

Spec Sym∗V ∗/Z(SV ) → Spec Sym∗W ∗/Z(SW )

which, at the level of k-points, gives the restriction of T .
We now prove the key proposition:

Proposition 4. If A is an arbitrary algebra over k, I is an ideal of A of finite codimension,
and Q is a homogeneous polynomial as above, then

cdQA ≥ cdQI + cdQA/I.

Proof. There is something to check only if Q is an almost identity for A. Let V1 ⊕ V2 be a
direct sum decomposition of An such that e−1

Q (0) contains V1 ×X2 for some algebraic set X2

of codimension cdQA in the finite-dimensional space V2. Let V
′
1 = V1 ∩ In, and let V ′′

1 denote
a complementary subspace to V ′

1 in V1. Let V
′
2 = V2 ⊕ V ′′

1 and X ′
2 = X2 × V ′′

1 . Then X ′
2 is of

codimension cdQA in V ′
2 , and V ′

1 ×X ′
2 = V1 ×X2 ⊂ e−1

Q (0). Replacing V1, V2, X2 by V ′
1 , V

′
2 , X

′
2,

we may therefore assume that V1 ⊂ In.
We identify V2 with the k-points of the variety AdimV2 . Let X2 denote the Zariski closure of

X2 in AdimV2 , so we can identify X2 with X2(k), and dimX2 = dimV2 − cdQA. We identify
(A/I)n with the k-points of An dimA/I and denote by Y the Zariski closure of the algebraic set

Y = {(a1, . . . , an) ∈ (A/I)n | eQ(a1, . . . , an) = 0},

so the algebraic set is identified with Y (k).
The projection map An/V1 → An/In maps the algebraic set X2 to the algebraic set Y , and

it follows that the associated projection morphism AdimV2 → An dimA/I defines a morphism
π : X2 → Y . As 0 ∈ X2(k) = X2 maps by π to 0 ∈ Y (k) = Y , the fiber Z of π over 0 is non-
empty. Now, Z(k) is X2 ∩ (In/V1), so cdQI ≤ dim(In/V1)− dimZ. By [Stacks, Tag 02JS],

dimX2 ≤ dimY + dimZ.

Thus,

cdQA = dimAn/V1 − dimX2 = dimAn/In + dim In/V1 − dimX2

≥ dimAn/In − dimY + dim In/V1 − dimZ ≥ cdQ(A/I) + cdQI.

We can now prove Theorem 1.

Proof. It suffices to prove that, if condition (2) does not hold, then for all i ≥ 0 there exists
an ideal I of finite codimension in A such that cdQA/I ≥ i. We proceed by induction on i, the
statement being trivial for i = 0. If the induction hypothesis holds, as Q is not an identity for I,
there exists α ∈ In with eQ(α) ̸= 0. As A is residually finite dimensional, there exists an ideal
J of A of finite codimension such that eQ(α) ̸∈ J . If α denotes the image of α in (I/I ∩ J)n,
then eQ(α) ̸= 0, so Q is not an identity for I/I ∩ J . By Proposition 4,

cdQA/(I ∩ J) ≥ cdQA/I + cdQI/(I ∩ J) ≥ i+ 1,

and the theorem follows by induction.

We now discuss some consequences of the theorem.
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Corollary 5. Let k be a field of characteristic 0, A a finitely generated algebra over k,
and Q a homogeneous polynomial in n variables defined over k. If V is a subspace of An of
finite codimension, a⃗ = (a1, . . . , an) ∈ An, and eQ(⃗a+ V ) = 0, then Q is an identity on an ideal
of A of finite codimension.

Proof. As A⊗k k is finitely generated over k, it is residually finite-dimensional. As k is
infinite, if Q is an identity on a⃗+ V , then it is an identity on a⃗+ V ⊗k k, which is a subset of
finite codimension in A⊗k k. Therefore, there exists an ideal I of finite codimension in A⊗k k
such that Q is an identity on I.
Let {a1, . . . , am} be a generating subset for A over k. Let ai denote the image of ai ⊗ 1 under

the quotient homomorphism

A⊗k k → (A⊗k k)/I.

