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ASSOCIATION FOR
PSYCHOLOGICAL SCIENCE

If measurement is the cornerstone of science, psycho-
logical science has accomplished a lot. Psychological 
scientists have designed clever experiments to measure 
complex social phenomena, honed the measurement 
of ill-defined constructs to a precise science, made 
inferences about the mind by probing behavior, begun 
to delve into the brain, and applied findings to improve 
the human condition. Meanwhile, the trifecta of the 
Information Age—new, improved, and cost-effective 
sensing; anywhere, anytime computing; and a new gen-
eration of people who have grown up in a digital 
world—has led to a data and computing revolution that 
has enhanced multiple research areas and created new 
ones (e.g., computational social science, cyber-physical 
systems, quantitative biology). Can such advances simi-
larly enhance psychological science? We think so and 
describe how the core of psychological science—psy-
chological measurement—can benefit from an Informa-
tion Age update.

Consider one simplified view of psychological mea-
surement: measurement = data + inference. The data 

typically come from humans (e.g., posts on social 
media) and are converted to a structured format (e.g., 
human coders count the number of pronouns). Com-
puters can automate and scale up this task and discover 
complex associations in the data, revealing multivariate 
interactions and nonlinearities. However, they cannot 
make meaning of any patterns they discover, at least 
not in any deep sense. Researchers rely on human 
knowledge and expertise to make inferences from data. 
Even when measurement is automated, for example, as 
in computerized adaptive testing (Wainer et al., 2000), 
the items and inference are preprogrammed into the 
computer.

But what if researchers could design computers to 
learn how to make human-like inferences from data? The 
resultant measure would combine the pattern-finding 
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prowess of computers with the inferencing abilities of 
humans—and would have transformative impacts. Such 
a measure would enable the analysis of relatively 
unstructured data sets (e.g., images or text on the Inter-
net) with the scope and scale to address thorny issues 
of reproducibility and generalizability. By leveraging 
modern sensing and analysis capabilities, these measures 
could focus on real-world human behavior rather than 
curated responses. Measurement could also be done in 
real time, which would open the door for just-in-time 
interventions, individualized experimental manipula-
tions, and discoveries currently precluded by measure-
ment latencies. The measures would potentially be more 
objective provided that bias is mitigated in their design. 
Because the measures would be learned, not prepro-
grammed, analysis of the measures themselves could 
deepen understanding of the underlying phenomena.

If this all seems too fanciful, rest assured that there 
is a systematic approach to developing such measures. 
It is called computational modeling, representation of 
a phenomenon in silico (i.e., using computer software 
or simulation). This is not an advance in itself; the 
novelty is that the computational models are directly 
learned (i.e., constructed) from data rather than pre-
programmed, as we elaborate next.

Machine-Learned Computational Models

A computational model is a computer program that 
produces a desired output given input. Applied to psy-
chological measurement, this entails converting input 
data into higher-level representations, or features, 
usable by a computer, and then transforming these 
features into measurement estimates (i.e., output) via 
various algorithmic structures. For example, a compu-
tational model of mind wandering during reading 
(Faber et  al., 2018) based on eye tracking can map 
features, such as the number and duration of gaze fixa-
tions, onto estimates of mind wandering using one of 
the structures in Figure 1a.

Computational models differ in how features, struc-
ture, and parameters (e.g., regression weights) are 
specified. Traditionally, human experts preprogrammed 
the models by specifying all of these components (Fig. 
2), as in the classic GOMS (goals, operators, methods, 
and selection) models in human-factors research (Card 
et al., 1983). Such handcrafted models are rare because 
of difficulties in specifying a generalizable set of param-
eters (among other factors). An intermediate approach 
used in developing traditional psychological models 
(e.g., item-response-theory models used in assessment 
and classic Bayesian models of cognition) is to pre-
specify the features and structure but have computer 
algorithms learn the parameters from data.

But what about complex, poorly understood phe-
nomena, for which neither the model structure nor the 
parameters can be prespecified? Using supervised 
machine learning, it is possible for the computer pro-
gram to learn both from data ( Jordan & Mitchell, 
2015). Starting with a set of training examples, which 
link features with corresponding annotations (e.g., 
human ratings), the program constructs a model by 
identifying patterns in the training data. After training 
is complete, the resultant machine-learned computa-
tional model (MLCM; Fig. 2) produces computer esti-
mates (i.e., measurements) for new input data (without 
annotations).

