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A B S T R A C T   

Machine learning (ML) has shown to be an effective alternative to physical models for quality prediction and 
process optimization of metal additive manufacturing (AM). However, the inherent “black box” nature of ML 
techniques such as those represented by artificial neural networks has often presented a challenge to interpret ML 
outcomes in the framework of the complex thermodynamics that govern AM. While the practical benefits of ML 
provide an adequate justification, its utility as a reliable modeling tool is ultimately reliant on assured consis
tency with physical principles and model transparency. To facilitate the fundamental needs, physics-informed 
machine learning (PIML) has emerged as a hybrid machine learning paradigm that imbues ML models with 
physical domain knowledge such as thermomechanical laws and constraints. The distinguishing feature of PIML 
is the synergistic integration of data-driven methods that reflect system dynamics in real-time with the governing 
physics underlying AM. In this paper, the current state-of-the-art in metal AM is reviewed and opportunities for a 
paradigm shift to PIML are discussed, thereby identifying relevant future research directions.   

1. Introduction 

Additive manufacturing (AM) is well-recognized as a fast, flexible, 
and eco-friendly [1] technology for manufacturing metal parts. Metal 
AM processes, e.g., direct energy deposition (DED) and powder bed 
fusion (PBF), have been applied to aerospace, medicine, health care, and 
other fields [2] to produce high-value, customized products. Accompa
nying these industrial needs is a high standard for part quality, which 
requires effective monitoring of the metal AM processes to optimize 
process parameters such that the parts built will exhibit minimal defects 
and meet performance expectations. Toward this end, extensive efforts 
have been made in optimizing AM processes through modeling and 
simulations in a digital environment before experiments are conducted 
to minimize material costs associated with trial-and-error while maxi
mizing process performance. These efforts can be categorized into two 
families: physics-based and data-driven methods. 

Physics-based methods present process models that capture the 

physical principles underlying AM processes by using either analytical 
or numerical methods to emulate physical behavior at varying scales, e. 
g., atomic, microscale, or macroscopic. They are established either 
thermo-mechanically, based on process physics, or empirically through 
experimental findings. As a result, they can explain process mechanics 
and provide explicit insights into process phenomena, thereby providing 
guidance on minimizing AM process variabilities, part deficiencies, and 
improving overall process optimization [3,4]. However, due to model 
simplifications that are necessary to reduce model derivation 
complexity, physics-based models may be limited in comprehensively 
covering the entire spectrum of process variability. Specifically for 
physics-based models that are numerical and iterative in nature, e.g., 
finite element models, simulation has exponential time and memory 
complexity as a function of both the resolution and the number of ele
ments to be simulated. As a result, this category of physical methods is 
infeasible for in-situ real-time usage and oftentimes impractical in the 
fast-paced development environment of industrial AM. 

Data-driven methods such as machine learning (ML) algorithms are 
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capable of harnessing data of high dimensionality and heterogeneity and 
leveraging the full spectrum of process parameters beyond those 
incorporated in physical models. Complemented by sensing data 
measured during the AM process in real-time, such methods can effec
tively complement the physical understanding of the process by auto
matically and continually updating themselves through learning from 
the data and experience [5,6]. These characteristics imply several 
intrinsic advantages of ML as a means for metal AM process modeling 
and monitoring. First, ML models can be computationally efficient once 
properly trained [7], thus providing a good fit for analyzing dynamic 
thermomechanical phenomena [8] in metal AM processes. Second, ML 
methods do not pose restrictive assumptions on the processes being 
analyzed [9–11], and are thus adaptable to a broad range of process 
variability. Third, data-driven models are renewable and generalizable 
[12] as the basic structure of pretrained models can be retained and 
updated using new data before being transferred to other processes that 
are suited for analysis using the updated ML models [13,14]. Finally, ML 
can be leveraged to solve a wide variety of auxiliary problems in AM that 
are difficult to solve using traditional approaches, including cost esti
mation [15], manufacturability assessment [16,17], and closed-loop 
quality control [18]. 

The above advantages of data-driven models have been well- 
recognized by the research community [19], and considerable efforts 
have been made to leverage ML for metal AM studies. Examples include 
Khanzadeh et al. [20], Khanzadeh et al. [21], and Guo et al. [22] that 
analyzed in-situ thermal images of melt pools from DED with ML models 
and developed techniques for real-time prediction of porosity. Similarly, 
Shevchik et al. [23] and Wasmer et al. [24] demonstrated the feasibility 
of training ML-based quality prediction models with acoustic emissions 

from metal AM processes. Closed-loop control systems for metal AM 
were enabled by ML in Jafari-Marandi et al. [25], Liu et al. [26], and 
Renken et al. [27], which connected the design and printing/finishing 
stages in metal AM and achieved reverse process parameter optimiza
tion. These studies have facilitated improvements in quality and design 
for metal AM and expanded the scope of ML. 

While the effectiveness of ML-based metal AM process modeling and 
control has been demonstrated, and more advances in ML-based 
methods are foreseeable [19], a major hurdle in the widespread accep
tance of ML-based methods is their lack of physical interpretability. ML 
models’ understanding of the underlying physics in metal AM is con
strained by the physical meaningfulness of the input/output data as well 
as by the model architecture itself. Since datasets collected from diverse 
applications may not fully represent the complete AM process physics, 
how to intuitively enhance ML models’ awareness of the underlying 
process physics toward full model interpretability has remained a 
challenge. Further challenges due to the lack of physical intuition in 
model construction include impractical model prediction results 
[28–30] and susceptibility to data pollution caused by noise, missing or 
incorrect data labels, etc. 

An emerging topic in imbuing ML models with physical intuition is 
Physics-Informed Machine Learning (PIML), which consists of hybrid 
methods that incorporate physical knowledge and domain constraints 
into ML to achieve interpretable model design, input, and output. 
Although still in its infancy at the current stage, the PIML paradigm has 
already attracted an increasing level of attention due to its potential for 
future exploration. 

This paper presents a systematic review of the state-of-the-art in ML- 
based metal AM process modeling and control by summarizing common 

Nomenclature 

Ac Accuracy 
AM Additive manufacturing 
ANN Artificial neural network 
ASTM American Society for Testing and Materials 
CART Classification and regression tree 
CNN Convolutional neural network 
DBN Deep belief network 
DED Directed energy deposition 
EBAM Electron beam additive manufacturing 
EBM Electron beam melting 
EL Elongation (failure strain) 
f Generalized ML model 
F1 F1 score for classification 
FEA Finite element analysis 
GAANFIS Genetic algorithm adaptive NFI system 
GD Geometrical deviation 
GDP Geometric deviation prognosis 
GMM Gaussian mixture model 
GPR Gaussian process regression 
HAGB High-angle grain boundary 
HIP Hot isostatic pressing 
KNN K-nearest neighbors 
LAGB Low-angle grain boundary 
LIME Local interpretable model-agnostic explanations 
LMD Laser metal deposition 
LRP Layer-wise relevance propagation 
MAPE Mean absolute percentage error 
ML Machine learning 
MLP Multi-layer perceptron 
MP Microstructure prognosis 
MPP Melt pool prognosis 

NFI Neuro-fuzzy inference 
PBF Powder bed fusion 
PIMA Physics-informed model architecture 
PIMC Physics-informed model component 
PIMI Physics-informed model input 
PIML Physics-informed ML 
PIMO Physics-informed model output 
PIMT Physics-informed model training 
PINN Physics-informed neural network 
PP Porosity prognosis 
Pr Precision 
Re Recall 
R2 Coefficient of determination 
RF Random forest 
RL Reinforcement learning 
RMSE Root mean squared error 
SHAP Shapley additive explanations 
SLA Stereolithography 
SLD Sequential laser deposition 
SLM Selective laser melting 
SLS Selective laser sintering 
SR Surface roughness 
SRP Surface roughness prognosis 
SS Specific strength 
SVM Support vector machine 
w Trainable parameters of f 
UTS Ultimate tensile stress 
xi ML model input instance i 
yi Ground truth value instance i 
ŷi ML model output instance i 
YM Young’s modulus 
YS Yield stress  
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methods developed in this field and revealing open questions and 
challenges. By highlighting of the potential of PIML, the review further 
aims to provide a roadmap to researchers in both the AM and ML 
communities for future synergy that enables PIML-driven, “smart” metal 
AM applications. 

