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ABSTRACT

We investigated the generalizability of language-based analytics
models across two collaborative problem solving (CPS) tasks: an
educational physics game and a block programming challenge. We
analyzed a dataset of 95 triads (N=285) who used videoconferencing
to collaborate on both tasks for an hour. We trained supervised
natural language processing classifiers on automatic speech recog-
nition transcripts to predict the human-coded CPS facets (skills)
of constructing shared knowledge, negotiation / coordination, and
maintaining team function. We tested three methods for represent-
ing collaborative discourse: (1) deep transfer learning (using BERT),
(2) n-grams (counts of words/phrases), and (3) word categories (us-
ing the Linguistic Inquiry Word Count [LIWC] dictionary). We
found that the BERT and LIWC methods generalized across tasks
with only a small degradation in performance (Transfer Ratio of .93
with 1 indicating perfect transfer), while the n-grams had limited
generalizability (Transfer Ratio of .86), suggesting overfitting to
task-specific language. We discuss the implications of our findings
for deploying language-based collaboration analytics in authentic
educational environments.
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1 INTRODUCTION

Collaborative problem solving (CPS) - defined as two or more peo-
ple engaging in a coordinated attempt to construct and maintain a
joint solution to a problem [39] - is considered a critical skill for the
21st century workforce [16, 20]. In the modern knowledge economy,
there is an increasing demand for workers capable of collaborating
with diverse teams, effectively sharing their knowledge and skills,
and communicating across disciplines to solve complex scientific
and societal problems. However, the 2015 Programme for Inter-
national Student Assessment (PISA) assessment found significant
deficiencies in student’s CPS competencies, with less than 10% of all
students achieving the highest level of proficiency [32]. Accordingly,
educational researchers, practitioners, and policymakers across the
globe have emphasized the importance of improving and expanding
CPS instruction in our education systems [10, 16, 17, 20, 31].

One shortcoming of CPS education is the lack of consistent
assessment and diagnostic feedback [16]. Although students regu-
larly engage in group work in schools, with most classes instituting
some form of collaborative assignment, students rarely receive
meaningful instruction or feedback on collaboration itself. It is
widely acknowledged, however, that feedback is crucial to improv-
ing knowledge and skill acquisition [46]. This deficiency in our
education systems represents a valuable opportunity for Learning
Analytics solutions to improve CPS assessment and instruction.

Collaboration analytics refers to the techniques and approaches
used to automatically (or semiautomatically) capture, analyze, mine,
and distill data about collaborators’ interactions [30, 41]. The con-
tent of communications is a particularly important stream of data
when analyzing CPS interactions in an open-ended, human-to-
human setting [20], and has been shown to provide evidence of
CPS competence [1]. Previous work has applied natural language
processing (NLP) techniques to communications between team
members in order to automatically assess CPS [18, 23, 36, 51]. In
this approach, open-ended communications between team mem-
bers (either transcribed from speech or gathered from text chats)
are analyzed by NLP algorithms, which are trained to detect indi-
cators of CPS. These language-based models have been shown to
accurately detect CPS skills [18, 23], generalize to out-of-sample
teams [36, 51], and be robust to speech recognition errors [51], even
when using data gathered in noisy school environments [36].

However, a major gap in this research is the assessment of these
models’ generalizability to different task contexts. The previous
studies either used data from a single CPS task [18, 23, 51], or
combined data from two CPS tasks [36]. Thus, it has not yet been
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explored whether models trained on language from one task context
(source) will generalize to a different task context (target), without
providing additional labeled (or unlabeled) data from the target
context. This represents a considerable barrier to deploying such
models in real-world educational settings, where collaborative ac-
tivities are not confined to a single task context, and pre-existing
data from a new task (i.e., to perform domain adaptation techniques
[37]) may not be available.

We address this limitation by investigating the degree to which
speech-based models of CPS generalize across tasks. Specifically,
we examine two CPS tasks: (1) Physics Playground (an educational
physics game) and (2) Minecraft Hour of Code (a block program-
ming challenge). We train supervised NLP models to predict the
three CPS facets of (1) constructing shared knowledge, (2) negoti-
ation / coordination, and (3) maintaining team function, derived
from an empirically validated CPS competence model [56]. We as-
sess generalizability by comparing the accuracy of models that are
trained and tested on data from the same task (e.g., train on Physics
data, test on Physics data) with models trained on data from one
task and tested on data from the other task (e.g., train on Minecraft
data, test on Physics data).

We explore this question by conducting a systematic comparison
of three NLP models, each of which utilizes a different method for
feature representation with unique theoretical groundings: (1) a
deep transfer learning approach, (2) an open-vocabulary n-gram
approach, and (3) a dictionary-based approach. While these three
methods of representing language may differ in terms of accuracy,
generalizability, transparency, bias/fairness, or required data quan-
tity, in this paper we focus on assessing generalizability across
task contexts. In doing so, we take an important step towards the
goal of developing collaborative analytics models capable of sup-
porting CPS assessment and instruction in authentic educational
environments.

