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ARTICLE INFO ABSTRACT

Keywords: Machine learning (ML) has shown to be an effective alternative to physical models for quality prediction and
Machine learning process optimization of metal additive manufacturing (AM). However, the inherent “black box” nature of ML
Deep learning techniques such as those represented by artificial neural networks has often presented a challenge to interpret ML

Additive manufacturing

. . outcomes in the framework of the complex thermodynamics that govern AM. While the practical benefits of ML
Physics of manufacturing processes

provide an adequate justification, its utility as a reliable modeling tool is ultimately reliant on assured consis-
tency with physical principles and model transparency. To facilitate the fundamental needs, physics-informed
machine learning (PIML) has emerged as a hybrid machine learning paradigm that imbues ML models with
physical domain knowledge such as thermomechanical laws and constraints. The distinguishing feature of PIML
is the synergistic integration of data-driven methods that reflect system dynamics in real-time with the governing
physics underlying AM. In this paper, the current state-of-the-art in metal AM is reviewed and opportunities for a
paradigm shift to PIML are discussed, thereby identifying relevant future research directions.

physical principles underlying AM processes by using either analytical
or numerical methods to emulate physical behavior at varying scales, e.
g., atomic, microscale, or macroscopic. They are established either
thermo-mechanically, based on process physics, or empirically through
experimental findings. As a result, they can explain process mechanics
and provide explicit insights into process phenomena, thereby providing
guidance on minimizing AM process variabilities, part deficiencies, and
improving overall process optimization [3,4]. However, due to model
simplifications that are necessary to reduce model derivation
complexity, physics-based models may be limited in comprehensively
covering the entire spectrum of process variability. Specifically for
physics-based models that are numerical and iterative in nature, e.g.,
finite element models, simulation has exponential time and memory
complexity as a function of both the resolution and the number of ele-
ments to be simulated. As a result, this category of physical methods is
infeasible for in-situ real-time usage and oftentimes impractical in the
fast-paced development environment of industrial AM.

Data-driven methods such as machine learning (ML) algorithms are

1. Introduction

Additive manufacturing (AM) is well-recognized as a fast, flexible,
and eco-friendly [1] technology for manufacturing metal parts. Metal
AM processes, e.g., direct energy deposition (DED) and powder bed
fusion (PBF), have been applied to aerospace, medicine, health care, and
other fields [2] to produce high-value, customized products. Accompa-
nying these industrial needs is a high standard for part quality, which
requires effective monitoring of the metal AM processes to optimize
process parameters such that the parts built will exhibit minimal defects
and meet performance expectations. Toward this end, extensive efforts
have been made in optimizing AM processes through modeling and
simulations in a digital environment before experiments are conducted
to minimize material costs associated with trial-and-error while maxi-
mizing process performance. These efforts can be categorized into two
families: physics-based and data-driven methods.

Physics-based methods present process models that capture the
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Nomenclature NFI Neuro-fuzzy inference

PBF Powder bed fusion
Ac Accuracy PIMA Physics-informed model architecture
AM Additive manufacturing PIMC Physics-informed model component
ANN Artificial neural network PIMI Physics-informed model input
ASTM  American Society for Testing and Materials PIML Physics-informed ML
CART Classification and regression tree PIMO Physics-informed model output
CNN Convolutional neural network PIMT Physics-informed model training
DBN Deep belief network PINN Physics-informed neural network
DED Directed energy deposition PP Porosity prognosis
EBAM  Electron beam additive manufacturing Pr Precision
EBM Electron beam melting Re Recall
EL Elongation (failure strain) R? Coefficient of determination
f Generalized ML model RF Random forest
F, F; score for classification RL Reinforcement learning
FEA Finite element analysis RMSE  Root mean squared error
GAANFIS Genetic algorithm adaptive NFI system SHAP Shapley additive explanations
GD Geometrical deviation SLA Stereolithography
GDP Geometric deviation prognosis SLD Sequential laser deposition
GMM Gaussian mixture model SLM Selective laser melting
GPR Gaussian process regression SLS Selective laser sintering
HAGB  High-angle grain boundary SR Surface roughness
HIP Hot isostatic pressing SRP Surface roughness prognosis
KNN K-nearest neighbors SS Specific strength
LAGB Low-angle grain boundary SVM Support vector machine
LIME Local interpretable model-agnostic explanations w Trainable parameters of f
LMD Laser metal deposition UTS Ultimate tensile stress
LRP Layer-wise relevance propagation X; ML model input instance i
MAPE  Mean absolute percentage error Yi Ground truth value instance i
ML Machine learning yi ML model output instance i
MLP Multi-layer perceptron YM Young’s modulus
MP Microstructure prognosis YS Yield stress
MPP Melt pool prognosis

capable of harnessing data of high dimensionality and heterogeneity and
leveraging the full spectrum of process parameters beyond those
incorporated in physical models. Complemented by sensing data
measured during the AM process in real-time, such methods can effec-
tively complement the physical understanding of the process by auto-
matically and continually updating themselves through learning from
the data and experience [5,6]. These characteristics imply several
intrinsic advantages of ML as a means for metal AM process modeling
and monitoring. First, ML models can be computationally efficient once
properly trained [7], thus providing a good fit for analyzing dynamic
thermomechanical phenomena [8] in metal AM processes. Second, ML
methods do not pose restrictive assumptions on the processes being
analyzed [9-11], and are thus adaptable to a broad range of process
variability. Third, data-driven models are renewable and generalizable
[12] as the basic structure of pretrained models can be retained and
updated using new data before being transferred to other processes that
are suited for analysis using the updated ML models [13,14]. Finally, ML
can be leveraged to solve a wide variety of auxiliary problems in AM that
are difficult to solve using traditional approaches, including cost esti-
mation [15], manufacturability assessment [16,17], and closed-loop
quality control [18].

The above advantages of data-driven models have been well-
recognized by the research community [19], and considerable efforts
have been made to leverage ML for metal AM studies. Examples include
Khanzadeh et al. [20], Khanzadeh et al. [21], and Guo et al. [22] that
analyzed in-situ thermal images of melt pools from DED with ML models
and developed techniques for real-time prediction of porosity. Similarly,
Shevchik et al. [23] and Wasmer et al. [24] demonstrated the feasibility
of training ML-based quality prediction models with acoustic emissions
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from metal AM processes. Closed-loop control systems for metal AM
were enabled by ML in Jafari-Marandi et al. [25], Liu et al. [26], and
Renken et al. [27], which connected the design and printing/finishing
stages in metal AM and achieved reverse process parameter optimiza-
tion. These studies have facilitated improvements in quality and design
for metal AM and expanded the scope of ML.

While the effectiveness of ML-based metal AM process modeling and
control has been demonstrated, and more advances in ML-based
methods are foreseeable [19], a major hurdle in the widespread accep-
tance of ML-based methods is their lack of physical interpretability. ML
models’ understanding of the underlying physics in metal AM is con-
strained by the physical meaningfulness of the input/output data as well
as by the model architecture itself. Since datasets collected from diverse
applications may not fully represent the complete AM process physics,
how to intuitively enhance ML models’ awareness of the underlying
process physics toward full model interpretability has remained a
challenge. Further challenges due to the lack of physical intuition in
model construction include impractical model prediction results
[28-30] and susceptibility to data pollution caused by noise, missing or
incorrect data labels, etc.

An emerging topic in imbuing ML models with physical intuition is
Physics-Informed Machine Learning (PIML), which consists of hybrid
methods that incorporate physical knowledge and domain constraints
into ML to achieve interpretable model design, input, and output.
Although still in its infancy at the current stage, the PIML paradigm has
already attracted an increasing level of attention due to its potential for
future exploration.

This paper presents a systematic review of the state-of-the-art in ML-
based metal AM process modeling and control by summarizing common
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methods developed in this field and revealing open questions and
challenges. By highlighting of the potential of PIML, the review further
aims to provide a roadmap to researchers in both the AM and ML
communities for future synergy that enables PIML-driven, “smart” metal
AM applications.

This paper distinguishes itself from other AM and ML review articles
in the published literature [8,30-33] by providing the above-described
roadmap and constitutes the first work in PIML for AM to guide the
reader through the foundations of metal AM, identify outstanding
challenges, and propose a comprehensive solution based on PIML.
Additionally, the content of the paper establishes a foundation to further
develop AM using physics, which is a research gap identified by previous
works [8,30,31].

The rest of this paper is organized as follows. Section 2 briefly ex-
plains the mechanisms of metal AM and introduces major, representa-
tive AM processes. Section 3 reviews the state of ML-based metal AM
process modeling and monitoring techniques. Section 4 introduces PIML
as a potential enabler for higher level of effectiveness and efficiency in
AM process modeling and control, followed by Section 5 where a vision
for PIML-based metal AM is presented. Section 6 summarizes findings
from the paper with a conclusion.

