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COPYING ONE OF A PAIR OF STRUCTURES

RACHAEL ALVIR, HANNAH BURCHFIELD, AND JULIA F. KNIGHT

Abstract. We ask when, for a pair of structures A1,A2, there is a uniform effective procedure that,
given copies of the two structures, unlabeled, always produces a copy of A1. We give some conditions
guaranteeing that there is such a procedure. The conditions might suggest that for the pair of orderingsA1

of type !CK
1 and A2 of Harrison type, there should not be any such procedure, but, in fact, there is one.

We construct an example for which there is no such procedure. The construction involves forcing. On the
way to constructing our example, we prove a general result on modifying Cohen generics.

§1. Introduction. There are well-known results (see [1, 2]) putting conditions on
a pair of structures A1,A2 such that for any Π0

α set S ⊆ !, there is a uniformly
computable sequence of structures (Cn)n∈! with

Cn ∼=
{

A1, if n ∈ S,
A2, if n /∈ S.

Here we consider a different question on pairs of structures.

Problem 1. For which pairs of structures A1,A2 is there a uniform effective
procedure that, given copies of both structures, unlabeled, always produces a copy
of A1?

To state the problem precisely, we first say how to give copies of the two structures
in a way that does not indicate which is which.

Definition 1 (unlabeled pair). LetL be a language consisting of relation symbols
Rj , and let A1,A2 be two L-structures. The unlabeled pair A1|A2 is the structure
B = (B,∼, (R∗

j )j) such that
1. ∼ is an equivalence relation on B with just two equivalence classes,
2. for each j,R∗

j (a relation of the same arity asRj) is the union of its restrictions
to the two ∼-classes, and

3. one of the two ∼-classes, with the restrictions of the relations R∗
j , forms an

L-structure isomorphic to A1, while the other ∼-class, with the restrictions of
the relations R∗

j , forms an L-structure isomorphic to A2.

Our languages are all computable. The formulas that we consider are all
elementary first order unless we specifically say otherwise. Our structures all have
universe a subset of !. We identify a structure A with its atomic diagram D(A),
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and we identify this, via Gödel numbering, with a subset of !, and then with the
characteristic function of that set. To make our problem precise, we need one more
definition—“Medvedev reducibility.”This is defined for arbitrary “problems,”where
a problem is a subset of !! .

Definition 2 (Medvedev reducibility). ForP,Q ⊆ !! , we say thatP isMedvedev
reducible to Q, and we write P ≤s Q, if there is a Turing operator that takes all
elements of Q to elements of P.

The problems that concern us consist of the copies of a given structure.

Notation. We writeA ≤s B if there is a Turing operator that takes copies of B to
copies of A.

Our problem is stated precisely as follows.

Problem 1. For which pairs of structures A1,A2 do we have A1 ≤s A1|A2?

Kalimullin [7] showed that there are structuresA and B such that for some b ∈ B,
A ≤s (B, b) but A ̸≤s B. Our problem is related to this. For a pair of structures
A1,A2, if B = A1|A2, then for any b ∈ B, we have A1 ≤s (B, b).

In Section 2, we give positive results saying that A1 ≤s A1|A2 under any of the
following general conditions.

1. A1 has a computable copy,
2. there is an existential sentence true in just one of A1,A2, and
3. A1,A2 satisfy the same existential sentences, but differ on some computable

infinitary Σ2 sentence.

Items (2) and (3) might suggest that if A1,A2 resemble each other a great deal,
thenA1 ̸≤s A1|A2. The orderings !CK

1 and !CK
1 (1 + #) satisfy the same Σα andΠα

sentences ofL!1! for all computable ordinalsα. However, in Section 3, we show that
!CK

1 ≤s !CK
1 |H . In Section 4, we describe the construction of a pair A1,A2 such

thatA1 ̸≤s A1|A2. In Section 5, we prove some helpful preliminary results on Cohen
forcing. In Section 6, we use these results to complete our proof that A1 ̸≤s A1|A2.

§2. Positive results.

Proposition 2.1. If A1 has a computable copy, then for all A2, A1 ≤s A1|A2.

Proof. IfA1 has a computable copy, then for theMedvedev reduction, we ignore
the input and just build a copy of A1. ⊣

Proposition 2.2. If there is an existential sentence true in just one ofA1,A2, then
A1 ≤s A1|A2.

Proof. Suppose A1 and A2 differ on the existential sentence ϕ. Let B be a copy
of A1|A2, with structures B1,B2 on the two ∼-classes. The Medvedev reduction
watches for evidence that ϕ is true in one of the structures Bi and then builds a copy
of the appropriate structure. ⊣

Proposition 2.3. Suppose A1,A2 satisfy the same existential sentences but differ
on some computable Σ2 sentence. Then A1 ≤s A1|A2.
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Proof. Let B be a copy of A1|A2, and let B1,B2 be the structures on the two
∼-classes in B. We build a copy C of A1, with universe !—we think of ! as a set of
constants. Let (αk)k∈! be a computable list of all atomic sentences in the language
L ∪ !. We proceed in stages. At stage s, we have a target structure, B1 or B2, which
we believe to be a copy ofA1. We determine a finite part ds of the diagram of C and
a finite partial isomorphism fs from C to the stage s target structure. We maintain
the following conditions:
1. fs is defined on all constants n that appear in the sentences of ds and
2. fs maps the constants in its domain to distinct elements of the target structure,

interpreting the constants, so as to make the sentences of ds true.
First, we describe a procedure to determine the stage s target structure. Suppose

ϕ is a computable Σ2 sentence true in just one of the structuresAi . For simplicity, we
suppose that ϕ is true inA1. We may suppose that ϕ has the form (∃x̄)%(x̄), where
%(x̄) is computable Π1. For each of the structures Bi , we have a computable list of
the tuples (b̄ik)k∈! in Bi appropriate to substitute for x̄. At stage 0 we arbitrarily let
B1 be the target structure, and we designate b̄10 as the target tuple.