This paper distinguishes itself from other AM and ML review articles 
in the published literature [8,30–33] by providing the above-described 
roadmap and constitutes the first work in PIML for AM to guide the 
reader through the foundations of metal AM, identify outstanding 
challenges, and propose a comprehensive solution based on PIML. 
Additionally, the content of the paper establishes a foundation to further 
develop AM using physics, which is a research gap identified by previous 
works [8,30,31]. 

The rest of this paper is organized as follows. Section 2 briefly ex
plains the mechanisms of metal AM and introduces major, representa
tive AM processes. Section 3 reviews the state of ML-based metal AM 
process modeling and monitoring techniques. Section 4 introduces PIML 
as a potential enabler for higher level of effectiveness and efficiency in 
AM process modeling and control, followed by Section 5 where a vision 
for PIML-based metal AM is presented. Section 6 summarizes findings 
from the paper with a conclusion. 

2. Metal additive manufacturing processes 

The concept of modern AM originated in the early 1980s with the 
development of resin-based approaches. These included photo- 
hardening structural polymers in 1981 [34] and the advent of stereo
lithography (SLA) in 1984 [35]. A flurry of process variants soon fol
lowed, resulting in many unique metal AM processes being developed. 
To categorize metal AM processes as a whole, ASTM 52900:2015(E) 
[36] separates AM processes into seven categories. PBF and DED contain 
the majority of current metal AM research and therefore merit discus
sion in this paper. Table 1 presents a historical overview of metal AM 
development in these categories, which are discussed in detail in the 
following sections. 

2.1. Powder bed fusion 

PBF is an “additive manufacturing process in which thermal energy 
selectively fuses regions of a powder bed” [36]. By definition, PBF can be 
utilized for polymers, ceramics, and metals, though metal-based AM has 
become a dominant research thrust according to [44]. Between 1989 
and 1995, three major PBF processes have emerged, with selective laser 
sintering (SLS) being the first PBF process to be patented and commer
cialized [38]. Subsequently, electron beam melting (EBM) [39] and se
lective laser melting (SLM) were developed [40]. These three techniques 
under PBF are notable because they laid a foundation for derivative PBF 
processes that would follow in the subsequent decades. 

Fig. 1 shows a typical SLM setup where a powder deposition system 
places a 20−50 μm thick powder layer onto a build platform inside a 
build chamber. The chamber is filled with inert gas (e.g., argon) so that 
the metal does not oxidize during melting and re-solidification. A laser 
beam selectively melts the powder by following a toolpath generated 
from a CAD file of the part being produced. After the completion of one 
layer, the build platform will move downwards a distance equal to the 

thickness of one layer and a new layer of powder will be deposited. This 
cycle repeats itself until the whole part is built. SLS is like SLM 
conceptually, except that the material is being sintered in its solid state 
instead of being liquified as it is in SLM. Compared to SLM and SLS, EBM 
uses an electron beam as the heat source instead of a laser, and a vacuum 
chamber instead of inert gas [45]. An in-depth analysis of PBF is given in 
Gibson et al. [46]. 

2.2. Directed energy deposition 

DED forgoes a powder bed and instead uses focused thermal energy 
to melt metal powders as they are being deposited [36]. Like PBF, DED 
can be used for polymers, ceramics, and metals, although ongoing 
research is primarily geared towards metal-based DED as reviewed in 
Dass and Moridi [48]. Raytheon Corporation first proposed wire- and 
powder-based sequential layer deposition (SLD) in 1982 [37]. Laser 
metal deposition (LMD), one of the first viable DED techniques, was 
developed by the Sandia National Lab in 1996 [41]. Electron beam 
additive manufacturing (EBAM), a technique reminiscent of EBM but for 
DED instead of PBF, was developed by Sciaky Incorporated in 2013 [42, 
43]. Analogous to PBF’s foundational significance, LMD and EBAM are 
fundamental to various derivative DED techniques. 

Table 1 
Brief history of metal additive manufacturing technologies.  

Technology ASTM Category Invented Ref. 

Sequential Layer Deposition DED 1982 [37] 
Selective Laser Sintering PBF 1989 [38] 
Electron Beam Melting PBF 1992 [39] 
Selective Laser Melting PBF 1995 [40] 
Laser Metal Deposition DED 1996 [41] 
Electron Beam Additive Manufacturing DED 2013 [42,43]  

Fig. 1. Schematic of SLM PBF process [47].  

Fig. 2. Schematic of LMD DED process [52].  
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Fig. 2 shows a typical LMD setup. A laser is used to melt a small 
region of the substrate beneath the current layer, creating a melt pool. 
Simultaneously, a deposition system feeds metal powder or wire into the 
laser where it liquifies and joins with the melt pool before solidifying. 
The laser and deposition system travel together in three-dimensional 
space and build the part layer-by-layer until it is completed. Like PBF, 
LMD relies on toolpaths generated using CAD data. However, unlike 
PBF, DED does not need an enclosed build chamber since material is fed 
by an inert gas stream which prevents oxidation at the melt pool [49]. 
Additionally, since DED deposits material as it is needed and does not 
utilize a powder bed it is not constrained to deposition orthogonal to the 
build platform. Consequently, the deposition system can be dynamically 
tilted and rotated during the production process to achieve more 
desirable geometrical and mechanical properties [50]. A detailed 
description of DED process mechanics is provided in Gibson et al. [51]. 

2.3. Quality challenges in metal AM 

Despite their advantages, both PBF and DED suffer from drawbacks 
unique to additive processes. Among these drawbacks, microstructural 
defects, porosity, dimensional accuracy, and surface roughness have 
attracted substantial research over the past decade. 

2.3.1. Microstructural defects 
Due to the additive nature of PBF and DED, the final part micro

structure is highly dependent on deposition parameters. Most current 
literature focuses on metallurgical features such as melt pool 
morphology, precipitate behavior, dislocation density, grain size, and 
grain orientation for most of the typical alloys used in PBF and DED, 
such as aluminum alloys, stainless steels, tool steels, nickel-based su
peralloys, and titanium alloys [53]. Overall, AM microstructure exhibits 
highly nonconventional grain shapes, sizes, orientations, and gradients, 
as shown in Fig. 3. However, this nonconventionality is not considered 
defective as it would be in bulk material (cast, forged, rolled, etc.), but 
rather a characteristic of additive material deposition. 

The unique characteristics of metal AM microstructure is shown in 
the following aspects: 

(1) Cellular microstructure and columnar microstructure perpen
dicular and parallel to the build direction, respectively [6,54,55]. 
Furthermore, the microstructures exhibit strong texture due to 
the combined effect of epitaxy formation between the layers and 
temperature gradient along the build direction [56,57].  

(2) Large fractions of random high-angle grain boundaries (HAGB, 
>10◦) and low-angle grain boundaries (LAGB, 2◦–10◦) in the as- 
deposited materials, with a broad grain-size distribution and 
ripple-like grain shapes [6,54].  

(3) High density of dislocations decorating the cellular walls with 
relatively clean grain interiors [54]. The size and the wall 
thickness of these solidification cells are known to be connected 
to the solidification conditions (e.g., thermal gradient, cooling 
rate, solidification front velocity) during the SLM process. 

These deviations from “classical” morphologies are significant since 
they do not have the same extensive literature support as non-additive 
materials do. Many fundamental predictive relationships in material 
science, e.g., the Hall-Petch relationship between part grain diameter 
and yield stress [58], were empirically found decades ago based on 
observations of bulk materials and have been studied extensively ever 
since. However, relationships like this have not yet been definitively 
proven (or disproven) to exist in metal AM. Additionally, since the 
Hall-Petch relationship is empirical, it relies on material-specific and 
experimentally derived coefficients and exponents. Related data is 
abundant for bulk materials, but not yet for additive materials. Lastly, 
given that the complexity involved in AM-specific manufacturing pro
cesses can significantly complicate material qualification as compared to 
bulk materials, it may be difficult to establish “rule of thumb” re
lationships such as Hall-Petch for DED and PBF. Qualifying metal AM is 
location-dependent, and the homogeneity assumptions of “classical” 
methods are challenged and require systematic research to provide 
meaningful guidance for AM process analysis and characterization. 

