'.) Check for updates

aps

ASSOCIATION FOR
PSYCHOLOGICAL SCIENCE

Current Directions in Psychological
Science

2022, Vol. 31(1) 76-87

© The Author(s) 2022

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/09637214211056906
www.psychologicalscience.org/CDPS

®SAGE

Psychological Measurement in the
Information Age: Machine-Learned
Computational Models

Sidney K. D’Mello'?(®, Louis Tay>(®, and Rosy Southwell'
Institute of Cognitive Science, University of Colorado Boulder; *Department of Computer Science,
University of Colorado Boulder; and *Department of Psychological Sciences, Purdue University

Abstract

Psychological science can benefit from and contribute to emerging approaches from the computing and information
sciences driven by the availability of real-world data and advances in sensing and computing. We focus on one such
approach, machine-learned computational models (MLCMs)—computer programs learned from data, typically with
human supervision. We introduce MLCMs and discuss how they contrast with traditional computational models and
assessment in the psychological sciences. Examples of MLCMs from cognitive and affective science, neuroscience,
education, organizational psychology, and personality and social psychology are provided. We consider the accuracy
and generalizability of MLCM-based measures, cautioning researchers to consider the underlying context and intended
use when interpreting their performance. We conclude that in addition to known data privacy and security concerns,

the use of MLCMs entails a reconceptualization of fairness, bias, interpretability, and responsible use.
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If measurement is the cornerstone of science, psycho-
logical science has accomplished a lot. Psychological
scientists have designed clever experiments to measure
complex social phenomena, honed the measurement
of ill-defined constructs to a precise science, made
inferences about the mind by probing behavior, begun
to delve into the brain, and applied findings to improve
the human condition. Meanwhile, the trifecta of the
Information Age—new, improved, and cost-effective
sensing; anywhere, anytime computing; and a new gen-
eration of people who have grown up in a digital
world—has led to a data and computing revolution that
has enhanced multiple research areas and created new
ones (e.g., computational social science, cyber-physical
systems, quantitative biology). Can such advances simi-
larly enhance psychological science? We think so and
describe how the core of psychological science—psy-
chological measurement—can benefit from an Informa-
tion Age update.

Consider one simplified view of psychological mea-
surement: measurement = data + inference. The data

typically come from humans (e.g., posts on social
media) and are converted to a structured format (e.g.,
human coders count the number of pronouns). Com-
puters can automate and scale up this task and discover
complex associations in the data, revealing multivariate
interactions and nonlinearities. However, they cannot
make meaning of any patterns they discover, at least
not in any deep sense. Researchers rely on human
knowledge and expertise to make inferences from data.
Even when measurement is automated, for example, as
in computerized adaptive testing (Wainer et al., 2000),
the items and inference are preprogrammed into the
computer.

But what if researchers could design computers to
learn how to make human-like inferences from data? The
resultant measure would combine the pattern-finding
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prowess of computers with the inferencing abilities of
humans—and would have transformative impacts. Such
a measure would enable the analysis of relatively
unstructured data sets (e.g., images or text on the Inter-
net) with the scope and scale to address thorny issues
of reproducibility and generalizability. By leveraging
modern sensing and analysis capabilities, these measures
could focus on real-world human behavior rather than
curated responses. Measurement could also be done in
real time, which would open the door for just-in-time
interventions, individualized experimental manipula-
tions, and discoveries currently precluded by measure-
ment latencies. The measures would potentially be more
objective provided that bias is mitigated in their design.
Because the measures would be learned, not prepro-
grammed, analysis of the measures themselves could
deepen understanding of the underlying phenomena.

If this all seems too fanciful, rest assured that there
is a systematic approach to developing such measures.
It is called computational modeling, representation of
a phenomenon in silico (i.e., using computer software
or simulation). This is not an advance in itself; the
novelty is that the computational models are directly
learned (i.e., constructed) from data rather than pre-
programmed, as we elaborate next.