2 RELATED WORK

Our work is grounded in extensive research on linguistic modelling
of CPS. Although non-verbal modalities (e.g., facial expressions,
eye gaze, body movements, log files) have also been explored to
model CPS, here we focus on studies that leveraged speech or
language data. Previous research has used low-level features derived
from speech signals (e.g., speech rate, acoustic-prosodic features)
to predict CPS outcomes such as task performance [54, 58], group
rapport [29], and active participation [53]. Often these low-level,
non-semantic representations of speech are combined with other
modalities in a multimodal learning analytics approach (e.g., [58]).
However, extensive research has also used more advanced NLP
methods to analyze CPS language at the semantic and syntactic
levels. For example, linguistic data (either gathered from text chats
or transcribed from speech) has been used to model important CPS
skills such as negotiation [18, 23, 36, 51, 52], information sharing [18,
23, 36, 51], regulation [15] and argumentation [6, 40], in addition to
predicting CPS outcomes such as learning gains [38, 47] and task
performance [7, 9].

A popular NLP approach in these studies involves using counts
of words or phrases (n-grams) as features for a classifier [18, 23,
36, 40, 51], although researchers have also tested additional lexical
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features such as punctuation [18] or part-of-speech tags [15, 55].
Recently, pre-trained deep neural networks have been increasingly
used for NLP tasks, and several studies have demonstrated their
efficacy in analyzing collaborative discourse [28, 36]. Yet another
approach involves utilizing pre-existing NLP tools (e.g., Coh-Metrix
[21]) to generate features indexing cohesion, linguistic alignment,
lexical sophistication, or syntactic complexity. This approach has
been applied to CPS discourse to identify emergent sociocognitive
roles [13], model intra- and interpersonal dynamics [12], identify
creativity [48], as well as predict task performance and learning
outcomes [9, 38, 47].

Although linguistic modelling of CPS is an active area of research,
little work has investigated the generalizability of language-based
models to different educational task contexts. However, researchers
have evaluated model generalizability across tasks in other domains.
For example, Sharma et al. [44] trained models to predict cognitive
performance (e.g., skill acquisition, problem solving) using phys-
iological measures and facial expressions, and provided evidence
of task-generalizability (i.e., across gaming, coding tasks) using
engineered features. Similarly, [14, 49] investigated whether mind
wandering detection models generalized across different task con-
texts (e.g., reading a text, viewing a film) using facial expressions
[49] or eye movements [14]. Both found that the models generalized
across some (but not all) tasks, and that careful feature engineering
was necessary to achieve generalizability. Baker et al. [2] explored
the generalizability of models that detect students “gaming the
system” when interacting with an intelligent tutoring system. They
found that the models generalized across different lessons (e.g., ge-
ometry, probability) with only a small degradation in performance.
Similarly, Hutt et al. [24] investigated affect detection models in an
online math learning platform, and demonstrated that models us-
ing generic (i.e., platform-agnostic) interaction features generalized
across curricula (e.g., algebra, geometry).

We identified only one study [34] which examined the general-
izability of linguistic features (i.e., NLP models) across educational
contexts. In this work, Patikorn et al. trained NLP models (using
a bag-of-words approach) to predict the knowledge components
needed to solve math problems. They achieved high within-sample
accuracy (using cross-validation on their dataset) but found that
the models did not generalize to another sample of math problems,
where performance degraded to near chance.

3 CONTRIBUTION AND NOVELTY OF
CURRENT STUDY

A major deficiency in the literature on language-based collaboration
analytics is the evaluation of model generalizability across different
task contexts. To our knowledge, this is the first study to examine
the generalizability of NLP-based collaborative analytics models
between two distinct tasks. Our goal is to examine how different
ways of modeling collaborative language navigate the accuracy vs.
generalizability tradeoff. We do this by comparing three different
feature representations used to model CPS discourse: (1) a state-
of-the-art deep transfer learning approach (using the Bidirectional
Encoder Representations from Transformers or BERT model [11]),
(2) an open vocabulary n-gram approach [43], and (3) a dictionary-
based approach (using the Linguistic Inquiry Word Count or LIWC
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[57]). As elaborated below, these methods differ both in terms of
their ability to capture the contextual semantics of language as well
as the amount of world knowledge encoded in their representa-
tions. For example, BERT is able to learn sophisticated semantic
representations of language through its multi-layer bidirectional
Transformer architecture, and it acquires considerable linguistic
knowledge through its extensive unsupervised pre-training (e.g.,
on all of English Wikipedia). In contrast, the more naive n-gram
representation simply encodes counts of words and phrases, of-
fering little ability to represent their broader context or meaning.
Finally, the LIWC approach leverages human knowledge to encode
the psychological meaning of words using theoretically grounded
and psychometrically-validated dictionaries.

We explore the advantages and disadvantages of each approach
by comparing performance in terms of within-task accuracy and
across-task generalizability. We hypothesize the following patterns
for across-task generalizability: BERT > LIWC > N-Grams (since
BERT encodes substantial linguistic knowledge whereas n-grams
directly encode task-specific language) and within-task accuracy:
BERT > N-Grams > LIWC (since LIWC uses a restricted set of fea-
tures). We also conduct two auxiliary experiments to uncover empir-
ical differences in these representations and their ability to classify
collaborative language. This work serves to inform model selection
decisions in future research on language-based collaboration ana-
lytics. It does not, however, aim to address deficiencies in models
that fail to generalize across tasks, an item for future work.

