COPYING ONE OF A PAIR OF STRUCTURES

RACHAEL ALVIR, HANNAH BURCHFIELD, AND JULIA F. KNIGHT

Abstract

We ask when, for a pair of structures $\mathcal{A}_{1}, \mathcal{A}_{2}$, there is a uniform effective procedure that, given copies of the two structures, unlabeled, always produces a copy of \mathcal{A}_{1}. We give some conditions guaranteeing that there is such a procedure. The conditions might suggest that for the pair of orderings \mathcal{A}_{1} of type $\omega_{1}^{C K}$ and \mathcal{A}_{2} of Harrison type, there should not be any such procedure, but, in fact, there is one. We construct an example for which there is no such procedure. The construction involves forcing. On the way to constructing our example, we prove a general result on modifying Cohen generics.

§1. Introduction. There are well-known results (see [1, 2]) putting conditions on a pair of structures $\mathcal{A}_{1}, \mathcal{A}_{2}$ such that for any Π_{α}^{0} set $S \subseteq \omega$, there is a uniformly computable sequence of structures $\left(\mathcal{C}_{n}\right)_{n \in \omega}$ with

$$
\mathcal{C}_{n} \cong \begin{cases}\mathcal{A}_{1}, & \text { if } n \in S, \\ \mathcal{A}_{2}, & \text { if } n \notin S\end{cases}
$$

Here we consider a different question on pairs of structures.
Problem 1. For which pairs of structures $\mathcal{A}_{1}, \mathcal{A}_{2}$ is there a uniform effective procedure that, given copies of both structures, unlabeled, always produces a copy of \mathcal{A}_{1} ?

To state the problem precisely, we first say how to give copies of the two structures in a way that does not indicate which is which.

Definition 1 (unlabeled pair). Let L be a language consisting of relation symbols R_{j}, and let $\mathcal{A}_{1}, \mathcal{A}_{2}$ be two L-structures. The unlabeled pair $\mathcal{A}_{1} \mid \mathcal{A}_{2}$ is the structure $\mathcal{B}=\left(B, \sim,\left(R_{j}^{*}\right)_{j}\right)$ such that

1. \sim is an equivalence relation on B with just two equivalence classes,
2. for each j, R_{j}^{*} (a relation of the same arity as R_{j}) is the union of its restrictions to the two \sim-classes, and
3. one of the two \sim-classes, with the restrictions of the relations R_{j}^{*}, forms an L-structure isomorphic to \mathcal{A}_{1}, while the other \sim-class, with the restrictions of the relations R_{j}^{*}, forms an L-structure isomorphic to \mathcal{A}_{2}.
Our languages are all computable. The formulas that we consider are all elementary first order unless we specifically say otherwise. Our structures all have universe a subset of ω. We identify a structure \mathcal{A} with its atomic diagram $D(\mathcal{A})$,

Received June 10, 2020.
2020 Mathematics Subject Classification. 03D99.
Key words and phrases. Turing operator, Cohen generic, generic enumeration of family
and we identify this, via Gödel numbering, with a subset of ω, and then with the characteristic function of that set. To make our problem precise, we need one more definition-"Medvedev reducibility." This is defined for arbitrary "problems," where a problem is a subset of ω^{ω}.

Definition 2 (Medvedev reducibility). For $P, Q \subseteq \omega^{\omega}$, we say that P is Medvedev reducible to Q, and we write $P \leq_{s} Q$, if there is a Turing operator that takes all elements of Q to elements of P.

The problems that concern us consist of the copies of a given structure.
Notation. We write $\mathcal{A} \leq_{s} \mathcal{B}$ if there is a Turing operator that takes copies of \mathcal{B} to copies of \mathcal{A}.

Our problem is stated precisely as follows.
Problem 1. For which pairs of structures $\mathcal{A}_{1}, \mathcal{A}_{2}$ do we have $\mathcal{A}_{1} \leq s \mathcal{A}_{1} \mid \mathcal{A}_{2}$?
Kalimullin [7] showed that there are structures \mathcal{A} and \mathcal{B} such that for some $b \in \mathcal{B}$, $\mathcal{A} \leq_{s}(\mathcal{B}, b)$ but $\mathcal{A} \not \leq_{s} \mathcal{B}$. Our problem is related to this. For a pair of structures $\mathcal{A}_{1}, \mathcal{A}_{2}$, if $\mathcal{B}=\mathcal{A}_{1} \mid \mathcal{A}_{2}$, then for any $b \in \mathcal{B}$, we have $\mathcal{A}_{1} \leq_{s}(\mathcal{B}, b)$.

In Section 2, we give positive results saying that $\mathcal{A}_{1} \leq_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$ under any of the following general conditions.

1. \mathcal{A}_{1} has a computable copy,
2. there is an existential sentence true in just one of $\mathcal{A}_{1}, \mathcal{A}_{2}$, and
3. $\mathcal{A}_{1}, \mathcal{A}_{2}$ satisfy the same existential sentences, but differ on some computable infinitary Σ_{2} sentence.
Items (2) and (3) might suggest that if $\mathcal{A}_{1}, \mathcal{A}_{2}$ resemble each other a great deal, then $\mathcal{A}_{1} Z_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$. The orderings $\omega_{1}^{C K}$ and $\omega_{1}^{C K}(1+\eta)$ satisfy the same Σ_{α} and Π_{α} sentences of $L_{\omega_{1} \omega}$ for all computable ordinals α. However, in Section 3, we show that $\omega_{1}^{C K} \leq_{s} \omega_{1}^{C K} \mid H$. In Section 4, we describe the construction of a pair $\mathcal{A}_{1}, \mathcal{A}_{2}$ such that $\mathcal{A}_{1} \not \mathbb{Z}_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$. In Section 5, we prove some helpful preliminary results on Cohen forcing. In Section 6, we use these results to complete our proof that $\mathcal{A}_{1} \not \leq_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$.

§2. Positive results.

Proposition 2.1. If \mathcal{A}_{1} has a computable copy, then for all $\mathcal{A}_{2}, \mathcal{A}_{1} \leq s \mathcal{A}_{1} \mid \mathcal{A}_{2}$.
Proof. If \mathcal{A}_{1} has a computable copy, then for the Medvedev reduction, we ignore the input and just build a copy of \mathcal{A}_{1}.

Proposition 2.2. If there is an existential sentence true in just one of $\mathcal{A}_{1}, \mathcal{A}_{2}$, then $\mathcal{A}_{1} \leq{ }_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$.

Proof. Suppose \mathcal{A}_{1} and \mathcal{A}_{2} differ on the existential sentence φ. Let \mathcal{B} be a copy of $\mathcal{A}_{1} \mid \mathcal{A}_{2}$, with structures $\mathcal{B}_{1}, \mathcal{B}_{2}$ on the two \sim-classes. The Medvedev reduction watches for evidence that φ is true in one of the structures \mathcal{B}_{i} and then builds a copy of the appropriate structure.

Proposition 2.3. Suppose $\mathcal{A}_{1}, \mathcal{A}_{2}$ satisfy the same existential sentences but differ on some computable Σ_{2} sentence. Then $\mathcal{A}_{1} \leq{ }_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$.