Given the stage s target structure Bi and target tuple b̄ik , we let the stage s + 1
target structure and tuple be the same until/unless we find evidence that b̄ik fails
to satisfy %(x̄) in Bi . If we find such evidence, then we discard the target tuple
(permanently) and take the other structure as our target and the first tuple in it
not previously discarded as our target tuple. The computable Π1 formula %(x̄) is
a c.e. conjunction of finitary universal formulas %j(x̄) = (∀ūj)&j(ūj , x̄). At stage
s + 1, we check that Bi |= &j(d̄ , b̄ik) for the first s tuples d̄ appropriate for ūj , and
we discard b̄ik if this is not the case. Note that the target structure and target tuple
will eventually stabilize. The stable target structure will be the Bi that is a copy of
A1, and the stable target tuple will be the first tuple b̄ik that satisfies all of %(x̄).

Above, we assumed that the sentence ϕ is true in A1. Now, suppose that ϕ is
true in A2, not A1. In this case, our target structure at every stage is the opposite
of the one chosen above. At stage 0, the target structure is B2. At later stages, the
target structure is the opposite of the one in which we have a current target tuple
that might plausibly witness satisfaction of the computable Σ2 sentence (∃x̄)%(x̄).
Again the target structure and target tuple will stabilize. The stable target tuple will
satisfy%(x̄) in one of the structures Bi—the one isomorphic toA2. The stable target
structure is the other Bi—the one isomorphic to A1.

Having determined the target structure at stage s, we define fs and ds . We start
with d0 = ∅, and f0 = ∅. At stage s + 1, we let ds+1 be the result of adding one of
the sentences ±αs to ds , and we define fs+1 so that it makes the sentences of ds+1
true in the stage s + 1 target structure. There are two cases.

Case 1. Suppose the stage s + 1 target structure is the same as that at stage s.
Then fs+1 extends fs . We include in the domain of fs+1 any constants that appear in
αs , mapping those not in dom(fs) to the first few elements of the target structure not
in ran(fs). We let ds+1 be the result of adding to ds one of ±αs , chosen so that fs+1
makes the sentence true in the target structure.

Case 2. Suppose the stage s + 1 target structure differs from the stage s target
structure. Say that the conjunction of ds is &(d̄ ), where d̄ is the tuple of constants
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mentioned. The existential sentence (∃x̄)&(x̄) is true in the stage s target structure,
so it is also true in the stage s + 1 target structure. Say that the stage s + 1 target
structure is Bi , and take f mapping d̄ 1 – 1 to some tuple in Bi so as to make &(d̄ ) true.
Let fs+1 be an extension of f mapping any new constants that appear in αs to the first
few elements of the target structure not in ran(f). As in Case 1, we let ds+1 be the
result of adding±αs to ds so that fs+1 makes the sentence true in the target structure.

We let C be the structure with atomic diagram ∪sds . The target structure will
eventually stabilize. Say that for all t ≥ s , the target structure at stage t is Bi . This is
a copy of A1. The functions ft for t ≥ s form a chain, and the union F = ∪t≥sft

is an isomorphism from C onto Bi . So, C is a copy of A1, as required. ⊣

For a structure A, the jump is the structure A′ obtained by adding to A the
relations defined by computable Σ1 formulas. The important fact about the jump
structure is that for n ≥ 1, any relation defined in A by a computable Σn+1 formula
is defined in A′ by a computable Σn formula. See [12] for a discussion of jump
structures.

Recall that a structure A admits strong jump inversion if for any set X such that
X ′ computes a copy of A′, X computes a copy of A (see [3]).

Proposition 2.4. Suppose that A1 and A2 differ on a computable Σ3 sentence but
satisfy the same Σ2 sentences. Suppose also thatA1 admits strong jump inversion. Then
A1 ≤s A1|A2.

Proof. We have a uniform ∆02 procedure that, given a copy ofA1|A2, produces a
copy ofA′

1|A′
2. The computable Σ3 sentence that distinguishesA1 fromA2 translates

into a computable Σ2 sentence that distinguishesA′
1 fromA′

2. Proposition 2.3 yields
a copy of A′

1, computable in D(B)′. Since A1 admits strong jump inversion, we get
a copy that is computable in D(B). ⊣

The result above applies to some familiar classes of structures. By a well-known
result of Downey and Jockusch [5], Boolean algebras admit strong jump inversion.
By a result of Marker and Miller [10], differentially closed fields of characteristic 0
admit strong jump inversion.