2.3.2. Porosity 
A major drawback of metal AM-produced parts is porosity, which is 

detrimental to mechanical properties such as strength and fatigue 
behavior. Using SLM as an example, four predominant pore types can be 
found, as shown in Fig. 4 [59–61]. 

Adjusting process parameters such as laser density and scanning 
speed, as well as using post-process methods such as heat treatment, 
have been shown to reduce porosity. Fig. 5 shows computed tomography 
images of a Ti-6Al-4V sample made via SLM [62]. After hot isostatic 
pressing (HIP), no pores were found to be larger in diameter than the 
resolution limit of 22 μm, indicating a substantial reduction in porosity. 
However, despite their success, these postprocessing steps further 
complicate and disincentivize metal AM as a manufacturing process 
compared to traditional manufacturing processes. This indicates that 
pores should ideally be prevented altogether during the deposition 

Fig. 3. Nonconventional microstructures found in SLM [6,54,55].  
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process. 

2.3.3. Dimensional accuracy and surface roughness 
Potentially substantial geometrical deviation (GD) and poor surface 

roughness (SR) of metal AM parts represent additional major drawbacks 
of metal AM processes. For example, neither PBF nor DED can currently 
compete with conventional machining’s SR and GD, which are in the 
range of 1−10 μm [63] and 10−40 μm [64], respectively. SLM has an 
average SR of about 10 μm and an average GD of 40−80 μm [65–68]. For 
LMD, SR is on the order of 40 μm and GD is on the order of 20 μm 
perpendicular to the deposition direction and 400 μm parallel to the 
deposition direction [69,70]. Additionally, the SR of powder-based LMD 
parts is strongly dependent on the powder’s particle size [41] and de
livery rate [71], with smaller particles and lower delivery rates resulting 
in a smoother surface finish. Thus, controlling the surface finish of LMD 
components is much more challenging than doing so for conventional 
subtractive manufacturing techniques. 

2.3.4. Residual stress and other challenges 
Besides the challenges described above, additional quality issues 

exist for metal AM. For example, high residual stress is a commonly 
observed defect for AM-fabricated parts and often leads to cracking and 
warping failure modes [72]. Additionally, metal AM parts suffer from 
anisotropic mechanical behavior, which in general express themselves 
as lower tensile strength, and higher ductility when force is applied 
normal to the build direction as compared to when it is applied parallel 
to the build direction [73]. This is especially an issue for high load and 
long-cycle applications wherein an overly ductile structure may fail due 
to excessive loading or fatigue [74,75]. Metal AM anisotropy can be 
reduced via post-heat treatment. 

Further challenges associated with metal AM processes include 
longer build times, complicated post-processing, and a more expensive 
workflow as compared to subtractive processes, both in terms of the 
equipment and material cost [76]. Last but not least, the limited material 
options for metal AM [74] and the difficulty in creating multi-material 
designs make it more difficult to make a case for metal AM technology 
[77]. However, recent advances in ML have demonstrated a promising 

pathway to mitigate the above issues and have offered the possibility of 
performance prognosis of metal AM parts, as discussed in the following 
section. 

3. Machine learning for metal AM 

As non-intrusive sensing methods have continued to improve, metal 
AM workflows have attained greater process repeatability. This is due to 
online process monitoring sensors that have increasingly shown their 
potentials to assist in formulating robust quality control measures and 
consequently, help build reliable and cost-effective metal AM parts. This 
is rightfully so, as ML models’ ability to discover hidden patterns in high- 
dimensional and multi-modal data is well-suited for the multivariate and 
sensor-rich metal AM environment. ML for AM, from sensing pipelines 
to model outputs, is discussed in detail below. 

3.1. Metal AM sensing 

The primary enabler of ML-based methods is data ingestion, which 
has been aided by the continued advancement of in-process sensing 
technology. Information can be collected from the design, fabrication, 
and finishing stages of metal AM and used to train new ML models or 
feed pre-trained ML models for fast, automatic decision-making. Based 
on the specific sensor type and in-process stage of data collection, 
sensing data can be categorized into several categories. Each category 
has unique characteristics as shown in Table 2. 

3.2. ML for AM prognosis 

ML has shown to be an effective tool for metal AM quality prognosis, 
where prognosis is treated as either a classification or regression prob
lem. Based on the relationship between in-situ data and AM properties, 
the prognostic analysis targets different quality issues, including those 
discussed in Section 2.3, as summarized in the following sections. 

3.2.1. ML overview 
ML models refer to computer algorithms that learn decision-making 

Fig. 4. Typical porosity of SLM part. (a) gas-induced pores [59]; (b) oxide-induced pores [60]; (c) balling-induced pores [61]; (d) lack-of-fusion-induced pores [59].  

Fig. 5. Computed tomography images of Ti-6Al-4V specimens (a) before and (b) after hot isostatic pressing [62].  
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rules from data [98]. Generically, model f with trainable parameters w ∈

W operates on input instance xi ∈ X and outputs prediction ŷi ∈ Y, i.e., 
f(w, xi) = ŷi. Here, w, xi, and ŷi are vectors within W, X, and Y, which 
are the multi-dimensional domains of parameters, inputs, and outputs, 
respectively. ML models are trained by finding the w such that the ex
pected discrepancy, or “loss”, between the prediction ŷi and the ground 
truth value ŷi ∈ Y is minimized across all i in the training dataset. This 
optimization procedure is specific to each model architecture, although 
gradient descent algorithms are widely used. Following training, ML 
model performance is quantified by measuring the loss with a validation 
dataset, which is disjoint from the training dataset. This measures the 
model’s generalizability to novel data and thus quantifies its 
post-training quality. 

ML training is conventionally categorized into supervised, semi- 
supervised, unsupervised, and reinforcement learning based on char
acteristics of the training data [99]. In supervised learning, f receives xi 
and its corresponding yi so that the loss can be calculated for every i in 
the training dataset and used to update w. This optimization process is 
the “learning” part of ML. Supervised ML models include multilayer 
perceptrons (MLP), support vector machines (SVM), classification and 
regression trees (CART), and k-nearest neighbors (KNN), all of which 
depend on the value of the loss to learn. 

Since the objective of supervised learning is to mitigate the 
discrepancy between predictions and the ground truth values, it is best- 
suited and widely used for predicting metal AM part characteristics, 
including mechanical properties, defect category, surface roughness, 
and microstructure. These approaches constitute most current literature 
in ML for metal AM, as shown in Sections 3.2.2 and 3.2.3, respectively. 
Also note that the decision logics of CARTs and SVMs are much more 
transparent and easier to interpret than MLPs and the KNN algorithm, 
for example, but also that the former models may be less accurate than 
the latter models [100]. Therefore, the practical needs for selecting a 
supervised learning architecture should be justified and determined first 
to determine if performance or interpretability takes precedence. 

Unfortunately, labeling every training instance for supervised 
learning can require an inordinate number person-hours if done 
manually. Semi-supervised learning circumvents this problem by 
relaxing the 1:1 labelling requirement and allowing some xi to be 
without ground truth yi. Instead, yi for these unlabeled xi are inferred by 

way of clustering or regression techniques. All 
(
xi, yi

)
pairs, including 

those with inferred labels, are then used to perform model training 
similarly to fully supervised learning [101]. 

While appealing conceptually, semi-supervised learning has few 
current applications in ML for metal AM because of two reasons: 1) data 
overabundance is not yet a problem in metal AM, and 2) metal AM label 
inference models are still in the early stage of development and must be 
thoroughly validated before they can be used to enable fully supervised 
learning of partially labeled data. However, continued investment in 
metal AM will gradually address the former problem and the latter 
problem is being actively addressed in literature, such as by the tensile 
property regression model by Xie et al. [102] and the process condition 
classification model by Li et al. [103]. For these reasons, the utility of 
semi-supervised learning in metal AM is expected to increase over time. 

In contrast to supervised learning, unsupervised learning ignores 
labels entirely and instead seeks to find underlying patterns in the input 
data. The approach is widely used for clustering analysis using the k- 
means and hierarchical clustering algorithms. These algorithms are 
often used as components of other ML algorithms, such as the label 
inference system in a semi-supervised algorithm [104]. Unsupervised 
learning therefore has the same utility and limitations in metal AM as 
described in the above paragraph. 