Proof. Let \mathcal{B} be a copy of $\mathcal{A}_{1} \mid \mathcal{A}_{2}$, and let $\mathcal{B}_{1}, \mathcal{B}_{2}$ be the structures on the two \sim-classes in \mathcal{B}. We build a copy \mathcal{C} of \mathcal{A}_{1}, with universe ω-we think of ω as a set of constants. Let $\left(\alpha_{k}\right)_{k \in \omega}$ be a computable list of all atomic sentences in the language $L \cup \omega$. We proceed in stages. At stage s, we have a target structure, \mathcal{B}_{1} or \mathcal{B}_{2}, which we believe to be a copy of \mathcal{A}_{1}. We determine a finite part d_{s} of the diagram of \mathcal{C} and a finite partial isomorphism f_{s} from \mathcal{C} to the stage s target structure. We maintain the following conditions:

1. f_{s} is defined on all constants n that appear in the sentences of d_{s} and
2. f_{s} maps the constants in its domain to distinct elements of the target structure, interpreting the constants, so as to make the sentences of d_{s} true.
First, we describe a procedure to determine the stage s target structure. Suppose φ is a computable Σ_{2} sentence true in just one of the structures \mathcal{A}_{i}. For simplicity, we suppose that φ is true in \mathcal{A}_{1}. We may suppose that φ has the form $(\exists \bar{x}) \psi(\bar{x})$, where $\psi(\bar{x})$ is computable Π_{1}. For each of the structures \mathcal{B}_{i}, we have a computable list of the tuples $\left(\bar{b}_{k}^{i}\right)_{k \in \omega}$ in \mathcal{B}_{i} appropriate to substitute for \bar{x}. At stage 0 we arbitrarily let \mathcal{B}_{1} be the target structure, and we designate \bar{b}_{0}^{1} as the target tuple.

Given the stage s target structure \mathcal{B}_{i} and target tuple \bar{b}_{k}^{i}, we let the stage $s+1$ target structure and tuple be the same until/unless we find evidence that \bar{b}_{k}^{i} fails to satisfy $\psi(\bar{x})$ in \mathcal{B}_{i}. If we find such evidence, then we discard the target tuple (permanently) and take the other structure as our target and the first tuple in it not previously discarded as our target tuple. The computable Π_{1} formula $\psi(\bar{x})$ is a c.e. conjunction of finitary universal formulas $\psi_{j}(\bar{x})=\left(\forall \bar{u}_{j}\right) \delta_{j}\left(\bar{u}_{j}, \bar{x}\right)$. At stage $s+1$, we check that $\mathcal{B}_{i} \models \delta_{j}\left(\bar{d}, \bar{b}_{k}^{i}\right)$ for the first s tuples \bar{d} appropriate for \bar{u}_{j}, and we discard \bar{b}_{k}^{i} if this is not the case. Note that the target structure and target tuple will eventually stabilize. The stable target structure will be the \mathcal{B}_{i} that is a copy of \mathcal{A}_{1}, and the stable target tuple will be the first tuple \bar{b}_{k}^{i} that satisfies all of $\psi(\bar{x})$.

Above, we assumed that the sentence φ is true in \mathcal{A}_{1}. Now, suppose that φ is true in \mathcal{A}_{2}, not \mathcal{A}_{1}. In this case, our target structure at every stage is the opposite of the one chosen above. At stage 0 , the target structure is \mathcal{B}_{2}. At later stages, the target structure is the opposite of the one in which we have a current target tuple that might plausibly witness satisfaction of the computable Σ_{2} sentence $(\exists \bar{x}) \psi(\bar{x})$. Again the target structure and target tuple will stabilize. The stable target tuple will satisfy $\psi(\bar{x})$ in one of the structures \mathcal{B}_{i}-the one isomorphic to \mathcal{A}_{2}. The stable target structure is the other \mathcal{B}_{i}-the one isomorphic to \mathcal{A}_{1}.

Having determined the target structure at stage s, we define f_{s} and d_{s}. We start with $d_{0}=\emptyset$, and $f_{0}=\emptyset$. At stage $s+1$, we let d_{s+1} be the result of adding one of the sentences $\pm \alpha_{s}$ to d_{s}, and we define f_{s+1} so that it makes the sentences of d_{s+1} true in the stage $s+1$ target structure. There are two cases.

Case 1. Suppose the stage $s+1$ target structure is the same as that at stage s. Then f_{s+1} extends f_{s}. We include in the domain of f_{s+1} any constants that appear in α_{s}, mapping those not in dom $\left(f_{s}\right)$ to the first few elements of the target structure not in ran $\left(f_{s}\right)$. We let d_{s+1} be the result of adding to d_{s} one of $\pm \alpha_{s}$, chosen so that f_{s+1} makes the sentence true in the target structure.

Case 2. Suppose the stage $s+1$ target structure differs from the stage starget structure. Say that the conjunction of d_{s} is $\delta(\bar{d})$, where \bar{d} is the tuple of constants
mentioned. The existential sentence $(\exists \bar{x}) \delta(\bar{x})$ is true in the stage starget structure, so it is also true in the stage $s+1$ target structure. Say that the stage $s+1$ target structure is \mathcal{B}_{i}, and take f mapping $\bar{d} 1-1$ to some tuple in \mathcal{B}_{i} so as to make $\delta(\bar{d})$ true. Let f_{s+1} be an extension of f mapping any new constants that appear in α_{s} to the first few elements of the target structure not in ran (f). As in Case 1, we let d_{s+1} be the result of adding $\pm \alpha_{s}$ to d_{s} so that f_{s+1} makes the sentence true in the target structure.

We let \mathcal{C} be the structure with atomic diagram $\cup_{s} d_{s}$. The target structure will eventually stabilize. Say that for all $t \geq s$, the target structure at stage t is \mathcal{B}_{i}. This is a copy of \mathcal{A}_{1}. The functions f_{t} for $t \geq s$ form a chain, and the union $F=\cup_{t \geq s} f_{t}$ is an isomorphism from \mathcal{C} onto \mathcal{B}_{i}. So, \mathcal{C} is a copy of \mathcal{A}_{1}, as required.

For a structure \mathcal{A}, the jump is the structure \mathcal{A}^{\prime} obtained by adding to \mathcal{A} the relations defined by computable Σ_{1} formulas. The important fact about the jump structure is that for $n \geq 1$, any relation defined in \mathcal{A} by a computable Σ_{n+1} formula is defined in \mathcal{A}^{\prime} by a computable Σ_{n} formula. See [12] for a discussion of jump structures.

Recall that a structure \mathcal{A} admits strong jump inversion if for any set X such that X^{\prime} computes a copy of \mathcal{A}^{\prime}, X computes a copy of \mathcal{A} (see [3]).

Proposition 2.4. Suppose that \mathcal{A}_{1} and \mathcal{A}_{2} differ on a computable Σ_{3} sentence but satisfy the same Σ_{2} sentences. Suppose also that \mathcal{A}_{1} admits strong jump inversion. Then $\mathcal{A}_{1} \leq_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$.

Proof. We have a uniform Δ_{2}^{0} procedure that, given a copy of $\mathcal{A}_{1} \mid \mathcal{A}_{2}$, produces a copy of $\mathcal{A}_{1}^{\prime} \mid \mathcal{A}_{2}^{\prime}$. The computable Σ_{3} sentence that distinguishes \mathcal{A}_{1} from \mathcal{A}_{2} translates into a computable Σ_{2} sentence that distinguishes \mathcal{A}_{1}^{\prime} from \mathcal{A}_{2}^{\prime}. Proposition 2.3 yields a copy of \mathcal{A}_{1}^{\prime}, computable in $D(\mathcal{B})^{\prime}$. Since \mathcal{A}_{1} admits strong jump inversion, we get a copy that is computable in $D(\mathcal{B})$.

The result above applies to some familiar classes of structures. By a well-known result of Downey and Jockusch [5], Boolean algebras admit strong jump inversion. By a result of Marker and Miller [10], differentially closed fields of characteristic 0 admit strong jump inversion.
§3. The orderings $\omega_{1}^{C K}$ and \boldsymbol{H}. Recall that $\omega_{1}^{C K}$ is the first non-computable ordinal. The Harrison ordering, denoted by H, is a computable ordering of type $\omega_{1}^{C K}(1+\eta)$, with no infinite hyperarithmetical decreasing sequence. These two orderings are similar-they satisfy the same Σ_{α} sentences for all computable ordinals α. Thus, the result below may seem surprising. We will give only a brief account of the proof, with some references for the background. The material from this section will not be used later.

