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Abstract
Collaborative problem-solving (CPS) is ubiquitous in everyday life, including work, 
family, leisure activities, etc. With collaborations increasingly occurring remotely, 
next-generation collaborative interfaces could enhance CPS processes and outcomes 
with dynamic interventions or by generating feedback for after-action reviews. Auto-
matic modeling of CPS processes (called facets here) is a precursor to this goal. 
Accordingly, we build automated detectors of three critical CPS facets—construc-
tion of shared knowledge, negotiation and coordination, and maintaining team func-
tion—derived from a validated CPS framework. We used data of 32 triads who 
collaborated via a commercial videoconferencing software, to solve challenging 
problems in a visual programming task. We generated transcripts of 11,163 utter-
ances using automatic speech recognition, which were then coded by trained humans 
for evidence of the three CPS facets. We used both standard and deep sequential 
learning classifiers to model the human-coded facets from linguistic, task context, 
facial expressions, and acoustic–prosodic features in a team-independent fashion. 
We found that models relying on nonverbal signals yielded above-chance accuracies 
(area under the receiver operating characteristic curve, AUROC) ranging from .53 
to .83, with increases in model accuracy when language information was included 
(AUROCS from .72 to .86). There were no advantages of deep sequential learning 
methods over standard classifiers. Overall, Random Forest classifiers using language 
and task context features performed best, achieving AUROC scores of .86, .78, and 
.79 for construction of shared knowledge, negotiation/coordination, and maintaining 
team function, respectively. We discuss application of our work to real-time systems 
that assess CPS and intervene to improve CPS outcomes.
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1  Introduction

Problem-solving involves identifying a sequence of operations to convert a given 
state to a goal state (Newell and Simon 1972). Collaborative problem-solving 
(CPS) involves two or more people working together to find a solution to a prob-
lem (OECD 2016). Be it school, work, service, leisure, or family environments, 
individuals are constantly engaging in CPS. In fact, CPS is considered a criti-
cal twenty-first century skill for productivity in an increasingly global workforce 
(Fiore et  al. 2018; Graesser et  al. 2018; OECD 2016). In addition, education 
practitioners have particularly emphasized the need for building skills for remote 
collaborations (OECD 2016; Schulze and Krumm 2017) as teams become dis-
tributed and schooling or working from home becomes the norm. Thus, CPS has 
become a pervasive part of our lives, whether we are face-to-face or not.

Given the ubiquity and importance of CPS, modern education has focused on 
teaching relevant skills, such as goal setting (Lai et al. 2017), idea sharing (Hao 
et al. 2017), and shared construction of solutions (Roschelle and Teasley 1995), 
often through short or long-term group projects (Graesser et  al. 2018; OECD 
2016). However, teams often fail to productively engage in these complex CPS 
skills, resulting in process loss, where teams do not live up to expectations (Kerr 
and Tindale 2004). In contrast, process gain, where team performance is greater 
than any combination of individual performance—or the whole is greater than the 
sum of its parts—is rare (Kerr and Tindale 2004).

Productive CPS proves even more difficult when interactions become vir-
tual (as opposed to co-located). The rich social signals available in face-to-face 
interaction are muted when collaborating remotely (Alterman and Harsch 2017; 
Schulze and Krumm 2017). Poor audio quality, low video resolution, and lagging 
audio-visual signals dampen communication of social signals, like eye gaze and 
breathing patterns, which cue turn taking and other social interactions (Kendon 
1967; Schulze and Krumm 2017). This can lead to difficulty coordinating action 
and maintaining engagement, reduced team cohesion, rapport, and consequently 
performance (Schulze and Krumm 2017).

There have been efforts to support CPS in computer-mediated environments 
by encouraging effective collaborative behaviors. For example, some systems 
give individuals feedback on their verbal participation (Calacci et al. 2016; Fau-
cett et  al. 2017; Samrose et  al. 2018), interruption of teammates (Calacci et  al. 
2016; Faucett et  al. 2017; Samrose et  al. 2018), and attentional focus (Faucett 
et al. 2017; Gutwin et al. 2017; Schlösser et al. 2018). However, merely receiving 
feedback on these low-level behaviors might not provide individuals with suffi-
cient insight into the underlying socio-cognitive processes necessary for success-
ful CPS.