4 DATASET

The dataset was collected for a previous project on remote CPS
[50]; only pertinent details are discussed here.

4.1 Participants

The study involved 288 students (average age of 22 years) from two
large public universities in the Western United States (111 from
School 1 and 177 from School 2). 54% self-reported as female, 41% as
male, 1% as non-binary/third gender, and 4% did not report gender.
Participants self-reported race: 48% Caucasian, 25% Hispanic/Latino,
17% Asian, 3% Black or African American, 1% American Indian
or Alaska Native, 3% Other, and 3% did not report. Participants
were assigned to 96 triads based on scheduling constraints. Forty-
six participants from 25 teams indicated they knew at least one
person from their team prior to participation. The participants were
compensated with a $50 Amazon gift card (95.8%) or with course
credit (4.2%).

4.2 CPS Tasks

Our dataset contains two distinct CPS tasks. Physics Playground
[45] is an educational game designed for learning of basic physics
concepts (e.g., Newton’s laws, energy transfer, and properties of
torque) through gameplay. The goal of the game is to draw physics
objects (e.g., ramps, levers, pendulums, springboards) in order to
guide a ball to hit a balloon target. All objects in the game, both
pre-existing in the level and those drawn by participants, obey the
laws of physics (Figure 1A).

The Minecraft-themed Hour-of-Code environment [8] uses
block-based programming to teach basic programming concepts in
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an interactive manner. Programming constructs (e.g., if-else state-
ments) are represented as interconnecting blocks that fit together
if the resulting code is syntactically correct. The assembled blocks
control the actions of a Minecraft game character (who can move
around, destroy blocks, place blocks etc.), and users can run and
preview the results of their code in real time (Figure 1B).

4.3 Procedure

The study consisted of a brief at-home portion, followed by an in-lab
session. For the at-home portion, each participant first completed a
Qualtrics survey designed to assess individual difference measures.
After the survey, participants completed a tutorial on how to use
the Physics Playground and Minecraft environments.

During the in-lab session, participants were assigned to one of
three computer-enabled workstations, either in separate rooms or
partitioned in the same room using dividers (depending on the uni-
versity). All interactions between participants took place via Zoom
(https://zoom.us), a video conferencing platform with recording and
screen-sharing capabilities. The shared screen (see Figure 1) and
separate audio streams were recorded for each participant. Other
data streams that are not analyzed in the current study were also
recorded.

In the study, teams collaborated in a series of four 15-minute
blocks. During the first three blocks, teams attempted to solve a
series of game levels in Physics Playground. Then, in the fourth
block, teams completed a CPS task using the Minecraft environment.
The objective of this task was to use the code blocks to write a
program satisfying five design requirements: 1) Build a 4x4 brick
building; 2) Build at least 3 bricks of the building on water; 3) Use
at least one if statement; 4) Use at least one repeat loop; 5) Use 15
blocks of code or less. The order of tasks was fixed as the goal of
the original study was to investigate transfer of CPS skills from
Physics Playground to Minecraft.

In each 15 minute block, one randomly-assigned team member
was selected to control interaction with the CPS environment. This
was done to facilitate collaboration rather than individual work,
and because the interfaces only allow one controller at a time. The
controller’s screen was shared with the observers via Zoom screen-
share, and the other two teammates could contribute to the solution
however they saw fit. The role of controller was rotated between
the team members for each block, such that each student was given
a chance to be the controller for at least one block.

5 DATA PROCESSING

5.1 Data Exclusion

Transcripts from several teams were not available due to technical
issues or insufficient time to complete the study. Out of 96 total
teams, we analyzed data from 95 teams. Of these, 94 teams had
available Physics transcripts and 88 teams had available Minecraft
transcripts (87 teams had both).

5.2 Automatic Speech Transcription

We used the IBM Watson’s Speech to Text service [25] to generate
transcripts of the audio files recorded from each participant. The
service generated start and stop times for each utterance. These
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Figure 1: (A) Participants in a triad use videoconferencing to collaborate as they solve a level in the Physics Playground envi-
ronment. (B) A team assembles code blocks in the Minecraft environment to control their Minecraft character.

timestamps were used to interleave the transcripts from each partic-
ipant to produce a team-level transcript for each 15-minute collabo-
ration block. When an utterance was incorrectly split into multiple
segments, we combined sequential utterances if they belonged to
the same participant and were less than two seconds apart (selected
based on an analysis of different segmentation thresholds). To as-
sess transcription accuracy, we manually transcribed a sample of
350 utterances from both tasks and computed a word error rate
(WER) for each utterance, defined as (substitutions + insertions +
deletions) / (words in human transcript). The mean WER was 32.8%
for the Physics sample, and 30.5% for the Minecraft sample, indicat-
ing similar transcription accuracy across the two tasks. We did not
investigate the effect of transcription errors in this work, however,
previous studies [36, 51] have demonstrated that CPS constructs
can be accurately modeled from automatic transcriptions of similar
quality.