Proposition 3.1. $\omega_{1}^{C K} \leq_{s} \omega_{1}^{C K} \mid H$.
Before proving this, we say something about products of finite sequences, and of trees (see [12]).

Definition 3. 1. For finite sequences $\sigma_{1}=\left(m_{1}, \ldots, m_{k}\right)$ and $\sigma_{2}=\left(n_{1}, \ldots, n_{k}\right)$, of the same length, the product is $\sigma_{1} * \sigma_{2}=\left(\left\langle m_{1}, n_{1}\right\rangle, \ldots,\left\langle m_{s}, n_{s}\right\rangle\right)$.
2. For trees $T_{1}, T_{2} \subseteq \omega^{<\omega}$, the product tree is $T_{1} * T_{2}$, consisting of the sequences $\sigma_{1} * \sigma_{2}$, for $\sigma_{1} \in T_{1}$ and $\sigma_{2} \in T_{2}$ (σ_{1} and σ_{2} have the same length).
Remarks. The tree rank (foundation rank) of the node $\sigma_{1} * \sigma_{2}$ in $T_{1} * T_{2}$ is the minimum of the ranks of σ_{1} in T_{1} and σ_{2} in T_{2}. Then $\operatorname{rk}\left(T_{1} * T_{2}\right)=$ $\min \left\{r k\left(T_{1}\right), r k\left(T_{2}\right)\right\}$.

We turn to the proof of Proposition 3.1, saying that $\omega_{1}^{C K} \leq_{s} \omega_{1}^{C K} \mid H$.
Proof. Given orderings $\mathcal{B}_{1}, \mathcal{B}_{2}$, one of type $\omega_{1}^{C K}$ and the other of type $\omega_{1}^{C K}(1+$ η), we apply a uniform effective procedure to obtain trees T_{1}, T_{2}, where T_{i} is the set of finite decreasing sequences in \mathcal{B}_{i}. Applying a second uniform effective procedure, we obtain the product tree $T_{1} * T_{2}$. Since $T_{\omega_{1}}$ K has no path, $T_{1} * T_{2}$ has no path.

Claim 1. $T_{\omega_{1}^{C K}}$ has rank $\omega_{1}^{C K}$. To see this, note that in $T_{\omega_{1}^{C K}}$, for each node σ at level 1 , the tree below σ consists of decreasing sequences of ordinals below some computable ordinal α. For the tree $T_{<\alpha}$ of sequences below α, the rank is α. These α 's are the ranks of the nodes at level 1 in $T_{\omega_{1}}$.

The tree T_{H} of decreasing sequences in the Harrison ordering is unranked-the fact that H is not well-ordered means that T_{H} has paths. Since $T_{\omega_{1}^{C K}}$ has rank $\omega_{1}^{C K}$ and T_{H} is unranked, $T_{1} * T_{2}$ has rank $\omega_{1}^{C K}$. Applying a third uniform effective procedure, we form the Kleene-Brouwer ordering of the product tree. Recall that for a tree $T \subseteq \omega^{<\omega}$, the Kleene-Brouwer ordering $K B(T)$ is the ordering on T such that $\sigma<_{K B(T)} \tau$ if either σ properly extends τ or else there is some k such that σ, τ agree on the initial segment of length k, and $\sigma(k)<\tau(k)$. See [13] for more on the Kleene-Brouwer ordering.

Claim 2. For each α, let $T_{<\alpha}$ be the tree of decreasing sequences below the ordinal α. Then $K B\left(T_{<\alpha}\right)$ has type at most $\omega^{\alpha}+1$. For a node of rank 0 , the tree below has just the top node \emptyset, and the order type of the Kleene-Brouwer ordering is 1 . For a node of rank 1, there may be infinitely many successors of rank 0 , ordered in type ω, so the Kleene-Brouwer ordering has type at most $\omega+1$. For a node of rank $\alpha+1$, there may be infinitely many successors of rank α, ordered in type ω, so the ordering has type at most $\left(\left(\omega^{\alpha}+1\right) \cdot \omega\right)+1=\omega^{\alpha+1}+1$. For α a limit ordinal, a node of rank α may have successors of arbitrarily large ranks $\beta_{n}<\alpha$, and the ordering may have type $\left(\sum_{n} \omega^{\beta_{n}}+1\right)+1=\omega^{\alpha}+1$. For our product tree, of rank $\omega_{1}^{C K}$, the Kleene-Brouwer has type $\omega_{1}^{C K}+1$. Applying one final uniform effective procedure, we remove the top node of the product tree, which is the last element in the Kleene-Brouwer ordering. The result is an ordering of type $\omega_{1}^{C K}$.
§4. Construction of example-an outline. We believe that for most pairs of structures $\mathcal{A}_{1}, \mathcal{A}_{2}$, there should not be a uniform Turing operator witnessing that $\mathcal{A}_{1} \leq s \mathcal{A}_{1} \mid \mathcal{A}_{2}$. However, at present, we have one specially constructed example for which we can prove that $\mathcal{A}_{1} Z_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$, plus further examples obtained from this one by well-known coding tricks.
4.1. Outline. The construction of the example is somewhat delicate. Here is the outline.

1. Let X be a "sufficiently generic" subset of ω.
2. Split X into "even" and "odd" parts

$$
X_{1}=\{n: 2 n \in X\}, \quad X_{2}=\{n: 2 n+1 \in X\} .
$$

3. Let S_{i} be the family of sets Y such that $X_{i} \Delta Y$ is finite.
4. Let \mathcal{A}_{i} be a graph coding the family S_{i}.

We say more about the graphs that code the families of sets.

4.2. Graphs and enumerations.

Definition 4 (Daisies). For a set A, the daisy D_{A} is an undirected graph consisting of a center point with infinitely many cycles, which we call "petals." The petals all share the center point but are otherwise disjoint. There is a petal of length

$$
\begin{cases}2 n+3, & \text { for } n \in A, \\ 2 n+4, & \text { for } n \notin A .\end{cases}
$$

Definition 5 (Bunches of daisies). For a family $S \subseteq P(\omega), G_{S}$ is the undirected graph with one connected component of form D_{A} for each $A \in S$-that is all.

Our structures \mathcal{A}_{1} and \mathcal{A}_{2} are bunches of daisies; $\mathcal{A}_{i}=G_{S_{i}}$, where S_{i} is the set of finite variants of X_{i}.

Definition 6. For a countable family $S \subseteq P(\omega)$, an enumeration is a relation $R \subseteq \omega^{2}$ such that the family of sets $R_{n}=\{x:(n, x) \in R\}$ is equal to S.

The following is well-known, and easy to prove (see [1]).
Lemma 4.1. There are uniform Turing operators Φ and Ψ such that for all countable families S,

1. Φ takes each copy of $G(S)$ to an enumeration of S and
2. Ψ takes each enumeration of S to a copy of $G(S)$.
4.3. Two kinds of forcing. To prove that $\mathcal{A}_{1} \not Z_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$, we borrow ideas from Lachlan and Soare, who, in [8, 9], proved some results on enumerations of families of sets related to arithmetic. We say just a little about the results, leaving certain terms-Scott set, Turing ideal-undefined, since these things are not involved in our construction. Let \mathcal{A} be the family of arithmetical sets. The main result of [9] says that there is an enumeration E of a Scott set $\mathcal{S} \supseteq \mathcal{A}$ such that E does not compute an enumeration of \mathcal{A}. In the proof, the Scott set S is the Turing ideal generated by the arithmetical sets and a Cohen generic X, and E is a generic enumeration of S. We use the same two kinds of forcing to produce the generic set X, and to produce generic enumerations of the families S_{1}, S_{2}, derived from X.