Systems that go beyond providing feedback on behavioral signals by dynami-
cally responding to the unfolding collaborative process could help improve the 
outcomes of computer-mediated collaboration. Accordingly, recent work has 
focused on modeling socio-cognitive constructs related to effective CPS, such as 
rapport loss (Müller et al. 2018), empathy-skill (Ishii et al. 2018), team cohesion 
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(Hung and Gatica-Perez 2010), and argumentation (Lu et  al. 2011; Prata et  al. 
2009; Rosé et al. 2008). Although these socio-cognitive constructs are crucial to 
successful collaborative interactions, they are not direct measures of CPS, which 
involves sharing ideas, negotiation among competing ideas, monitoring execution 
of a solution, and keeping the team motivated (Hao et al. 2017), where research is 
much more limited.

Some recent work has focused on detecting specific CPS behaviors, such as pro-
viding relevant information for the task or asking for clarification from language-
based features (Flor et  al. 2016; Hao et  al. 2017). However, these studies rely on 
text-based interactions between collaborators, where the content of the chat is a 
direct representation of what was communicated. There is a dearth of work explor-
ing CPS modeling in face-to-face or videoconferencing environments where individ-
uals can see and hear each other, and communicate through language, gesture, voice 
tone, and body posture and gesture. These signals provide valuable insight into non-
verbal communication in addition to the verbal content. For example, emotion-rich 
modalities, such as facial expressions (Littlewort et al. 2011) or acoustic–prosodic 
information (Eyben et al. 2013) could be useful for modeling CPS.

Accordingly, our work examines multimodal models of CPS, based on an empiri-
cally validated theoretical framework of three core CPS facets (Sun et  al. 2020): 
construction of shared knowledge, negotiation/coordination, and maintaining team 
function. We use multimodal data including language, acoustic–prosodic fea-
tures, facial features, body movement, and task information, collected from 32 tri-
ads engaged in a computer-mediated challenging visual programming task. As we 
review below, this is the first such study of its kind.

2 � Background and related work

We first review frameworks of CPS, followed by models of collaborative behaviors, 
processes, and facets.

2.1 � What is collaborative problem‑solving?

The teamwork literature is vast and has been studied extensively. Broadly, team-
work refers to two or more people working together toward a shared goal. The five 
important components of effective teams include team leadership, mutual perfor-
mance monitoring, backup behavior, adaptability, and team orientation (Salas et al. 
2005). CPS is a specific form of teamwork where two or more people coordinate 
to solve a problem (OECD 2016; Roschelle and Teasley 1995). CPS skill has been 
defined in terms of core competencies (Hesse et al. 2015; OECD 2016) and effective 
actions (Andrews-Todd and Forsyth 2018; Cukurova et  al. 2018; Nelson 1999) to 
enable progress toward the problem-solving goal and establish a positive collabora-
tive environment. An early conception of CPS can be derived from Roschelle and 
Teasley (1995), who noted that CPS is fundamentally about building and maintain-
ing a joint problem space. According to this model, language and actions during the 
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collaboration should enhance the mental model of the shared problem. Teammates 
should continuously monitor the collaboration for breakdowns in the shared concep-
tion and take actions to repair the joint problem space.

Two recent frameworks define specific facets of CPS. First, the Assessment 
and Teaching of Twenty-first Century Skills (ATC21S) framework (Griffin et  al. 
2012; Hesse et al. 2015) outlines a measurable and teachable set of cognitive and 
social skills pertaining to CPS. Social skills focus on interaction with teammates 
and persevering to complete the task (i.e., the collaboration part of CPS). This 
involves engaging in perspective-taking where a teammate considers the problem 
from another teammate’s viewpoint and engaging in effective social regulation pro-
cesses, where teammates negotiate and compromise as well as harness individual 
team members’ strengths. Conversely, cognitive skills focus on managing the task 
itself (i.e., the problem-solving part of CPS). In order to effectively problem solve, 
teammates must engage in task regulation where they analyze the problem, make 
plans, execute them, revise plans, and move the collaboration forward. Finally, there 
should be learning and knowledge-building as a result of the collaboration.