Machine-Learned Computational Models

A computational model is a computer program that
produces a desired output given input. Applied to psy-
chological measurement, this entails converting input
data into higher-level representations, or features,
usable by a computer, and then transforming these
features into measurement estimates (i.e., output) via
various algorithmic structures. For example, a compu-
tational model of mind wandering during reading
(Faber et al., 2018) based on eye tracking can map
features, such as the number and duration of gaze fixa-
tions, onto estimates of mind wandering using one of
the structures in Figure la.

Computational models differ in how features, struc-
ture, and parameters (e.g., regression weights) are
specified. Traditionally, human experts preprogrammed
the models by specifying all of these components (Fig.
2), as in the classic GOMS (goals, operators, methods,
and selection) models in human-factors research (Card
et al., 1983). Such handcrafted models are rare because
of difficulties in specifying a generalizable set of param-
eters (among other factors). An intermediate approach
used in developing traditional psychological models
(e.g., item-response-theory models used in assessment
and classic Bayesian models of cognition) is to pre-
specify the features and structure but have computer
algorithms learn the parameters from data.

But what about complex, poorly understood phe-
nomena, for which neither the model structure nor the
parameters can be prespecified? Using supervised
machine learning, it is possible for the computer pro-
gram to learn both from data (Jordan & Mitchell,
2015). Starting with a set of training examples, which
link features with corresponding annotations (e.g.,
human ratings), the program constructs a model by
identifying patterns in the training data. After training
is complete, the resultant machine-learned computa-
tional model (MLCM; Fig. 2) produces computer esti-
mates (i.e., measurements) for new input data (without
annotations).

In the case of our mind-wandering example, training
data are collected by tracking eye gaze (to compute
features) and self-reports of mind wandering (annota-
tions) as participants read. Training examples are created
by aligning the gaze features with the mind-wandering
reports over a temporal window (e.g., a page), and then
supervised-learning methods are applied to generate an
MLCM, which produces estimates of mind wandering
based on gaze features.

What are these supervised-learning techniques? Lin-
ear regression is one potential example of a minimalist
technique. However, in the psychological sciences,
where the goal is explanation, the models are typically
fit on the entire data set, and the emphasis is on statisti-
cal significance of the coefficients (Yarkoni & Westfall,
2017). For machine learning, the goal is instead predic-
tion, and the focus is on the extent to which MLCM
outputs align with some measure of “ground truth”
when applied to holdout data (i.e., data different from
training data), including data from different people,
paradigms, populations, and contexts. In other words,
in the case of machine learning, the focus is on whether
the model is generalizable (e.g., whether it accurately
predicts self-reports of mind wandering among a dif-
ferent set of people reading a new text).

A highly accurate model might overfit the training
data and perform poorly on holdout data (low general-
izability), whereas a highly generalizable model might
underfit the data (low accuracy). Because regression
and its variants (e.g., generalized linear models) are
limited in both respects, researchers have developed
numerous approaches to improving accuracy (e.g., mod-
eling nonlinearity and feature interactivity) and gener-
alizability (e.g., using an ensemble of models and
penalizing those with more parameters ). As Figure 1
indicates, the resultant models have different representa-
tions (e.g., probabilities, parameter weights), structures
(e.g., equations, rules, networks of artificial neurons),
and assumptions (e.g., some assume feature indepen-
dence, whereas feature interdependence is critical in
others). But they are all computer programs.
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Regression Structure
MW = B, + B, x NFix + B, x FixDur

Rule-Based (Tree-Based) Structure
if [NFix < T1 and FixDur > T2]; then [MW = true]

(Naive) Bayesian Structure (Simplified)
P(MW | NFix = x, FixDur = y) = [P(NFix = x | MW) x
P(FixDur = y | MW) x P(MW)]/P(NFix = x, FixDur = y)

Neural Network Representation (Weight Matrix)

[WNFix_h1 WFixDur_h1] Whi_mw
WNFix_h2 ~ WFixDur_h2 1 Wha_mw

Convolutional
Neural Network

Support Vector Decision Neural Network

Machine Tree

£ B

Fig. 1. Examples of different structures and representations for machine-learned computational models
(MLCMs): (a) example structures for MLCMs of mind wandering (MW) based on two eye-gaze features,
number of fixations (NFix) and fixation duration (FixDur), and (b) graphical representations of some
common types of MLCMs illustrating differences in how the various approaches encode the data, for
example, as a decision boundary (support vector machine), in a flowchart-like structure (decision tree),
and in node-link assemblies (neural networks). B = parameter; 7'= threshold; P = probability, W = weight;

h1 and h2 = hidden nodes 1 and 2.