Reinforcement learning (RL), on the other hand, is disparate from the 
prior three types because it trains the algorithm, also known as an 
“agent,” via a reward-and-penalty mechanism. RL is usually applied to 
sequential decision-making rather than parallel decision-making since 
RL agents operate using a Markov decision process wherein the agent’s 
next action is determined by the current state of its environment. When 
an agent receives the state of its environment (xi), the agent acts on the 
environment to change it (according to f(w, xi) = ŷi) and then assesses 
if its action helped achieve its objective, e.g., maximizing AM yield 
stress. Beneficial actions are “rewarded” and detrimental actions are 
“punished,” thus “reinforcing” good behavior [105]. Since it enables 
goal-seeking sequential decision making, RL is best suited for real-time 
metal AM process control wherein agent’s actions are machine setting 
adjustments. This machine control paradigm has been recently realized 
by Ogoke and Farimani who used deep RL to decrease PBF melt pool 
depth control error by 91 %, which created more consistent mechanical 
properties throughout the produced parts [106]. RL can also be used in 

Table 2 
AM data sources and usage [78–97].  

S. Guo et al.                                                                                                                                                                                                                                      



Journal of Manufacturing Systems 62 (2022) 145–163

151

classification and regression problems. 
The following subsections will review existing studies in metal AM 

that leveraged ML for prognostics. The ML models used are introduced 
and the data types and prognostic problems concerned are provided. 
These materials present an overview of previous successes and illustrate 
when and how machine learning models have been used in metal AM. 
(Since this paper is focused on metrology as outlined in Section 2.3 
rather than process control, RL-driven control systems are not discussed 
in this paper and we refer readers to the review in [107] instead.) 

3.2.2. Classification tasks 
A summary of previous research on classification tasks in metal AM is 

shown in Table 3. These tasks come in two predominant types: fault 
detection and category prediction. 

Fault detection is a binary classification problem in metal AM that 
usually seeks to determine if a flaw is present or not. The success of a 
binary model is typically expressed in terms of the following metrics: 
precision, recall, F1 score, and accuracy, as defined in Eqs. (1)–(4). While 
precision measures the fraction of detected flaws are truly flaws, thus 
reflecting upon the validity of the detection result, recall represents the 
fraction of flaws that are detected, indicating the completeness of the 
result. As a widely used metric, F1 considers precision and recall with 
equal weight, and is useful for the scenarios when, for example, the 
model outputs the same prediction every time, which would mean a 
perfect recall but imperfect precision. Finally, accuracy is the ratio of 
correct predictions to the total number of predictions. 

Pr =
true positives

true positives + false positives
(1)  

Re =
true positives

true positives + false negatives
(2)  

F1 = 2∙
Pr ∙ Re

Pr + Re
(3)  

Ac =
true positives + true negatives

total number of predictions made
(4) 

Category prediction is a multi-class problem that can take various 
forms. Fault categorization, e.g., pore type, surface defect type, is a 
common objective for these predictive models in metal AM. Since pre
cision and recall are not well-defined for multi-class problems, accuracy 
is generally used to quantify model success. 

3.2.3. Regression tasks 
ML-driven regression models for metal AM in the literature are 

summarized in Table 4. In contrast to classification, regression tasks seek 
to estimate a variable of interest with as little error as possible. This is a 
common goal in metal AM when quantifying defect severity and pre
dicting part properties such as yield stress and fatigue. Error quantifi
cation is done by comparing the difference between model predictions 
and ground truth values across a set of N predictions. This error can be 
quantified in direct terms, such as root mean squared error (RMSE) 
shown in Eq. (5) and mean absolute percentage error (MAPE) shown in 

Table 3 
Prior studies using classification for metal AM performance characterization [108–122].  
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Eq. (6), or in relative terms, such as coefficient of determination (R2) as 
shown in Eq. (7) or Pearson correlation coefficient (rp) as shown in Eq. 
(8). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1 (ŷi − yi)
2

N

√

(5)  

MAPE =
100%

N

∑N

i=1

|ŷi − yi|

yi
(6)  

R2 = 1 −

∑
i(ŷi − yi)

2
∑

i(y − yi)
2 (7)  

rp =
Cov(ŷ, y)

SD(ŷ) ⋅ SD(y)
(8)  

4. Towards physics-informed machine learning for metal AM 

Previously reported work in ML for AM has improved metal AM 
quality control. A summary of the benefits ML in AM is shown in Fig. 6. 
However, current ML applications in AM still suffer from myriad prob
lems inherent to ML in general, including an inordinate need for data 
and a lack of physical interpretability in the context of metal AM pro
cesses. For instance, while melt pool images are commonly used as in
puts to ML models, those models do not develop a physics-based 
understanding of the complex thermomechanical phenomena taking 

Table 4 
Prior studies using regression for metal AM [123–134].  

Fig. 6. Summary of ML benefits in AM; images from [131,135–137].  
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place and being observed by thermal imaging systems. This can lead to 
the models learning spurious relationships between image features and 
part properties since no domain-specific knowledge is utilized nor are 
any domain-specific constraints imposed, such as heat transfer laws. In 
short, current ML models excel at finding statistical correlations be
tween inputs and outputs but may do so at the expense of the laws of 
nature: they are not constrained by physics. To remedy this ongoing 
issue, a paradigm shift from ML to physics-informed ML (PIML) for 
metal AM is proposed. This section presents background on PIML and 
discusses previous successes of PIML in metal AM. 

4.1. PIML background 

PIML is a branch of hybridized ML that incorporates the physics/ 
domain knowledge of AM applications into ML model inputs, outputs, 
architecture, and training. A literature review has shown that there are 
five predominant ways to integrate physics into ML: 1) model input, 2) 
model training, 3) model components, 4) model architecture, and 5) 
model output. 

In physics-informed model input (PIMI), in-situ production data is 
preprocessed to extract hidden physical information and/or augment it 
with production parameters and simulation data to better model the 
system being studied. An example of the former method is found in Xie 
et al. [102] wherein time-temperature series are projected into the 
time-frequency domain using wavelet transforms. This transformation 
extracts frequency information that is otherwise hidden in the 
time-domain signal and enables a deep convolutional neural network to 
consider frequency and time information simultaneously and predict 
tensile properties using this information. This approach has the potential 
to be used for deductive reasoning, i.e., using pre-established physical 
principles to select input features that are likely good predictors of the 
output variable(s), as well as inductive reasoning, i.e., crafting novel 
features, assessing their predictive power with respect to model output 
(s), and determining post hoc why the features are good or bad predictors 
in terms of physics. 

Another pillar of PIML is physics-informed model training (PIMT). 
The goal of this technique is to ensure physical consistency between 
model inputs and outputs by penalizing output spuriousness via the loss 
function [141]. This is seen in the lake temperature modelling MLP 
designed in Karpatne et al. [138]. In this work, the physical behavior of 
interest is the monotonic increase in lake water density as a function of 
depth below the surface, i.e., ρ(d). The physical model expects that as 
d increases, ρ will increase as well. Therefore, if the MLP predicts that ρ 
has decreased between two successively deeper d, i.e., ρ(d1) > ρ(d2) for 
d1 < d2, then the loss function for the current iteration is increased by 
λ(ρ(d1) − ρ(d2)) where λ is a scaling constant. If the density change is 
physically consistent, i.e., ρ(d1) ≤ ρ(d2), then no penalty is applied. Since 
the MLP training process seeks to minimize the loss function, it maxi
mizes physical consistency by attempting to achieve ρ(d1) – ρ(d2) ≤ 0 for 
∀ d1 < d2. 

Just as loss functions can be physics-informed, so too can model 
mechanisms such as activation functions and initialization procedures. 
This kind of mechanistic alteration is the central idea of physics- 
informed model components (PIMC). Activation functions are good 
candidates for infusion with physical intuition since usual activations, e. 
g., sigmoid, hyperbolic tangent, and rectified linear unit, are usually 
selected only because they work well and not because they carry phys
ical meaning. 