Each forcing language includes the language of arithmetic - the language of the structure $\mathcal{N}=(\omega,+, \cdot,<, 0, S)$. We use relation symbols for the operations + and \cdot, but S is denoted by an operation symbol, and 0 is a constant. Each natural number is named by a unique term. We write n as an abbreviation for the unique term $S^{n}(0)$ that names the number n.

We have indicated how we will construct the structures $\mathcal{A}_{1}, \mathcal{A}_{2}$. In Section 5, we describe Cohen generics, and say how certain variants of a Cohen generic are themselves Cohen generic.
§5. Cohen forcing. To produce the generic set X, we use Cohen forcing. The forcing conditions are elements of $2^{<\omega}$. As we said in the outline, we will split X into the even part $X_{1}=\{n: 2 n \in X\}$, and the odd part $X_{2}=\{n: 2 n+1 \in X\}$. The family S_{1} consists of the sets that differ finitely from X_{1} and the family S_{2} consists of the sets that differ finitely from X_{2}.

Lemma 5.1. There are elementary first order formulas that, for all sets U, define in (\mathcal{N}, U) the even and odd parts U_{1}, U_{2}.

Proof. We have $x \in U_{1}$ iff $(\exists y) 2 y \in U$, and $x \in U_{2}$ iff $(\exists y) 2 y+1 \in U$. $\quad \dashv$
For a set U, let $S(U)$ be the set of finite variants of U. These variants have the form $\left(U \cup D_{n_{1}}\right)-D_{n_{2}}$, where $\left(D_{n}\right)_{n \in \omega}$ is the standard computable list of finite sets.

Definition 7. For a set U, the special enumeration of the set $S(U)$ is the enumeration E such that for $n=\left\langle n_{1}, n_{2}\right\rangle, E_{n}=\left(U \cup D_{n_{1}}\right)-D_{n_{2}}$.

The following is clear from the definition.
Lemma 5.2. There is an elementary first order formula $E(U, n, x)$ that, for all U, defines in (\mathcal{N}, U) the special enumeration of $S(U)$.

Then the following is also clear.
Lemma 5.3. There are elementary first order formulas that, for all sets U, define in (\mathcal{N}, U) the special enumerations P of $S\left(U_{1}\right)$ and Q of $S\left(U_{2}\right)$.

Our forcing language is the elementary first order language of the structure (\mathcal{N}, U). The special enumerations P, Q of $S\left(U_{1}\right), S\left(U_{2}\right)$ are defined in (\mathcal{N}, U). We define the forcing relation $p \Vdash^{C} \varphi$, for $p \in 2^{<\omega}$ and φ an elementary first order sentence in the forcing language.

Definition 8 (Forcing).

1. If φ is an atomic sentence in the language of \mathcal{N}, then $p \Vdash^{C} \varphi$ if $\mathcal{N} \models \varphi$,
2. $p \Vdash^{C} U(m)$ if $m \in \operatorname{dom}(p)$ and $p(m)=1$,
3. $p \Vdash^{C}(\varphi \vee \psi)$ if $p \Vdash^{C} \varphi$ or $p \Vdash^{C} \psi$,
4. $p \Vdash^{C}(\varphi \& \psi)$ if $p \Vdash^{C} \varphi$ and $p \Vdash^{C} \psi$,
5. $p \Vdash^{C} \neg \varphi$ if there is no $q \supseteq p$ such that $q \Vdash^{C} \varphi$, and
6. $p \Vdash^{C}(\exists x) \varphi(x)$ if $p \Vdash^{C} \varphi(n)$ for some n.

Note: We omit the clause for the universal quantifier, thinking of $(\forall x) \varphi$ as an abbreviation for $\neg(\exists x) \neg \varphi$.

The usual forcing lemmas hold.
Definition 9 (Generic Sets). A set $U \subseteq \omega$ is generic if for each elementary first order sentence φ in the forcing language, there is some forcing condition $p \subseteq \chi_{U}$ that decides φ; i.e., either $p \Vdash^{C} \varphi$ or $p \Vdash^{C} \neg \varphi$.
5.1. Modifying a Cohen generic. We consider ways to modify a Cohen generic to produce further Cohen generics. These results are somewhat similar to results by Cohen in the context of finding models of set theory in which the axiom of choice does not hold. These results showed that a permutation fixing all but finitely many
elements of a model preserves the forcing relation between forcing conditions and sentences after each is acted upon by that permutation [4].

We have already mentioned the even and odd parts U_{1}, U_{2} of a generic U. In Lemma 5.1, we saw that U_{1}, U_{2} are definable in (\mathcal{N}, U). We mention two further kinds of modification that will be of special importance.

Definition 10 (Switch). For a set $U \subseteq \omega$, the switch is

$$
U^{s}=\{2 n: 2 n+1 \in U\} \cup\{2 n+1: 2 n \in U\} .
$$

Note that $\left(U^{s}\right)_{1}=U_{2}$ and $\left(U^{s}\right)_{2}=U_{1}$.
The following is clear from the definition.
Lemma 5.4. There is an elementary first order formula that, for all U, defines U^{s} in (\mathcal{N}, U).

We will see that if U is generic, then so is U^{s}.
Definition 11 (Finite variant). If X is generic, and $p \in 2^{<\omega}$, then X^{p} is the set Y such that

$$
\chi_{Y}(x)=\left\{\begin{array}{cc}
p(x), & \text { if } x \in \operatorname{dom}(p), \\
\chi_{X}(x), & \text { if } x \notin \operatorname{dom}(p) .
\end{array}\right.
$$

Lemma 5.5. For each $p \in 2^{<\omega}$, there is an elementary first order formula that, for all U, defines U^{p} in (\mathcal{N}, U).

Proof. Suppose p has length n. Then we have the definition

$$
\bigvee_{k<n, p(k)=1} x=k \vee(x>n \& U x)
$$

We will see that if U is generic, then for all $p \in 2^{<\omega}, U^{p}$ is also generic. Note that if U is generic and $p \in 2^{<\omega}$, we may form the swap U^{s} and then the finite variant $U^{s p}=\left(U^{s}\right)^{p}$. This will be generic.

We give a general result with conditions guaranteeing that a modification of a generic set is generic. Our modifications will be definable in terms of the original generic.

Definition 12. Let $\varphi(U, x)$ be a formula in the language of arithmetic expanded by the unary predicate U. We write U^{φ} for the set $\{n:(\mathcal{N}, U) \models \varphi(n)\}$.

For an elementary first order formula $\psi=\psi(U, \bar{x})$ in the forcing language, the predicate U occurs in atomic sub-formulas of the form $U \tau$, where τ is a term in the language of arithmetic. By our choice of language, each term is either a variable or the name for some natural number n. We have said that we may write n for the name.

Definition 13. We write $\psi\left(U^{\varphi}, \bar{x}\right)$ for the result of replacing all atomic subformulas of ψ of form $U \tau$ by $\varphi(U, \tau)$.

For a formula $\varphi(U, x)$, we define a function F^{φ} on forcing conditions that might determine a generic U.

Definition 14. Let $\varphi=\varphi(U, x)$ be a formula in the forcing language, with just the free variable x. For $p \in 2^{<\omega}$, let $F^{\varphi}(p)$ consist of the pairs $(n, 1)$ such that for all $p^{\prime} \supseteq p, p^{\prime} \|^{C} \neg \varphi(n)$ and $(n, 0)$ such that for all $p^{\prime} \supseteq p, p^{\prime} \|^{C} \varphi(n)$.