Similarly, to the ATC21S framework, the Programme for International Student 
Assessment (PISA) framework (OECD 2016) defines three collaborative competen-
cies that interact with four problem-solving processes, resulting in 12 levels of CPS 
skills (Graesser et al. 2018; Webb and Gibson 2015). The first collaborative compe-
tency involves establishing common ground where teammates should communicate 
their knowledge and ideas proactively while working to understand others’ ideas 
and establishing shared meaning. The second is taking appropriate action where 
teammates should provide reasons to support their solution proposals and negotiate 
with others to achieve a consensual solution plan. The third involves maintaining a 
functioning team, which involves each teammate understanding their role in their 
team, monitoring for communication breakdowns, and adapting when a breakdown 
occurs. These CPS competencies interact with the following four problem-solving 
processes: (1) exploring and understanding the problem; (2) organizing and integrat-
ing information with personal knowledge; (3) planning and executing a solution, (4) 
monitoring the plan and reflecting on how to improve it.

2.2 � Modeling collaborative behaviors, processes, and facets

Researchers interested in modeling team interaction have focused on low-level 
behaviors (e.g., speech rate), traits of the individual and team (e.g., empathy and 
cohesion), and CPS facets (e.g., sharing ideas). We discuss pertinent research in 
these three areas below.

2.2.1 � Models of low‑level behaviors

There is extensive work in modeling low-level behaviors pertaining to nonverbal 
communication (Latif et  al. 2014). For example, visual focus of attention (Otsuka 
et al. 2018), which is key to managing turn taking, has been modeled using cam-
era-based estimates of head pose and gaze position (Otsuka et  al. 2018). Further, 
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end-of-turn and turn-taking prediction (de Kok and Heylen 2009; Dielmann et  al. 
2010; Jokinen et al. 2013), a signal describing how the conversational dynamics pro-
gress, has been modeled from acoustic–prosodic (de Kok and Heylen 2009; Diel-
mann et al. 2010), head pose (de Kok and Heylen 2009; Dielmann et al. 2010), gaze 
position (de Kok and Heylen 2009), and dialogue act features (de Kok and Heylen 
2009; Dielmann et al. 2010).

Low-level signals in conversational scenarios have long been investigated in 
terms of coordination and interpersonal synergy, where behaviors like facial expres-
sions and eye gaze become linked over time (Fusaroli et  al. 2014; Krafft et  al. 
2016; Richardson et al. 2007). Behavioral coordination predicts maintaining com-
mon ground, establishing social bonding, and improving social interactions (Dela-
herche et al. 2012; Grafsgaard et al. 2018), all of which are key to CPS. Research 
has focused on eye gaze (Richardson et al. 2007), head and body movements (Amon 
et al. 2019; Duran and Fusaroli 2017; Grafsgaard et al. 2018), speech rate (Amon 
et  al. 2019; Duran and Fusaroli 2017; Stewart et  al. 2018), physiology (Palumbo 
et  al. 2017), and facial expressions (Grafsgaard et  al. 2018). For example, in one 
study involving CPS, deep neural networks were used to prospectively predict the 
speech rate of one team member from verbal and nonverbal behaviors of two other 
team members, up to 6 s in advance (Stewart et al. 2018).