§3. The orderings !CK
1 and H. Recall that !CK

1 is the first non-computable
ordinal. The Harrison ordering, denoted by H, is a computable ordering of type
!CK

1 (1 + #), with no infinite hyperarithmetical decreasing sequence. These two
orderings are similar—they satisfy the sameΣα sentences for all computable ordinals
α. Thus, the result below may seem surprising. We will give only a brief account of
the proof, with some references for the background. The material from this section
will not be used later.

Proposition 3.1. !CK
1 ≤s !CK

1 |H .

Before proving this, we say something about products of finite sequences, and of
trees (see [12]).

Definition 3. 1. For finite sequences '1 = (m1, ... , mk) and '2 = (n1, ... , nk),
of the same length, the product is '1 ∗ '2 = (⟨m1, n1⟩, ... , ⟨ms, ns⟩).
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2. For trees T1, T2 ⊆ !<! , the product tree is T1 ∗ T2, consisting of the sequences
'1 ∗ '2, for '1 ∈ T1 and '2 ∈ T2 ('1 and '2 have the same length).

Remarks. The tree rank (foundation rank) of the node '1 ∗ '2 in T1 ∗ T2
is the minimum of the ranks of '1 in T1 and '2 in T2. Then rk(T1 ∗ T2) =
min{rk(T1), rk(T2)}.

We turn to the proof of Proposition 3.1, saying that !CK
1 ≤s !CK

1 |H .

Proof. Given orderings B1,B2, one of type !CK
1 and the other of type !CK

1 (1 +
#), we apply a uniform effective procedure to obtain trees T1, T2, where Ti is the set
of finite decreasing sequences in Bi . Applying a second uniform effective procedure,
we obtain the product tree T1 ∗ T2. Since T!CK1

has no path, T1 ∗ T2 has no path.

Claim 1. T!CK1
has rank !CK

1 . To see this, note that in T!CK1
, for each node '

at level 1, the tree below ' consists of decreasing sequences of ordinals below some
computable ordinal α. For the tree T<α of sequences below α, the rank is α. These α’s
are the ranks of the nodes at level 1 in T!CK1

.

The tree TH of decreasing sequences in the Harrison ordering is unranked—the
fact that H is not well-ordered means that TH has paths. Since T!CK1

has rank !CK
1

and TH is unranked, T1 ∗ T2 has rank !CK
1 . Applying a third uniform effective

procedure, we form the Kleene–Brouwer ordering of the product tree. Recall that for
a tree T ⊆ !<! , the Kleene–Brouwer ordering KB(T ) is the ordering on T such
that ' <KB(T ) ( if either ' properly extends ( or else there is some k such that ', (
agree on the initial segment of length k, and '(k) < ((k). See [13] for more on the
Kleene–Brouwer ordering.

Claim 2. For each α, let T<α be the tree of decreasing sequences below the ordinal
α. Then KB(T<α) has type at most !α + 1. For a node of rank 0, the tree below has
just the top node ∅, and the order type of the Kleene–Brouwer ordering is 1. For a node
of rank 1, there may be infinitely many successors of rank 0, ordered in type !, so
the Kleene–Brouwer ordering has type at most ! + 1. For a node of rank α + 1, there
may be infinitely many successors of rank α, ordered in type !, so the ordering has
type at most ((!α + 1) · !) + 1 = !α+1 + 1. For α a limit ordinal, a node of rank α
may have successors of arbitrarily large ranks )n < α, and the ordering may have type
(
∑

n !
)n + 1) + 1 = !α + 1. For our product tree, of rank !CK

1 , the Kleene–Brouwer
has type !CK

1 + 1. Applying one final uniform effective procedure, we remove the top
node of the product tree, which is the last element in the Kleene–Brouwer ordering. The
result is an ordering of type !CK

1 . ⊣

§4. Construction of example—an outline. We believe that for most pairs of
structures A1,A2, there should not be a uniform Turing operator witnessing that
A1 ≤s A1|A2. However, at present, we have one specially constructed example for
which we can prove that A1 ̸≤s A1|A2, plus further examples obtained from this
one by well-known coding tricks.

4.1. Outline. The construction of the example is somewhat delicate. Here is the
outline.
1. Let X be a “sufficiently generic” subset of !.
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2. Split X into “even” and “odd” parts

X1 = {n : 2n ∈ X}, X2 = {n : 2n + 1 ∈ X}.

3. Let Si be the family of sets Y such that Xi∆Y is finite.
4. Let Ai be a graph coding the family Si .
We say more about the graphs that code the families of sets.

4.2. Graphs and enumerations.

Definition 4 (Daisies). For a set A, the daisy DA is an undirected graph
consisting of a center point with infinitely many cycles, which we call “petals.”
The petals all share the center point but are otherwise disjoint. There is a petal of
length

{
2n + 3, for n ∈ A,
2n + 4, for n /∈ A.

Definition 5 (Bunches of daisies). For a family S ⊆ P(!), GS is the undirected
graph with one connected component of form DA for each A ∈ S—that is all.

Our structures A1 and A2 are bunches of daisies; Ai = GSi , where Si is the set of
finite variants of Xi .

Definition 6. For a countable family S ⊆ P(!), an enumeration is a relation
R ⊆ !2 such that the family of sets Rn = {x : (n, x) ∈ R} is equal to S.