From the definition, it is immediate that $F^{\varphi}(p)$ is a partial function from ω to 2 -the domain need not be a natural number. The following is clear.

Lemma 5.6. If $p^{\prime} \supseteq p$, then $F^{\varphi}\left(p^{\prime}\right) \supseteq F^{\varphi}(p)$.
Here is the general result giving conditions on the formula φ sufficient to guarantee that if U is generic, then U^{φ} is also generic.

Theorem 5.7. Let $\varphi=\varphi(U, x)$ be a formula in the forcing language, with just the free variable x. Suppose the following conditions are satisfied:

1. for all $p \in 2^{<\omega}$, the partial function $F^{\varphi}(p)$ is finite and
2. for each $q \in 2^{<\omega}$ such that $q \supseteq F^{\varphi}(p)$, there is some $p^{\prime} \in 2^{<\omega}$ such that $p^{\prime} \supseteq p$ and $F^{\varphi}\left(p^{\prime}\right) \supseteq q$.
Then if U is generic, U^{φ} is also generic.
Remark. Condition (1) does not imply that $F^{\varphi}(p)$ is a forcing condition-it may be defined on m and not on some $k<m$.

To prove Theorem 5.7, we first prove two lemmas.
Lemma 5.8. For all sentences $\psi(U)$ in the forcing language, and all $p \in 2^{<\omega}$, the following are equivalent:

1. $\left(\exists p^{\prime} \supseteq p\right) p^{\prime} \Vdash^{C} \psi\left(U^{\varphi}\right)$ and
2. $\left(\exists q \supseteq F^{\varphi}(p)\right) q \Vdash^{C} \psi(U)$.

Proof. We proceed by induction on the sentences ψ in the forcing language.

1. Suppose $\psi=\psi\left(U^{\varphi}\right)$ is an atomic sentence in the language of arithmetic. Then $\psi(U)=\psi\left(U^{\varphi}\right)$. Any and all forcing conditions force ψ just in case it is true in \mathcal{N}. So, the statement holds for ψ.
2. Suppose ψ is $U n$. We have $U^{\varphi} n=\varphi(n)$. Suppose $\left(\exists p^{\prime} \supseteq p\right) p^{\prime} \Vdash^{C} \varphi(n)$. By Lemma 5.6, $F^{\varphi}\left(p^{\prime}\right) \supseteq F^{\varphi}(p)$. If $p^{\prime} \Vdash^{C} \psi\left(U^{\varphi}\right)$, then $F^{\varphi}\left(p^{\prime}\right)$ maps n to 1 , and any and all forcing conditions $q \supseteq F^{\varphi}\left(p^{\prime}\right)$ must force Un. Suppose $(\exists q \supseteq$ $\left.F^{\varphi}(p)\right) q \Vdash^{C} U n$. By assumption, there is some $p^{\prime} \supseteq p$ such that $F^{\varphi}\left(p^{\prime}\right) \supseteq q$. No extension of p^{\prime} forces $\neg \varphi(n)$, so some $p^{\prime \prime} \supseteq p^{\prime}$ must force $\varphi(n)$, which is $U^{\varphi}(n)$.
3. Consider $\left(\psi_{1} \vee \psi_{2}\right)$. If some $p^{\prime} \supseteq p$ forces $\left(\psi_{1} \vee \psi_{2}\right)\left(U^{\varphi}\right)$, it forces one of the disjuncts $\psi_{i}\left(U^{\varphi}\right)$. By HI, some $q \supseteq F^{\varphi}(p)$ forces $\psi_{i}(U)$, so it forces $\left(\psi_{1} \vee\right.$ $\left.\psi_{2}\right)(U)$. If some $q \supseteq F^{\varphi}(p)$ forces $\left(\psi_{1} \vee \psi_{2}\right)(U)$, it forces one of the disjuncts $\psi_{i}(U)$. By HI, some $p^{\prime} \supseteq p$ forces $\psi_{i}\left(U^{\varphi}\right)$, and then it forces $\left(\psi_{1}\left(U^{\varphi}\right) \vee\right.$ $\left.\psi_{2}\left(U^{\varphi}\right)\right)=\left(\psi_{1} \vee \psi_{2}\right)\left(U^{\varphi}\right)$.
4. Consider $\left(\psi_{1} \& \psi_{2}\right)$. Suppose some $p^{\prime} \supseteq p$ forces $\left(\psi_{1} \& \psi_{2}\right)\left(U^{\varphi}\right)$. Then p^{\prime} forces both of the conjuncts $\psi_{i}\left(U^{\varphi}\right)$. By HI, there exists $q_{1} \supseteq F^{\varphi}(p)$ such that q_{1} forces $\psi_{1}(U)$. There exists $p^{\prime \prime} \supseteq p^{\prime}$ such that $F^{\varphi}\left(p^{\prime \prime}\right) \supseteq q_{1}$. Then $p^{\prime \prime}$ forces $\psi_{2}\left(U^{\varphi}\right)$. By HI, there is some $q_{2} \supseteq F^{\varphi}\left(p^{\prime \prime}\right)$ such that q_{2} forces $\psi_{2}(U)$. Since $q_{2} \supseteq q_{1}$, it also forces $\psi_{1}(U)$, so it forces the conjunction. Now, suppose some $q \supseteq F^{\varphi}(p)$ forces $\left(\psi_{1} \& \psi_{2}\right)(U)$. This q forces both conjuncts $\psi_{i}(U)$. Take $p^{\prime} \supseteq p$ such that $F^{\varphi}\left(p^{\prime}\right) \supseteq q$, and let $q^{\prime} \supseteq F^{\varphi}\left(p^{\prime}\right)$. Then q^{\prime} forces $\psi_{1}(U)$. By HI, there is some $p^{\prime \prime} \supseteq p^{\prime}$ such that $p^{\prime \prime}$ forces $\psi_{1}\left(U^{\varphi}\right)$. Take $q^{\prime \prime} \supseteq F^{\varphi}\left(p^{\prime \prime}\right)$. Then $q^{\prime \prime}$ forces $\psi_{2}(U)$, so by HI, there is some $p^{\prime \prime \prime} \supseteq p^{\prime \prime}$ such that $p^{\prime \prime \prime}$ forces $\psi_{2}\left(U^{\varphi}\right)$. Since $p^{\prime \prime \prime} \supseteq p^{\prime \prime}$, it forces $\psi_{1}\left(U^{\varphi}\right)$, so it forces the conjunction.
5. Consider $(\exists x) \psi(x)$. Suppose $p^{\prime} \supseteq p$ forces $((\exists x) \psi(x))\left(U^{\varphi}\right)$. Then p^{\prime} forces $(\psi(n))\left(U^{\varphi}\right)$ for some n. By HI, there exists $q \supseteq F^{\varphi}(p)$ forcing $(\psi(n))(U)$ and therefore forcing $((\exists x) \psi(x))(U)$. Suppose $q \supseteq F^{\varphi}(p)$ forces $((\exists x) \psi(x))(U)$. Then q forces $\psi(n)(U)$, for some n. By HI, there exists $p^{\prime} \supseteq p$ forcing $\psi(n)\left(U^{\varphi}\right)$, and then p^{\prime} forces $((\exists x) \psi(x))\left(U^{\varphi}\right)$.
6. Consider $\neg \psi$. Suppose $\left(\exists p^{\prime} \supseteq p\right) p^{\prime} \Vdash^{C} \neg \psi\left(U^{\varphi}\right)$. For $q \supseteq F^{\varphi}\left(p^{\prime}\right)$, our assumption gives $p^{\prime \prime} \supseteq p^{\prime}$ such that $F^{\varphi}\left(p^{\prime \prime}\right) \supseteq q$. We cannot have q forcing $\psi(U)$, for then there would be $p^{\prime \prime} \supseteq p^{\prime}$ forcing $\psi\left(U^{\varphi}\right)$. So, any $q \supseteq F^{\varphi}\left(p^{\prime}\right)$ must force $\neg \psi\left(U^{\varphi}\right)$. Now, suppose $\left(\exists q \supseteq F^{\varphi}(p)\right.$ such that $q \Vdash^{C} \neg \psi$. Take $p^{\prime} \supseteq p$ such that $F^{\varphi}\left(p^{\prime}\right) \supseteq q$. No extension of p^{\prime} can force $\psi\left(U^{\varphi}\right)$, for then there would be $q^{\prime \prime} \supseteq F^{\varphi}\left(p^{\prime}\right)$ forcing $\psi(U)$.
Lemma 5.9. For all sentences $\psi(U)$ in the forcing language and all p, if $p \Vdash^{C}$ $\psi\left(U^{\varphi}\right)$, then for all forcing conditions $q \supseteq F^{\varphi}(p), q \Vdash^{C} \psi(U)$.