2.2.2 � Models of collaborative traits, socio‑cognitive constructs, processes, 
and outcomes

Researchers have focused on using low-level signals to model stable traits related to 
collaboration. For example, traits like empathy-skill relate to the quality of collabo-
rative interactions (Kelly and Barsade 2001) and have been modeled from multi-
modal traces, such as gaze and turn-taking dynamics (Ishii et al. 2018). Dominance, 
which can affect perceptions and motives in social interactions (Hall et  al. 2005), 
has been modeled from a multimodal combination of turn-taking dynamics and vis-
ual activity (motion) (Aran and Gatica-Perez 2010). Related, individual leadership, 
which can influence team decisions, has been extensively modeled from pose-based 
estimates of visual focus of attention (Beyan et al. 2016a), dialog patterns (Sanchez-
Cortes et al. 2010), or multimodal combinations of visual focus of attention, head, 
and body activity (Beyan et al. 2016b).

Similar to models of stable traits, socio-cognitive constructs in group scenarios 
have also been modeled from measurable behaviors. For example, comprehension of 
computer programs was modeled from gaze (Jermann and Sharma 2018), and social 
regulation from tabletop computer interaction patterns (Evans et  al. 2016). Many 
researchers have taken a multimodal approach to modeling socio-cognitive con-
structs. For example, team cohesion has been modeled from dialog dynamics and 
visual activity (Hung and Gatica-Perez 2010), speaker influence from speech and 
head movement features (Nihei et al. 2014), and rapport from turn-taking, prosody, 
facial expression, and motion (Müller et  al. 2018). Researchers have specifically 
chosen these socio-cognitive constructs because they are key to successful social 
interactions. For example, social regulation is key to managing collaborative learn-
ing outcomes (Evans et al. 2016), team cohesion is important to a sense of belonging 
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(Hung and Gatica-Perez 2010), speaker influence is related to discussion flow (Nihei 
et al. 2014), and rapport is key to relationship-building (Sinha and Cassell 2015).

In educational contexts, content produced by teams has been analyzed for collab-
orative learning processes and academically productive talk (Dyke et al. 2012; Rosé 
et al. 2008; Tegos et al. 2015, 2016). For example, research has focused on under-
standing group epistemic activity (Rosé et al. 2008; Yoo and Kim 2014) and argu-
mentation (Lu et al. 2011; Prata et al. 2009; Rosé et al. 2008). Researchers have also 
successfully shown that academically productive talk can be supported in teammates 
through real-time interventions which monitor the unfolding conversation and use 
conversational agents to guide the discussion accordingly (Dyke et al. 2012; Tegos 
et al. 2015, 2016). For example, conversational agents have been used to encourage 
students to explicitly provide reasoning to support a solution and build upon their 
teammates’ ideas (Tegos et al. 2015).

In addition to assessing collaborative learning processes, there have been efforts 
to model objective outcomes (Chopade et al. 2019; Murray and Oertel 2018; Sub-
buraj et al. 2020; Vrzakova et al. 2020; Yoo and Kim 2014). For example, post-test 
scores (Stewart and D’Mello 2018), can be used as an objective measure of learning. 
Researchers often adopt a multimodal learning analytic approach and posit that uti-
lizing behavioral traces from a variety of signals will outperform unimodal signals. 
For example, Yoo and Kim (2014) used multimodal behavioral patterns (language 
and interaction features) from online discussion groups to predict team-level grades. 
They found that acting as an information giver (as opposed to receiver) was posi-
tively correlated with project grades. Additionally, the use of positive emotion words 
and early discussion (as opposed to procrastinated discussion) positively correlated 
with grades. In face-to-face interactions (as opposed to online groups), hand, body, 
and face tracking have been used to infer proximity and position of group members 
as well as direction of attention to predict group grades in a project-based learn-
ing task (Spikol et al. 2018). Also in face-to-face collaborative learning, rule-based 
models on video, writing, and speech data have been used to predict solution cor-
rectness and domain expertise with 96% and 100% accuracy, respectively, with mul-
timodal analytics outperforming unimodal signals (Oviatt and Cohen 2013).