Howland and Dabiri [139] recognized the shortcoming of physically 
meaningless activation functions when modelling wind farm power 
output and subsequently modified an activation to be physically 
meaningful. A directed acyclic graph was developed to model power 
generation relationships between turbines on a farm considering the 
fluidic wakes between them. The power generation of a turbine in layer i 
(Pi) was modeled as a weighed sum of the turbines in preceding layer j, i. 
e., Pi = Σi wi,jPj. To capture the nonlinear fluidic wake interactions 

between successive layers of turbines, the sigmoid function was modi
fied formulaically to fit a thrust coefficient curve as a function of Pj, i.e., 
CT = σCT(Pj) = (2.03)−1[(1 − e−2(Pj- 2) + ε)−1 + 2.03] where ε = 10−8 for 
numerical stability. This alteration scaled, translated, and reflected the 
traditional sigmoid curve σ(x) = (1 + e-x)−1 while keeping σCT bounded 
within (0,1) like the traditional sigmoid. The modified activation was 
physically meaningful since it was designed to predict downstream 
power (W) as a function of upstream power (W), rather than “activation 
units” as a function of “activation units” as is the case with non-PIML 
activation functions. The power generation model was then expressed 
as Pi = Σi ki,jPj σCT(Pj) + ci,jPj [1 - σ(Pj)] where k and c are learnable 
matrices which dictate the model behavior at low and high values of Pj, 
respectively. A genetic algorithm was then used to find the optimal k and 
c that minimized the model’s loss. 

Physics-informed model architecture (PIMA) is another promising 
pathway to achieving PIML. In this technique, the way in which an ML 
model represents input information is trained during model optimiza
tion to conduct physically meaningful analysis. This differs from PIMC 
since architectural changes fundamentally alter the data representation 
whereas the model components change how the data is processed 
without changing the data itself. PIMA also differs from PIMI in the sense 
that PIMI’s input data transformations are static whereas PIMA’s 
transformations are learned as part of the ML model. PIMA-driven 
transformations are only possible if the transformation is trainable, 
which often equates to being smoothly differentiable in the case of 
gradient descent-based algorithms. Finding differentiable formulations 
of input transformations may not be a simple process, so PIML de
velopers must decide if learned PIMA transformations are worth the 
time and energy spent formulating them as opposed to using quicker but 
manual PIMI. 

A recent example of PIMA is the CNN-based WaveletKernelNet by Li 
et al. [140], which automatically extracts frequency information from 
an incoming one-dimensional time series. It does so by replacing the first 
layer’s convolution kernels with n trainable wavelets, each with scale 
and translation parameters s and u, respectively. The first layer thus 
outputs n one-dimensional convolutions of the original time series, 
which are further processed by the remaining one-dimensional con
volutional layers to arrive at a model prediction. By implementing 
backpropagation-based model optimization, the s and u parameters of 
the n wavelet kernels in the first layer are optimized to reduce the 
model’s loss. Since the form of the wavelet can be controlled, e.g., 
Morlet or Mexican hat, the user is able to choose the wavelet formulation 
that best captures the physics hidden in the input time series. Methods 
for doing so are demonstrated in Yan and Gao [141]. 

Finally, physics-informed model output (PIMO) refers to the idea 
of assessing a model’s prediction logic for physical consistency. This 
differs from PIMT in the sense that PIMT’s loss functions measure model 
performance against ground truth values or physical phenomena 
whereas PIMO’s prediction logic examination explains how a model 
arrived at its prediction. Techniques such as layer-wise relevance 
propagation (LRP) [142]. Linear Interpretable Model-agnostic Expla
nations (LIME) [143], and Shapley additive explanations (SHAP) values 
[144] can be used to achieve this logical analysis. Each of these tech
niques reveal not only what input features are relevant to ML model 
prediction logic, but also how those inputs numerically affect the model 
output. 

For instance, LRP was implemented by Grezmak et al. when per
forming motor fault diagnosis as shown in Fig. 7 [145]. Vibration signals 
measured on an induction motor were first processed by wavelet 
transform to generate time-frequency images, which were subsequently 
classified into one of four fault types using a two-dimensional CNN. 
Following network optimization to 100 % classification accuracy, LRP 
was used to visualize which parts of the images contained the most 
useful information when performing classification. This effectively 
showed what areas of the image the CNN was “looking at” to perform 
classification and allowed for physics-informed assessment of what the 
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CNN had learned and determination of if this learned knowledge was 
consistent with physics and previous literature. 

4.2. PIML development 

The prevailing advantage of PIML is that it enhances model inter
pretability and reduces model spuriousness by being rooted in physical 
principles. It does this while retaining the competitive performance 
ceiling of ML as well. Outside of manufacturing, PIML has been used to: 
1) predict lake temperatures with less than 1 ◦C RMSE and complete 
consistency with physics [138], 2) solve the Schrodinger and Allen-Cahn 
equations with 0.002 and 0.007 L2 error, respectively [146], 3) solve the 
Burgers equation with 3 % error in the coefficients [147], 4) solve 
elliptic stochastic partial differential equations to within 0.005 L2 error 
[148], 5) simulate fluids up to 700× faster than classical simulation 
techniques [149], and 6) detect and track objects with 95 % correlation 
between predicted and actual position [150]. 

Within the manufacturing domain, PIML has been developed to: 1) 
predict specific cutting energy of milling with the accuracy of 1 J/mm3 

RMSE by integrating machine learning and process mechanics [151], 2) 
predict Taylor tool life equation coefficients with 5 % MAE [152], 3) 
predict milling tool wear with 6 μm MAE [153], 4) predict chatter with 
99 % accuracy [154], 5) predict polymer AM ultimate tensile stress with 
0.6 MPa RMSE [155], 6) predict DED yield stress with 9.2 MPa RMSE 
[156], and 7) predict DED pore diameter with 0.02 mm MAE [157], to 
name a few representative applications. 

Another advantage of PIML is its synergistic integration of physical 
models and data-driven methods. The former is oftentimes reliant on 
simplifying or homogenizing assumptions to be tractable whereas the 
latter may deviate from the laws of physics, as previously discussed. 
Additionally, physical models of complex thermomechanical systems 
such as PBF and DED are infeasible to update in real-time due to the 
complexity of numerical simulation required to do so. Well-trained PIML 
models take advantage of physical and data-driven models (Fig. 8) as 
they are based on the laws of physics and respond to real-time data 
streams using the comparative computational efficiency of ML-based 
computation. Underlying fundamental ML architectures such as MLP 
and CNN also enable uncertainty quantification and prediction in PIML, 
as is done in physical experiments and statistical analysis. Techniques 
for doing so are reviewed in Kabir et al. [158]. 

4.3. PIML for metal AM 

Though not yet widely adopted, PIML has achieved success in metal 
AM where several studies have explored the potentials of PIML for 

quality prediction. For example, PyroNet+ and PyroNet++ (Fig. 9) were 
proposed in a PIMI study by Guo et al. [157]. These PIML-driven NNs 
extracted features from thermal images of melt pools with a CNN and 
concatenated the features with physical measures from FEA simulations 
before feeding them to a subsequent MLP for porosity prediction. This is 
an example of supplementing in-situ data with simulation data to ach
ieve PIMI. The features from thermal images encoded physically 
meaningful process parameters in the real-world, such as heat transfer, 
mass flow, and melt pool volume even though these features were not 
explicitly extracted from the in-situ data. The FEA features, such as melt 
pool length, provided guidance about what the CNN should have been 
seeing under ideal conditions. The juxtaposition between real-world 
physics and simulated physics gave PyroNet++ additional physically 
meaningful insight about the process. It could observe what the py
rometer should have been seeing and then infer porosity condition based 
on deviation from that idealized state. This contrasts with non-PIML 
methods which would have received the pyrometer data in isolation 
and found statistical (not physical) relationships between the images 
and the porosity. The external information, in the form of FEA, is the 
PIML-enabling mechanism of this study. PyroNet++ successfully 
detected pores in-situ with 100 % accuracy and predicted the diameter of 

Fig. 7. Summary of LRP-based method by Grezmak et al. for achieving physics-informed model output [145].  

Fig. 8. PIML vs. physical and data-driven models, adapted from [154].  
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the pores with 0.03 mm MAE. 
Similarly, Ren et al. [159] used achieved PIMI by gathering simu

lation data to develop a recurrent MLP to identify the correlation be
tween laser scanning patterns and thermal history distributions. FEA 
was used to simulate a DED process and, crucially, keep track of when 
each voxel of material was deposited. This temporal information was 
critical in making the study PIMI-driven since it gives information that 
cannot be extracted from in-situ temperature data alone. This 
time-since-deposition matrix was used as the input to the developed 
model, which can predict the thermal field for an arbitrary geometry 
with different scanning strategies with 2 % MAPE compared to a 
ground-truth FEA simulation. 