The following is well-known, and easy to prove (see [1]).

Lemma 4.1. There are uniformTuring operatorsΦ andΨ such that for all countable
families S,
1. Φ takes each copy of G(S) to an enumeration of S and
2. Ψ takes each enumeration of S to a copy of G(S).

4.3. Two kinds of forcing. To prove that A1 ̸≤s A1|A2, we borrow ideas from
Lachlan and Soare, who, in [8, 9 ], proved some results on enumerations of families
of sets related to arithmetic. We say just a little about the results, leaving certain
terms—Scott set, Turing ideal—undefined, since these things are not involved in our
construction. Let A be the family of arithmetical sets. The main result of [9] says
that there is an enumeration E of a Scott set S ⊇ A such that E does not compute
an enumeration of A. In the proof, the Scott set S is the Turing ideal generated by
the arithmetical sets and a Cohen generic X, and E is a generic enumeration of S.
We use the same two kinds of forcing to produce the generic set X, and to produce
generic enumerations of the families S1, S2, derived from X.

Each forcing language includes the language of arithmetic—the language of the
structureN = (!,+, ·, <, 0, S). We use relation symbols for the operations + and ·,
but S is denoted by an operation symbol, and 0 is a constant. Each natural number
is named by a unique term. We write n as an abbreviation for the unique term Sn(0)
that names the number n.

We have indicated how we will construct the structures A1,A2. In Section 5,
we describe Cohen generics, and say how certain variants of a Cohen generic are
themselves Cohen generic.
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§5. Cohen forcing. To produce the generic set X, we use Cohen forcing. The
forcing conditions are elements of 2<! . As we said in the outline, we will split X
into the even partX1 = {n : 2n ∈ X}, and the odd partX2 = {n : 2n + 1 ∈ X}. The
family S1 consists of the sets that differ finitely from X1 and the family S2 consists
of the sets that differ finitely from X2.

Lemma 5.1. There are elementary first order formulas that, for all sets U, define in
(N , U ) the even and odd parts U1, U2.

Proof. We have x ∈ U1 iff (∃y)2y ∈ U , and x ∈ U2 iff (∃y)2y + 1 ∈ U . ⊣

For a set U, let S(U ) be the set of finite variants of U. These variants have the
form (U ∪Dn1) – Dn2 , where (Dn)n∈! is the standard computable list of finite sets.

Definition 7. For a set U, the special enumeration of the set S(U ) is the
enumeration E such that for n = ⟨n1, n2⟩, En = (U ∪Dn1) – Dn2 .

The following is clear from the definition.

Lemma 5.2. There is an elementary first order formula E(U, n, x) that, for all U,
defines in (N , U ) the special enumeration of S(U ).

Then the following is also clear.

Lemma 5.3. There are elementary first order formulas that, for all sets U, define in
(N , U ) the special enumerations P of S(U1) and Q of S(U2).

Our forcing language is the elementary first order language of the structure
(N , U ). The special enumerations P,Q of S(U1), S(U2) are defined in (N , U ).
We define the forcing relation p !C ϕ, for p ∈ 2<! and ϕ an elementary first order
sentence in the forcing language.

Definition 8 (Forcing).

1. If ϕ is an atomic sentence in the language of N , then p !C ϕ if N |= ϕ,
2. p !C U (m) if m ∈ dom(p) and p(m) = 1,
3. p !C (ϕ ∨ %) if p !C ϕ or p !C %,
4. p !C (ϕ & %) if p !C ϕ and p !C %,
5. p !C ¬ϕ if there is no q ⊇ p such that q !C ϕ, and
6. p !C (∃x)ϕ(x) if p !C ϕ(n) for some n.

Note: We omit the clause for the universal quantifier, thinking of (∀x)ϕ as an
abbreviation for ¬(∃x)¬ϕ.

The usual forcing lemmas hold.

Definition 9 (Generic Sets). A set U ⊆ ! is generic if for each elementary first
order sentence ϕ in the forcing language, there is some forcing condition p ⊆ *U
that decides ϕ; i.e., either p !C ϕ or p !C ¬ϕ.

5.1. Modifying a Cohen generic. We consider ways to modify a Cohen generic to
produce further Cohen generics. These results are somewhat similar to results by
Cohen in the context of finding models of set theory in which the axiom of choice
does not hold. These results showed that a permutation fixing all but finitely many
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elements of a model preserves the forcing relation between forcing conditions and
sentences after each is acted upon by that permutation [4].

We have already mentioned the even and odd parts U1, U2 of a generic U. In
Lemma 5.1, we saw that U1, U2 are definable in (N , U ). We mention two further
kinds of modification that will be of special importance.

Definition 10 (Switch). For a set U ⊆ !, the switch is

Us = {2n : 2n + 1 ∈ U} ∪ {2n + 1 : 2n ∈ U} .

Note that (Us)1 = U2 and (Us)2 = U1.

The following is clear from the definition.

Lemma 5.4. There is an elementary first order formula that, for all U, defines Us

in (N , U ).

We will see that if U is generic, then so is Us .

Definition 11 (Finite variant). If X is generic, and p ∈ 2<! , then Xp is the set
Y such that

*Y (x) =
{
p(x), if x ∈ dom(p),
*X (x), if x /∈ dom(p).