Proof. Again we proceed by induction on ψ

1. If ψ is an atomic sentence in the language of arithmetic, then $\psi(U)=\psi\left(U^{\varphi}\right)$, and all forcing conditions force ψ just in case it is true in \mathcal{N}.
2. Let ψ have form $U n$. Then $\psi\left(U^{\varphi}\right)=\varphi(U, n)$. If $p \Vdash^{C} \varphi(U, n)$, then $F^{\varphi}(p)(n)=1$. For all forcing conditions $q \supseteq F^{\varphi}(p), q(n)=1$, so $q \Vdash^{C} U n$.
3. Consider $\left(\psi_{1} \vee \psi_{2}\right)$. If $p \Vdash^{C}\left(\psi_{1} \vee \psi_{2}\right)\left(U^{\varphi}\right)$, then p forces one of the disjuncts $\psi_{i}\left(U^{\varphi}\right)$. By HI, all $q \supseteq F^{\varphi}(p)$ force $\psi_{i}(U)$, so they force the disjunction.
4. Consider $\left(\psi_{1} \& \psi_{2}\right)$. If $p \Vdash^{C}\left(\psi_{1} \& \psi_{2}\right)\left(U^{\varphi}\right)$, then p forces both conjuncts $\psi_{i}\left(U^{\varphi}\right)$. By HI, any $q \supseteq F^{\varphi}(p)$ must force both of the conjuncts $\psi_{i}(U)$, so it forces the conjunction.
5. Consider $(\exists x) \psi(x)$. If $p \Vdash^{C}((\exists x) \psi)\left(U^{\varphi}\right)$, then p forces $\psi(n)\left(U^{\varphi}\right)$, for some n. By HI, any $q \supseteq F^{\varphi}(p)$ must force $\psi(n)(U)$, so it forces $((\exists x) \psi)(U)$.
6. Suppose $p \Vdash^{C} \neg \psi\left(U^{\varphi}\right)$. Take $q \supseteq F^{\varphi}(p)$. By Lemma 5.8, since no extension of p forces $\psi\left(U^{\varphi}\right)$, no extension of q forces $\psi(U)$. This means that q forces $\neg \psi(U)$.

We are ready to complete the proof of Theorem 5.7. We assume that U is generic. To show that U^{φ} is also generic, we must show that for each sentence $\psi(U)$, there is some forcing condition $q \subseteq \chi_{U^{\varphi}}$ such that q decides $\psi(U)$.

Proof of Theorem 5.7. Let $\psi(U)$ be a sentence in the forcing language. Since U is generic, there is some $p \subseteq \chi_{U}$ such that p decides the sentence $\psi\left(U^{\varphi}\right)$. Without loss, suppose p forces $\psi\left(U^{\varphi}\right)$. Now, $F^{\varphi}(p) \subseteq \chi_{U^{\varphi}}$. Moreover, there is a forcing condition q (with domain a natural number) such that $F^{\varphi}(p) \subseteq q \subseteq \chi_{U^{\varphi}}$. By Lemma 5.9, this q must force $\psi(U)$.

We turn to the specific modifications that we need.
Corollary 5.10. If U is generic, then so are U_{1}, U_{2}.
Proof. We consider U_{1}. Let φ be the formula from Lemma 5.1 defining U_{1} in (\mathcal{N}, U). For each $p, F^{\varphi}(p)$ consists of the pairs (n, i) such that $2 n \in \operatorname{dom}(p)$ and $p(2 n)=i$, for $i=0,1$. This is a finite function. For $q \supseteq F^{\varphi}(p)$, of length n, let p^{\prime} be an extension of p of length $2 n$ such that $p^{\prime}(2 k)=q(k)$, for all $k<n$. Then $F^{\varphi}\left(p^{\prime}\right) \supseteq q$. Applying Theorem 5.7, we get the fact that U_{1} is generic.

Corollary 5.11. If U is generic, then U^{s} is also generic.
Proof. Let φ be the formula from Lemma 5.4, defining U^{s} in (\mathcal{N}, U). For each $p, F^{\varphi}(p)$ consists of the pairs $(2 k, 1)$ where $p(2 k+1)=1,(2 k+1,1)$, where $p(2 k)=1,(2 k, 0)$, where $p(2 k+1)=0$, and $(2 k+1,0)$, where $p(2 k+1)=1$. This is finite. Suppose $q \supseteq F^{\varphi}(p)$. We extend q if necessary so that the length is even. We then define $p^{\prime} \supseteq p$, of the same length as q, so that if $2 m$ is an even element of $\operatorname{dom}(q)$, then $p^{\prime}(2 m+1)=q(2 m)$, and if $2 m+1$ is an odd element of $\operatorname{dom}(q)$, then $p^{\prime}(2 m)=q(2 m+1)$. Then $F^{\varphi}\left(p^{\prime}\right) \supseteq q$. Applying Theorem 5.7, we get the fact that U^{s} is generic.

Corollary 5.12. If U is generic and $r \in 2^{<\omega}$, then U^{r} is generic.
Proof. Let φ be the formula from Lemma 5.5, defining U^{r} in (\mathcal{N}, U). For each $p, F^{\varphi}(p)$ consists of the pairs $(k, 1)$ such that $k \in \operatorname{dom}(r)$ and $r(k)=1$ or $k \in \operatorname{dom}(p)-\operatorname{dom}(r)$ and $p(k)=1$, and the pairs $(k, 0)$ such that $k \in \operatorname{dom}(r)$ and $r(k)=0$ or $k \in \operatorname{dom}(p)-\operatorname{dom}(r)$ and $p(k)=0$. This is a finite function. For a forcing condition $q \supseteq F^{\varphi}(p)$, let $p^{\prime} \supseteq p$ be the function of the same length as q, such that for $k \in \operatorname{dom}(q)-\operatorname{dom}(p), p^{\prime}(k)=q(k)$. Then $F^{\varphi}\left(p^{\prime}\right) \supseteq q$. Applying Theorem 5.7, we get the fact that U^{r} is generic.
§6. Completing the example. In the previous section, we talked about Cohen forcing. We say a little about generic enumerations. Then we complete the proof that our example works.
6.1. Generic enumerations. For an arbitrary set $U \subseteq \omega$, we can form the even and odd parts U_{1}, U_{2}, and we get the families of sets S_{1}, S_{2} consisting of finite variants of U_{1}, U_{2}, respectively. We obtain special enumerations P of S_{1} and Q of S_{2}, defined in (\mathcal{N}, U) by elementary first order formulas - these formulas are the same for all U. For convenience, we consider the "base" structure to be (\mathcal{N}, U, P, Q) instead of (\mathcal{N}, U). We produce generic enumerations R_{1}, R_{2} of the families S_{1}, S_{2}. We obtain R_{1}, R_{2} from a generic pair of functions $f, g \in \omega^{\omega}$. The set with R_{1}-index n is the one with P-index $f(n)$, and the set with R_{2}-index n is the one with Q-index $g(n)$. The forcing conditions are pairs $(\sigma, \tau) \in \omega^{<\omega} \times \omega^{<\omega}$-representing possible initial segments of (f, g). We define the relation $(\sigma, \tau) \Vdash^{E} \varphi$, for elementary first order sentences φ in the language of the structure ($\left.\mathcal{N}, U, P, Q, R_{1}, R_{2}\right)$. We use binary relation symbols for the enumerations P, Q, R_{1}, R_{2}.