5.3 Human Coding of CPS Facets

We enlisted trained human experts to annotate each automatically
transcribed utterance using our validated CPS framework [56]. The
framework was developed based on a synthesis of four extant frame-
works and was intended to generalize across task domains, which
made it ideal for the present case. The framework defines three
core CPS facets: (1) constructing shared knowledge, (2) negotiation
/ coordination, and (3) maintaining team function. Each facet has
three verbal indicators that provide the basis for expert coding
(shown in Table 1).

Rather than comprehensively coding all utterances in the dataset,
we adopted a thin slicing approach [33] where a random 90 seconds
was coded from the first, second, and third five minutes of each
15-minute block (i.e., 30% of all data was coded). Three expert hu-
mans were trained to code the utterances for the presence of each
verbal indicator. Coders watched videos of the collaborations (for
the full context), alongside the automated transcripts, and counted
the number of times each indicator occurred in an utterance (>99%
of the individual indicator counts were 0 or 1). Coder agreement
on the indicators ranged from .88 to 1.00 (Gwet’s AC1 metric [22])
on ten 90-second video samples consisting of 406 utterances. Af-
ter training and achieving adequate reliability, videos were then
randomly assigned to the three coders for independent coding.

Next, we used the coded indicator counts to create binary labels
for each facet. If all the indicator counts for a facet were 0, then
that facet was coded as a 0 (no evidence for the facet). Otherwise,
if at least one of the indicators occurred, it was coded as a 1 (pos-
itive example of the facet). In total, there were 31,533 utterances
coded (75.6% from Physics Playground blocks) with about half be-
ing scored for at least one indicator. We defined a fourth binary
label, “No Facet Coded”, for utterances that were coded as 0 for
all three facets. The average team-level base rates of each label for
both tasks are shown in Table 1. Note that the percentages sum to
over 100%, as it is possible for an utterance to be a positive instance
of more than one facet (2.9% and 2.6% of utterances were positive
for multiple facets in the Physics and Minecraft data, respectively).
Two-tailed paired-samples t-tests on the 87 teams with data in both
tasks indicated statistically significant differences (between tasks)
in the base rates of all facets except negotiation / coordination (see

Table 1).

6 NATURAL LANGUAGE PROCESSING AND
SUPERVISED MACHINE LEARNING
TECHNIQUES

We tested three different supervised classifiers to predict the human-
coded facet for each utterance, using the automatically generated
transcripts and human annotations. The three methods are illus-
trated in Figure 2

6.1 Deep Transfer Learning with BERT

We considered a deep transfer learning approach using the popular
Bidirectional Encoder Representations from Transformers (BERT)
model [11]. This method involved beginning with a pre-trained
BERT model (pre-trained on large amounts of unlabeled text data,
specifically the BooksCorpus and English Wikipedia totaling 3.3
Billion words [11]), then fine-tuning the model on our task of pre-
dicting CPS facets from utterance transcripts. BERT processes the
transcribed utterances using WordPiece tokenization [42], which
entails splitting each utterance into a sequence of words, or parts
of words. Each unique word or word piece is then converted to
an integer (aka., a token) according to BERT’s vocabulary. Next,
special tokens ([CLS] and [SEP]) are appended to the beginning
and end of this sequence, and the sequence is provided as input
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Table 1: Verbal indicators for each CPS facet, along with example utterances (IBM Watson transcript) from both tasks. Task-
specific language is bolded. Note: PP% = Physics Playground base rate, MC% = Minecraft base rate.

CPS Facet Verbal Indicators Physics Example Minecraft Example

[PP%,MC%]
Constructing Talks about the we only got like two minutes left so yes so somehow we need to get to the water
Shared challenge situation we might be able to get all these
Knowledge levels
[26.0%, 34.5%] Proposes specific I would also build a ramp in case and then you have to move forward to strip
p <.001 solutions you don’t time it correctly block again

Confirms understanding  yeah a little bit longer and make the it’s three yeah yeah it is three
weight a little a bigger yeah
Negotiation/ Provides reasons to I don’t think it’s gonna move because it’ll go into the water I think otherwise
Coordination support a solution because it’s going to get stuck
[14.7%, 15.1%] Responds to others’ yeah sure okay
p=.588 questions/ideas
Discusses the results it doesn’t really go down enough to like why is he just falling in the water
spring it up

Maintaining Asks others for so what would we have to do here okay so where do I have to put repeat blocks

Team Function
[10.4%, 8.0%]

suggestions
Compliments or

good idea

restart the level
this one looks promising this looks
like our skill set
I don’t know

genius

okay can you run that real quick
yeah yeah I'm just trying to figure out who is
right here

p <.001 encourages others
Provides instructions

No Facet Coded

[51.9%, 44.9%]

p <.001

yeah I'm confused of those

to BERT. BERT then maps each input token to a 768-dimensional
embedding, which serves as a semantic representation of the token.
The embedding of the special [CLS] token captures a representation
of the entire sequence of input tokens, and is intended for use in
text classification tasks [11]. Finally, to make a classification, we
used the embedding of the [CLS] token as input to a single fully
connected layer, which outputs predicted probabilities for the given
CPS facet. We used the transformers [59] library’s implementation
of the BertModel with the “bert-base-uncased” pre-trained weights,
and used the BertTokenizer to process our utterances. We fine-
tuned the models for four epochs using a batch size of 32, based on
recommendations from [11].