The k-algebra (A⊗k k)/I is finite-dimensional, so fixing any basis, the structure constants lie
in a finite extension K of k. We fix a finite-dimensional K-algebra B and an isomorphism of
K-algebras ι : B ⊗K k → (A⊗k k)/I. There exists a finite extension L/K such that ι−1(ai) ∈
B ⊗k L for all i. Enlarging L, we may assume L/K is Galois. There is a unique L-algebra
homomorphism ϕ : A⊗k L → B ⊗K L such that the diagram

A⊗k L

ϕ

↓↓

→→ A⊗k k →→ (A⊗k k)/I

B ⊗K L →→ B ⊗K k

ι

↑↑

commutes.
We consider the L-algebra homomorphism

A⊗k L →
⨁

σ∈Gal(L/k)

B ⊗K L

which in the σ-coordinate is given by (IdB ⊗ σ) ◦ ϕ. The kernel is invariant under the action
of Gal(L/k) on A⊗k L, so by Galois descent for vector spaces [B, Chap. 5, §10 Prop. 6] it is
of the form W ⊗k L, where W is the kernel of the composition of A → A⊗k L and ϕ. Thus W
is a finite codimension ideal of A.

Corollary 6. Let A be a residually finite dimensional associative algebra over k. Let
d ≥ 1 and suppose xd is an almost identity for A. If k has characteristic p > 0 suppose also
p > d. Then A has an ideal I of finite codimension satisfying If(d) = 0, where f(d) is a suitable
function of d.

Proof. By Theorem 1, A has an ideal I of finite codimension satisfying the identity xd = 0.
The well known Nagata-Higman Theorem applied for the associative (non-unital) k-algebra I

shows that If(d) = 0. See for instance [DF, Chapter 6] for the theorem and for explicit bounds
on the function f .

Our next result describes almost d-Engel Lie-algebras.

Theorem 7. Let L be a residually finite dimensional Lie algebra over k. Let d ≥ 1 and
suppose The Engel polynomial Ed is an almost identity for L. Then

(i) If k has characteristic zero then L has a nilpotent ideal of finite codimension.
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(ii) If k has positive characteristic then L has a locally nilpotent ideal of finite codimension.

Proof. By Theorem 1, L has an ideal I of finite codimension satisfying the identity Ed = 0.
The conclusion now follows from well known theorems of Zelmanov on the nilpotency of d-
Engel Lie algebras in characteristic zero [Z1] and the local nilpotency of d-Engel Lie algebras
in positive characteristic [Z2, ?].

3. Algebras over finite fields

From now on, we assume k = Fq. For every positive integer d, we write d = m(q − 1) + r,
where 0 ≤ r ≤ q − 2, and define

fq(d) =
q − r

qm+1
.

Lemma 8. We have

fq(d) = min

∞∏
i=1

q − xi

q
,

where the sum ranges over all infinite real sequences x1, x2, x3, . . . ∈ [0, q − 1] summing to d.

Proof. As log(q − x) is concave, the value of the product can only decrease if we replace
the sequence with

x1, . . . , xn−1,

∞∑
i=n

xi, 0, 0, . . .

Thus, we may consider only sequences which are eventually zero. If any two non-zero terms
xi and xj satisfy xi + xj ≤ q − 1, then we can decrease the product by replacing xi and xj by
xi + xj and 0 respectively, so we may assume any two non-zero terms sum to more than q − 1.
If q − 1 > xi > xj > 0 and xi + xj > q − 1, then we can decrease the product by replacing xi

and xj by q − 1 and xi + xj − (q − 1) respectively. Thus, we may assume that there is at most
one xi which is neither 0 nor q − 1. Without loss of generality, the sequence can be taken to
be non-increasing, so the minimum is achieved for

x1 = · · · = xm = q − 1, xm+1 = r, xm+2 = · · · = 0.

Lemma 9. For 1 ≤ k ≤ q − 1 and d ≥ k,

fq(d) ≤
q − k

q
fq(d− k).

Proof. This follows immediately from the description of fq in Lemma 8.

Lemma 10. For q ≥ 2, we have fq(d) ≥ 2−d.

Proof. We have fq(0) = 1, and writing d = m(q − 1) + r, with 0 ≤ r ≤ q − 2, we have

fq(d+ 1)

fq(d)
=

q − r − 1

q − r
≥ 1

2
.



RESIDUAL FINITENESS AND ALMOST IDENTITIES Page 7 of 9

Theorem 11. Let Fq be a finite field and P (x1, . . . , xn) ∈ Fq[x1, . . . , xn] a polynomial of
degree d. If

NP := |{(a1, . . . , an) ∈ Fn
q | P (a1, . . . , an) ̸= 0}|

is non-zero, it satisfies

NP ≥ fq(d)q
n ≥ 2−dqn.