Definition 15.

1. For an atomic sentence φ in the language of the base structure (\mathcal{N}, U, P, Q), $(\sigma, \tau) \Vdash^{E} \varphi$ if $(\mathcal{N}, U, P, Q) \models \varphi$,
2. for φ of the form $R_{1}(m, n),(\sigma, \tau) \Vdash^{E} \alpha$ if $m \in \operatorname{dom}(\sigma)$ and for $k=\sigma(m)$, $P(k, n)$ holds,
3. for φ of form $R_{2}(m, n),(\sigma, \tau) \Vdash^{E} \varphi$ if $m \in \operatorname{dom}(\tau)$ and for $k=\tau(m), Q(k, n)$ holds,
4. $(\sigma, \tau) \Vdash^{E}(\varphi \vee \psi)$ if $(\sigma, \tau) \Vdash^{E} \varphi$ or $(\sigma, \tau) \Vdash^{E} \psi$,
5. (σ, τ) forces $(\varphi \& \psi)$ if it forces both φ and ψ,
6. $(\sigma, \tau) \Vdash^{E} \neg^{\prime}$ if there do not exist $\left(\sigma^{\prime}, \tau^{\prime}\right) \supseteq(\sigma, \tau)$ such that $\left(\sigma^{\prime}, \tau^{\prime}\right) \Vdash^{E} \varphi$, and
7. $(\sigma, \tau) \Vdash^{E}(\exists x) \varphi(x)$ if $(\sigma, \tau) \Vdash^{E} \varphi(n)$ for some n.

For an arbitrary set $U \subseteq \omega$, let U_{1}, U_{2} be the even and odd parts, let S_{1}, S_{2} be the family of finite variants of U_{1}, U_{2}, respectively, and let P, S be the special enumerations of S_{1}, S_{2}.

Definition 16. A chain of forcing conditions $\left(\sigma_{n}, \tau_{n}\right)_{n \in \omega}$ is a complete forcing sequence if for each elementary first order sentence φ in the forcing language, there is some n such that $\left(\sigma_{n}, \tau_{n}\right)$ decides φ, for each m, there is some n such that $n \in \operatorname{ran}\left(\sigma_{n}\right)$, and for each m, there is some n such that $n \in \operatorname{ran}\left(\tau_{n}\right)$.

The usual forcing lemmas hold, so that complete forcing sequences exist. For a complete forcing sequence $\left(\sigma_{n}, \tau_{n}\right)_{n \in \omega}$, we get a pair of permutations of $\omega f=\cup_{n} \sigma_{n}$ and $g=\cup_{n} \sigma_{n}$. The pair of permutations yields a pair of enumerations R_{1} of S_{1} and R_{2} of S_{2}, where the set with R_{1}-index n is the one with P-index $f(n)$ and the set with R_{2}-index n is the one with Q-index $g(n)$.

Definition 17. For families S_{1}, S_{2} obtained from a set U as above, we say that R_{1}, R_{2} are a generic pair of enumerations of S_{1}, S_{2} if they are obtained from a complete forcing sequence - chosen to decide all sentences in the forcing language.

The lemma stated below says precisely how we can define forcing of statements about the generic enumerations in the language appropriate for describing the Cohen generic.

Recall that if U is an arbitrary subset of ω, we have even and odd parts U_{1}, U_{2}, with families S_{1} and S_{2} consisting of the finite variants of U_{1}, U_{2}, respectively, and we have special enumerations P and Q, defined from U, in a uniform way. For any U, the forcing conditions for producing generic enumerations R_{1}, R_{2} of the families S_{1}, S_{2} are the same.

Lemma 6.1 (Definability of forcing). For each formula $\varphi(\bar{x})$ in the language of $\left(\mathcal{N}, U, P, Q, R_{1}, R_{2}\right)$, there is a formula Force $\varphi(u, v, \bar{x})$ in the language of (\mathcal{N}, U, P, Q) such that for all sets U, with resulting special enumerations P, Q, for all forcing conditions (σ, τ) (for producing generic enumerations) and all \bar{n} appropriate for \bar{x}, $(\sigma, \tau) \Vdash^{E} \varphi(\bar{n})$ iff $(\mathcal{N}, X, P, Q) \models$ Force $_{\varphi}(\sigma, \tau, \bar{n})$.

Proof. First, in the language of arithmetic, we have a formula force (u, v) saying that the pair (u, v) is a forcing condition; i.e., u, v are codes for finite partial $1-1$ functions. We define the formulas $\operatorname{Force}_{\varphi}(u, v, \bar{x})$ by induction on formulas $\varphi(\bar{x})$.

1. For $\varphi(\bar{x})$ an atomic formula in the language of $(\mathcal{N}, U, P, Q), \operatorname{Force}_{\varphi}(u, v, \bar{x})$ is the formula $($ force $(u, v) \& \varphi(\bar{x}))$, saying that (u, v) is a forcing condition and $\varphi(\bar{x})$ holds,
2. for φ of the form $R_{1}(x, y)$, Force $_{\varphi}(u, v, x, y)$ is the conjunction of force (u, v) with the formula saying that $x \in \operatorname{dom}(u)$ and $P(u(x), y)$,
3. for φ of form $R_{2}(x, y)$, $\operatorname{Force}_{\varphi}(u, v, x, y)$ is the conjunction of force (u, v) with the formula saying that $x \in \operatorname{dom}(v)$ and $Q(v(x), y)$,
4. $\operatorname{Force}_{(\varphi \vee \psi)}(u, v, \overline{(x)})=\left(\operatorname{Force}_{\varphi}(u, v, \bar{x}) \vee \operatorname{Force}_{\psi}(u, v, \bar{x})\right)$,
5. $\operatorname{Force}_{(\varphi \& \psi)}(u, v, \overline{(x)})=\left(\operatorname{Force}_{\varphi}(u, v, \bar{x}) \& \operatorname{Force}_{\psi}(u, v, \bar{x})\right)$,
6. Force $\rightarrow_{\varphi}(u, v, \bar{x})$ says that for all $u^{\prime} \supseteq u$ and $v^{\prime} \supseteq v, \neg \operatorname{Force}_{\varphi}\left(u^{\prime}, v^{\prime}, \bar{x}\right)$, and
7. for $\varphi(\bar{x})=(\exists y) \psi(\bar{x}, y), \operatorname{Force}_{\varphi}(u, v, \bar{x})=(\exists y) \operatorname{Force}_{\psi}(u, v, \bar{x}, y)$.
6.1.1. Important sentences PCopy ${ }_{e}$ We identify R_{1} with a copy of \mathcal{A}_{1}, and R_{2} with a copy of \mathcal{A}_{2}. Effectively in these, we get $\mathcal{B} \cong \mathcal{A}_{1} \mid \mathcal{A}_{2}$, where in $\mathcal{B}, 0$ is in the equivalence class that is a copy of \mathcal{A}_{1}. For each oracle procedure φ_{e}, we let $P \operatorname{Cop} y_{e}$ be the sentence saying that $\varphi_{e}^{\mathcal{B}}$ is an enumeration E of the same family of sets as P. We identify E with a copy of the graph coding that family of sets. We may take $P C o p y_{e}$ to start with a universal quantifier.
6.2. Completing the proof. We are ready to combine the two kinds of forcing to show that our example has the desired properties.