2. Metal additive manufacturing processes

The concept of modern AM originated in the early 1980s with the
development of resin-based approaches. These included photo-
hardening structural polymers in 1981 [34] and the advent of stereo-
lithography (SLA) in 1984 [35]. A flurry of process variants soon fol-
lowed, resulting in many unique metal AM processes being developed.
To categorize metal AM processes as a whole, ASTM 52900:2015(E)
[36] separates AM processes into seven categories. PBF and DED contain
the majority of current metal AM research and therefore merit discus-
sion in this paper. Table 1 presents a historical overview of metal AM
development in these categories, which are discussed in detail in the
following sections.

2.1. Powder bed fusion

PBF is an “additive manufacturing process in which thermal energy
selectively fuses regions of a powder bed” [36]. By definition, PBF can be
utilized for polymers, ceramics, and metals, though metal-based AM has
become a dominant research thrust according to [44]. Between 1989
and 1995, three major PBF processes have emerged, with selective laser
sintering (SLS) being the first PBF process to be patented and commer-
cialized [38]. Subsequently, electron beam melting (EBM) [39] and se-
lective laser melting (SLM) were developed [40]. These three techniques
under PBF are notable because they laid a foundation for derivative PBF
processes that would follow in the subsequent decades.

Fig. 1 shows a typical SLM setup where a powder deposition system
places a 20—50 pm thick powder layer onto a build platform inside a
build chamber. The chamber is filled with inert gas (e.g., argon) so that
the metal does not oxidize during melting and re-solidification. A laser
beam selectively melts the powder by following a toolpath generated
from a CAD file of the part being produced. After the completion of one
layer, the build platform will move downwards a distance equal to the

Table 1
Brief history of metal additive manufacturing technologies.

Technology ASTM Category Invented Ref.
Sequential Layer Deposition DED 1982 [37]1
Selective Laser Sintering PBF 1989 [38]
Electron Beam Melting PBF 1992 [39]
Selective Laser Melting PBF 1995 [40]
Laser Metal Deposition DED 1996 [41]
Electron Beam Additive Manufacturing DED 2013 [42,43]

Journal of Manufacturing Systems 62 (2022) 145-163

Laser / Electron beam
system

Scanner +

Recoater / spreader

Dosed
powder

Fused object
Build plate
movement

*

Powder overflow

Fig. 1. Schematic of SLM PBF process [47].

thickness of one layer and a new layer of powder will be deposited. This
cycle repeats itself until the whole part is built. SLS is like SLM
conceptually, except that the material is being sintered in its solid state
instead of being liquified as it is in SLM. Compared to SLM and SLS, EBM
uses an electron beam as the heat source instead of a laser, and a vacuum
chamber instead of inert gas [45]. An in-depth analysis of PBF is given in
Gibson et al. [46].

2.2. Directed energy deposition

DED forgoes a powder bed and instead uses focused thermal energy
to melt metal powders as they are being deposited [36]. Like PBF, DED
can be used for polymers, ceramics, and metals, although ongoing
research is primarily geared towards metal-based DED as reviewed in
Dass and Moridi [48]. Raytheon Corporation first proposed wire- and
powder-based sequential layer deposition (SLD) in 1982 [37]. Laser
metal deposition (LMD), one of the first viable DED techniques, was
developed by the Sandia National Lab in 1996 [41]. Electron beam
additive manufacturing (EBAM), a technique reminiscent of EBM but for
DED instead of PBF, was developed by Sciaky Incorporated in 2013 [42,
43]. Analogous to PBF’s foundational significance, LMD and EBAM are
fundamental to various derivative DED techniques.

Direction of travel
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Coaxial laser
Blown powder +

Melt pool inert gas carrier

§

1
&1
&

Fig. 2. Schematic of LMD DED process [52].
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Fig. 2 shows a typical LMD setup. A laser is used to melt a small
region of the substrate beneath the current layer, creating a melt pool.
Simultaneously, a deposition system feeds metal powder or wire into the
laser where it liquifies and joins with the melt pool before solidifying.
The laser and deposition system travel together in three-dimensional
space and build the part layer-by-layer until it is completed. Like PBF,
LMD relies on toolpaths generated using CAD data. However, unlike
PBF, DED does not need an enclosed build chamber since material is fed
by an inert gas stream which prevents oxidation at the melt pool [49].
Additionally, since DED deposits material as it is needed and does not
utilize a powder bed it is not constrained to deposition orthogonal to the
build platform. Consequently, the deposition system can be dynamically
tilted and rotated during the production process to achieve more
desirable geometrical and mechanical properties [50]. A detailed
description of DED process mechanics is provided in Gibson et al. [51].

2.3. Quality challenges in metal AM

Despite their advantages, both PBF and DED suffer from drawbacks
unique to additive processes. Among these drawbacks, microstructural
defects, porosity, dimensional accuracy, and surface roughness have
attracted substantial research over the past decade.

2.3.1. Microstructural defects

Due to the additive nature of PBF and DED, the final part micro-
structure is highly dependent on deposition parameters. Most current
literature focuses on metallurgical features such as melt pool
morphology, precipitate behavior, dislocation density, grain size, and
grain orientation for most of the typical alloys used in PBF and DED,
such as aluminum alloys, stainless steels, tool steels, nickel-based su-
peralloys, and titanium alloys [53]. Overall, AM microstructure exhibits
highly nonconventional grain shapes, sizes, orientations, and gradients,
as shown in Fig. 3. However, this nonconventionality is not considered
defective as it would be in bulk material (cast, forged, rolled, etc.), but
rather a characteristic of additive material deposition.

The unique characteristics of metal AM microstructure is shown in
the following aspects:

(1) Cellular microstructure and columnar microstructure perpen-
dicular and parallel to the build direction, respectively [6,54,55].
Furthermore, the microstructures exhibit strong texture due to
the combined effect of epitaxy formation between the layers and
temperature gradient along the build direction [56,57].

Grain length Cell diameter
up to 200 um <1 pum
mm pum

Fusion boundary spacing Local misorientation Precipitates
(£1%cell)

up to 100 um

3!/ Build dir,

\

D —— 0
(a) Columnar
microstructure

=

(b) Heterogeneous
microstructure w. HAGB

(c) Cellular microstructure w. high
density of dislocations & LAGB
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(2) Large fractions of random high-angle grain boundaries (HAGB,
>10°) and low-angle grain boundaries (LAGB, 2°~10°) in the as-
deposited materials, with a broad grain-size distribution and
ripple-like grain shapes [6,54].

(3) High density of dislocations decorating the cellular walls with
relatively clean grain interiors [54]. The size and the wall
thickness of these solidification cells are known to be connected
to the solidification conditions (e.g., thermal gradient, cooling
rate, solidification front velocity) during the SLM process.

These deviations from “classical” morphologies are significant since
they do not have the same extensive literature support as non-additive
materials do. Many fundamental predictive relationships in material
science, e.g., the Hall-Petch relationship between part grain diameter
and yield stress [58], were empirically found decades ago based on
observations of bulk materials and have been studied extensively ever
since. However, relationships like this have not yet been definitively
proven (or disproven) to exist in metal AM. Additionally, since the
Hall-Petch relationship is empirical, it relies on material-specific and
experimentally derived coefficients and exponents. Related data is
abundant for bulk materials, but not yet for additive materials. Lastly,
given that the complexity involved in AM-specific manufacturing pro-
cesses can significantly complicate material qualification as compared to
bulk materials, it may be difficult to establish “rule of thumb” re-
lationships such as Hall-Petch for DED and PBF. Qualifying metal AM is
location-dependent, and the homogeneity assumptions of “classical”
methods are challenged and require systematic research to provide
meaningful guidance for AM process analysis and characterization.

2.3.2. Porosity

A major drawback of metal AM-produced parts is porosity, which is
detrimental to mechanical properties such as strength and fatigue
behavior. Using SLM as an example, four predominant pore types can be
found, as shown in Fig. 4 [59-61].

Adjusting process parameters such as laser density and scanning
speed, as well as using post-process methods such as heat treatment,
have been shown to reduce porosity. Fig. 5 shows computed tomography
images of a Ti-6Al-4V sample made via SLM [62]. After hot isostatic
pressing (HIP), no pores were found to be larger in diameter than the
resolution limit of 22 pm, indicating a substantial reduction in porosity.
However, despite their success, these postprocessing steps further
complicate and disincentivize metal AM as a manufacturing process
compared to traditional manufacturing processes. This indicates that
pores should ideally be prevented altogether during the deposition

Cell wall thickness
<160 nm

Impurities
<1nm

10-150 nm

(d) Solute
segregation

Fig. 3. Nonconventional microstructures found in SLM [6,54,55].
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Fig. 4. Typical porosity of SLM part. (a) gas-induced pores [59]; (b) oxide-induced pores [60]; (c) balling-induced pores [61]; (d) lack-of-fusion-induced pores [59].
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Fig. 5. Computed tomography images of Ti-6Al-4V specimens (a) before and (b) after hot isostatic pressing [62].

process.