6.2 Open Vocabulary Approach: Random
Forest with N-Gram Features

Next we trained Random Forest classifiers using n-grams features,
where counts of words and phrases are used as features for the clas-
sifier. We tested unigrams (words) and bigrams (two-word phrases),
but not trigrams and beyond due to the sparsity of unique multi-
word phrases. To generate these features, we first tokenized each
utterance using the nltk [4] tokenizer. Then, counts of n-grams were
generated and used as features for the Random Forest classifier,
using the scikit-learn [35] library’s implementation. We explored
various hyperparameters for this model, namely: n-gram range
(unigrams, bigrams, or both), whether to remove stop words (i.e.,
commonly used words such as “a” or “the”) [60], the number of
estimators (i.e., number of decision trees in the forest), and the
maximum depth of each tree.

6.3 Dictionary-based Approach: Random
Forest with LIWC Features

Finally we trained Random Forest classifiers using features derived
from the Linguistic Inquiry Word Count (LIWC) [57]. To do so, we
used our utterance transcripts to generate counts in 93 predefined
LIWC categories, which were provided as features to the Random
Forest classifier. Similarly to the n-gram models, we explored the
number of estimators and the maximum tree depth as hyperparam-
eters.

7 MACHINE LEARNING EXPERIMENTS

We conducted a series of experiments to evaluate model accuracy
and generalizability across tasks.

7.1 Data Sampling

A significant obstacle to creating task-generalizable models is do-
main shift. Domain shift can take two forms: (1) Prior (or base rate)
shift, where the distribution of labels differs from one domain to
another, and (2) covariate (or feature) shift, where the distribution
of features (i.e., the language used) differs between domains [27].
Although there is evidence of prior shift between our two tasks
for each label except negotiation / coordination (see Table 1), in
this study we focus on feature shift in an effort to understand how
the language elicited in one task generalizes to the other. Accord-
ingly, we randomly down-sampled (without replacement) both the
Physics and Minecraft datasets until the base rate of each CPS facet
was 25%, thus ensuring no shift in the prior probabilities of our
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Figure 2: Diagram illustrating our three methods of language feature representation and utterance classification.

labels between the two tasks. This resulted in sampled datasets
containing 2,544 utterances, with 636 positive instances of each
facet. The remaining utterances (between 30-33%, depending on
the number of sampled instances that were positive for multiple
facets) were sampled from the “no facet” instances. We performed
ten iterations of this random down-sampling to create ten sampled
datasets of both Physics and Minecraft data for use in our gener-
alizability experiments. We note that the purpose of sampling is
to isolate the effect of language shift between tasks on the gener-
alizability of our three different approaches. It is not to obtain an
objective measure of model accuracy, for which we also performed
experiments without sampling (Section 7.5). Similarly, we sampled
each facet to 25% in order to compare differences in generalizability
of the facets without the confound of differing base rates.

7.2 Team-level Cross Validation

We utilized team-level, 10-fold cross validation (Figure 3) to assess
model accuracy (within-task evaluation). Team-level cross vali-
dation is important for evaluating generalizability across teams
(within the same task) because it ensures a model is never trained
and tested on utterances from the same team. The process involves
training a model on data from 90% of teams, then evaluating the
model’s predictive accuracy on a test set containing data from the
10% of withheld teams. This is then repeated ten times, with every
team appearing in the test set exactly once. Accuracy metrics are
computed by aggregating test set predictions from each fold. Thus,
this procedure enables us to evaluate how well a model generalizes
to data from unseen teams (within the same task context).

We also used a team-level, 10-fold cross validation procedure to
evaluate model generalizability (across-task evaluation). However,
here we used data from different task contexts in the training and
test sets. For example, to evaluate generalizability from Physics
to Minecraft, we trained a model on Physics data from 90% of
teams, then evaluated the model’s predictive accuracy on a test set
containing Minecraft data from the 10% of teams withheld during

training (repeated ten times as above). This procedure allows us to
assess generalizability from one task context to another, while also
ensuring team-level generalizability. Importantly, the testing data
was the same for both analyses.

For both the n-gram and LIWC models, we tuned hyperparame-
ters within each training fold using nested five-fold cross validation.
To do so, the training set was split into five validation folds (again at
the team-level), and for each fold a model was fit using every com-
bination of hyperparameters. The hyperparameters that resulted in
the highest average AUROC (across the five validation folds) were
preserved, then the model was trained on the full training set for
that fold. We did not perform nested hyperparameter tuning with
BERT.