Proposition 6.2. Let X be generic, and let $\mathcal{A}_{1}, \mathcal{A}_{2}$ be as described. Then $\mathcal{A}_{1} \not \leq_{s}$ $\mathcal{A}_{1} \mid \mathcal{A}_{2}$.

Proof. Suppose $\mathcal{A}_{1} \leq{ }_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$, witnessed by the Turing operator $\Phi=\varphi_{e}$. We expect a contradiction. For any generic pair of enumerations R_{1}, R_{2} of the families S_{1}, S_{2} obtained from the even and odd parts of X, we must have $\left(\mathcal{N}, X, P, Q, R_{1}, R_{2}\right) \models P C o p y_{e}$. Then $(\emptyset, \emptyset) \Vdash^{E} P C o p y_{e}$. By definability of forcing, $(\mathcal{N}, X, P, Q) \models$ Force $_{P C_{\text {opye }}}(\emptyset, \emptyset)$. There must be some p, a forcing condition for producing the Cohen generic X, such that $p \Vdash^{C}$ Force $_{P C o p y_{e}}(\emptyset, \emptyset)$.

We consider the switch X^{s}, and then $X^{s p}$, where this is the extension of p that agrees with X^{s} on all $k \notin \operatorname{dom}(p)$. By the results on variants of Cohen generics, X^{s} and $X^{s p}$ are generic. Let X_{1}^{*}, X_{2}^{*} be the even and odd parts of $X^{s p}$. We can see that $S\left(X_{1}^{*}\right)=S_{2}$ and $S\left(X_{2}^{*}\right)=S_{1}$. Let P^{*}, Q^{*} be the special enumerations of S_{2}, S_{1} defined in $\left(\mathcal{N}, X^{s p}\right)$. Let R_{1}^{*}, R_{2}^{*} be generic enumerations of S_{2}, S_{1}, obtained with the base structure $\left(\mathcal{N}, X^{s p}, P^{*}, Q^{*}\right)$. Then $\left(\mathcal{N}, X^{s p}, P^{*}, Q^{*}, R_{1}^{*}, R_{2}^{*}\right) \models P C o p y_{e}$. But, let us think what this means. The pair $\left(R_{1}^{*}, R_{2}^{*}\right)$ yields a copy \mathcal{B}^{*} of $\mathcal{A}_{1} \mid \mathcal{A}_{2}$, and $\varphi_{e}^{\mathcal{B}^{*}}$ gives a copy of the graph coding the family enumerated by P^{*}-this is \mathcal{A}_{2}. We have the expected contradiction. This shows that $\mathcal{A}_{1} \not \Sigma_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$.
§7. Conclusion. What we have constructed is a pair of graphs $\mathcal{A}_{1}, \mathcal{A}_{2}$ such that $\mathcal{A}_{1} \not Z_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$. We can apply standard results to transform the graphs into groups or fields.

Proposition 7.1. Let K_{1}, K_{2} be two classes of structures, closed under isomorphism. Suppose we have uniform Turing operators Φ and Ψ such that $\Phi: K_{1} \rightarrow K_{2}$, where for $\mathcal{A}_{1}, \mathcal{A}_{2} \in K_{1}, \mathcal{A}_{1} \cong \mathcal{A}_{2}$ iff $\Phi\left(\mathcal{A}_{1}\right) \cong \Phi\left(\mathcal{A}_{2}\right)$, and for all $\mathcal{A} \in K_{1}, \Psi$ takes copies of $\Phi(\mathcal{A})$ to copies of \mathcal{A}. Then for $\mathcal{A}_{1}, \mathcal{A}_{2} \in K, \Phi\left(\mathcal{A}_{1}\right) \leq_{s} \Phi\left(\mathcal{A}_{1}\right) \mid \Phi\left(\mathcal{A}_{2}\right)$ implies $\mathcal{A}_{1} \leq_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$.

Proof. Let $\mathcal{B}_{1}=\Phi\left(\mathcal{A}_{i}\right)$. Supposing that $\mathcal{B}_{1} \leq_{s} \mathcal{B}_{1} \mid \mathcal{B}_{2}$ via Θ, we show that $\mathcal{A}_{1} \leq_{s}$ $\mathcal{A}_{1} \mid \mathcal{A}_{2}$. Given a copy of $\mathcal{A}_{1} \mid \mathcal{A}_{2}$, we apply Φ to produce a copy of $\mathcal{B}_{1} \mid \mathcal{B}_{2}$. Next, we apply Θ to produce a copy of \mathcal{B}_{1}. Finally, we apply Ψ to get a copy of \mathcal{A}_{1}.

There are general results of Hirschfeldt et al. [6] that yield operators Φ and Ψ as in the Proposition. The results of Hirschfeldt et al. can be applied when K_{1} is the class of graphs and K_{2} is any of several familiar classes, including lattices, partial orders, commutative semigroups, rings, integral domains, and nilpotent groups. A result of Miller et al. [11] lets us add to this list the class of fields.

So far, the examples we know with $\mathcal{A}_{1} \not \leq_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$ are all derived from a generic set. We have no general conditions that we can apply to already-existing structures $\mathcal{A}_{1}, \mathcal{A}_{2}$ to show that $\mathcal{A}_{1} \not Z_{s} \mathcal{A}_{1} \mid \mathcal{A}_{2}$.

Acknowledgments. Rachael Alvir and Julia F. Knight are grateful for support from NSF grant \#DMS 1800692.

REFERENCES

[1] C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam, 2000.
[2] ——, Pairs of recursive structures. APAL, vol. 46 (1990), pp. 211-234.
[3] W. Calvert, A. Frolov, V. Harizanov, J. Knight, C. McCoy, A. Soskova, and S. Vatev, Strong jump inversion. Journal of Logic and Computation, vol. 28 (2018), pp. 1499-1522.
[4] P. J. Cohen, Set Theory and the Continuum Hypothesis, W. A. Benjamin, Inc., 1966, pp. 136-138.
[5] R. Downey and C. Jockusch, Every low Boolean algebra is isomorphic to a recursive one. PAMS, vol. 122 (1994), pp. 871-880.
[6] D. Hirschfeldt, B. Khoussainov, R. Shore, and A. Slinko, Degree spectra and computable dimensions in algebraic structures. Annals of Pure and Applied Logic, vol. 115 (2002), pp. 71-113.
[7] I. Kalimullin, Algorithmic reducibilities of algebraic structures. Journal of Logic and Computation, vol. 22 (2012), pp. 831-843.
[8] A. H. Lachlan and R. I. Soare, Models of arithmetic and upper bounds for arithmetic sets, this Journal, vol. 59 (1994), pp. 977-983.
[9] , Models of arithmetic and subuniform bounds for the arithmetic sets, this Journal, vol. 63 (1998), pp. 59-72.
[10] D. Marker and R. Miller, Turing degree spectra of differentially closed fields, this Journal, vol. 82 (2017), pp. 1-25.
[11] R. G. Miller, B. Poonen, H. Schoutens, and A. Shlapentokh, A computable functor from graphs to fields, this Journal, vol. 83 (2018), pp. 326-348.
[12] A. Montalban, Computable Structure Theory: Within the Arithmetic, Association for Symbolic Logic Perspectives in Logic, Cambridge University Press, 2021.
[13] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967.
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NOTRE DAME
255 HURLEY HALL, NOTRE DAME, IN 46556
E-mail: julia.f.knight.1@nd.edu
E-mail: tburchfi@nd.edu
E-mail: rachael.c.alvir.1@nd.edu