Proof.
As a function on Fn

q , P depends only on its residue class modulo (xq
1 − x1, . . . , x

q
n − xn). Each

such residue class contains a unique element which is of degree < q in each variable separately,
and the (total) degree of this representative achieves the minimal degree of all polynomials
in the residue class of P . As fq(d) decreases monotonically in d, we may assume that P is of
degree less than q in each variable separately.
We use induction on d, the base case d = 0 being trivial. Without loss of generality, we may

assume that, as a function on Fn
q , P is not constant in the variable xn. Since the xn-degree of

P is less than q, this means that the xn-degree is l ∈ [1, q − 1]. We write

P (x1, . . . , xn) =

l∑
i=0

Pi(x1, . . . , xn−1)x
i
n.

As l + degPl = deg xl
nPl ≤ degP , we have degPl ≤ d− l. If (a1, . . . , an−1) ∈ Fn−1

q satisfies
Pl(a1, . . . , al−1) ̸= 0, there are at least q − l solutions of P (a1, . . . , an−1, xn) ̸= 0. By the
induction hypothesis,

NP ≥ (q − l)NPl
≥ (q − l)fq(d− l)qn−1 =

q − l

q
fq(d− l)qn ≥ fq(d)q

n.

We can now prove Theorem 3.

Proof.
We have to show that, if the evaluation map eQ associated with Q is not identically 0, then

|e−1
Q (0)|
|A|n < 1− 2−d.
If eQ does not vanish on A, then there exists a linear functional f : A → Fq such that f ◦ eQ

does not vanish on An. If Q is of degree d, then f ◦ eQ has degree ≤ d. Theorem 3 now follows
from Theorem 11.

Let n be a positive integer and consider Fq⟨x1, . . . , xn⟩, the algebra over Fq of the free magma
on n generators. This is a graded Fq-algebra. Let Q ∈ Fq⟨x1, . . . , xn⟩ denote a non-zero element
of degree d. If I is any ideal of A of finite codimension, then Q induces a map (A/I)n → A/I,
which we denote QI . Let

f(Q, I) :=
|Q−1

I (0)|
|A/I|n

.

Regarding A/I as a finite-dimensional vector space, QI is given by a polynomial of degree ≤ d,
so either it maps (A/I)n to 0, or

f(Q, I) ≤ 1− 2−d.

We now prove Theorem 2.



Page 8 of 9 RESIDUAL FINITENESS AND ALMOST IDENTITIES

Proof. We first prove that condition (1) implies condition (2). We have to show that if Q
is not a coset identity of A then for all ϵ > 0, there exists an ideal I of finite codimension such
that f(Q, I) ≤ ϵ. We first prove that it implies that for any ideal I of finite codimension, there
exists an ideal J ⊂ I of finite codimension such that

f(Q, J) ≤ (1− 2−d)f(Q, I).

For each element α ∈ Q−1
I (0), we choose a representative α̃ = (a1, . . . , an) ∈ An such that

eQ(a1, . . . , an) ̸= 0 and an ideal of finite codimension Iα to which eQ(a1, . . . , an) ̸= 0 does not
belong. Let

J = I ∩
⋂
α

Iα,

which, by construction, is of finite codimension. Again by construction, QJ does not map any
n-tuple of cosets of I/J to 0. Therefore, for each such n-tuple, the number of elements mapping
to 0 by QJ is at most (1− 2−d)|I/J |n. If the coset maps to an element of (A/I)n which is
not in Q−1

I (0), then no element of that coset maps to 0 by QJ . This proves the claim, and the
equivalence of conditions (1) and (2) follows immediately.
Now, suppose Q is multilinear. We will show that condition (2) implies condition (3) with

the same ideal I. Assuming (2) we have

eQ(a1 + y1, . . . , an + yn) = 0

for all y1, . . . , yn ∈ I. By the multilinearity of Q we have, for all y1 ∈ I,

0 = eQ(a1 + y1, a2, . . . , an) = eQ(a1, a2, . . . , an) + eQ(y1, a2, . . . , an)

= eQ(y1, a2, . . . , an).

Similarly we have, for all y2 ∈ I,

0 = eQ(y1, a2 + y2, a3, . . . , an) = eQ(y1, a2, a3, . . . , an) + eQ(y1, y2, a3, . . . , an).

Proceeding in this way we obtain

eQ(y1, . . . , yn) = 0

for all y1, . . . , yn ∈ I.
This completes the proof.
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