In the case of our mind-wandering example, training 
data are collected by tracking eye gaze (to compute 
features) and self-reports of mind wandering (annota-
tions) as participants read. Training examples are created 
by aligning the gaze features with the mind-wandering 
reports over a temporal window (e.g., a page), and then 
supervised-learning methods are applied to generate an 
MLCM, which produces estimates of mind wandering 
based on gaze features.

What are these supervised-learning techniques? Lin-
ear regression is one potential example of a minimalist 
technique. However, in the psychological sciences, 
where the goal is explanation, the models are typically 
fit on the entire data set, and the emphasis is on statisti-
cal significance of the coefficients (Yarkoni & Westfall, 
2017). For machine learning, the goal is instead predic-
tion, and the focus is on the extent to which MLCM 
outputs align with some measure of “ground truth” 
when applied to holdout data (i.e., data different from 
training data), including data from different people, 
paradigms, populations, and contexts. In other words, 
in the case of machine learning, the focus is on whether 
the model is generalizable (e.g., whether it accurately 
predicts self-reports of mind wandering among a dif-
ferent set of people reading a new text).

A highly accurate model might overfit the training 
data and perform poorly on holdout data (low general-
izability), whereas a highly generalizable model might 
underfit the data (low accuracy). Because regression 
and its variants (e.g., generalized linear models) are 
limited in both respects, researchers have developed 
numerous approaches to improving accuracy (e.g., mod-
eling nonlinearity and feature interactivity) and gener-
alizability (e.g., using an ensemble of models and 
penalizing those with more parameters ). As Figure 1 
indicates, the resultant models have different representa-
tions (e.g., probabilities, parameter weights), structures 
(e.g., equations, rules, networks of artificial neurons), 
and assumptions (e.g., some assume feature indepen-
dence, whereas feature interdependence is critical in 
others). But they are all computer programs.
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These standard machine-learning approaches can  
be contrasted with deep (neural) learning ( Jordan & 
Mitchell, 2015), which combines massive data (e.g., the 
entirety of English Wikipedia), rather than (or in addi-
tion to) prespecified features, with the requisite com-
puting (e.g., thousands of parallel processors) and 
advanced algorithms to process the data, which results 
in an increase in MLCM complexity (up to billions of 
parameters) and performance improvements. One inno-
vation is representational learning, in which the fea-
tures themselves are learned from raw data rather than 
being prespecified. An extension is end-to-end learn-
ing, in which everything (features, structure, and 
parameters) is learned simultaneously from raw data. 
For example, rather than using human-engineered fea-
tures, a model of mind wandering during reading might 
automatically extract internal representations most use-
ful for predicting mind wandering from raw gaze data. 
Another extension is fine tuning, pretraining a model 

on massive data in a domain-agnostic fashion (e.g., with 
large volumes of gaze data from multiple studies with-
out any annotations of mind wandering) to extract 
internal representations and then adapting the model 
for a given domain using a small amount of annotated 
data.

As Figure 2 indicates, computational models can be 
broadly divided into explanatory models, for which the 
primary aim is understanding the underlying mecha-
nisms, and predictive models, for which accurate and 
generalizable predictions are the main goal. MLCMs fall 
into the predictive family in that they have fewer theo-
retical commitments than explanatory models and are 
more bottom-up and data driven. As a result, MLCMs 
with very different structures can yield similar predic-
tions, which limits their ability to provide causal or 
mechanistic explanations. However, because they are 
powerful, fine-grained predictive machines, MLCMs can 
be useful tools for scientific inquiry (in addition to their 

a
Regression Structure

MW = B0 + B1 × NFix + B2 × FixDur

Rule-Based (Tree-Based) Structure
if [NFix < T1 and FixDur > T2]; then [MW = true]

(Naive) Bayesian Structure (Simplified)
P (MW | NFix = x , FixDur = y ) = [P (NFix = x | MW) ×
P (FixDur = y  | MW) × P (MW)]/P (NFix = x , FixDur = y )

Neural Network Representation (Weight Matrix)