These standard machine-learning approaches can
be contrasted with deep (neural) learning (Jordan &
Mitchell, 2015), which combines massive data (e.g., the
entirety of English Wikipedia), rather than (or in addi-
tion to) prespecified features, with the requisite com-
puting (e.g., thousands of parallel processors) and
advanced algorithms to process the data, which results
in an increase in MLCM complexity (up to billions of
parameters) and performance improvements. One inno-
vation is representational learning, in which the fea-
tures themselves are learned from raw data rather than
being prespecified. An extension is end-to-end learn-
ing, in which everything (features, structure, and
parameters) is learned simultaneously from raw data.
For example, rather than using human-engineered fea-
tures, a model of mind wandering during reading might
automatically extract internal representations most use-
ful for predicting mind wandering from raw gaze data.
Another extension is fine tuning, pretraining a model

on massive data in a domain-agnostic fashion (e.g., with
large volumes of gaze data from multiple studies with-
out any annotations of mind wandering) to extract
internal representations and then adapting the model
for a given domain using a small amount of annotated
data.

As Figure 2 indicates, computational models can be
broadly divided into explanatory models, for which the
primary aim is understanding the underlying mecha-
nisms, and predictive models, for which accurate and
generalizable predictions are the main goal. MLCMs fall
into the predictive family in that they have fewer theo-
retical commitments than explanatory models and are
more bottom-up and data driven. As a result, MLCMs
with very different structures can yield similar predic-
tions, which limits their ability to provide causal or
mechanistic explanations. However, because they are
powerful, fine-grained predictive machines, MLCMs can
be useful tools for scientific inquiry (in addition to their
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Signals Are
Preprocessed and
Split Into Time
Windows

Signals Are Collected
From Sensors

Features Are Computed

From Signals for Each
Time Window

Machine-Learned
Computational Models
(MLCMs) Are Trained

Data Corresponding to Estimates Are Performance
the Time Windows Are Compared With— .
. Metrics
Annotated Annotations

Models Provide
Computer Estimates of
the Construct

]

Fig. 3. The basic pipeline for training standard machine-learned computational models (MLCMs). The arrows denote the flow of information
processing; red arrows denote steps that are involved in the training process only and are skipped once MLCMs have been trained.

use in assessment and intervention). For example, they
can be designed to compare the diagnosticity of various
input modalities; investigate whether combining modal-
ities results in superadditive, additive, or redundant
effects; clarify the time course of phenomena; model
nonlinearity and interactivity among inputs; contrast
model predictions with human judgments; and investi-
gate generalizability across people, domains, and con-
texts. Thus, MLCMs can complement explanation-based
approaches, especially for complex, ill-defined phe-
nomena, and they are valuable tools in the arsenal of
a pluralistic scientist.

It should also be noted that distinctions among the
four main modeling approaches summarized in Figure
2 are not crisp. For example, when theoretical commit-
ments are important, it is possible to prespecify some
of the structure and parameters on the basis of theory
and/or plausibility while allowing others to be learned
(e.g., Hinaut & Dominey, 2013). Similarly, some deep-
learning architectures (e.g., convolutional neural net-
works, which have revolutionized image processing)
are inspired by the neural pathways in the visual cortex
(Le Cun et al., 2015). When data are abundant but
annotations are sparse, a useful approach is to begin
with deep representational learning (so that the pro-
gram automatically learns the features in an unsuper-
vised fashion, i.e., without annotations), but then use
standard supervised learning (i.e., with annotations).
MLCM development should not be dogmatic; the goals
of the enterprise, availability of data, and expertise of
the researchers involved should determine the approach.