Lemma 5.5. For each p ∈ 2<! , there is an elementary first order formula that, for
all U, defines Up in (N , U ).

Proof. Suppose p has length n. Then we have the definition
∨

k<n,p(k)=1

x = k ∨ (x > n & Ux). ⊣

We will see that ifU is generic, then for all p ∈ 2<! ,Up is also generic. Note that
if U is generic and p ∈ 2<! , we may form the swap Us and then the finite variant
Usp = (Us)p. This will be generic.

We give a general result with conditions guaranteeing that a modification of a
generic set is generic. Our modifications will be definable in terms of the original
generic.

Definition 12. Let ϕ(U, x) be a formula in the language of arithmetic expanded
by the unary predicate U. We write Uϕ for the set {n : (N , U ) |= ϕ(n)}.

For an elementary first order formula % = %(U, x̄) in the forcing language, the
predicate U occurs in atomic sub-formulas of the form U(, where ( is a term in the
language of arithmetic. By our choice of language, each term is either a variable or
the name for some natural number n. We have said that we may write n for the name.

Definition 13. We write %(Uϕ , x̄) for the result of replacing all atomic sub-
formulas of % of form U( by ϕ(U, ().

For a formula ϕ(U, x), we define a function F ϕ on forcing conditions that might
determine a generic U.

Definition 14. Let ϕ = ϕ(U, x) be a formula in the forcing language, with just
the free variable x. For p ∈ 2<! , let F ϕ(p) consist of the pairs (n, 1) such that for
all p′ ⊇ p, p′ ̸!C ¬ϕ(n) and (n, 0) such that for all p′ ⊇ p, p′ ̸!C ϕ(n).
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From the definition, it is immediate that F ϕ(p) is a partial function from ! to
2—the domain need not be a natural number. The following is clear.

Lemma 5.6. If p′ ⊇ p, then F ϕ(p′) ⊇ F ϕ(p).

Here is the general result giving conditions on the formulaϕ sufficient to guarantee
that if U is generic, then Uϕ is also generic.

Theorem 5.7. Let ϕ = ϕ(U, x) be a formula in the forcing language, with just the
free variable x. Suppose the following conditions are satisfied:
1. for all p ∈ 2<! , the partial function F ϕ(p) is finite and
2. for each q ∈ 2<! such that q ⊇ F ϕ(p), there is some p′ ∈ 2<! such that p′ ⊇ p

and F ϕ(p′) ⊇ q.
Then if U is generic, Uϕ is also generic.

Remark. Condition (1) does not imply that F ϕ(p) is a forcing condition—it
may be defined on m and not on some k < m.

To prove Theorem 5.7, we first prove two lemmas.

Lemma 5.8. For all sentences %(U ) in the forcing language, and all p ∈ 2<! , the
following are equivalent:
1. (∃p′ ⊇ p)p′ !C %(Uϕ) and
2. (∃q ⊇ F ϕ(p))q !C %(U ).

Proof. We proceed by induction on the sentences % in the forcing language.
1. Suppose% = %(Uϕ) is an atomic sentence in the language of arithmetic. Then
%(U ) = %(Uϕ). Any and all forcing conditions force % just in case it is true
in N . So, the statement holds for %.

2. Suppose % is Un. We have Uϕn = ϕ(n). Suppose (∃p′ ⊇ p)p′ !C ϕ(n). By
Lemma 5.6, F ϕ(p′) ⊇ F ϕ(p). If p′ !C %(Uϕ), then F ϕ(p′) maps n to 1, and
any and all forcing conditions q ⊇ F ϕ(p′) must force Un. Suppose (∃q ⊇
F ϕ(p))q !C Un. By assumption, there is some p′ ⊇ p such that F ϕ(p′) ⊇ q.
No extension of p′ forces ¬ϕ(n), so some p′′ ⊇ p′ must force ϕ(n), which is
Uϕ(n).

3. Consider (%1 ∨ %2). If some p′ ⊇ p forces (%1 ∨ %2)(Uϕ), it forces one of the
disjuncts %i(Uϕ). By HI, some q ⊇ F ϕ(p) forces %i(U ), so it forces (%1 ∨
%2)(U ). If some q ⊇ F ϕ(p) forces (%1 ∨ %2)(U ), it forces one of the disjuncts
%i(U ). By HI, some p′ ⊇ p forces %i(Uϕ), and then it forces (%1(Uϕ) ∨
%2(Uϕ)) = (%1 ∨ %2)(Uϕ).

4. Consider (%1 & %2). Suppose some p′ ⊇ p forces (%1 & %2)(Uϕ). Then p′

forces both of the conjuncts %i(Uϕ). By HI, there exists q1 ⊇ F ϕ(p) such that
q1 forces %1(U ). There exists p′′ ⊇ p′ such that F ϕ(p′′) ⊇ q1. Then p′′ forces
%2(Uϕ). By HI, there is some q2 ⊇ F ϕ(p′′) such that q2 forces %2(U ). Since
q2 ⊇ q1, it also forces %1(U ), so it forces the conjunction. Now, suppose some
q ⊇ F ϕ(p) forces (%1 & %2)(U ). This q forces both conjuncts %i(U ). Take
p′ ⊇ p such that F ϕ(p′) ⊇ q, and let q′ ⊇ F ϕ(p′). Then q′ forces %1(U ). By
HI, there is some p′′ ⊇ p′ such that p′′ forces %1(Uϕ). Take q′′ ⊇ F ϕ(p′′).
Then q′′ forces %2(U ), so by HI, there is some p′′′ ⊇ p′′ such that p′′′ forces
%2(Uϕ). Since p′′′ ⊇ p′′, it forces %1(Uϕ), so it forces the conjunction.