2.3.3. Dimensional accuracy and surface roughness

Potentially substantial geometrical deviation (GD) and poor surface
roughness (SR) of metal AM parts represent additional major drawbacks
of metal AM processes. For example, neither PBF nor DED can currently
compete with conventional machining’s SR and GD, which are in the
range of 1—-10 pm [63] and 10—40 pm [64], respectively. SLM has an
average SR of about 10 pm and an average GD of 40—80 pm [65-68]. For
LMD, SR is on the order of 40 pm and GD is on the order of 20 pm
perpendicular to the deposition direction and 400 pm parallel to the
deposition direction [69,70]. Additionally, the SR of powder-based LMD
parts is strongly dependent on the powder’s particle size [41] and de-
livery rate [71], with smaller particles and lower delivery rates resulting
in a smoother surface finish. Thus, controlling the surface finish of LMD
components is much more challenging than doing so for conventional
subtractive manufacturing techniques.

2.3.4. Residual stress and other challenges

Besides the challenges described above, additional quality issues
exist for metal AM. For example, high residual stress is a commonly
observed defect for AM-fabricated parts and often leads to cracking and
warping failure modes [72]. Additionally, metal AM parts suffer from
anisotropic mechanical behavior, which in general express themselves
as lower tensile strength, and higher ductility when force is applied
normal to the build direction as compared to when it is applied parallel
to the build direction [73]. This is especially an issue for high load and
long-cycle applications wherein an overly ductile structure may fail due
to excessive loading or fatigue [74,75]. Metal AM anisotropy can be
reduced via post-heat treatment.

Further challenges associated with metal AM processes include
longer build times, complicated post-processing, and a more expensive
workflow as compared to subtractive processes, both in terms of the
equipment and material cost [76]. Last but not least, the limited material
options for metal AM [74] and the difficulty in creating multi-material
designs make it more difficult to make a case for metal AM technology
[77]. However, recent advances in ML have demonstrated a promising
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pathway to mitigate the above issues and have offered the possibility of
performance prognosis of metal AM parts, as discussed in the following
section.

3. Machine learning for metal AM

As non-intrusive sensing methods have continued to improve, metal
AM workflows have attained greater process repeatability. This is due to
online process monitoring sensors that have increasingly shown their
potentials to assist in formulating robust quality control measures and
consequently, help build reliable and cost-effective metal AM parts. This
is rightfully so, as ML models’ ability to discover hidden patterns in high-
dimensional and multi-modal data is well-suited for the multivariate and
sensor-rich metal AM environment. ML for AM, from sensing pipelines
to model outputs, is discussed in detail below.

3.1. Metal AM sensing

The primary enabler of ML-based methods is data ingestion, which
has been aided by the continued advancement of in-process sensing
technology. Information can be collected from the design, fabrication,
and finishing stages of metal AM and used to train new ML models or
feed pre-trained ML models for fast, automatic decision-making. Based
on the specific sensor type and in-process stage of data collection,
sensing data can be categorized into several categories. Each category
has unique characteristics as shown in Table 2.

3.2. ML for AM prognosis

ML has shown to be an effective tool for metal AM quality prognosis,
where prognosis is treated as either a classification or regression prob-
lem. Based on the relationship between in-situ data and AM properties,
the prognostic analysis targets different quality issues, including those
discussed in Section 2.3, as summarized in the following sections.

3.2.1. ML overview
ML models refer to computer algorithms that learn decision-making
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Table 2
AM data sources and usage [78-97].
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AM Stage Data Data Properties Uses in ML Ref.
e Represent desian information. | ® Find correlations between process parameters
Design Process proF():ess conditigns Y and part quality issues [27, 78-81]
parameters e Rarely require preprocessin e Connect planning and fabrication '
y require prep 9| o Parameter optimization and process control
In-situ o Capture full profile of part and
thermal spatiotemporal correlations [20, 82-90]
images | e Usefulness o< sensor res.
o Reflect certain metrics of o Develop models that learn spatial
Time interest, e.g., pointwise relationships, e.g., convolutional
Fabrication | series temperature in melt pool . ghalrz:pterlze sl';iatloter'r;pcl)ral C(l)rrelgtllons [91,92]
e Less informative than images | * p:)iég:i(?nfoll ¥ monitoring, closed-Ioop
o Reflect certain mechanical
Acoustic properties of fabricated part [23, 24,
signals | e Usually require time- 93]
frequency transform
. e Find correlations between in-situ data,
Post- Parlt . Sgalar metrics for macro- or process parameters, part quality [20, 82,
process quality microstructural defects, e.g., «  Online or offline quality prognosis 85, 86, 94-
inspection | metrics properties, microstructures e Process parameter opfimization 97]

rules from data [98]. Generically, model f with trainable parameters w €
W operates on input instance x; € X and outputs prediction y; € Y, i.e.,
f(w, x;) =J;. Here, w, x;, and y; are vectors within W, X, and Y, which
are the multi-dimensional domains of parameters, inputs, and outputs,
respectively. ML models are trained by finding the w such that the ex-
pected discrepancy, or “loss”, between the prediction y; and the ground
truth value y; € Y is minimized across all i in the training dataset. This
optimization procedure is specific to each model architecture, although
gradient descent algorithms are widely used. Following training, ML
model performance is quantified by measuring the loss with a validation
dataset, which is disjoint from the training dataset. This measures the
model’s generalizability to novel data and thus quantifies its
post-training quality.

ML training is conventionally categorized into supervised, semi-
supervised, unsupervised, and reinforcement learning based on char-
acteristics of the training data [99]. In supervised learning, f receives x;
and its corresponding y; so that the loss can be calculated for every i in
the training dataset and used to update w. This optimization process is
the “learning” part of ML. Supervised ML models include multilayer
perceptrons (MLP), support vector machines (SVM), classification and
regression trees (CART), and k-nearest neighbors (KNN), all of which
depend on the value of the loss to learn.

Since the objective of supervised learning is to mitigate the
discrepancy between predictions and the ground truth values, it is best-
suited and widely used for predicting metal AM part characteristics,
including mechanical properties, defect category, surface roughness,
and microstructure. These approaches constitute most current literature
in ML for metal AM, as shown in Sections 3.2.2 and 3.2.3, respectively.
Also note that the decision logics of CARTs and SVMs are much more
transparent and easier to interpret than MLPs and the KNN algorithm,
for example, but also that the former models may be less accurate than
the latter models [100]. Therefore, the practical needs for selecting a
supervised learning architecture should be justified and determined first
to determine if performance or interpretability takes precedence.

Unfortunately, labeling every training instance for supervised
learning can require an inordinate number person-hours if done
manually. Semi-supervised learning circumvents this problem by
relaxing the 1:1 labelling requirement and allowing some x; to be
without ground truth y;. Instead, y; for these unlabeled x; are inferred by
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way of clustering or regression techniques. All (x;, y;) pairs, including
those with inferred labels, are then used to perform model training
similarly to fully supervised learning [101].

While appealing conceptually, semi-supervised learning has few
current applications in ML for metal AM because of two reasons: 1) data
overabundance is not yet a problem in metal AM, and 2) metal AM label
inference models are still in the early stage of development and must be
thoroughly validated before they can be used to enable fully supervised
learning of partially labeled data. However, continued investment in
metal AM will gradually address the former problem and the latter
problem is being actively addressed in literature, such as by the tensile
property regression model by Xie et al. [102] and the process condition
classification model by Li et al. [103]. For these reasons, the utility of
semi-supervised learning in metal AM is expected to increase over time.

In contrast to supervised learning, unsupervised learning ignores
labels entirely and instead seeks to find underlying patterns in the input
data. The approach is widely used for clustering analysis using the k-
means and hierarchical clustering algorithms. These algorithms are
often used as components of other ML algorithms, such as the label
inference system in a semi-supervised algorithm [104]. Unsupervised
learning therefore has the same utility and limitations in metal AM as
described in the above paragraph.