Exemplary work on modeling CPS task performance comes from Murray and 
Oertel (2018), who predicted objective expert-rated task performance on a discus-
sion-based CPS task. They trained a Random Forest classifier on acoustic–prosodic 
and linguistic features to predict task performance and achieved a mean-squared 
error of 64.4 (compared to a mean-prediction baseline of 79.3). Related, Chopade 
et al. (2019) regressed task success (binary successful or not) onto language features 
like cohesion and agreement. Their regression models explained about 17% of the 
variance in task success (Chopade et al. 2019). Finally, Subburaj et al. (2020) pre-
dicted binary task success from a multimodal combination of face, eye gaze, acous-
tic–prosodic, and task context information. They found that a multimodal combina-
tion of face, eye gaze, and task context features outperformed unimodal models and 
other multimodal combinations. Additionally, models that equally weighted behav-
ioral signals from all teams outperformed, or performed equivalently to models that 
weighted teammates based on individual difference measures (e.g., personality), role 
on the team, or behaviors (e.g., verbosity).
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The work of Vrzakova et al. (2020) also demonstrates how multimodal behavioral 
signals can be more informative in concert than alone. They correlated unimodal 
primitives (interaction with environment, speech, and body movement), and their 
bimodal and multimodal combinations with objective task performance and subjec-
tive team perceptions of the collaboration. They found that when unimodal primi-
tives were correlated with outcomes, adding multimodal information significantly 
improved explanatory power.

Taken together, researchers have computationally modeled a large set of socio-
cognitive constructs, collaborative processes, and collaborative outcomes from 
behavioral measures, especially using multimodal signals.

2.2.3 � Models of collaborative problem‑solving facets

Taking a step toward modeling CPS itself, prior work has focused on CPS skill 
assessment. However, researchers have chosen to use simplified interaction environ-
ments, presumably for precision of measurement. For example, many environments 
only allow communication through pre-defined responses (Chopade et al. 2018; Pol-
yak et  al. 2017; Rosen 2015; Stoeffler et  al. 2018), which correspond to levels of 
particular CPS skills based on theoretical models of CPS, such as the ACT Holistic 
Framework (Camara et al. 2015) or the PISA framework (OECD 2016). While reli-
able and precise assessment are important goals, the ecological validity of these sys-
tems is low as real-world collaboration relies on open-ended communication with an 
effectively limitless set of possible responses.

CPS has been modeled in somewhat less restrictive environments where indi-
viduals used text chat to communicate. In such environments, simple language-
based features that quantify the frequency of words and word phrases (n-grams), 
emoticons, and punctuation has been used to model CPS skills (Flor et  al. 2016; 
Hao et al. 2017). Two studies relevant to our work used text chats in a STEM CPS 
task. In one study, researchers trained computer models on human annotations of 
four CPS facets (sharing ideas, negotiating ideas, regulating problem-solving activi-
ties, maintaining communication) (Hao et al. 2017). They pre-selected theoretically 
informative n-grams and emoticons to model the CPS facets using linear-chain con-
ditional random fields on sequential text chats. They found that sequential modeling 
achieved an average accuracy of 73.2%, which outperformed a randomly shuffled 
baseline (accuracy of 29%) and slightly outperformed standard classifiers (accura-
cies of 66.9–71.9%). Rather than modeling the high-level facets, Flor et al. (2016) 
modeled 31 behavioral indicators of CPS, such as expressing agreement or disagree-
ment with teammates. They used n-gram and punctuation frequencies, as well as 
automatically tagged dialog acts, achieving an accuracy of 60.3%, which beat the 
majority class baseline of 24.9%. Taken together, these studies demonstrate the fea-
sibility of using language-based approaches to monitor CPS, at least with dyads 
engaged in text chats.

Stewart et al. (2019) went a step further by building fully automated models of 
three CPS facets in a videoconferencing environment, where participants could see 
and hear each other. They used data from the same challenging computer program-
ming task analyzed here to predict expert codes for three CPS facets: construction 
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of shared knowledge, negotiation/coordination, and maintaining team function. 
Language-based Random Forest models were built using frequency counts of words 
and two-word phrases (bag of n-grams) from automatically transcribed speech, as 
well as features from the Linguistic Inquiry Word Count dictionary (Tausczik and 
Pennebaker 2010). Their models achieved accuracies, quantified as area under the 
receiver operating characteristic curve (AUROC), of .77 to .85 using n-grams, while 
word dictionary models achieved similar values (.73 to .82), both beating chance 
(AUROC = .50).