Liu et al. [136] minimized porosity and optimized machine settings 
using domain knowledge-based PIMI, which is distinct from simulation 
supplementation. Physical information related to energy density and 
pressure on the part were calculated using domain knowledge and 
became SVM inputs and the model regressed mean pore size to within 8 
% MAPE. The advantage of using PIMI-crafted features for the SVM 
rather than in-situ observational values only was that “hidden” infor
mation such as photon momentum and radiation pressure could be used 
explicitly as inputs. Since these quantities are calculated with trigono
metric functions and many ML techniques can only perform polynomial 
approximations, this hidden information would likely not be accurately 
extracted during the ML training phase and would need to be included 
via practitioners’ domain knowledge. Additionally, since these physical 
mechanisms directly determine the process outcome, the developed 
method aimed to find causal relationships between inputs and outputs, 
which are much more useful that correlational relationships that are 
commonly found in standard ML. 

Akin to Liu’s domain knowledge inclusions, Nagarajan et al. [160] 
combined dimensional analysis conceptual modeling and classic ANNs 
to create a novel knowledge based MLP to achieve PIMA. A topology was 
defined for the topological zones derived from physical knowledge of 
the metal AM process and MLP-modeled zoning knowledge, which 
captured the system behavior and improved the repeatability of metal 
AM production. The developed model predicted AM product dimensions 
with 58 % less error than a conventional ML model. 

In contrast to PIMI, which relies on simulations as model inputs, 
PIMT has been used to replicate metal AM simulations with a lower 
computational burden. Zhu et al. [161] embraced PIMT to introduce a 
physics-informed neural network (PINN) [146] for predicting thermal 
history and melt pool fluid dynamics in PBF. Real data from the process 
were processed by an MLP with a loss function constrained by physical 
laws to predict thermal history, fluid pressure, and fluid velocity. Unlike 
PIMI, this work used FEA simulations to inform the physics-constrained 

loss function and penalize the network when any of the three outputs 
deviated from the simulated ground truth. Additionally, partial differ
ential equations modelling momentum, mass, and energy conservation 
along with their Dirichlet and Neumann boundary constraints were 
directly inserted into the loss function. This reduced the need for 
training data and expedited the training process by forcing the MLP to 
respect boundary conditions while also modelling the interior of the 
temperature-pressure-velocity output space. Had this physics-informed 
domain knowledge not been included in the loss function, the model 
would have relied on naïve, physics-uninformed gradient descent which 
would have been slower and ignorant of the boundary conditions, 
resulting in worsened interpolation and extrapolation. The model pre
dicted PBF melt pool dimensions and cooling rate with as little as 2.9 % 
and 7.8 % MAPE, respectively, as compared to experimental measure
ments. These results were as good or better than FEA-derived pre
dictions, and at a fraction of the computational cost. 

There is notably little literature regarding PIMC, PIMA, and PIMO in 
metal AM. The absence of PIMC and PIMA are attributable to the 
growing yet young development horizon of ML for metal AM. Regarding 
PIMC, it is still not well understood how to make model components 
“look like” thermomechanical relationships found in AM (due to the 
complexity of these relationships) such as in Howland and Dabiri [139]. 
Using tried and true model components work well for the time being, but 
physics-integration is expected to come as a deeper understanding of 
metal AM physics is developed. As for PIMA, it is relatively unknown 
which information extraction techniques are best for metal AM right 
now. Xie et al. [131] demonstrated the utility of wavelet transforms in 
predicting DED tensile properties, which may be a path to PIMA, but 
widespread use of optimizable information extraction in metal AM is yet 
to be seen (though this does not detract from the merits of PIMA). 
PIMO’s relative absence can also be traced to a still-developing under
standing of AM physics. Without ground truth knowledge about metal 
AM physics, interpreting results in the spirit of PIMO is difficult and 
possibly even futile. However, there is a growing body of research on 
process-property relationships, such as between porosity and tempera
ture distribution [162] and between cooling rate and tensile properties 
[135]. This body of observed relationships improve the utility of PIMO 
and make it a more promising technique in metal AM moving forward. 

To summarize, PIML methods present a promising and powerful 
alternative to pure physics-based modeling and simulation or conven
tional ML-based process modeling and monitoring for metal AM. Pre
viously reported success has demonstrated their potentials and shed 
light on multiple future research directions. Through the five- 
dimensional lens of PIMI, PIMT, PIMC, PIMA, and PIMO, existing 
literature has been categorized to assess current directions and progress 

Fig. 9. PIML-driven PyroNet + and PyroNet++ in Guo et al. [157].  
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in achieving comprehensive PIML implementation. Still, challenges and 
practical concerns exist for PIML development, which are elaborated in 
the next section. 

5. Challenges and outlook of physics-informed ML for metal AM 

In AM and related fields, the transition from conventional ML to 
PIML is an ongoing process. The existing cases of PIML in metal AM 
(Section 4.3) have paved the way for its development. Yet, open issues 
have yet be solved. This section introduces a framework for imple
menting PIML methods in metal AM applications and discusses the 
challenges and potential opportunities. Data-related issues, practical 
concerns, and physical considerations are considered. 

5.1. PIML implementation framework 

Fig. 10 shows a proposed methodology for implementing PIML in 
manufacturing operations. The sequencing of the methodology is 
inspired by the life cycle assessment framework described within ISO 
14040 [163]. Note that this workflow is like that of conventional ML 
with two distinctions: 1) initial assessment of PIML necessity, goals, and 
scope, and 2) mid-development verification of physical assumptions 
being included in PIML models. These two crucial steps ensure that the 
time to be spent developing PIML techniques and strategies will be 
meaningful, and that the final product is justifiable given the plethora of 
off-the-shelf black box ML models available that would exchange 
interpretability for reduced development time. 

5.2. PIML challenges 

PIML faces challenges primarily in the area of method development. 

These are discussed below from the perspectives of PIML data integrity, 
practicality, limitations, and cybersecurity. 

5.2.1. Data availability 
Data availability in AM is a key issue to the development of PIML. 

Due to its flexibility and high level of possible customization, metal AM 
applications tend to have low-volume production. Some commercial AM 
systems do not have built-in data acquisition systems and require sen
sors to be retrofitted, which increases operational costs [146,164]. Such 
a situation further leads to limited data availability in many AM appli
cations. Several institutions have created benchmark datasets for metal 
AM [83], which have significantly boosted the utilization and devel
opment of ML and PIML approaches. Yet, these datasets represent metal 
AM in lab environments, instead of industrial metal AM applications. An 
industry-level data-sharing policy is imperative to further leverage PIML 
in metal AM [165] though this has yet to be developed and universally 
adopted. 

Alternatively, process simulations can be developed to provide 
additional physically meaningful data to support the implementation of 
PIMI. Conveniently, this approach also enables high-efficiency RL agent 
training. Since RL is Markovian, it is well-suited for simulation-like 
applications where the process status at each time step is a function of 
immediately preceding time steps. Assuming a physically consistent AM 
process simulation environment is constructed (e.g., in the form of a 
digital twin), an RL agent can control the simulation parameters (laser 
power, scan speed, toolpath, etc.) and learn how to guide the AM process 
to achieve part property outcomes that are desirable to the user. Since 
this process is entirely virtual, the agent can be trained with theoreti
cally infinite training scenarios. Furthermore, if the ML-based simula
tion produces sufficiently accurate process outcomes (part mechanical 
properties, surface roughness, etc.), it can also be used to train 

Fig. 10. Flowchart for PIML implementation.  
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supervised ML models for AM metrology. The benefit of this approach is 
that ML models often perform inference that is orders of magnitude 
faster than FEA simulations. However, such models require well- 
designed simulations to be established first to train the RL agents, 
which is another outstanding issue as discussed in Section 5.2.2. 

5.2.2. Physical modeling limitations 
Since they are often used as sources of PIML training data, metal AM 

physical models should be as accurate as possible. It is therefore 
important to recognize that physical modeling methods have inherent 
assumptions, simplifications, and approximations that detract from their 
accuracy [166]. While the past decade has seen significant progress in 
the development of novel modeling techniques, most of the existing 
physical models manifest limited coherence with data from actual 
manufacturing processes due to underlying assumptions. These span 
from domain-related limitations or machine process characteristics (e. 
g., laser diameter, hatch spacing) and laser/material interaction char
acteristics (e.g., absorptivity, optical penetration into the powder/bulk 
material), to material properties, (e.g., thermal conductivity, heat ca
pacity, coefficient of thermal expansion, density, phase transition tem
perature) [166]. Furthermore, multi-scale (in terms of both space and 
time) integration over associated temperature ranges also introduces 
variability when predicting metal AM process characteristics. 