Reinforcement learning (RL), on the other hand, is disparate from the
prior three types because it trains the algorithm, also known as an
“agent,” via a reward-and-penalty mechanism. RL is usually applied to
sequential decision-making rather than parallel decision-making since
RL agents operate using a Markov decision process wherein the agent’s
next action is determined by the current state of its environment. When
an agent receives the state of its environment (x;), the agent acts on the
environment to change it (according to f(w, x;) =¥;) and then assesses
if its action helped achieve its objective, e.g., maximizing AM yield
stress. Beneficial actions are “rewarded” and detrimental actions are
“punished,” thus “reinforcing” good behavior [105]. Since it enables
goal-seeking sequential decision making, RL is best suited for real-time
metal AM process control wherein agent’s actions are machine setting
adjustments. This machine control paradigm has been recently realized
by Ogoke and Farimani who used deep RL to decrease PBF melt pool
depth control error by 91 %, which created more consistent mechanical
properties throughout the produced parts [106]. RL can also be used in
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classification and regression problems.

The following subsections will review existing studies in metal AM
that leveraged ML for prognostics. The ML models used are introduced
and the data types and prognostic problems concerned are provided.
These materials present an overview of previous successes and illustrate
when and how machine learning models have been used in metal AM.
(Since this paper is focused on metrology as outlined in Section 2.3
rather than process control, RL-driven control systems are not discussed
in this paper and we refer readers to the review in [107] instead.)

3.2.2. Classification tasks

A summary of previous research on classification tasks in metal AM is
shown in Table 3. These tasks come in two predominant types: fault
detection and category prediction.

Fault detection is a binary classification problem in metal AM that
usually seeks to determine if a flaw is present or not. The success of a
binary model is typically expressed in terms of the following metrics:
precision, recall, F; score, and accuracy, as defined in Egs. (1)-(4). While
precision measures the fraction of detected flaws are truly flaws, thus
reflecting upon the validity of the detection result, recall represents the
fraction of flaws that are detected, indicating the completeness of the
result. As a widely used metric, F; considers precision and recall with
equal weight, and is useful for the scenarios when, for example, the
model outputs the same prediction every time, which would mean a
perfect recall but imperfect precision. Finally, accuracy is the ratio of
correct predictions to the total number of predictions.

Table 3
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true positives
Pr = Suad — ¢))
true positives + false positives

true positives
e = P )

true positives + false negatives

Pr« Re
Fi =2 ——— 3
! Pr + Re )
true positives + true negatives
p g 4

"~ total number of predictions made

Category prediction is a multi-class problem that can take various
forms. Fault categorization, e.g., pore type, surface defect type, is a
common objective for these predictive models in metal AM. Since pre-
cision and recall are not well-defined for multi-class problems, accuracy
is generally used to quantify model success.

3.2.3. Regression tasks

ML-driven regression models for metal AM in the literature are
summarized in Table 4. In contrast to classification, regression tasks seek
to estimate a variable of interest with as little error as possible. This is a
common goal in metal AM when quantifying defect severity and pre-
dicting part properties such as yield stress and fatigue. Error quantifi-
cation is done by comparing the difference between model predictions
and ground truth values across a set of N predictions. This error can be
quantified in direct terms, such as root mean squared error (RMSE)
shown in Eq. (5) and mean absolute percentage error (MAPE) shown in

Prior studies using classification for metal AM performance characterization [108-122].

Task Process ML Model Input Model Output Metric  Ref.
DED SVM  Predicted temperature, in-situ sensor data Incipient flaw present F1:90%  [85]
SVM Spectrometer data, plume images Lack of fusion severity category  F1:85%  [87]
CART X-ray image, acoustic emissions Structural condition category ~ Ac: 95%  [108]
CNN Cross-sectional image Defect category Ac:99%  [89]
MP CNN Cross-sectional image Cracks present Ac:100% [109]
PBF CNN Plume images Deposition morphology category  Ac:93%  [110]
CNN Voxelated cross-sectional image Anomaly present F1:94%  [111]
DBN Deposition track images Melt condition category Ac:83% [112]
MLP Cross-sectional image Incipient flaw present Ac:93% [113]
SVM Cross-sectional image Defect category Ac:80% [114]
DED DT Melt pool geometrical features Pores present Ac:99%  [115]
KNN Melt pool thermal image Pores present Re:98%  [20]
CNN Acoustic emission Porosity severity category Ac:89%  [23]
CNN Powder bed image Porosity severity category F1:97%  [116]
PP CNN Powder bed image Pores present Ac:97% [117-119]
PBF KNN Melt pool pyrometer data Pores present Ac:94%  [91]
MLP Optical spectroscopy signal Porosity severity category F1:90%  [95]
RL Acoustic data Porosity severity category Ac:82%  [24]
SVM Cross-sectional image Pores present Ac:89%  [86]
GDp— 22D - - - - -
PBF CNN Cross-sectional image Defect present Ac:93% [113]
SRP DED KNN Laser scanner data Surface defect category Ac:93%  [120]
PBF CNN Cross-sectional image Surface condition category Ac:99% [121]
DED - - - - -
MPP PRF CNN Melt pool images Destructive test result category  Ac: 99%  [122]
GMM Features of photodiode data UTS category Re:77%  [97]
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Table 4

Prior studies using regression for metal AM [123-134].

Journal of Manufacturing Systems 62 (2022) 145-163

Task Process ML Model Input Model Output Metric Ref.
DED - - - - -
MP PBF - - - - -
DED - - - - -
MLP  Optical emission spectroscopy signal Pore size RMSE: 14% [95]
Spreader translation speed, . !
PP pgp MLP rotation speed % of layer that is pore R2:0.99 [123]
Part position, orientation, , )
RF powder composition Pore diameter 1p: -0.3 [124]
. . . Laser power, scan ) o
DED MLP  Cross-section width, depth, height speed, powder feed rate MAPE: 2.0-5.8% [125]
CNN Layer image Build quality metric R2:0.8-0.98 [126]
GDP CNN  Thermal history, process parameters Part distortion RMSE: 24 ym [127]
PBF Chermistry of vowders. thermal  Melt frack width, depth, R2: >0.9 (width, depth, area
SVM STy o'p ' height, area below/above below), 0.75-0.85 (height,  [128]
properties, process parameters
substrate area above)
SRP DED GAANFIS Laser scanner data Surface roughness R20.93 [129]
PBF GPR Cross-sectional image Surface roughness Rz >0.9 [130]
Time-frequency images MAPE:
oED CNN from thermal history EL, UTS, Y$ 6.55%, 6.20%, 5.56% Lo\
GPR Alloy comppsmon, heat YsS R? 099 [132]
treatment information
MPP GPR Alloy composmqn, oxygen YS R2 0.98 [132]
content, cooling rate
PBF MAPE:
MLP Strut geometry data SS, UTS, YM 9.39%, 5.26%. 14.60% [133]
NFI Process parameters Fatigue life RMSE: 11-16% [134]
Eq. (6), or in relative terms, such as coefficient of determination (R?) as Cov(3, y)
shown in Eq. (7) or Pearson correlation coefficient (rp) as shown in Eq. r, = m ®
(8.
SV G, —v)? 4. Towards physics-informed machine learning for metal AM
RMSE = :‘* 5)

N |~
MAPE — 100% Z y: —yil
A=

R=1-

i

> -y.)

20—y

Previously reported work in ML for AM has improved metal AM

quality control. A summary of the benefits ML in AM is shown in Fig. 6.

(6) However, current ML applications in AM still suffer from myriad prob-
lems inherent to ML in general, including an inordinate need for data

and a lack of physical interpretability in the context of metal AM pro-

() cesses. For instance, while melt pool images are commonly used as in-
puts to ML models, those models do not develop a physics-based
understanding of the complex thermomechanical phenomena taking
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Fig. 6. Summary of ML benefits in AM; images from [131,135-137].
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place and being observed by thermal imaging systems. This can lead to
the models learning spurious relationships between image features and
part properties since no domain-specific knowledge is utilized nor are
any domain-specific constraints imposed, such as heat transfer laws. In
short, current ML models excel at finding statistical correlations be-
tween inputs and outputs but may do so at the expense of the laws of
nature: they are not constrained by physics. To remedy this ongoing
issue, a paradigm shift from ML to physics-informed ML (PIML) for
metal AM is proposed. This section presents background on PIML and
discusses previous successes of PIML in metal AM.

4.1. PIML background

PIML is a branch of hybridized ML that incorporates the physics/
domain knowledge of AM applications into ML model inputs, outputs,
architecture, and training. A literature review has shown that there are
five predominant ways to integrate physics into ML: 1) model input, 2)
model training, 3) model components, 4) model architecture, and 5)
model output.

In physics-informed model input (PIMI), in-situ production data is
preprocessed to extract hidden physical information and/or augment it
with production parameters and simulation data to better model the
system being studied. An example of the former method is found in Xie
et al. [102] wherein time-temperature series are projected into the
time-frequency domain using wavelet transforms. This transformation
extracts frequency information that is otherwise hidden in the
time-domain signal and enables a deep convolutional neural network to
consider frequency and time information simultaneously and predict
tensile properties using this information. This approach has the potential
to be used for deductive reasoning, i.e., using pre-established physical
principles to select input features that are likely good predictors of the
output variable(s), as well as inductive reasoning, i.e., crafting novel
features, assessing their predictive power with respect to model output
(s), and determining post hoc why the features are good or bad predictors
in terms of physics.