10 RACHAEL ALVIR ET AL.

5. Consider (∃x)%(x). Suppose p′ ⊇ p forces ((∃x)%(x))(Uϕ). Then p′ forces
(%(n))(Uϕ) for some n. By HI, there exists q ⊇ F ϕ(p) forcing (%(n))(U ) and
therefore forcing ((∃x)%(x))(U ). Suppose q ⊇ F ϕ(p) forces ((∃x)%(x))(U ).
Then q forces %(n)(U ), for some n. By HI, there exists p′ ⊇ p forcing
%(n)(Uϕ), and then p′ forces ((∃x)%(x))(Uϕ).

6. Consider ¬%. Suppose (∃p′ ⊇ p)p′ !C ¬%(Uϕ). For q ⊇ F ϕ(p′), our
assumption gives p′′ ⊇ p′ such that F ϕ(p′′) ⊇ q. We cannot have q forcing
%(U ), for then there would be p′′ ⊇ p′ forcing %(Uϕ). So, any q ⊇ F ϕ(p′)
must force ¬%(Uϕ). Now, suppose (∃q ⊇ F ϕ(p) such that q !C ¬%. Take
p′ ⊇ p such that F ϕ(p′) ⊇ q. No extension of p′ can force %(Uϕ), for then
there would be q′′ ⊇ F ϕ(p′) forcing %(U ). ⊣

Lemma 5.9. For all sentences %(U ) in the forcing language and all p, if p !C

%(Uϕ), then for all forcing conditions q ⊇ F ϕ(p), q !C %(U ).

Proof. Again we proceed by induction on %

1. If % is an atomic sentence in the language of arithmetic, then %(U ) = %(Uϕ),
and all forcing conditions force % just in case it is true in N .

2. Let % have form Un. Then %(Uϕ) = ϕ(U, n). If p !C ϕ(U, n), then
F ϕ(p)(n) = 1. For all forcing conditions q ⊇ F ϕ(p), q(n) = 1, so q !C Un.

3. Consider (%1 ∨ %2). If p !C (%1 ∨ %2)(Uϕ), then p forces one of the disjuncts
%i(Uϕ). By HI, all q ⊇ F ϕ(p) force %i(U ), so they force the disjunction.

4. Consider (%1 & %2). If p !C (%1 & %2)(Uϕ), then p forces both conjuncts
%i(Uϕ). By HI, any q ⊇ F ϕ(p) must force both of the conjuncts %i(U ), so it
forces the conjunction.

5. Consider (∃x)%(x). If p !C ((∃x)%)(Uϕ), then p forces %(n)(Uϕ), for some
n. By HI, any q ⊇ F ϕ(p) must force %(n)(U ), so it forces ((∃x)%)(U ).

6. Suppose p !C ¬%(Uϕ). Take q ⊇ F ϕ(p). By Lemma 5.8, since no extension
of p forces %(Uϕ), no extension of q forces %(U ). This means that q forces
¬%(U ). ⊣

We are ready to complete the proof of Theorem 5.7. We assume thatU is generic.
To show that Uϕ is also generic, we must show that for each sentence %(U ), there
is some forcing condition q ⊆ *Uϕ such that q decides %(U ).

Proof ofTheorem5.7. Let%(U ) be a sentence in the forcing language. SinceU is
generic, there is some p ⊆ *U such that p decides the sentence%(Uϕ). Without loss,
suppose p forces%(Uϕ). Now, F ϕ(p) ⊆ *Uϕ . Moreover, there is a forcing condition
q (with domain a natural number) such that F ϕ(p) ⊆ q ⊆ *Uϕ . By Lemma 5.9, this
q must force %(U ). ⊣

We turn to the specific modifications that we need.

Corollary 5.10. If U is generic, then so are U1, U2.

Proof. We consider U1. Let ϕ be the formula from Lemma 5.1 defining U1 in
(N , U ). For each p, F ϕ(p) consists of the pairs (n, i) such that 2n ∈ dom(p) and
p(2n) = i , for i = 0, 1. This is a finite function. For q ⊇ F ϕ(p), of length n, let
p′ be an extension of p of length 2n such that p′(2k) = q(k), for all k < n. Then
F ϕ(p′) ⊇ q. Applying Theorem 5.7, we get the fact that U1 is generic. ⊣
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Corollary 5.11. If U is generic, then Us is also generic.

Proof. Let ϕ be the formula from Lemma 5.4, defining Us in (N , U ). For
each p, F ϕ(p) consists of the pairs (2k, 1) where p(2k + 1) = 1, (2k + 1, 1), where
p(2k) = 1, (2k, 0),wherep(2k + 1) = 0, and (2k + 1, 0),wherep(2k + 1) = 1.This
is finite. Suppose q ⊇ F ϕ(p). We extend q if necessary so that the length is even.
We then define p′ ⊇ p, of the same length as q, so that if 2m is an even element of
dom(q), then p′(2m + 1) = q(2m), and if 2m + 1 is an odd element of dom(q), then
p′(2m) = q(2m + 1). Then F ϕ(p′) ⊇ q. Applying Theorem 5.7, we get the fact that
Us is generic. ⊣

Corollary 5.12. If U is generic and r ∈ 2<! , then Ur is generic.