7.3 Generalizability Experiments

We used the sampled Physics and Minecraft datasets described
above (7.1) to train within-task models for ten iterations, using
different randomized team-level cross validation folds for each
iteration. We trained our three models (BERT, n-grams, LIWC)
using identical cross validation folds in each iteration, to ensure that
differences in performance were not a result of the folds used. We
trained the models to predict each of the three CPS facets separately
(i.e., we used single label rather than multi-label learning), and we
also included “No Facet” as a fourth label. After training our within-
task models on the sampled datasets, we evaluated their across-task
generalizability as noted above. Thus, we had ten iterations of
results from both within-task evaluations (i.e., Train Physics — Test
Physics and Train Minecraft — Test Minecraft) and both across-task
evaluations (i.e., Train Physics — Test Minecraft and Train Minecraft
— Test Physics).

7.4 Task Prediction Experiment

To further investigate the generalizable properties of our models,
we conducted an experiment wherein we combined the sampled
Physics and Minecraft datasets and trained the three models to
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Figure 3: Diagram illustrating within- and across- task evaluation (left), and the computation of Transfer Ratio (TR) (right). (1)
shows the general formulation of TR, and (2) shows TR quantifying generalizability from Physics to Minecraft data (elaborated

in 7.6).

predict the task context itself (rather than the CPS facets). This
experiment was informed by domain adaptation theory, which
suggests that cross-domain generalization can be achieved through
feature representations from which the domain of an input example
cannot be identified [3]. In other words, if a model cannot accurately
differentiate between instances from the two tasks, it is likely to
generalize across the tasks. Accordingly, we combined the sampled
Physics and Minecraft datasets within each of the ten iterations,
resulting in ten datasets of 5,088 utterances. The combined datasets
contained an equal number of Minecraft and Physics utterances
(2,544 each), and each CPS facet had a base rate of 25%. Then, for
each combined dataset, we trained the three models to predict the
task context (i.e., predict if the utterance came from a Physics block
or a Minecraft block), using 10-fold team-level cross validation to
evaluate the accuracy of predicting the task context.

7.5 Evaluation on Full Datasets

Because the down-sampling described above (7.1) significantly re-
duced the amount of data used in our experiments (2,544 utterances
represents 11% of the Physics data and 33% of the Minecraft data),
we also trained within-task models (as described in 7.3) on the
full Physics and Minecraft datasets (23,825 and 7,708 utterances,
respectively). We conducted five iterations of this experiment in
order to determine how model results from the sampled datasets
compare with model results on the full datasets.

7.6 Metrics

We used the area under the receiver operating characteristic curve
(AUROC) [5] to assess model accuracy. The models output a pre-
dicted probability between 0 and 1 that each utterance is a positive
instance of the given facet. The AUROC considers the true positive
and false positive tradeoff across classification thresholds rather
than selecting a single probability threshold for binary classification.
An AUROC of 1 represents perfect classification, and an AUROC of
.5 represents chance performance. In order to quantify model gener-
alizability across tasks, we use the Transfer Ratio (TR) [19], which
quantifies the relative decrease in performance of a model trained
and tested on data from different tasks (i.e., across-task evaluation)
versus the same task (i.e., within-task evaluation). Thus, a TR of 1
indicates perfect generalizability, (no decrease in performance due

to across-task evaluation). The general formulation of the TR is
presented above in Figure 3 (Equation 1). Note that .50 is deducted
from both numerator and denominator to quantify the difference
in performance over chance. We specifically compute the TR at
the level of the task used for model testing. For example, the TR
quantifying generalizability from Physics to Minecraft is computed
as shown above in Figure 3 (Equation 2).

8 RESULTS
8.1 Accuracy and Generalizability

Results from our generalizability experiments (Section 7.3) are
shown in Table 2 and Table 3. For each iteration, we computed
the metrics separately for each facet (as described in Section 7.6)
and then computed the row and column means by averaging across
facets or by averaging across models. Finally, we averaged values
over the ten iterations. In addition, Figure 4A shows the full distribu-
tions of AUROC values for both within-task (green) and across-task
(orange) evaluation. The corresponding distributions of TRs (grey)
are plotted alongside (Figure 4B). Each distribution contains twenty
values (ten iterations of both Physics and Minecraft data).

We found that when averaging across facets (row means), the
BERT and LIWC models performed similarly in terms of accuracy
and generalizability (equivalent within-task AUROCs [.79] and TRs
[.93]), and outperformed the n-gram models (AUROC of .77 and
TR of .86). Both accuracy (AUROC of .75) and generalizability (TR
of .86) were lower for maintaining team function compared to the
other two facets (AUROCs > .79; TRs > .90). Interestingly, the best
generalizability (TR of .95) was achieved on the “no facet” instances,
suggesting that the language indicative of “no facet” instances is
relatively invariant across task contexts. These results indicate that
given the correct choice of model, task-generalizability of CPS facets
is feasible, although some degradation in performance still occurs.