Another pillar of PIML is physics-informed model training (PIMT).
The goal of this technique is to ensure physical consistency between
model inputs and outputs by penalizing output spuriousness via the loss
function [141]. This is seen in the lake temperature modelling MLP
designed in Karpatne et al. [138]. In this work, the physical behavior of
interest is the monotonic increase in lake water density as a function of
depth below the surface, i.e., p(d). The physical model expects that as
d increases, p will increase as well. Therefore, if the MLP predicts that p
has decreased between two successively deeper d, i.e., p(d;) > p(dy) for
d; < da, then the loss function for the current iteration is increased by
Ap(d;) — p(dz)) where 1 is a scaling constant. If the density change is
physically consistent, i.e., p(d;) < p(d>), then no penalty is applied. Since
the MLP training process seeks to minimize the loss function, it maxi-
mizes physical consistency by attempting to achieve p(d;) — p(dz) < 0 for
v d] < dg.

Just as loss functions can be physics-informed, so too can model
mechanisms such as activation functions and initialization procedures.
This kind of mechanistic alteration is the central idea of physics-
informed model components (PIMC). Activation functions are good
candidates for infusion with physical intuition since usual activations, e.
g., sigmoid, hyperbolic tangent, and rectified linear unit, are usually
selected only because they work well and not because they carry phys-
ical meaning.

Howland and Dabiri [139] recognized the shortcoming of physically
meaningless activation functions when modelling wind farm power
output and subsequently modified an activation to be physically
meaningful. A directed acyclic graph was developed to model power
generation relationships between turbines on a farm considering the
fluidic wakes between them. The power generation of a turbine in layer i
(P;) was modeled as a weighed sum of the turbines in preceding layer j, i.
e., P = X; w;jPj. To capture the nonlinear fluidic wake interactions
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between successive layers of turbines, the sigmoid function was modi-
fied formulaically to fit a thrust coefficient curve as a function of P}, i.e.,
Cr=ocr(P) = (2.03) [ — e 272 1 £)71 1 2.03] where & = 10 for
numerical stability. This alteration scaled, translated, and reflected the
traditional sigmoid curve o(x) = (1 + )~ while keeping ocr bounded
within (0,1) like the traditional sigmoid. The modified activation was
physically meaningful since it was designed to predict downstream
power (W) as a function of upstream power (W), rather than “activation
units” as a function of “activation units” as is the case with non-PIML
activation functions. The power generation model was then expressed
as P; = X; kijPj ocr(Pj) + ¢jP; [1 - o(P;)] where k and c are learnable
matrices which dictate the model behavior at low and high values of P;,
respectively. A genetic algorithm was then used to find the optimal k and
c that minimized the model’s loss.

Physics-informed model architecture (PIMA) is another promising
pathway to achieving PIML. In this technique, the way in which an ML
model represents input information is trained during model optimiza-
tion to conduct physically meaningful analysis. This differs from PIMC
since architectural changes fundamentally alter the data representation
whereas the model components change how the data is processed
without changing the data itself. PIMA also differs from PIMI in the sense
that PIMI’s input data transformations are static whereas PIMA’s
transformations are learned as part of the ML model. PIMA-driven
transformations are only possible if the transformation is trainable,
which often equates to being smoothly differentiable in the case of
gradient descent-based algorithms. Finding differentiable formulations
of input transformations may not be a simple process, so PIML de-
velopers must decide if learned PIMA transformations are worth the
time and energy spent formulating them as opposed to using quicker but
manual PIMIL

A recent example of PIMA is the CNN-based WaveletKernelNet by Li
et al. [140], which automatically extracts frequency information from
an incoming one-dimensional time series. It does so by replacing the first
layer’s convolution kernels with n trainable wavelets, each with scale
and translation parameters s and u, respectively. The first layer thus
outputs n one-dimensional convolutions of the original time series,
which are further processed by the remaining one-dimensional con-
volutional layers to arrive at a model prediction. By implementing
backpropagation-based model optimization, the s and u parameters of
the n wavelet kernels in the first layer are optimized to reduce the
model’s loss. Since the form of the wavelet can be controlled, e.g.,
Morlet or Mexican hat, the user is able to choose the wavelet formulation
that best captures the physics hidden in the input time series. Methods
for doing so are demonstrated in Yan and Gao [141].

Finally, physics-informed model output (PIMO) refers to the idea
of assessing a model’s prediction logic for physical consistency. This
differs from PIMT in the sense that PIMT’s loss functions measure model
performance against ground truth values or physical phenomena
whereas PIMO’s prediction logic examination explains how a model
arrived at its prediction. Techniques such as layer-wise relevance
propagation (LRP) [142]. Linear Interpretable Model-agnostic Expla-
nations (LIME) [143], and Shapley additive explanations (SHAP) values
[144] can be used to achieve this logical analysis. Each of these tech-
niques reveal not only what input features are relevant to ML model
prediction logic, but also how those inputs numerically affect the model
output.

For instance, LRP was implemented by Grezmak et al. when per-
forming motor fault diagnosis as shown in Fig. 7 [145]. Vibration signals
measured on an induction motor were first processed by wavelet
transform to generate time-frequency images, which were subsequently
classified into one of four fault types using a two-dimensional CNN.
Following network optimization to 100 % classification accuracy, LRP
was used to visualize which parts of the images contained the most
useful information when performing classification. This effectively
showed what areas of the image the CNN was “looking at” to perform
classification and allowed for physics-informed assessment of what the
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Fig. 7. Summary of LRP-based method by Grezmak et al. for achieving physics-informed model output [145].

CNN had learned and determination of if this learned knowledge was
consistent with physics and previous literature.

4.2. PIML development

The prevailing advantage of PIML is that it enhances model inter-
pretability and reduces model spuriousness by being rooted in physical
principles. It does this while retaining the competitive performance
ceiling of ML as well. Outside of manufacturing, PIML has been used to:
1) predict lake temperatures with less than 1 °C RMSE and complete
consistency with physics [138], 2) solve the Schrodinger and Allen-Cahn
equations with 0.002 and 0.007 Ly error, respectively [146], 3) solve the
Burgers equation with 3 % error in the coefficients [147], 4) solve
elliptic stochastic partial differential equations to within 0.005 L; error
[148], 5) simulate fluids up to 700x faster than classical simulation
techniques [149], and 6) detect and track objects with 95 % correlation
between predicted and actual position [150].

Within the manufacturing domain, PIML has been developed to: 1)
predict specific cutting energy of milling with the accuracy of 1 J/mm?
RMSE by integrating machine learning and process mechanics [151], 2)
predict Taylor tool life equation coefficients with 5 % MAE [152], 3)
predict milling tool wear with 6 pm MAE [153], 4) predict chatter with
99 % accuracy [154], 5) predict polymer AM ultimate tensile stress with
0.6 MPa RMSE [155], 6) predict DED yield stress with 9.2 MPa RMSE
[156], and 7) predict DED pore diameter with 0.02 mm MAE [157], to
name a few representative applications.

Another advantage of PIML is its synergistic integration of physical
models and data-driven methods. The former is oftentimes reliant on
simplifying or homogenizing assumptions to be tractable whereas the
latter may deviate from the laws of physics, as previously discussed.
Additionally, physical models of complex thermomechanical systems
such as PBF and DED are infeasible to update in real-time due to the
complexity of numerical simulation required to do so. Well-trained PIML
models take advantage of physical and data-driven models (Fig. 8) as
they are based on the laws of physics and respond to real-time data
streams using the comparative computational efficiency of ML-based
computation. Underlying fundamental ML architectures such as MLP
and CNN also enable uncertainty quantification and prediction in PIML,
as is done in physical experiments and statistical analysis. Techniques
for doing so are reviewed in Kabir et al. [158].