Illustrative Example

We illustrate the development of an MLCM using Jensen
et al’s (2021) study of teachers’ classroom discourse. In
this study, audio recordings of teachers’ speech were
automatically analyzed to estimate the prevalence of
seven discourse categories (e.g., questions, elaborated
evaluations) linked to students’ change in achievement
from one grade to another. The main steps to construct
the MLCM (which are common to multiple MLCMs) are

shown in Figure 3. First, the researchers recorded teach-
ers’ audio from 127 authentic class sessions of 16 English
Language Arts (ELA) teachers. Next, the recordings were
segmented and transcribed into 35,000 utterances via an
automatic speech recognizer. Trained coders then anno-
tated 16,000 of these utterances for the presence of each
discourse category.

The researchers contrasted two modeling approaches
(Fig. 4). The standard approach used utterance-level
counts of individual words and two- and three-word
phrases (called n-grams) as features. Then, binary ran-
dom forest classifiers (a supervised-learning method)
were individually trained to identify the presence/
absence of each discourse category on the basis of the
features. An examination of the n-grams most predictive
of each discourse category provided an intuitive under-
standing of the teachers’ talk. For the second approach,
the researchers started with a deep neural network that
was pretrained on large text corpora containing more
than 3 billion words to learn the contextual semantics
of words (e.g., to distinguish between “bank” in the
context of a river vs. a financial institution) and then
fine-tuned the network to identify each discourse cat-
egory using the 16,000 annotated utterances.

In both approaches, models were evaluated using
cross-validation. The utterances were divided into eight
partitions; MCLMs were trained on seven partitions
(training set) and evaluated for their performance on
the held-out partition (test set). The process was
repeated until all partitions were included as the test
set exactly once. To ensure generalization across teach-
ers, the researchers included utterances of a given
teacher in only a training or a testing partition in a
given iteration. Accuracy of the models’ estimates,
defined as correspondence to the human annotations,
was somewhat higher for the deep-learning models
than for the standard models, which both outperformed
chance guessing. The researchers are in the process of
embedding the models into a smartphone application
that provides teachers with automated feedback on
their own classroom discourse to enable reflection and
improvement.
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Personality and 100 to 1,100 Hickman Robles-
Social Participants . etal. (2021) } Granda
Psychology (Medium Circles) .- Spans Z’llgt'ple.Ba"ds etal. (2021)
; and Domains
4+ i Jensen et al.
§ Applied (Industrial and Suelib;: = (2021)
*g:’ Orgamzat!onal, (2020)
8 Educational)
g Psychology
A
a Hutt
= Cognitive and etal. (2021)
= Affective
g Psychology Bosch
8 " etal. (2015)
_ Hassan - ager '\
etal. (2019) - etal. (2013) s f
ousands 0
Physiological ' PaIt?(r:]isp:;ts Participants
Psychology (Small Circles) (Large Circles)
Fraiwan
etal. (2012)
Biological Cognitive Rational Social
. Lab . Online O Real World (<10 ms) (100 ms—10s) (Minutes/Hours) (Days/Months)

Source of Data Collection

Newell’s Bands of Action for the Sensing Modality

Fig. 5. Selected example cases of machine-learned computational models in four domains of psychological assessment, aligned with respect
to Newell’s (1990) four bands of action for the input modality and psychological construct assessed. See Table 1 for additional details about

the examples.

This example highlights some important points. First,
developing MLCMs for complex phenomena, such as
classification of spoken discourse, often entails leverag-
ing MLCMs developed for more primitive tasks (e.g.,
speech recognition, representing word semantics). Sec-
ond, feature engineering involved minimal human
knowledge in that features were automatically com-
puted (standard approach) or bypassed altogether
(deep-learning approach). An alternate approach would
have been to use handcrafted features, such as parts of
speech (e.g., nouns, pronouns), that may have theoreti-
cal significance. Third, the results revealed an accuracy-
interpretability trade-off: The deep-learning approach
yielded more accurate models, and the standard
approach yielded more interpretable models.