[ ]wNFix_h1 wFixDur_h1
wNFix_h2 wFixDur_h2

wh1_MW
wh2_MW

b
Decision

Tree 
Neural Network Convolutional

Neural Network 
Support Vector

Machine 

Fig. 1.  Examples of different structures and representations for machine-learned computational models 
(MLCMs): (a) example structures for MLCMs of mind wandering (MW) based on two eye-gaze features, 
number of fixations (NFix) and fixation duration (FixDur), and (b) graphical representations of some 
common types of MLCMs illustrating differences in how the various approaches encode the data, for 
example, as a decision boundary (support vector machine), in a flowchart-like structure (decision tree), 
and in node-link assemblies (neural networks). B = parameter; T = threshold; P = probability, W = weight; 
h1 and h2 = hidden nodes 1 and 2.
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use in assessment and intervention). For example, they 
can be designed to compare the diagnosticity of various 
input modalities; investigate whether combining modal-
ities results in superadditive, additive, or redundant 
effects; clarify the time course of phenomena; model 
nonlinearity and interactivity among inputs; contrast 
model predictions with human judgments; and investi-
gate generalizability across people, domains, and con-
texts. Thus, MLCMs can complement explanation-based 
approaches, especially for complex, ill-defined phe-
nomena, and they are valuable tools in the arsenal of 
a pluralistic scientist.

It should also be noted that distinctions among the 
four main modeling approaches summarized in Figure 
2 are not crisp. For example, when theoretical commit-
ments are important, it is possible to prespecify some 
of the structure and parameters on the basis of theory 
and/or plausibility while allowing others to be learned 
(e.g., Hinaut & Dominey, 2013). Similarly, some deep-
learning architectures (e.g., convolutional neural net-
works, which have revolutionized image processing) 
are inspired by the neural pathways in the visual cortex 
(Le Cun et  al., 2015). When data are abundant but 
annotations are sparse, a useful approach is to begin 
with deep representational learning (so that the pro-
gram automatically learns the features in an unsuper-
vised fashion, i.e., without annotations), but then use 
standard supervised learning (i.e., with annotations). 
MLCM development should not be dogmatic; the goals 
of the enterprise, availability of data, and expertise of 
the researchers involved should determine the approach.

Illustrative Example

We illustrate the development of an MLCM using Jensen 
et al.’s (2021) study of teachers’ classroom discourse. In 
this study, audio recordings of teachers’ speech were 
automatically analyzed to estimate the prevalence of 
seven discourse categories (e.g., questions, elaborated 
evaluations) linked to students’ change in achievement 
from one grade to another. The main steps to construct 
the MLCM (which are common to multiple MLCMs) are 

shown in Figure 3. First, the researchers recorded teach-
ers’ audio from 127 authentic class sessions of 16 English 
Language Arts (ELA) teachers. Next, the recordings were 
segmented and transcribed into 35,000 utterances via an 
automatic speech recognizer. Trained coders then anno-
tated 16,000 of these utterances for the presence of each 
discourse category.

The researchers contrasted two modeling approaches 
(Fig. 4). The standard approach used utterance-level 
counts of individual words and two- and three-word 
phrases (called n-grams) as features. Then, binary ran-
dom forest classifiers (a supervised-learning method) 
were individually trained to identify the presence/
absence of each discourse category on the basis of the 
features. An examination of the n-grams most predictive 
of each discourse category provided an intuitive under-
standing of the teachers’ talk. For the second approach, 
the researchers started with a deep neural network that 
was pretrained on large text corpora containing more 
than 3 billion words to learn the contextual semantics 
of words (e.g., to distinguish between “bank” in the 
context of a river vs. a financial institution) and then 
fine-tuned the network to identify each discourse cat-
egory using the 16,000 annotated utterances.

In both approaches, models were evaluated using 
cross-validation. The utterances were divided into eight 
partitions; MCLMs were trained on seven partitions 
(training set) and evaluated for their performance on 
the held-out partition (test set). The process was 
repeated until all partitions were included as the test 
set exactly once. To ensure generalization across teach-
ers, the researchers included utterances of a given 
teacher in only a training or a testing partition in a 
given iteration. Accuracy of the models’ estimates, 
defined as correspondence to the human annotations, 
was somewhat higher for the deep-learning models 
than for the standard models, which both outperformed 
chance guessing. The researchers are in the process of 
embedding the models into a smartphone application 
that provides teachers with automated feedback on 
their own classroom discourse to enable reflection and 
improvement.