4.3. PIML for metal AM

Though not yet widely adopted, PIML has achieved success in metal
AM where several studies have explored the potentials of PIML for
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Fig. 8. PIML vs. physical and data-driven models, adapted from [154].

quality prediction. For example, PyroNet+ and PyroNet++ (Fig. 9) were
proposed in a PIMI study by Guo et al. [157]. These PIML-driven NNs
extracted features from thermal images of melt pools with a CNN and
concatenated the features with physical measures from FEA simulations
before feeding them to a subsequent MLP for porosity prediction. This is
an example of supplementing in-situ data with simulation data to ach-
ieve PIMI. The features from thermal images encoded physically
meaningful process parameters in the real-world, such as heat transfer,
mass flow, and melt pool volume even though these features were not
explicitly extracted from the in-situ data. The FEA features, such as melt
pool length, provided guidance about what the CNN should have been
seeing under ideal conditions. The juxtaposition between real-world
physics and simulated physics gave PyroNet++ additional physically
meaningful insight about the process. It could observe what the py-
rometer should have been seeing and then infer porosity condition based
on deviation from that idealized state. This contrasts with non-PIML
methods which would have received the pyrometer data in isolation
and found statistical (not physical) relationships between the images
and the porosity. The external information, in the form of FEA, is the
PIML-enabling mechanism of this study. PyroNet++ successfully
detected pores in-situ with 100 % accuracy and predicted the diameter of



S. Guo et al.

) max pooling

softmax

" ','117.117.1)3
In-Process Sensing / 7
(pyrometer)

56{x 56 x 256

LMD
Physical,
Process 4

(Spatial distribution

of temperature)

@ convolution+ReLU

) fully connected+ReLU

4 , Pi
© Layer number [; 1X1X4101 1y1x2 -
3D temperature » Physical features ’ :yr.ON:tf'pnlj
- contour of melt pool ' (physics-drive
Finite Element A i ) _ ) !
Simulation * Length a; i (DS features + layer information
olmuiz 2 « Width b; -t + physical features)
3 t
Melt pool shape & size * Depth z;

* Peak temp. T;

1x1x4096

Journal of Manufacturing Systems 62 (2022) 145-163

(a) Physics-Driven Deep Learning (b) Hierarchical Prediction

\

1

1

1

1

|

1

1

1

By i

PyroNet .
1x1x2 :

(Baseline) !

1

(deep learning model only) [

1

o 1

Pi
1x 1x40?7 1x1x2  PyroNet+

(DS features + layer information)

Fig. 9. PIML-driven PyroNet + and PyroNet++ in Guo et al. [157].

the pores with 0.03 mm MAE.

Similarly, Ren et al. [159] used achieved PIMI by gathering simu-
lation data to develop a recurrent MLP to identify the correlation be-
tween laser scanning patterns and thermal history distributions. FEA
was used to simulate a DED process and, crucially, keep track of when
each voxel of material was deposited. This temporal information was
critical in making the study PIMI-driven since it gives information that
cannot be extracted from in-situ temperature data alone. This
time-since-deposition matrix was used as the input to the developed
model, which can predict the thermal field for an arbitrary geometry
with different scanning strategies with 2 % MAPE compared to a
ground-truth FEA simulation.

Liu et al. [136] minimized porosity and optimized machine settings
using domain knowledge-based PIMI, which is distinct from simulation
supplementation. Physical information related to energy density and
pressure on the part were calculated using domain knowledge and
became SVM inputs and the model regressed mean pore size to within 8
% MAPE. The advantage of using PIMI-crafted features for the SVM
rather than in-situ observational values only was that “hidden” infor-
mation such as photon momentum and radiation pressure could be used
explicitly as inputs. Since these quantities are calculated with trigono-
metric functions and many ML techniques can only perform polynomial
approximations, this hidden information would likely not be accurately
extracted during the ML training phase and would need to be included
via practitioners’ domain knowledge. Additionally, since these physical
mechanisms directly determine the process outcome, the developed
method aimed to find causal relationships between inputs and outputs,
which are much more useful that correlational relationships that are
commonly found in standard ML.

Akin to Liu’s domain knowledge inclusions, Nagarajan et al. [160]
combined dimensional analysis conceptual modeling and classic ANNs
to create a novel knowledge based MLP to achieve PIMA. A topology was
defined for the topological zones derived from physical knowledge of
the metal AM process and MLP-modeled zoning knowledge, which
captured the system behavior and improved the repeatability of metal
AM production. The developed model predicted AM product dimensions
with 58 % less error than a conventional ML model.

In contrast to PIMI, which relies on simulations as model inputs,
PIMT has been used to replicate metal AM simulations with a lower
computational burden. Zhu et al. [161] embraced PIMT to introduce a
physics-informed neural network (PINN) [146] for predicting thermal
history and melt pool fluid dynamics in PBF. Real data from the process
were processed by an MLP with a loss function constrained by physical
laws to predict thermal history, fluid pressure, and fluid velocity. Unlike
PIM], this work used FEA simulations to inform the physics-constrained
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loss function and penalize the network when any of the three outputs
deviated from the simulated ground truth. Additionally, partial differ-
ential equations modelling momentum, mass, and energy conservation
along with their Dirichlet and Neumann boundary constraints were
directly inserted into the loss function. This reduced the need for
training data and expedited the training process by forcing the MLP to
respect boundary conditions while also modelling the interior of the
temperature-pressure-velocity output space. Had this physics-informed
domain knowledge not been included in the loss function, the model
would have relied on naive, physics-uninformed gradient descent which
would have been slower and ignorant of the boundary conditions,
resulting in worsened interpolation and extrapolation. The model pre-
dicted PBF melt pool dimensions and cooling rate with as little as 2.9 %
and 7.8 % MAPE, respectively, as compared to experimental measure-
ments. These results were as good or better than FEA-derived pre-
dictions, and at a fraction of the computational cost.

There is notably little literature regarding PIMC, PIMA, and PIMO in
metal AM. The absence of PIMC and PIMA are attributable to the
growing yet young development horizon of ML for metal AM. Regarding
PIMC, it is still not well understood how to make model components
“look like” thermomechanical relationships found in AM (due to the
complexity of these relationships) such as in Howland and Dabiri [139].
Using tried and true model components work well for the time being, but
physics-integration is expected to come as a deeper understanding of
metal AM physics is developed. As for PIMA, it is relatively unknown
which information extraction techniques are best for metal AM right
now. Xie et al. [131] demonstrated the utility of wavelet transforms in
predicting DED tensile properties, which may be a path to PIMA, but
widespread use of optimizable information extraction in metal AM is yet
to be seen (though this does not detract from the merits of PIMA).
PIMO’s relative absence can also be traced to a still-developing under-
standing of AM physics. Without ground truth knowledge about metal
AM physics, interpreting results in the spirit of PIMO is difficult and
possibly even futile. However, there is a growing body of research on
process-property relationships, such as between porosity and tempera-
ture distribution [162] and between cooling rate and tensile properties
[135]. This body of observed relationships improve the utility of PIMO
and make it a more promising technique in metal AM moving forward.

To summarize, PIML methods present a promising and powerful
alternative to pure physics-based modeling and simulation or conven-
tional ML-based process modeling and monitoring for metal AM. Pre-
viously reported success has demonstrated their potentials and shed
light on multiple future research directions. Through the five-
dimensional lens of PIMI, PIMT, PIMC, PIMA, and PIMO, existing
literature has been categorized to assess current directions and progress
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in achieving comprehensive PIML implementation. Still, challenges and
practical concerns exist for PIML development, which are elaborated in
the next section.

5. Challenges and outlook of physics-informed ML for metal AM

In AM and related fields, the transition from conventional ML to
PIML is an ongoing process. The existing cases of PIML in metal AM
(Section 4.3) have paved the way for its development. Yet, open issues
have yet be solved. This section introduces a framework for imple-
menting PIML methods in metal AM applications and discusses the
challenges and potential opportunities. Data-related issues, practical
concerns, and physical considerations are considered.

5.1. PIML implementation framework

Fig. 10 shows a proposed methodology for implementing PIML in
manufacturing operations. The sequencing of the methodology is
inspired by the life cycle assessment framework described within ISO
14040 [163]. Note that this workflow is like that of conventional ML
with two distinctions: 1) initial assessment of PIML necessity, goals, and
scope, and 2) mid-development verification of physical assumptions
being included in PIML models. These two crucial steps ensure that the
time to be spent developing PIML techniques and strategies will be
meaningful, and that the final product is justifiable given the plethora of
off-the-shelf black box ML models available that would exchange
interpretability for reduced development time.

5.2. PIML challenges

PIML faces challenges primarily in the area of method development.
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These are discussed below from the perspectives of PIML data integrity,
practicality, limitations, and cybersecurity.

5.2.1. Data availability

Data availability in AM is a key issue to the development of PIML.
Due to its flexibility and high level of possible customization, metal AM
applications tend to have low-volume production. Some commercial AM
systems do not have built-in data acquisition systems and require sen-
sors to be retrofitted, which increases operational costs [146,164]. Such
a situation further leads to limited data availability in many AM appli-
cations. Several institutions have created benchmark datasets for metal
AM [83], which have significantly boosted the utilization and devel-
opment of ML and PIML approaches. Yet, these datasets represent metal
AM in lab environments, instead of industrial metal AM applications. An
industry-level data-sharing policy is imperative to further leverage PIML
in metal AM [165] though this has yet to be developed and universally
adopted.