Selected Examples of MLCMs From the
Psychological Sciences

We now present further examples of MLCMs for mea-
surement, which we have roughly organized across four
levels of a sensing timescale (i.e., a timescale based on
the unit of the input data) inspired by Newell’s (1990)
bands of action (biological, cognitive, rational, and

social; see Fig. 5; Table 1 provides additional details
about all the examples). We start with the biological
band (sensing interval < 10 ms), which includes some
measures of neuronal activity. Fraiwan et al. (2012)
developed an MLCM, based on electroencephalography
(EEG) data, to accurately discriminate among the five
main sleep stages (a time-consuming task for trained
clinicians) in a thoracic clinic. In this study, the EEG
features were predefined. In contrast, Zhang et al.
(2019) used an end-to-end deep-learning approach to
develop an MLCM that learned spatiotemporal patterns
directly from EEG data to distinguish between high and
low workloads. Integrating multiple modalities, Hassan
et al. (2019) combined electrodermal activity, photople-
thysmography, and electromyography to discriminate
among experimentally elicited emotions in the lab.

In a study focused on the cognitive band (100 ms—10
s), Wager et al. (2013) developed an MLCM that dis-
criminates heat-induced pain from warmth, anticipa-
tion, recall of pain, and social pain on the basis of
whole-brain functional MRI activity.

Whereas the MLCMs in these examples used research-
grade sensing and experimentally induced responses in
controlled settings, MLCMs can measure spontaneous
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responses with cost-effective sensing in the real world.
Many such studies blend the biological and cognitive
sensing bands. For example, Hutt et al. (2021) used $100
eye trackers to develop an MLCM of mind wandering,
using data from high-school students while they inter-
acted with educational technology in classrooms. The
researchers used the MLCM’s estimates to trigger dynamic
interventions to reengage attention and improve learn-
ing. Similarly, Bosch et al. (2015) combined facial expres-
sions from video with interaction patterns (clicks and
click timings) to measure students’ affect as they played
an educational video game, finding that a multimodal
approach improved the model’s robustness to missing
data but negligibly affected accuracy. Subburaj et al.
(2020) used a multimodal (facial expressions, acoustics
from speech, eye gaze, and interaction patterns) and
multiparty (signals from three individuals) approach to
predict collaborative problem-solving outcomes in
remote teams.

The rational band consists of measurement in the
range of minutes to hours, and studies of activity in this
band often aggregate more fine-grained sensing (cogni-
tive band) over longer time frames (rational band).
Jensen et al’s (2021) study of teachers’ discourse, dis-
cussed above, is one example. Another is Hickman et
al’s (2021) study, in which language, facial expressions,
and prosody in mock video interviews for personnel
selection were used to develop an automated system
for scoring personality. In a large-scale study, Hutt et
al. (2019) developed an MLCM to infer engagement
from interaction patterns of approximately 70,000 stu-
dents as they interacted with an online learning
platform.

Studies at the social band have largely relied on
social-media posts using time frames from days to
months (individual posts are in the rational band, so
this work entails combining the rational and social
bands). De Choudhury et al. (2013) developed an MLCM
that identified individuals diagnosed with depression
on the basis of their Twitter usage. Eichstaedt et al.
(2015) also used Twitter data, but at the societal level,
to predict county-level rates of mortality from athero-
sclerotic heart disease. Their MLCM was a better predic-
tor than established demographic and health indicators
(but see Brown & Coyne, 2018, for an alternate inter-
pretation). At the organization level, Das Swain et al.
(2020) analyzed language used in more than 600,000
Glassdoor reviews of 92 Fortune 500 companies to infer
41 dimensions of organizational culture, which then
were used to predict job performance.

MLCMs can span all four bands. In a yearlong study
of 757 information workers, Robles-Granda et al. (2021)
measured physical and physiological signals from wear-
able sensors, communications from a smartphone app,

relative location based on Bluetooth beacons, contex-
tual cues (e.g., weather), and social-media data to
develop MLCMs of personality, cognitive ability, affect,
health, and job performance.