Signals Are Collected
From Sensors

Signals Are
Preprocessed and

Split Into Time
Windows

Features Are Computed
From Signals for Each

Time Window

Data Corresponding to
the Time Windows Are

Annotated

Machine-Learned
Computational Models
(MLCMs) Are Trained

Models Provide
Computer Estimates of

the Construct

Estimates Are
Compared With

Annotations

Performance
Metrics

Fig. 3.  The basic pipeline for training standard machine-learned computational models (MLCMs). The arrows denote the flow of information 
processing; red arrows denote steps that are involved in the training process only and are skipped once MLCMs have been trained.
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This example highlights some important points. First, 
developing MLCMs for complex phenomena, such as 
classification of spoken discourse, often entails leverag-
ing MLCMs developed for more primitive tasks (e.g., 
speech recognition, representing word semantics). Sec-
ond, feature engineering involved minimal human 
knowledge in that features were automatically com-
puted (standard approach) or bypassed altogether 
(deep-learning approach). An alternate approach would 
have been to use handcrafted features, such as parts of 
speech (e.g., nouns, pronouns), that may have theoreti-
cal significance. Third, the results revealed an accuracy-
interpretability trade-off: The deep-learning approach 
yielded more accurate models, and the standard 
approach yielded more interpretable models.

Selected Examples of MLCMs From the 
Psychological Sciences

We now present further examples of MLCMs for mea-
surement, which we have roughly organized across four 
levels of a sensing timescale (i.e., a timescale based on 
the unit of the input data) inspired by Newell’s (1990) 
bands of action (biological, cognitive, rational, and 

social; see Fig. 5; Table 1 provides additional details 
about all the examples). We start with the biological 
band (sensing interval < 10 ms), which includes some 
measures of neuronal activity. Fraiwan et al. (2012) 
developed an MLCM, based on electroencephalography 
(EEG) data, to accurately discriminate among the five 
main sleep stages (a time-consuming task for trained 
clinicians) in a thoracic clinic. In this study, the EEG 
features were predefined. In contrast, Zhang et al. 
(2019) used an end-to-end deep-learning approach to 
develop an MLCM that learned spatiotemporal patterns 
directly from EEG data to distinguish between high and 
low workloads. Integrating multiple modalities, Hassan 
et al. (2019) combined electrodermal activity, photople-
thysmography, and electromyography to discriminate 
among experimentally elicited emotions in the lab.

In a study focused on the cognitive band (100 ms–10 
s), Wager et al. (2013) developed an MLCM that dis-
criminates heat-induced pain from warmth, anticipa-
tion, recall of pain, and social pain on the basis of 
whole-brain functional MRI activity.

Whereas the MLCMs in these examples used research-
grade sensing and experimentally induced responses in 
controlled settings, MLCMs can measure spontaneous 
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Fig. 5.  Selected example cases of machine-learned computational models in four domains of psychological assessment, aligned with respect 
to Newell’s (1990) four bands of action for the input modality and psychological construct assessed. See Table 1 for additional details about 
the examples.
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responses with cost-effective sensing in the real world. 
Many such studies blend the biological and cognitive 
sensing bands. For example, Hutt et al. (2021) used $100 
eye trackers to develop an MLCM of mind wandering, 
using data from high-school students while they inter-
acted with educational technology in classrooms. The 
researchers used the MLCM’s estimates to trigger dynamic 
interventions to reengage attention and improve learn-
ing. Similarly, Bosch et al. (2015) combined facial expres-
sions from video with interaction patterns (clicks and 
click timings) to measure students’ affect as they played 
an educational video game, finding that a multimodal 
approach improved the model’s robustness to missing 
data but negligibly affected accuracy. Subburaj et al. 
(2020) used a multimodal (facial expressions, acoustics 
from speech, eye gaze, and interaction patterns) and 
multiparty (signals from three individuals) approach to 
predict collaborative problem-solving outcomes in 
remote teams.

The rational band consists of measurement in the 
range of minutes to hours, and studies of activity in this 
band often aggregate more fine-grained sensing (cogni-
tive band) over longer time frames (rational band). 
Jensen et al.’s (2021) study of teachers’ discourse, dis-
cussed above, is one example. Another is Hickman et 
al.’s (2021) study, in which language, facial expressions, 
and prosody in mock video interviews for personnel 
selection were used to develop an automated system 
for scoring personality. In a large-scale study, Hutt et 
al. (2019) developed an MLCM to infer engagement 
from interaction patterns of approximately 70,000 stu-
dents as they interacted with an online learning 
platform.

Studies at the social band have largely relied on 
social-media posts using time frames from days to 
months (individual posts are in the rational band, so 
this work entails combining the rational and social 
bands). De Choudhury et al. (2013) developed an MLCM 
that identified individuals diagnosed with depression 
on the basis of their Twitter usage. Eichstaedt et al. 
(2015) also used Twitter data, but at the societal level, 
to predict county-level rates of mortality from athero-
sclerotic heart disease. Their MLCM was a better predic-
tor than established demographic and health indicators 
(but see Brown & Coyne, 2018, for an alternate inter-
pretation). At the organization level, Das Swain et al. 
(2020) analyzed language used in more than 600,000 
Glassdoor reviews of 92 Fortune 500 companies to infer 
41 dimensions of organizational culture, which then 
were used to predict job performance.