Alternatively, process simulations can be developed to provide
additional physically meaningful data to support the implementation of
PIML Conveniently, this approach also enables high-efficiency RL agent
training. Since RL is Markovian, it is well-suited for simulation-like
applications where the process status at each time step is a function of
immediately preceding time steps. Assuming a physically consistent AM
process simulation environment is constructed (e.g., in the form of a
digital twin), an RL agent can control the simulation parameters (laser
power, scan speed, toolpath, etc.) and learn how to guide the AM process
to achieve part property outcomes that are desirable to the user. Since
this process is entirely virtual, the agent can be trained with theoreti-
cally infinite training scenarios. Furthermore, if the ML-based simula-
tion produces sufficiently accurate process outcomes (part mechanical
properties, surface roughness, etc.), it can also be used to train
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supervised ML models for AM metrology. The benefit of this approach is
that ML models often perform inference that is orders of magnitude
faster than FEA simulations. However, such models require well-
designed simulations to be established first to train the RL agents,
which is another outstanding issue as discussed in Section 5.2.2.

5.2.2. Physical modeling limitations

Since they are often used as sources of PIML training data, metal AM
physical models should be as accurate as possible. It is therefore
important to recognize that physical modeling methods have inherent
assumptions, simplifications, and approximations that detract from their
accuracy [166]. While the past decade has seen significant progress in
the development of novel modeling techniques, most of the existing
physical models manifest limited coherence with data from actual
manufacturing processes due to underlying assumptions. These span
from domain-related limitations or machine process characteristics (e.
g., laser diameter, hatch spacing) and laser/material interaction char-
acteristics (e.g., absorptivity, optical penetration into the powder/bulk
material), to material properties, (e.g., thermal conductivity, heat ca-
pacity, coefficient of thermal expansion, density, phase transition tem-
perature) [166]. Furthermore, multi-scale (in terms of both space and
time) integration over associated temperature ranges also introduces
variability when predicting metal AM process characteristics.

Significant potentials exist in improving physics-based modeling and
simulation of metal AM processes in terms of more accurately and
robustly handling energy beam-material interactions, melt pool solidi-
fication, microstructure evolution, nonlinear temperature-dependent
material properties, thermal history, process variations, and un-
certainties [7]. By incorporating design formulations and parameters
related to metal AM fundamentals into physical models, model vari-
ability can be minimized and new avenues to achieving PIML, such as
the RL described in Section 5.2.1, can be opened [167,168]. Modeling
methodologies pertaining to heat sources, material properties, micro-
structures, and state changes/phase transformations represent major
research directions to predict and optimize the outcome of metal AM
process prognosis via PIML.

5.2.3. Data imbalance

Data imbalance is another key issue impeding PIML. In many AM
applications, the data related to noncompliant parts is miniscule
compared to the compliant data. On one hand, limited data availability
has constrained metal AM dataset sizes; on the other hand, the mea-
surement of noncompliance-inducing defects, such as porosity, requires
expensive tools, e.g., computed tomography [20] for analysis of part
microstructure. This situation has led to an imbalance of data classes
(compliant vs. noncompliant) for developing PIML, which impedes the
characterization of the noncompliant parts using ML models. One way of
alleviating data imbalance is resampling. Methods such as bootstrapping
[169], image synthesis [170,171], and synthetic minority oversampling
[172] have been demonstrated to reduce the detrimental effects of class
imbalances on training ML systems. Additionally, techniques developed
specifically to characterize minority classes, such as few-shot learning
[173], Siamese/triplet networks [174,175], and isolation forest [176],
can be used to study noncompliant specimens.

Another promising solution to imbalanced data is granular computing.
This technique processes complex information entities known as “in-
formation granules” that are any subsets, classes, objects, clusters, and
elements of a universe that are drawn together by distinguishability,
similarity, or functionality [177]. As an example, granular computing
can be applied to in-situ thermal images from AM to extract semantically
meaningful geometric patterns. Analyzing the information granules
from compliant and noncompliant data instead of the data themselves
may alleviate the impact of dataset size. Meanwhile, granular computing
may be incorporated in PIML model design to facilitate feature extrac-
tion from imaging or time series data, such as for semi-supervised
learning, thus reducing the negative effect of data imbalance to model
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training.

5.2.4. Data curation

Data curation is another challenge. “Curation” here refers to the
preparation of data for further analysis, such as cleaning, processing,
alignment, and fusion [178]. In metal AM, the way of handling datasets
should be guided by practical considerations. Based on where and what
datasets are collected, the problems to be solved by learning from the
data are predetermined. For example, with the justified connection be-
tween abnormal thermal dynamics in melt pool and porosity in DED
metal parts [179], in-situ images of melt pool can be used to predict
porosity [20,90,157]. Thermal images collected with two online sensors
installed along different angles may show complementary profiles of a
part being built during the AM process, and integrating these two data
sources may improve the accuracy in prognostic analysis [180]. In that
sense, understanding the underlying physics, mechanics, and materials
in metal AM is as important as studying data from real-world produc-
tion. Thus, interdisciplinary collaboration is required to guide data
handling in PIML.

As a data-driven paradigm, PIML requires sufficient data for model
training and validation. Data availability and curation are both critical.
Without manually augmenting real-world data with simulation or
resampling, small datasets are insufficient to develop robust PIML
methods. When data are available but come with complex characteris-
tics, data curation becomes the primary concern and must be done
properly to ensure the validity of PIML methods.

5.2.5. Standardization of PIML methods

Due to its current novelty, standardizing PIML development has
proven challenging. Not only do practitioners need to be well-versed in
ML methods, but they must also have a thorough understanding of the
physical mechanisms being modeled to effectively model these mecha-
nisms using PIML. Our implementation framework from Fig. 10 in-
dicates two candidate areas for standardization: determination of 1)
whether an ML-based study should be considered to be PIML (2nd red
decision node), and 2) which branch of PIML is suitable for a given
problem (green decision nodes).

First, ambiguity may arise when determining if an ML study is
physics-informed, especially to practitioners without domain knowl-
edge. A likely scenario is that conventional ML approaches are falsely
considered PIML, which dilutes the usefulness of PIML. For example,
PIMI, as defined in Section 4.1, refers to the use of physics to correct,
enrich, or enhance data collected from metal AM applications. It is
therefore important to use domain knowledge about the physics of the
application being studied to execute data transformation or processing
to make this data physics-informed. The direct use of physical measures
such as temperature or geometric deviation as inputs to conventional ML
models, however, does not meet the PIMI definition but may still be
mistakenly considered a PIMI approach. While it is tempting to call any
ML model with physically meaningful inputs or outputs “physics
informed,” this temptation must be rejected since such models are not
constrained and informed by the laws of physics. It is expected that more
correct PIML/non-PIML characterization will occur as more individuals
become aware of the definitions of PIML and its subcategories we pro-
vide in Section 4.

Second, since there are currently five branches of PIML methods, as
defined in Section 4.1, selecting the suitable branches of PIML for an
application can be difficult. It requires the practitioner to evaluate the
available data and physical resources and have a clear idea of the con-
sequences of integrating the physical resources with ML models at each
stage (i.e., input, training, component, architecture, output). The prac-
titioner must also identify what their desired outcomes are, what
knowledge they seek to gain, and if the developmental overhead of PIML
is worth the increased time costs compared to brute force and unex-
plainable conventional ML. These meta-level requirements are rarely
fulfilled prior to initiating an ML-driven study. A systematic approach,
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such as that presented in Fig. 10, is needed to breakdown the a priori
PIML development considerations into more manageable and serialized
phases, with clearly defined loops when PIML model development is
unsuccessful. Like the ISO 14040 framework upon which it is based, the
methodology in Fig. 10 makes the goal development and planning phase
a prerequisite to the results acquisition, deployment, and reflection
phase.

5.2.6. Horizon of model development

Another practical issue is the horizon of PIML, where “horizon” here
refers to the stage and manner of how PIML can be used to aid in
practical metal AM applications. As a hybrid of physics and data, PIML
methods typically need more than one information source. Currently,
PIML methods are mainly developed for applications that offer rich
physical information and data simultaneously. This means the current
PIML methods are mostly driven by feasibility in method development
rather than practical needs. Consequently, brute-force use of PIML
models in metal AM applications may create a gap between data-driven
solutions and practical needs, limiting the contributions of PIML output
to problem-solving. Restricted by limited physical understanding and
data availability in metal AM, designing practically useful and feasible
PIML methods remains a challenge.