8.2 Task Prediction

Results from our task prediction experiment (Section 7.4) are pre-
sented in Table 4 (left). These results are interesting in light of our
previous findings on model generalizability (see 8.1). The LIWC
model, which generalized well across tasks (TR = .93), was less
able to distinguish Physics vs. Minecraft utterances (AUROC of .69),
while the n-gram model, which did not generalize as well (TR = .86),
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Table 2: AUROC values for each CPS facet (plus no facet). The first value in each triplet represents evaluation on Physics data,
the second represents evaluation on Minecraft data, and the last (bolded) value is the average over the two tasks.

Constructing Shared Negotiation/ Maintaining Team No Facet Mean
Knowledge Coordination Function
Model Within Across Within Across Within Across Within Across Within Across
BERT .80.80.80 .78.77.77 .78.80.79 .77.78.77 .76.77.76 .72.74.73 .79.80.79 .78.79.78 .78.79.79 .76 .77.77
NGram .80.81.80 .77.74.75 .79.79.79 .74.76.75 .73.74.74 .69.70.69 .76 .77.77 .74.74.74 .77.78.77 .73.74.74
LIWC .81.80.80 .79.78.78 .79.80.80 .76.78.77 .74.78.76 .72.74.73 .79.79.79 .78.78.78 .78.79.79 .76.77.77
Mean .80.80.80 .78.76.77 .79.80.79 .76.77.77 .74.76.75 .71.73.72 .78.79.78 .77.77.77 .78.79.78 .75.76.76
Table 3: TR values for each CPS facet (plus no facet). See Table 2 caption regarding triplet values.
Model Constructing Shared Negotiation/ Maintaining Team No Facet Mean
Knowledge Coordination Function
BERT .91.91.91 .97 .93 .95 .88 .88 .88 .98 .98 .98 .93 .92 .93
NGram .89 .80 .84 .84 .88 .86 .79 .84 .82 .93.87 .90 .86 .85 .86
LIWC .96 .91.93 91.92 .91 .91 .87 .89 .98 .97 .97 .94 .92 .93
Mean .92 .87 .90 91.91 .91 .86 .87 .86 .96 .94 .95 .91.90 .90

Table 4: AUROC values for the task prediction experiment, partitioned by facet (left) and for experiment comparing sampled.
vs. full models (right). Values reported are the mean over all iterations of each experiment. Note: Const. = constructing shared
knowledge, Neg. = negotiation / coordination, Maintain. = maintaining team function.

Task prediction experiment

Sampled vs. Full Datasets

Minecraft Physics
Model Const. Neg. Maintain. No All Sampled Full (n=7,708) Sampled Full
Facet (n=2,544) (n=2,544) (n=23,825)
BERT .76 77 77 77 77 .79 .82 .78 .83
Ngram 75 .76 .76 .76 .76 .78 .79 77 .79
LIWC .70 .69 .70 .69 .69 .79 .81 .78 .81

achieved a higher AUROC of .76. This finding is consistent with
domain adaptation theory, which suggests that feature represen-
tations which are less predictive of the domain of origin are more
likely to generalize across domains [3]. However, the BERT models,
which showed similar across-task generalizability to LIWC (TR =
.93), achieved an AUROC (.77) on par with the n-gram models. We
also did not find differences in task prediction accuracy between
the CPS facets, suggesting similar task-specific language across
facets.

8.3 Full vs. Sampled Datasets

Results for comparing within-task accuracy on the sampled and
full datasets (Section 7.5) are shown in Table 4 (right). The value
presented is the mean AUROC over all four labels. As expected,
accuracy of all three models increased on the full datasets. The
BERT model saw the largest gain in performance (+.03, +.05 AUROC
on Minecraft and Physics datasets respectively), followed by the
LIWC model (+.02, +.03 AUROC), then the n-gram model (+.01, +.02
AUROQC). These findings indicate that deep learning models such as
BERT may have an advantage (in terms of accuracy) over traditional
classifiers when more training data is available [26]. That said, the

magnitude of improvements were not proportional to the amount of
additional data available in the full datasets (approximately 3x more
data for Minecraft, 9x for Physics). Overall, this provides evidence
that the conclusions obtained from the experiments with sampled
datasets are generalizable to the full dataset.

9 DISCUSSION

We investigated differences in the accuracy and generalizability of
three different NLP classifiers trained to predict CPS facets from
automatically generated transcripts. In this section, we discuss our
main findings, applications of this work, the limitations of this
study and future directions for research.

9.1 Main Findings

Our findings indicate that language-based models of CPS can gen-
eralize between two distinct task contexts with only a small degra-
dation in performance (best models achieved TR of .93). We hypoth-
esized the following pattern for across-task generalizability BERT >
LIWC > N-Grams, but found instead: [BERT = LIWC] > N-Grams. We
observed the same pattern for within-task accuracy although we
hypothesized BERT > N-Grams > LIWC . This finding is noteworthy
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Figure 4: (A) Distributions of AUROC values for each model and facet. The top distribution shows within-task evaluation, and
the bottom distribution shows across-task evaluation. (B) Corresponding distributions of Transfer Ratio values, as described
in section 7.6. The vertical dashed line represents a TR of 1 (perfect generalizability across tasks).

because many previous studies on language-based collaboration
analytics (e.g., [18, 40, 51]) have used n-grams, yet we found this
approach to yield both the worst accuracy and generalizability. It
is also notable that the LIWC model performed on par with the
state-of-the-art BERT model for both accuracy and generalizability
when trained on the sampled datasets.