MLCMs can span all four bands. In a yearlong study 
of 757 information workers, Robles-Granda et al. (2021) 
measured physical and physiological signals from wear-
able sensors, communications from a smartphone app, 

relative location based on Bluetooth beacons, contex-
tual cues (e.g., weather), and social-media data to 
develop MLCMs of personality, cognitive ability, affect, 
health, and job performance.

Accuracy and Generalizability of MLCMs

MLCMs are typically evaluated for their accuracy and 
generalizability. Accuracy is higher with well-engineered 
features and sophisticated algorithms that can infer com-
plex patterns without overfitting; simpler approaches 
risk underfitting the data. It is often assumed that big data 
yield higher accuracies than smaller data sets, but this is 
an oversimplification; it is not the volume that matters 
but rather the quality of the data and how well they 
represent the phenomenon to be measured. Another 
assumption is that multimodality improves accuracy, but 
this is not always the case (e.g., the Bosch et al., 2015, 
study); often its main advantage is increasing robustness 
(D’Mello & Kory, 2015). All things being equal, the quality 
of the annotations matters most because it provides the 
supervisory signal for learning and evaluation. High-
quality annotations should reach the same standards of 
construct validation used for any psychological measure 
(e.g., reliability, convergent validity).

MLCMs developed in very specific contexts are 
unlikely to generalize beyond the specific paradigm 
(e.g., Hassan et al.’s, 2019, affect-induction study), 
though this lack of generalizability can be somewhat 
alleviated by training on multiple stimuli or tasks (e.g., 
Zhang et  al., 2019, used both spatial and arithmetic 
tasks). Hutt et al. (2019) made domain generalizability 
a design principle in selecting features for their engage-
ment study, and their MLCM trained on algebra data 
generalized to geometry data without retraining. Tem-
poral generalizability is of concern for language models 
as new terms enter the lexicon. The gold standard is to 
collect broad, diverse, and voluminous training data, as 
was done in the example studies using data from social 
media, but this is challenging for sensor-based models 
(e.g., Robles-Granda et al.’s, 2021, study) without mass 
surveillance. Starting with models pretrained on large 
data sets across multiple domains and customizing them 
using limited data in a target domain (as in the Jensen 
et al., 2021, example) is a promising approach.

Expectations of accuracy and generalizability must 
be calibrated with respect to the complexity of the 
construct, the underlying context, and the availability 
of good-quality training data (especially annotations). 
Accuracy will be higher for well-defined, experimen-
tally induced phenomena in the context of the lab 
(Wager et al.’s, 2013, pain example) than for spontane-
ously occurring, ill-defined phenomena across multiple 
contexts (Hutt et al., 2019, used online data collected 
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in classrooms, homes, etc., in their engagement study). 
Similarly, generalizability is difficult when the phenom-
enon is highly context-specific (e.g., emotion; D’Mello 
et al., 2018). In such cases, it is prudent to use context-
specific models, live with modest accuracy, and temper 
performance claims rather than completely write off 
the approach. We suggest channeling Tukey (1962) 
when interpreting the value of such models: “far better 
an approximate answer to the right question, which is 
often vague, than the exact answer to the wrong ques-
tion, which can always be made precise” (p. 13).

Bias, Fairness, and Interpretability  
of MLCMs

There was a media frenzy a few years ago when it was 
revealed that commercial face-recognition technology 
routinely underperforms for dark- compared with 
lighter-skinned individuals—with shocking disparities 
(error rates up to 34.7% vs. 0.8%; Buolamwini & Gebru, 
2018). Although the idea of biased algorithms dates 
back to the 1970s, similar high-profile revelations have 
recently renewed interest in raising awareness of algo-
rithmic bias and approaches to mitigate it.

We (Tay et  al., 2021) have proposed a theoretical 
framework for addressing bias in MLCMs used for psy-
chological assessment. In this framework, systematic 
departures of some subgroups’ MLCM scores from their 
actual scores is evidence for bias if there are no actual 
subgroup differences. Though the terms are often used 
interchangeably, fairness is distinct from bias. It is a 
subjective perspective based on the values and beliefs 
of individuals and societies.