5.2.7. Adversarial attacks

Another issue inherent to PIML and ML in general is adversarial at-
tacks. Adversarial attacks are a broad family of methods meant to
deceive ML algorithms and force them to output intentionally incorrect
predictions. This deception is usually done very subtly so that humans
cannot even recognize that anything has happened to a model. Attacks
can be done to harm model training (sabotage), degrading post-training
performance (fraud), and reverse-engineering the model (espionage)
[181]. Methods for performing these attacks are reviewed in Mello
[181] and Brendel et al. [182]. A previously verified and well-trusted
model being subtly corrupted by malicious actors can have profound
consequences in manufacturing, including theft of intellectual property,
unpredictable part quality, and even death. Adversarial attacks are
therefore one of the most consequential weaknesses of ML, especially in
the context of AM for highly critical parts.

The threat of adversarial attacks has remained high on the list of
alerts for cybersecurity experts and manufacturing practitioners. There
is a vast body of literature on the topic of “hardening” ML models to
make them less susceptible to adversarial threats. For example, Madry
et al. [183] developed a robust neural network optimization method to
ward off fraud attacks on classification models and charted a path to-
wards ML models with guaranteed robustness. The method increased
model accuracy from 6.4 % to 89.3 % when using poisoned evaluation
data (MNIST digits) [184]. Anthi et al. [185] proposed a hardening
strategy specifically for ML-controlled industrial control systems and
considered the expanse of threats posed by an insider attack by a person
with privileged access to physical control systems. The approached used
adversarial training to reduce the attack success rate by 11 %.

Despite prior successful cases, adversarial attacking is a quickly
evolving field with monotonically increasing cybersecurity research
demands [186]. PIML developers must be aware of the inherent weak-
nesses in ML that can be attacked to mitigate manufacturing operation
risk. Additionally, practitioners must be aware that current ML cyber-
security research is oriented towards conventional,
non-physics-informed ML and that there is currently a negligible body of
research on hardening PIML in particular.

5.3. PIML use case considerations and limitations

When using PIML in metal AM applications, there are several aspects
to consider. Many of them are also found in conventional ML, although
PIML does introduce some unique caveats and advantages. Major con-
cerns stem from computational capability, data quality, and data
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variety, which are elaborated below.

5.3.1. Computing power

Although faster than physics-based methods like FEA, ML can still be
computationally expensive. In practice, considerations arise for
computational complexity and compute time. Metal AM systems may
involve complex mechanics, physics, and material science. The layer-by-
layer addition of materials in metal AM has enabled complex internal
features, e.g., channels and embedding of prefabricated components,
leading to residual stresses and dimensional warping that cause struc-
tural failures of the parts under normal operating conditions or even
premature failures [187]. These physical systems are mainly charac-
terized by PDEs, SDEs, or optimization models that are difficult to solve
analytically [188]. PIML can incorporate such complex physics and
provide a data-driven solution, e.g., PINN [146]. However, such PIML
methods can be computationally complex and pose a high burden on
computational resources. As such, implementing ML in large-scale pro-
duction may come with a prohibitively high cost. A possible mitigation
strategy is to increase PIML model coarseness (e.g., pixel/voxel size) and
reduce the complexity of physics to be incorporated. Nonetheless, the
computing resources necessary to train and implement a sufficiently
accurate, robust, and trustworthy PIML model must be considered.

5.3.2. Data modality

The input data modality to a PIML system, e.g., images, time series,
acoustic signals, is a major factor for model selection and data pre-
processing. In the context of metal AM, ML is needed to perform decision
making using a variety of input modalities, as shown in Section 3.1.
Model selection must therefore consider the physical information
available in the modality of interest. Two-dimensional CNNs are suitable
for AM image processing due to their ability to detect geometric features
such as cracks and pores, which affect the material’s tensile properties.
Recurrent NNs such as Long Short-Term Memory networks and related
variants are promising if time series data, e.g., temperature signals, are
being analyzed. This is because recurrent architectures are Markovian
and are thus able to account for previous time steps’ effect when making
future predictions, such as the temporal evolution of a temperature field
[105]. Alternatively, the underlying physics of an AM process may be
extracted from the data. For instance, in-situ thermal images of DED and
PBF melt pools have spatiotemporal correlations, which are not
captured by standard CNNs [22]. In this case, a recurrent CNN would be
necessary to capture the time-dimension correlation.

5.3.3. Data integrity

Another consideration is data imperfection [189,190]. Regardless of
data modality, any ML model can be sabotaged by poor-quality training
data under the colloquial “garbage in, garbage out” paradigm [191].
Data collected from factory floors are often noisy, redundant, or
incomplete, and therefore of low quality, offering limited useful infor-
mation from which to learn. Additionally, noisy training targets (y;) can
result in an ML model learning to predict the noise in addition to the true
value. If the noise distribution changes between training and validation,
the model’s loss on the validation data is expected to increase substan-
tially compared to the training data.

ML models are expected to be more robust and stable as a result of
data pollution mitigation [192]. However, erroneous or misleading
prior information being included within PIML models will pollute them
from within and induce spuriousness. For this reason, assumptions made
when developing PIML models need to be verified either experimentally
or by using previous used and trusted data. While not every corner case
can be enumerated, the physical and systems-level assumptions upon
which PIML models rest must be rigorously established.

It is possible, though, for PIML to bypass data quality problems. Prior
domain knowledge and expert opinions, e.g., deposition physics and
equipment degradation paths, can act as supplementary information and
be leveraged to mitigate the imperfection of real-world data using any of
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the five PIML tenants in Section 4.1. Notably, prior information can be
coded into ML models, such as physics-informed training algorithms and
physics-informed activation functions, to strengthen the relevant infor-
mation embedded in-field data and expedite model convergence [146].

5.3.4. Production volume and variety

Another consideration is production volume and variety. Due to its
unavoidable need for training data, PIML (and ML in general) is best
suited for producers of high-quantity, low-variety (HQLV) products. The
reasons for this are three-fold: 1) low-quantity, high-variety (LQHV)
production would require a variety-proportionate number of trained and
verified PIML models based on different product geometry, material,
and other characteristics, 2) LQHV production generates little data each
production run, which makes timely PIML model development difficult,
and 3) the time spent developing and verifying PIML models (or creating
PIML training simulations) for LQHV production would likely exceed the
amount of time necessary to conduct trial-and-error parameter tuning
based on expert intuition and finish the production run without any
PIML assistance [193]. Future work in PIML is recommended to focus on
the generalizability of models across geometries, materials, machines,
and process parameters to close the PIML utility gap between LQHV and
HQLV production.

6. Conclusion

This paper provides a comprehensive summary of prevailing metal
AM techniques and outstanding issues in quality control while show-
casing successes of ML in addressing quality issues. It also proposes a
paradigm shift from pure data-driven ML to PIML. The fundamental
concepts and rationale of PIML are established and previous PIML cases,
along with key PIML implementation considerations, are investigated.
As an emerging topic, PIML has been shown to have numerous advan-
tages for manufacturers. Comparatively low training time, real-time
responsiveness to dynamical systems, data-driven decision logic, and
the ability to quantify uncertainty are among the strongest benefits
offered by PIML in contrast to physical methods. On the other hand,
PIML’s innate physical consistency is the primary benefit when
compared with purely data-driven methods.

Future work in PIML for metal AM is envisioned to fall into two
areas: general ML advancements and PIML-specific advancements. The
first area includes topics such as ML model interpretability and cyber-
security that are important issues outside of a purely physics-informed
paradigm. As for the second area, PIML must continuously incorporate
state-of-the-art ML advances that address and resolve limitations
inherent to ML as a whole to remain relevant. Otherwise, the benefits of
PIML may be outweighed by the improved ML models that are compu-
tationally more powerful yet retaining the fundamental problems of
lacking in physical interpretability. Additionally, as evidenced by Sec-
tion 4.3, PIMI has been used much more than any other tenet of PIML at
large. While understandable, since PIMI is the most convenient to
implement of the five, the benefits of the remaining four are believed to
be underexplored and underdeveloped at this time. Recent advance-
ments such as PINN, WaveletKernelNet, and LRP have shown to be
effective and foundational tools in advancing PIML. It is envisioned that
they will receive increasing attention as PIMI becomes standard
practice.

PIML data availability also remains an unsolved issue as does the
development of ML architectures and components that are designed
specifically for PIML. For instance, current CNN models learn image
features through highly abstract convolution kernels that are learned
through unconstrained optimization. The lack of constraints all but
ensures that these maps have no physical relevance, thus moving away
from PIML. If the learning process were to be constrained by physics
such as by using a physics-regularized loss function or by tailoring the
model architecture and components to be physics-adherent, then
training the network would be synonymous with extracting physics-

159

Journal of Manufacturing Systems 62 (2022) 145-163

informed information from the data. While some forms of PIML are
relatively simple to implement, e.g., PIMI, PIML mechanisms like that
described above remain elusive. While the situation poses a continued
challenge for manufacturers to improve productivity and quality, this
situation also motivates researchers to redouble their efforts that pro-
duce the next generation machine learning algorithms that are smarter,
faster, and physically transparent.
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