Accuracy and Generalizability of MLCMs

MLCMs are typically evaluated for their accuracy and
generalizability. Accuracy is higher with well-engineered
features and sophisticated algorithms that can infer com-
plex patterns without overfitting; simpler approaches
risk underfitting the data. It is often assumed that big data
yield higher accuracies than smaller data sets, but this is
an oversimplification; it is not the volume that matters
but rather the quality of the data and how well they
represent the phenomenon to be measured. Another
assumption is that multimodality improves accuracy, but
this is not always the case (e.g., the Bosch et al., 2015,
study); often its main advantage is increasing robustness
(D’Mello & Kory, 2015). All things being equal, the quality
of the annotations matters most because it provides the
supervisory signal for learning and evaluation. High-
quality annotations should reach the same standards of
construct validation used for any psychological measure
(e.g., reliability, convergent validity).

MLCMs developed in very specific contexts are
unlikely to generalize beyond the specific paradigm
(e.g., Hassan et al’s, 2019, affect-induction study),
though this lack of generalizability can be somewhat
alleviated by training on multiple stimuli or tasks (e.g.,
Zhang et al., 2019, used both spatial and arithmetic
tasks). Hutt et al. (2019) made domain generalizability
a design principle in selecting features for their engage-
ment study, and their MLCM trained on algebra data
generalized to geometry data without retraining. Tem-
poral generalizability is of concern for language models
as new terms enter the lexicon. The gold standard is to
collect broad, diverse, and voluminous training data, as
was done in the example studies using data from social
media, but this is challenging for sensor-based models
(e.g., Robles-Granda et al’s, 2021, study) without mass
surveillance. Starting with models pretrained on large
data sets across multiple domains and customizing them
using limited data in a target domain (as in the Jensen
et al., 2021, example) is a promising approach.

Expectations of accuracy and generalizability must
be calibrated with respect to the complexity of the
construct, the underlying context, and the availability
of good-quality training data (especially annotations).
Accuracy will be higher for well-defined, experimen-
tally induced phenomena in the context of the lab
(Wager et al.’s, 2013, pain example) than for spontane-
ously occurring, ill-defined phenomena across multiple
contexts (Hutt et al., 2019, used online data collected
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in classrooms, homes, etc., in their engagement study).
Similarly, generalizability is difficult when the phenom-
enon is highly context-specific (e.g., emotion; D’Mello
et al., 2018). In such cases, it is prudent to use context-
specific models, live with modest accuracy, and temper
performance claims rather than completely write off
the approach. We suggest channeling Tukey (1962)
when interpreting the value of such models: “far better
an approximate answer to the right question, which is
often vague, than the exact answer to the wrong ques-
tion, which can always be made precise” (p. 13).

Bias, Fairness, and Interpretability
of MLCMs

There was a media frenzy a few years ago when it was
revealed that commercial face-recognition technology
routinely underperforms for dark- compared with
lighter-skinned individuals—with shocking disparities
(error rates up to 34.7% vs. 0.8%; Buolamwini & Gebru,
2018). Although the idea of biased algorithms dates
back to the 1970s, similar high-profile revelations have
recently renewed interest in raising awareness of algo-
rithmic bias and approaches to mitigate it.

We (Tay et al., 2021) have proposed a theoretical
framework for addressing bias in MLCMs used for psy-
chological assessment. In this framework, systematic
departures of some subgroups’ MLCM scores from their
actual scores is evidence for bias if there are no actual
subgroup differences. Though the terms are often used
interchangeably, fairness is distinct from bias. It is a
subjective perspective based on the values and beliefs
of individuals and societies.

For example, consider an MLCM that assesses per-
sonality using automated video interviews, which are
increasingly used in real-world hiring (e.g., Hickman
et al., 2021). If the MLCM vyields higher conscientious-
ness scores for men than for women and nonbinary
individuals but there are no gender differences in the
annotations used to train the model (e.g., expert-rated
conscientiousness), this would be prima facie evidence
of bias. On the other hand, if the annotations for agree-
ableness indicate higher scores for men than for women
and nonbinary individuals and the MLCM reproduces
this pattern (i.e., it is not biased), some people would
view the MLCM as fair because its measurements reflect
actual scores. Others would view it as unfair because
it gives unequal group outcomes.