Taken together, language-based models have been successful at predicting CPS 
and thus serve as a starting point for our work. Beyond language, there is some work 
on multimodal modeling of CPS competencies in face-to-face interactions (Cuku-
rova et al. 2020; Grover et al. 2016). Specifically, computer vision techniques have 
been used to estimate body pose (Cukurova et al. 2020; Grover et al. 2016), as well 
as where teammates are looking (Cukurova et al. 2020) to predict level of CPS com-
petency (low, medium, or high). Although these works rely on face-to-face scenar-
ios, they demonstrate that nonverbal features can too be useful in modeling CPS.

3 � Current study: contribution, novelty, and research questions

We use spoken language, task context, facial expressions, body movement, and 
acoustic–prosodic features to automatically model three key CPS facets (construc-
tion of shared knowledge, negotiation/coordination, and maintaining team function) 
derived from a theoretical and empirically validated CPS framework (Sun et  al. 
2020) similar to those discussed above. We train our models on data collected from 
32 triads engaging in a challenging visual programming task using a standard vide-
oconferencing environment with audio and visual signals, as well as screen sharing. 
We compare verbal and nonverbal models, as well as combine the two. Additionally, 
we compare standard classifiers with deep sequential learning approaches.

3.1 � Novelty and contribution

Our study is novel in several respects. For one, previous studies that considered 
remote, computer-supported interaction have restricted communication to text chats 
amongst dyads (Flor et al. 2016; Hao et al. 2017). In our study, triads collaborated 
on a CPS task using a standard videoconferencing interface. Collaborators could 
choose any communication medium, including language, gesture, facial expression, 
verbal tone, or mouse movements, yielding rich and unrestricted behaviors, etc. 
Further, in contrast to prior studies, we model CPS in triadic collaborations, which 
further complicates the interaction because a teammate must coordinate expertise, 
ideas, and skills with two other teammates rather than just one. Thus, we model CPS 
in triads collaborating on an open-ended task in an environment that supports mul-
tiple communication signals. This yields a complicated, genuine social interaction 
with an effectively limitless set of verbal and nonverbal behaviors.
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We also go beyond unimodal language-based models (Flor et  al. 2016; Hao 
et al. 2017; Stewart et al. 2019) by incorporating nonverbal signals. Multimodal 
approaches have been applied phenomena related to CPS (Sect. 2.2.2) or to lev-
els of CPS competency (Sect. 2.2.3), but to our knowledge, this is the first work 
using multimodal feature sets to predict CPS facets, and in computer-mediated 
environments (as opposed to face-to-face). We specifically include task context, 
facial expression, and acoustic–prosodic features. These features might provide 
important emotional and social context to the collaboration that might not be 
detected from language alone. In other words, in addition to modeling what was 
said (language), we model how it was said (facial expression and acoustic–pro-
sodic features), and what was occurring at the time (task context).

Finally, we contrast standard classifiers and deep sequential learning 
approaches. It should be noted that this has been done for unimodal language 
models (Hao et al. 2017), but not with multimodal models of CPS facets. Deep 
sequential models provide the potential benefit of capturing the temporal nature 
of this complex multimodal data in a way that standard classifiers cannot.

3.2 � Research questions

We address three research questions.
RQ1: To what extent can behavioral signals be used to automatically model 

CPS facets? We must first establish feasibility of the unimodal behavioral signals 
to model CPS facets, before examining trade-offs of different approaches. Theoreti-
cally, language features will be predictive of CPS facets, due to the inherently ver-
bal nature of CPS in a videoconferencing environment. However, features that index 
task context and nonverbal communication might also be predictive.