Proof. Let ϕ be the formula from Lemma 5.5, defining Ur in (N , U ). For
each p, F ϕ(p) consists of the pairs (k, 1) such that k ∈ dom(r) and r(k) = 1 or
k ∈ dom(p) – dom(r) and p(k) = 1, and the pairs (k, 0) such that k ∈ dom(r) and
r(k) = 0 or k ∈ dom(p) – dom(r) and p(k) = 0. This is a finite function. For a
forcing condition q ⊇ F ϕ(p), let p′ ⊇ p be the function of the same length as
q, such that for k ∈ dom(q) – dom(p), p′(k) = q(k). Then F ϕ(p′) ⊇ q. Applying
Theorem 5.7, we get the fact that Ur is generic. ⊣

§6. Completing the example. In the previous section, we talked about Cohen
forcing.We say a little about generic enumerations. Then we complete the proof that
our example works.

6.1. Generic enumerations. For an arbitrary setU ⊆ !, we can form the even and
odd parts U1, U2, and we get the families of sets S1, S2 consisting of finite variants
ofU1, U2, respectively. We obtain special enumerations P of S1 andQ of S2, defined
in (N , U ) by elementary first order formulas—these formulas are the same for all
U. For convenience, we consider the “base” structure to be (N , U, P,Q) instead of
(N , U ). We produce generic enumerations R1, R2 of the families S1, S2. We obtain
R1, R2 from a generic pair of functions f, g ∈ !! . The set with R1-index n is the
one with P-index f(n), and the set with R2-index n is the one with Q-index g(n).
The forcing conditions are pairs (', () ∈ !<! × !<!—representing possible initial
segments of (f, g). We define the relation (', () !E ϕ, for elementary first order
sentences ϕ in the language of the structure (N , U, P,Q,R1, R2). We use binary
relation symbols for the enumerations P,Q,R1, R2.

Definition 15.
1. For an atomic sentence ϕ in the language of the base structure (N , U, P,Q),

(', () !E ϕ if (N , U, P,Q) |= ϕ,
2. for ϕ of the form R1(m, n), (', () !E α if m ∈ dom(') and for k = '(m),

P(k, n) holds,
3. for ϕ of form R2(m, n), (', () !E ϕ if m ∈ dom(() and for k = ((m), Q(k, n)

holds,
4. (', () !E (ϕ ∨ %) if (', () !E ϕ or (', () !E %,
5. (', () forces (ϕ & %) if it forces both ϕ and %,
6. (', () !E ¬ϕ if there do not exist ('′, (′) ⊇ (', () such that ('′, (′) !E ϕ, and
7. (', () !E (∃x)ϕ(x) if (', () !E ϕ(n) for some n.
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For an arbitrary set U ⊆ !, let U1, U2 be the even and odd parts, let S1, S2
be the family of finite variants of U1, U2, respectively, and let P, S be the special
enumerations of S1, S2.

Definition 16. A chain of forcing conditions ('n, (n)n∈! is a complete forcing
sequence if for each elementary first order sentenceϕ in the forcing language, there is
some n such that ('n, (n) decidesϕ, for eachm, there is some n such that n ∈ ran('n),
and for each m, there is some n such that n ∈ ran((n).

The usual forcing lemmas hold, so that complete forcing sequences exist. For a
complete forcing sequence ('n, (n)n∈! , we get a pair of permutations of! f = ∪n'n
and g = ∪n'n. The pair of permutations yields a pair of enumerations R1 of S1 and
R2 of S2, where the set with R1-index n is the one with P-index f(n) and the set
with R2-index n is the one with Q-index g(n).

Definition 17. For families S1, S2 obtained from a set U as above, we say that
R1, R2 are a generic pair of enumerations of S1, S2 if they are obtained from a
complete forcing sequence—chosen to decide all sentences in the forcing language.

The lemma stated below says precisely how we can define forcing of statements
about the generic enumerations in the language appropriate for describing theCohen
generic.

Recall that if U is an arbitrary subset of !, we have even and odd parts U1, U2,
with families S1 and S2 consisting of the finite variants of U1, U2, respectively, and
we have special enumerations P and Q, defined from U, in a uniform way. For any
U, the forcing conditions for producing generic enumerations R1, R2 of the families
S1, S2 are the same.

Lemma 6.1 (Definability of forcing). For each formula ϕ(x̄) in the language of
(N , U, P,Q,R1, R2), there is a formula Forceϕ(u, v, x̄) in the language of (N , U, P,Q)
such that for all sets U, with resulting special enumerations P,Q, for all forcing
conditions (', () ( for producing generic enumerations) and all n̄ appropriate for x̄,
(', () !E ϕ(n̄) iff (N , X, P,Q) |= Forceϕ(', (, n̄).