Significant potentials exist in improving physics-based modeling and 
simulation of metal AM processes in terms of more accurately and 
robustly handling energy beam-material interactions, melt pool solidi
fication, microstructure evolution, nonlinear temperature-dependent 
material properties, thermal history, process variations, and un
certainties [7]. By incorporating design formulations and parameters 
related to metal AM fundamentals into physical models, model vari
ability can be minimized and new avenues to achieving PIML, such as 
the RL described in Section 5.2.1, can be opened [167,168]. Modeling 
methodologies pertaining to heat sources, material properties, micro
structures, and state changes/phase transformations represent major 
research directions to predict and optimize the outcome of metal AM 
process prognosis via PIML. 

5.2.3. Data imbalance 
Data imbalance is another key issue impeding PIML. In many AM 

applications, the data related to noncompliant parts is miniscule 
compared to the compliant data. On one hand, limited data availability 
has constrained metal AM dataset sizes; on the other hand, the mea
surement of noncompliance-inducing defects, such as porosity, requires 
expensive tools, e.g., computed tomography [20] for analysis of part 
microstructure. This situation has led to an imbalance of data classes 
(compliant vs. noncompliant) for developing PIML, which impedes the 
characterization of the noncompliant parts using ML models. One way of 
alleviating data imbalance is resampling. Methods such as bootstrapping 
[169], image synthesis [170,171], and synthetic minority oversampling 
[172] have been demonstrated to reduce the detrimental effects of class 
imbalances on training ML systems. Additionally, techniques developed 
specifically to characterize minority classes, such as few-shot learning 
[173], Siamese/triplet networks [174,175], and isolation forest [176], 
can be used to study noncompliant specimens. 

Another promising solution to imbalanced data is granular computing. 
This technique processes complex information entities known as “in
formation granules” that are any subsets, classes, objects, clusters, and 
elements of a universe that are drawn together by distinguishability, 
similarity, or functionality [177]. As an example, granular computing 
can be applied to in-situ thermal images from AM to extract semantically 
meaningful geometric patterns. Analyzing the information granules 
from compliant and noncompliant data instead of the data themselves 
may alleviate the impact of dataset size. Meanwhile, granular computing 
may be incorporated in PIML model design to facilitate feature extrac
tion from imaging or time series data, such as for semi-supervised 
learning, thus reducing the negative effect of data imbalance to model 

training. 

5.2.4. Data curation 
Data curation is another challenge. “Curation” here refers to the 

preparation of data for further analysis, such as cleaning, processing, 
alignment, and fusion [178]. In metal AM, the way of handling datasets 
should be guided by practical considerations. Based on where and what 
datasets are collected, the problems to be solved by learning from the 
data are predetermined. For example, with the justified connection be
tween abnormal thermal dynamics in melt pool and porosity in DED 
metal parts [179], in-situ images of melt pool can be used to predict 
porosity [20,90,157]. Thermal images collected with two online sensors 
installed along different angles may show complementary profiles of a 
part being built during the AM process, and integrating these two data 
sources may improve the accuracy in prognostic analysis [180]. In that 
sense, understanding the underlying physics, mechanics, and materials 
in metal AM is as important as studying data from real-world produc
tion. Thus, interdisciplinary collaboration is required to guide data 
handling in PIML. 

As a data-driven paradigm, PIML requires sufficient data for model 
training and validation. Data availability and curation are both critical. 
Without manually augmenting real-world data with simulation or 
resampling, small datasets are insufficient to develop robust PIML 
methods. When data are available but come with complex characteris
tics, data curation becomes the primary concern and must be done 
properly to ensure the validity of PIML methods. 

5.2.5. Standardization of PIML methods 
Due to its current novelty, standardizing PIML development has 

proven challenging. Not only do practitioners need to be well-versed in 
ML methods, but they must also have a thorough understanding of the 
physical mechanisms being modeled to effectively model these mecha
nisms using PIML. Our implementation framework from Fig. 10 in
dicates two candidate areas for standardization: determination of 1) 
whether an ML-based study should be considered to be PIML (2nd red 
decision node), and 2) which branch of PIML is suitable for a given 
problem (green decision nodes). 

First, ambiguity may arise when determining if an ML study is 
physics-informed, especially to practitioners without domain knowl
edge. A likely scenario is that conventional ML approaches are falsely 
considered PIML, which dilutes the usefulness of PIML. For example, 
PIMI, as defined in Section 4.1, refers to the use of physics to correct, 
enrich, or enhance data collected from metal AM applications. It is 
therefore important to use domain knowledge about the physics of the 
application being studied to execute data transformation or processing 
to make this data physics-informed. The direct use of physical measures 
such as temperature or geometric deviation as inputs to conventional ML 
models, however, does not meet the PIMI definition but may still be 
mistakenly considered a PIMI approach. While it is tempting to call any 
ML model with physically meaningful inputs or outputs “physics 
informed,” this temptation must be rejected since such models are not 
constrained and informed by the laws of physics. It is expected that more 
correct PIML/non-PIML characterization will occur as more individuals 
become aware of the definitions of PIML and its subcategories we pro
vide in Section 4. 

Second, since there are currently five branches of PIML methods, as 
defined in Section 4.1, selecting the suitable branches of PIML for an 
application can be difficult. It requires the practitioner to evaluate the 
available data and physical resources and have a clear idea of the con
sequences of integrating the physical resources with ML models at each 
stage (i.e., input, training, component, architecture, output). The prac
titioner must also identify what their desired outcomes are, what 
knowledge they seek to gain, and if the developmental overhead of PIML 
is worth the increased time costs compared to brute force and unex
plainable conventional ML. These meta-level requirements are rarely 
fulfilled prior to initiating an ML-driven study. A systematic approach, 
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such as that presented in Fig. 10, is needed to breakdown the a priori 
PIML development considerations into more manageable and serialized 
phases, with clearly defined loops when PIML model development is 
unsuccessful. Like the ISO 14040 framework upon which it is based, the 
methodology in Fig. 10 makes the goal development and planning phase 
a prerequisite to the results acquisition, deployment, and reflection 
phase. 

5.2.6. Horizon of model development 
Another practical issue is the horizon of PIML, where “horizon” here 

refers to the stage and manner of how PIML can be used to aid in 
practical metal AM applications. As a hybrid of physics and data, PIML 
methods typically need more than one information source. Currently, 
PIML methods are mainly developed for applications that offer rich 
physical information and data simultaneously. This means the current 
PIML methods are mostly driven by feasibility in method development 
rather than practical needs. Consequently, brute-force use of PIML 
models in metal AM applications may create a gap between data-driven 
solutions and practical needs, limiting the contributions of PIML output 
to problem-solving. Restricted by limited physical understanding and 
data availability in metal AM, designing practically useful and feasible 
PIML methods remains a challenge. 

5.2.7. Adversarial attacks 
Another issue inherent to PIML and ML in general is adversarial at

tacks. Adversarial attacks are a broad family of methods meant to 
deceive ML algorithms and force them to output intentionally incorrect 
predictions. This deception is usually done very subtly so that humans 
cannot even recognize that anything has happened to a model. Attacks 
can be done to harm model training (sabotage), degrading post-training 
performance (fraud), and reverse-engineering the model (espionage) 
[181]. Methods for performing these attacks are reviewed in Mello 
[181] and Brendel et al. [182]. A previously verified and well-trusted 
model being subtly corrupted by malicious actors can have profound 
consequences in manufacturing, including theft of intellectual property, 
unpredictable part quality, and even death. Adversarial attacks are 
therefore one of the most consequential weaknesses of ML, especially in 
the context of AM for highly critical parts. 