It is sometimes assumed that bias is purely a reflec-
tion of the representativeness of the data used to
develop MLCMs, but in fact, it arises from decisions
made throughout the modeling process. Our framework
identifies and contextualizes potential sources of bias
at both the data and the algorithm levels while also
recommending tests and mitigation strategies.

A related concept is interpretability (or explainabil-
ity), the degree to which the inner workings of the model
are interpretable by humans, a critical concern for both
scientific inquiry and real-world use. Explainability can
pertain to the structure of an MCLM itself (e.g., how do
the features combine? what are the representations?)
and/or to the MLCM’s outputs (e.g., why did the model
predict X for data point Y?). The four modeling
approaches in Figure 2 align along an interpretability-
performance continuum, with the handcrafted models
and deep-learning approaches on either extreme.
Whereas methods from the nascent field of explainable
artificial intelligence (XAD can help improve the inter-
pretability of MLCMs (e.g., Lundberg et al., 2020), it
is unlikely that the trade-off will be entirely elimi-
nated (cf. the no-free-lunch theorem of mathematical
folklore).

MLCMs in a Well-Measured Life

What role do MLCMs play in an era obsessed with
measurement? As the examples illustrate, MLCM-based
measures have been developed in multiple areas of
psychological sciences, ranging from neuroscience to
cognitive and affective science, education, organiza-
tional culture, and personality and social psychology
(Fig. 5). They reflect measurements in the scanner, in
the lab, online, at workplaces, at homes, in schools,
and in the community. Whereas most MLCMs focus on
within- and between-individuals differences, some pro-
duce measurements at the level of the team, organiza-
tion, or society. MLCMs have been used for scientific
inquiry, automated scoring, assessment, and interven-
tion. They extend researchers’ capacity to harness natu-
ral data sources, in each case greatly increasing the
speed, scale, and convenience of psychological mea-
surement. Psychological scientists have a vital role to
play in the future of MLCMs by providing guidance on
human behavior, construct validity, statistical rigor,
theoretical grounding, and evaluations of bias and
fairness.

At the same time, a proliferation of such measures
increases privacy, security, and ethical concerns over
what and how data are collected, processed, and stored,
as well as the purpose for which they are collected and
analyzed. It also raises long-established concerns of
bias and fairness. Whereas researchers have historically
emphasized accuracy and generalizability, the idea of
achieving unbiased, fair, and interpretable models has
garnered considerable interest over the past decade. As
research and recommendations emerge, one immediate
step should be to adopt a culture in which ethical
design is a core goal. For example, the National Science
Foundation National AI Institute on Student-Al Team-
ing! has adopted a Responsible Innovation Framework
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(Stilgoe et al., 2013) that guides its vision, values, meth-
ods, and criteria for success. Of course, words must be
followed by action so that the products of research
(including MLCMs) are instruments that reflect and pro-
mote justice rather than perpetuate inequality.

Recommended Reading

D'Mello, S., Kappas, A., & Gratch, J. (2018). (See References).
Provides a general tutorial on how to construct machine-
learned computational models in the domain of emotion.

Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine
learning approaches for clinical psychology and psychia-
try. Annual Review of Clinical Psychology, 14, 91-118.
https://doi.org/10.1146/annurev-clinpsy-032816-045037.
Reviews the use of machine learning for assessment in
clinical psychology.

Jordan, M. 1., & Mitchell, T. M. (2015). (See References).
Provides an accessible tutorial on machine learning and
a review of recent advances.

Tay, L., Woo, S. E., Hickman, L., Booth, B., & D’Mello, S.
(2021). (See References). Provides a framework integrat-
ing psychometric concepts of bias with machine learning
for the purpose of psychological assessment.

Yarkoni, T., & Westfall, J. (2017). (See References). Distinguishes
between building predictive and explanatory models in
psychology.
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