Proof. First, in the language of arithmetic, we have a formulaforce(u, v) saying
that the pair (u, v) is a forcing condition; i.e., u, v are codes for finite partial 1 – 1
functions. We define the formulas Forceϕ(u, v, x̄) by induction on formulas ϕ(x̄).

1. For ϕ(x̄) an atomic formula in the language of (N , U, P,Q), Forceϕ(u, v, x̄) is
the formula (force(u, v) & ϕ(x̄)), saying that (u, v) is a forcing condition and
ϕ(x̄) holds,

2. for ϕ of the form R1(x, y), Forceϕ(u, v, x, y) is the conjunction of force(u, v)
with the formula saying that x ∈ dom(u) and P(u(x), y),

3. forϕ of formR2(x, y), Forceϕ(u, v, x, y) is the conjunction offorce(u, v) with
the formula saying that x ∈ dom(v) and Q(v(x), y),

4. Force(ϕ∨%)(u, v, (̄x)) = (Forceϕ(u, v, x̄) ∨ Force%(u, v, x̄)),
5. Force(ϕ & %)(u, v, (̄x)) = (Forceϕ(u, v, x̄) & Force%(u, v, x̄)),
6. Force¬ϕ(u, v, x̄) says that for all u′ ⊇ u and v′ ⊇ v, ¬Forceϕ(u′, v′, x̄), and
7. for ϕ(x̄) = (∃y)%(x̄, y), Forceϕ(u, v, x̄) = (∃y)Force%(u, v, x̄, y). ⊣
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6.1.1. Important sentences PCopye We identify R1 with a copy of A1, and R2
with a copy of A2. Effectively in these, we get B ∼= A1|A2, where in B, 0 is in the
equivalence class that is a copy ofA1. For each oracle procedure ϕe , we let PCopye
be the sentence saying that ϕB

e is an enumeration E of the same family of sets as
P. We identify E with a copy of the graph coding that family of sets. We may take
PCopye to start with a universal quantifier.

6.2. Completing the proof. We are ready to combine the two kinds of forcing to
show that our example has the desired properties.

Proposition 6.2. Let X be generic, and let A1,A2 be as described. Then A1 ̸≤s

A1|A2.

Proof. Suppose A1 ≤s A1|A2, witnessed by the Turing operator Φ = ϕe . We
expect a contradiction. For any generic pair of enumerations R1, R2 of the
families S1, S2 obtained from the even and odd parts of X, we must have
(N , X, P,Q,R1, R2) |= PCopye . Then (∅, ∅) !E PCopye . By definability of forcing,
(N , X, P,Q) |= ForcePCopye (∅, ∅). There must be some p, a forcing condition for
producing the Cohen generic X, such that p !C ForcePCopye (∅, ∅).

We consider the switch Xs , and then Xsp, where this is the extension of p that
agrees with Xs on all k /∈ dom(p). By the results on variants of Cohen generics,
Xs and Xsp are generic. Let X ∗

1 , X
∗
2 be the even and odd parts of Xsp. We can see

that S(X ∗
1 ) = S2 and S(X ∗

2 ) = S1. Let P∗, Q∗ be the special enumerations of S2, S1
defined in (N , X sp). LetR∗

1 , R
∗
2 be generic enumerations of S2, S1, obtained with the

base structure (N , X sp, P∗, Q∗). Then (N , X sp, P∗, Q∗, R∗
1 , R

∗
2 ) |= PCopye . But, let

us think what this means. The pair (R∗
1 , R

∗
2 ) yields a copy B∗ of A1|A2, and ϕB∗

e

gives a copy of the graph coding the family enumerated by P∗—this is A2. We have
the expected contradiction. This shows that A1 ̸≤s A1|A2. ⊣

§7. Conclusion. What we have constructed is a pair of graphs A1,A2 such that
A1 ̸≤s A1|A2. We can apply standard results to transform the graphs into groups or
fields.

Proposition 7.1. Let K1, K2 be two classes of structures, closed under isomor-
phism. Suppose we have uniform Turing operators Φ and Ψ such that Φ : K1 → K2,
where for A1,A2 ∈ K1, A1 ∼= A2 iff Φ(A1) ∼= Φ(A2), and for all A ∈ K1, Ψ takes
copies ofΦ(A) to copies ofA. Then forA1,A2 ∈ K ,Φ(A1) ≤s Φ(A1)|Φ(A2) implies
A1 ≤s A1|A2.

Proof. Let B1 = Φ(Ai). Supposing that B1 ≤s B1|B2 viaΘ, we show thatA1 ≤s

A1|A2. Given a copy of A1|A2, we apply Φ to produce a copy of B1|B2. Next, we
apply Θ to produce a copy of B1. Finally, we apply Ψ to get a copy of A1. ⊣

There are general results of Hirschfeldt et al. [6] that yield operators Φ and Ψ as
in the Proposition. The results of Hirschfeldt et al. can be applied when K1 is the
class of graphs and K2 is any of several familiar classes, including lattices, partial
orders, commutative semigroups, rings, integral domains, and nilpotent groups. A
result of Miller et al. [11] lets us add to this list the class of fields.
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So far, the examples we know with A1 ̸≤s A1|A2 are all derived from a generic
set. We have no general conditions that we can apply to already-existing structures
A1,A2 to show that A1 ̸≤s A1|A2.
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