Our task prediction experiment demonstrated that the BERT
and n-gram models were better able to distinguish between utter-
ances from the two tasks than the LIWC model. The BERT and
n-gram models consider the actual words contained in an utterance,
and therefore capture more task-specific information. For instance,
use of the words “draw”, “launch”, or “ball” indicate the Physics
task, while words like “turn” or “brick” indicate the Minecraft task.
However, this relationship is obfuscated by the LIWC feature rep-
resentation, which converts words into counts of predefined word

categories. For example, the Physics-specific word “launch” is re-
placed with the more general word categories “motion”, “relativity”,
“causation”, “cognitive process”, and the Minecraft-specific word
“turn” is replaced with the categories “motion”, “relativity”, “verb”,
“present focus”. This additional layer of abstraction explains the
LIWC model’s inferior performance in the task prediction exper-
iment and may contribute to its ability to generalize across task
contexts.

Interestingly, although the BERT model achieved the highest
task prediction accuracy, it also generalized as well as the LIWC
model. We hypothesize that BERT’s ability to learn sophisticated
semantic representations of language (as evidenced by its state-of-
the-art performance in various benchmark NLP tasks [11]) enables
it to identify language indicative of CPS facets in a more task-
independent manner. BERT also outperformed the other models (in
terms of within-task accuracy) when trained on the full datasets.
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Taken together, these findings suggest that large pre-trained lan-
guage models such as BERT may be more suitable when large
quantities of data are available, while a dictionary-based approach
such as LIWC may be more appropriate with smaller datasets.

9.2 Applications, Limitations, and Future Work

An important application of this work includes utilizing language-
based collaboration analytics (CA) models in authentic educational
settings to provide automated formative assessment of CPS skills
and interventions to improve said skills. For instance, automated
reports could be displayed to a teacher monitoring many groups of
students engaged in CPS (e.g., via a teacher dashboard), informing
the teacher of the extent to which each group is engaging in dif-
ferent aspects of CPS (e.g., constructing shared knowledge). Such
a system could help the teacher identify groups that need their
support and know how to best allocate their limited presence. Like-
wise, the system could help a teacher identify individual students’
strengths and weaknesses to set appropriate goals for improvement.
For such applications (in school environments), collaborative activ-
ities are not restricted to a single task context (as most lab studies
are). For example, a teacher may regularly update a group learning
or problem solving activity, changing the task context or problem
solving affordances to meet their pedagogical objectives or the
needs of individual classes. It is not realistic to expect task-specific
data (transcripts) to be available (i.e., to train task-specific models or
perform domain adaptation techniques) for every context in which
CA models will be deployed. Rather, a more practical approach is to
pursue representations of collaborative language which generalize
across different tasks as we have done here.

In addition to teacher-facing analytics, this approach could be
used to provide learner-facing feedback aimed at developing CPS
skills. For instance, CA models could display insights to individual
team members, illustrating how well they contributed to their team
and demonstrated different CPS skills. This kind of personalized
feedback could enhance learners’ self-awareness, reflection, and
evaluation of their strengths and weaknesses, and help them track
their improvement in different skills across a series of collabora-
tions.

Like all studies, ours has limitations. To begin, we only evaluated
model generalizability between two CPS tasks, both of which were
conducted in a remote, computerized setting (via videoconferencing
with screen share). Thus, it’s possible that our findings will not
generalize to other contexts, such as co-located face-to-face CPS,
where collaboration occurs in a shared physical space and involves
interaction with tangible (rather than digital) artifacts. Future work
will examine generalizability between additional (more dissimilar)
task contexts. Similarly, in this work we only investigated generaliz-
ability between different tasks, and did not explore generalizability
between different blocks of the same task (i.e., between the first
block of Physics Playground and the third block of Physics Play-
ground, which may have relevant differences due to familiarity
with team members, etc.).

Another limitation is that we did not investigate the effect that
differing facet base rates had on generalizability between the two
tasks. Rather, we sampled each facet to a constant 25% to isolate the
effects of feature (language) shift between the tasks and to compare
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several feature representations. Future work will need to address
the challenge of base rate shift between tasks and examine its effect
on model generalizability. Further, ideally the order of the two tasks
would have been counterbalanced across teams, but this was not
feasible since we used an existing dataset. However, we do not
think this influenced the results since across-task generalizability
was similar for both cases (train Physics, test Minecraft and vice
versa; see Table 3). Finally, we only investigated one application —
the modeling of CPS facets. Future work should examine whether
language-based CA models with different applications (e.g., pre-
dicting task performance, identifying phases of collaboration) will
also generalize across tasks.

10 CONCLUSION

We demonstrated the feasibility of training speech-based models
of CPS facets that generalize across different task contexts. Our
findings indicate that the choice of feature representation used
to model collaborative language is important to obtaining task-
generalizable models. This work contributes to the broader goal of
deploying collaboration analytics models in authentic educational
environments.
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