For example, consider an MLCM that assesses per-
sonality using automated video interviews, which are 
increasingly used in real-world hiring (e.g., Hickman 
et al., 2021). If the MLCM yields higher conscientious-
ness scores for men than for women and nonbinary 
individuals but there are no gender differences in the 
annotations used to train the model (e.g., expert-rated 
conscientiousness), this would be prima facie evidence 
of bias. On the other hand, if the annotations for agree-
ableness indicate higher scores for men than for women 
and nonbinary individuals and the MLCM reproduces 
this pattern (i.e., it is not biased), some people would 
view the MLCM as fair because its measurements reflect 
actual scores. Others would view it as unfair because 
it gives unequal group outcomes.

It is sometimes assumed that bias is purely a reflec-
tion of the representativeness of the data used to 
develop MLCMs, but in fact, it arises from decisions 
made throughout the modeling process. Our framework 
identifies and contextualizes potential sources of bias 
at both the data and the algorithm levels while also 
recommending tests and mitigation strategies.

A related concept is interpretability (or explainabil-
ity), the degree to which the inner workings of the model 
are interpretable by humans, a critical concern for both 
scientific inquiry and real-world use. Explainability can 
pertain to the structure of an MCLM itself (e.g., how do 
the features combine? what are the representations?) 
and/or to the MLCM’s outputs (e.g., why did the model 
predict X for data point Y?). The four modeling 
approaches in Figure 2 align along an interpretability-
performance continuum, with the handcrafted models 
and deep-learning approaches on either extreme. 
Whereas methods from the nascent field of explainable 
artificial intelligence (XAI) can help improve the inter-
pretability of MLCMs (e.g., Lundberg et  al., 2020), it  
is unlikely that the trade-off will be entirely elimi-
nated (cf. the no-free-lunch theorem of mathematical 
folklore).

MLCMs in a Well-Measured Life

What role do MLCMs play in an era obsessed with 
measurement? As the examples illustrate, MLCM-based 
measures have been developed in multiple areas of 
psychological sciences, ranging from neuroscience to 
cognitive and affective science, education, organiza-
tional culture, and personality and social psychology 
(Fig. 5). They reflect measurements in the scanner, in 
the lab, online, at workplaces, at homes, in schools, 
and in the community. Whereas most MLCMs focus on 
within- and between-individuals differences, some pro-
duce measurements at the level of the team, organiza-
tion, or society. MLCMs have been used for scientific 
inquiry, automated scoring, assessment, and interven-
tion. They extend researchers’ capacity to harness natu-
ral data sources, in each case greatly increasing the 
speed, scale, and convenience of psychological mea-
surement. Psychological scientists have a vital role to 
play in the future of MLCMs by providing guidance on 
human behavior, construct validity, statistical rigor, 
theoretical grounding, and evaluations of bias and 
fairness.

At the same time, a proliferation of such measures 
increases privacy, security, and ethical concerns over 
what and how data are collected, processed, and stored, 
as well as the purpose for which they are collected and 
analyzed. It also raises long-established concerns of 
bias and fairness. Whereas researchers have historically 
emphasized accuracy and generalizability, the idea of 
achieving unbiased, fair, and interpretable models has 
garnered considerable interest over the past decade. As 
research and recommendations emerge, one immediate 
step should be to adopt a culture in which ethical 
design is a core goal. For example, the National Science 
Foundation National AI Institute on Student-AI Team-
ing1 has adopted a Responsible Innovation Framework 
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(Stilgoe et al., 2013) that guides its vision, values, meth-
ods, and criteria for success. Of course, words must be 
followed by action so that the products of research 
(including MLCMs) are instruments that reflect and pro-
mote justice rather than perpetuate inequality.

Recommended Reading

D’Mello, S., Kappas, A., & Gratch, J. (2018). (See References). 
Provides a general tutorial on how to construct machine-
learned computational models in the domain of emotion.

Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine 
learning approaches for clinical psychology and psychia-
try. Annual Review of Clinical Psychology, 14, 91–118. 
https://doi.org/10.1146/annurev-clinpsy-032816-045037. 
Reviews the use of machine learning for assessment in 
clinical psychology.

Jordan, M. I., & Mitchell, T. M. (2015). (See References). 
Provides an accessible tutorial on machine learning and 
a review of recent advances.

Tay, L., Woo, S. E., Hickman, L., Booth, B., & D’Mello, S. 
(2021). (See References). Provides a framework integrat-
ing psychometric concepts of bias with machine learning 
for the purpose of psychological assessment.

Yarkoni, T., & Westfall, J. (2017). (See References). Distinguishes 
between building predictive and explanatory models in 
psychology.
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