The threat of adversarial attacks has remained high on the list of 
alerts for cybersecurity experts and manufacturing practitioners. There 
is a vast body of literature on the topic of “hardening” ML models to 
make them less susceptible to adversarial threats. For example, Madry 
et al. [183] developed a robust neural network optimization method to 
ward off fraud attacks on classification models and charted a path to
wards ML models with guaranteed robustness. The method increased 
model accuracy from 6.4 % to 89.3 % when using poisoned evaluation 
data (MNIST digits) [184]. Anthi et al. [185] proposed a hardening 
strategy specifically for ML-controlled industrial control systems and 
considered the expanse of threats posed by an insider attack by a person 
with privileged access to physical control systems. The approached used 
adversarial training to reduce the attack success rate by 11 %. 

Despite prior successful cases, adversarial attacking is a quickly 
evolving field with monotonically increasing cybersecurity research 
demands [186]. PIML developers must be aware of the inherent weak
nesses in ML that can be attacked to mitigate manufacturing operation 
risk. Additionally, practitioners must be aware that current ML cyber
security research is oriented towards conventional, 
non-physics-informed ML and that there is currently a negligible body of 
research on hardening PIML in particular. 

5.3. PIML use case considerations and limitations 

When using PIML in metal AM applications, there are several aspects 
to consider. Many of them are also found in conventional ML, although 
PIML does introduce some unique caveats and advantages. Major con
cerns stem from computational capability, data quality, and data 

variety, which are elaborated below. 

5.3.1. Computing power 
Although faster than physics-based methods like FEA, ML can still be 

computationally expensive. In practice, considerations arise for 
computational complexity and compute time. Metal AM systems may 
involve complex mechanics, physics, and material science. The layer-by- 
layer addition of materials in metal AM has enabled complex internal 
features, e.g., channels and embedding of prefabricated components, 
leading to residual stresses and dimensional warping that cause struc
tural failures of the parts under normal operating conditions or even 
premature failures [187]. These physical systems are mainly charac
terized by PDEs, SDEs, or optimization models that are difficult to solve 
analytically [188]. PIML can incorporate such complex physics and 
provide a data-driven solution, e.g., PINN [146]. However, such PIML 
methods can be computationally complex and pose a high burden on 
computational resources. As such, implementing ML in large-scale pro
duction may come with a prohibitively high cost. A possible mitigation 
strategy is to increase PIML model coarseness (e.g., pixel/voxel size) and 
reduce the complexity of physics to be incorporated. Nonetheless, the 
computing resources necessary to train and implement a sufficiently 
accurate, robust, and trustworthy PIML model must be considered. 

5.3.2. Data modality 
The input data modality to a PIML system, e.g., images, time series, 

acoustic signals, is a major factor for model selection and data pre
processing. In the context of metal AM, ML is needed to perform decision 
making using a variety of input modalities, as shown in Section 3.1. 
Model selection must therefore consider the physical information 
available in the modality of interest. Two-dimensional CNNs are suitable 
for AM image processing due to their ability to detect geometric features 
such as cracks and pores, which affect the material’s tensile properties. 
Recurrent NNs such as Long Short-Term Memory networks and related 
variants are promising if time series data, e.g., temperature signals, are 
being analyzed. This is because recurrent architectures are Markovian 
and are thus able to account for previous time steps’ effect when making 
future predictions, such as the temporal evolution of a temperature field 
[105]. Alternatively, the underlying physics of an AM process may be 
extracted from the data. For instance, in-situ thermal images of DED and 
PBF melt pools have spatiotemporal correlations, which are not 
captured by standard CNNs [22]. In this case, a recurrent CNN would be 
necessary to capture the time-dimension correlation. 

5.3.3. Data integrity 
Another consideration is data imperfection [189,190]. Regardless of 

data modality, any ML model can be sabotaged by poor-quality training 
data under the colloquial “garbage in, garbage out” paradigm [191]. 
Data collected from factory floors are often noisy, redundant, or 
incomplete, and therefore of low quality, offering limited useful infor
mation from which to learn. Additionally, noisy training targets (yi) can 
result in an ML model learning to predict the noise in addition to the true 
value. If the noise distribution changes between training and validation, 
the model’s loss on the validation data is expected to increase substan
tially compared to the training data. 

ML models are expected to be more robust and stable as a result of 
data pollution mitigation [192]. However, erroneous or misleading 
prior information being included within PIML models will pollute them 
from within and induce spuriousness. For this reason, assumptions made 
when developing PIML models need to be verified either experimentally 
or by using previous used and trusted data. While not every corner case 
can be enumerated, the physical and systems-level assumptions upon 
which PIML models rest must be rigorously established. 

It is possible, though, for PIML to bypass data quality problems. Prior 
domain knowledge and expert opinions, e.g., deposition physics and 
equipment degradation paths, can act as supplementary information and 
be leveraged to mitigate the imperfection of real-world data using any of 
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the five PIML tenants in Section 4.1. Notably, prior information can be 
coded into ML models, such as physics-informed training algorithms and 
physics-informed activation functions, to strengthen the relevant infor
mation embedded in-field data and expedite model convergence [146]. 

5.3.4. Production volume and variety 
Another consideration is production volume and variety. Due to its 

unavoidable need for training data, PIML (and ML in general) is best 
suited for producers of high-quantity, low-variety (HQLV) products. The 
reasons for this are three-fold: 1) low-quantity, high-variety (LQHV) 
production would require a variety-proportionate number of trained and 
verified PIML models based on different product geometry, material, 
and other characteristics, 2) LQHV production generates little data each 
production run, which makes timely PIML model development difficult, 
and 3) the time spent developing and verifying PIML models (or creating 
PIML training simulations) for LQHV production would likely exceed the 
amount of time necessary to conduct trial-and-error parameter tuning 
based on expert intuition and finish the production run without any 
PIML assistance [193]. Future work in PIML is recommended to focus on 
the generalizability of models across geometries, materials, machines, 
and process parameters to close the PIML utility gap between LQHV and 
HQLV production. 

6. Conclusion 

This paper provides a comprehensive summary of prevailing metal 
AM techniques and outstanding issues in quality control while show
casing successes of ML in addressing quality issues. It also proposes a 
paradigm shift from pure data-driven ML to PIML. The fundamental 
concepts and rationale of PIML are established and previous PIML cases, 
along with key PIML implementation considerations, are investigated. 
As an emerging topic, PIML has been shown to have numerous advan
tages for manufacturers. Comparatively low training time, real-time 
responsiveness to dynamical systems, data-driven decision logic, and 
the ability to quantify uncertainty are among the strongest benefits 
offered by PIML in contrast to physical methods. On the other hand, 
PIML’s innate physical consistency is the primary benefit when 
compared with purely data-driven methods. 

Future work in PIML for metal AM is envisioned to fall into two 
areas: general ML advancements and PIML-specific advancements. The 
first area includes topics such as ML model interpretability and cyber
security that are important issues outside of a purely physics-informed 
paradigm. As for the second area, PIML must continuously incorporate 
state-of-the-art ML advances that address and resolve limitations 
inherent to ML as a whole to remain relevant. Otherwise, the benefits of 
PIML may be outweighed by the improved ML models that are compu
tationally more powerful yet retaining the fundamental problems of 
lacking in physical interpretability. Additionally, as evidenced by Sec
tion 4.3, PIMI has been used much more than any other tenet of PIML at 
large. While understandable, since PIMI is the most convenient to 
implement of the five, the benefits of the remaining four are believed to 
be underexplored and underdeveloped at this time. Recent advance
ments such as PINN, WaveletKernelNet, and LRP have shown to be 
effective and foundational tools in advancing PIML. It is envisioned that 
they will receive increasing attention as PIMI becomes standard 
practice. 

PIML data availability also remains an unsolved issue as does the 
development of ML architectures and components that are designed 
specifically for PIML. For instance, current CNN models learn image 
features through highly abstract convolution kernels that are learned 
through unconstrained optimization. The lack of constraints all but 
ensures that these maps have no physical relevance, thus moving away 
from PIML. If the learning process were to be constrained by physics 
such as by using a physics-regularized loss function or by tailoring the 
model architecture and components to be physics-adherent, then 
training the network would be synonymous with extracting physics- 

informed information from the data. While some forms of PIML are 
relatively simple to implement, e.g., PIMI, PIML mechanisms like that 
described above remain elusive. While the situation poses a continued 
challenge for manufacturers to improve productivity and quality, this 
situation also motivates researchers to redouble their efforts that pro
duce the next generation machine learning algorithms that are smarter, 
faster, and physically transparent. 
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