RQ2: Do deep sequential learning approaches improve prediction accuracy of 
CPS facets compared to standard machine learning classifiers? Our modeling 
task is quite complex. Individuals bring unique skills and attitudes to the team and 
produce behaviors that are influenced by and influence others. Therefore, perhaps 
deep sequential models that can capture temporal dependencies are needed to suf-
ficiently represent our data. Conversely, it could be the case that deep sequential 
learning models yield no additional performance gains beyond static machine learn-
ing approaches like Random Forest classifiers, which can model interactivity and 
nonlinearity but not temporal dynamics.

RQ3: Do multimodal features improve modeling compared to unimodal feature 
sets? We hypothesize that multimodal feature sets index more rich communica-
tion patterns and thus will provide a boost in model performance. Thus, we explore 
how much, if at all, multimodal feature sets improve modeling accuracy above and 
beyond unimodal models. We also identify precisely what combinations of feature 
sets yield the best performance.
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4 � Data collection

4.1 � Participants

Participants were 111 (63.1% female, average age = 19.4 years) undergraduate stu-
dents from a medium-sized private, highly-selective, Midwestern U.S. university. 
Participants self-reported a variety of majors and were not specific to any depart-
ment. Participants were 74.8% Caucasian, 9.9% Hispanic/Latino, 8.1% Asian, 2.7% 
Other, 0.9% Black, 0.9% American Indian/Native Alaskan; 2.7% did not report eth-
nicity. Participants were assigned to teams of three based on scheduling constraints, 
resulting in 37 teams. Nineteen participants from ten teams (27%) indicated they 
knew at least one person from their team prior to participation. No participant 
reported having prior programming experience. Participants were compensated with 
course credit.

4.2 � Learning environment

Teams collaborated in a block-based programming environment, which is increas-
ingly used to teach relevant computer science skills to students in formal and infor-
mal learning settings (Weintrop 2015; Weintrop and Wilensky 2016). We specifi-
cally used code.org’s Minecraft-themed Hour of Code (Fig. 1) (Code Studio n.d.), 
which is an online game-based resource to learn basic computer programming prin-
ciples in an hour. It uses Blockly (Fraser 2015), a visual programming language that 
represents lines of code (such as if statements) as interlocking blocks. Blocks only 
interlock with other syntactically correct blocks, allowing participants to focus on 
the coding logic and computing principles without considering syntax errors.

Fig. 1   Minecraft-themed Hour of Code from Code.org. Participants could visualize the results of run-
ning their code (A), a code bank of possible blocks to use (B), the code they generated (C) and their 
team’s faces (D)
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4.3 � Procedure

4.3.1 � Initial setup

Participants were each randomly assigned to one of three computer-enabled rooms. 
Each computer was connected to the internet via an Ethernet cable, rather than 
WiFi, for a better-quality signal. Each computer had a webcam and microphone for 
videoconferencing, and screen sharing capabilities through Zoom.1 During the col-
laboration, one participant’s screen was shared so that everyone viewed the same 
content. Separate audio tracks were recorded for each participant at 16,000 Hz. Vid-
eos of each participants’ face and upper body and screen content were recorded at 
25 Hz. Due to limitations with zoom, the videos of participants were quite small as 
evident in Fig. 1.

Each participant individually filled out demographic data including gender, age, 
major, and self-reported standardized test score (ACT and/or SAT). Participants also 
completed the validated 10-item version of the Big Five Inventory (BFI) (Gosling 
et  al. 2003) to assess personality in five dimensions: extraversion, agreeableness, 
conscientiousness, emotional stability, and openness to experience. These individual 
difference measures are not analyzed here, as they are not relevant to our Research 
Questions.

4.3.2 � Introductory phase

After individually completing the surveys, teams completed five levels and viewed 
three accompanying videos that taught them how to use the programming envi-
ronment as well as basic computer programming principles, such as loops and if 
statements. In these five levels, teams were required to build structures within the 
game and navigate around obstacles. One randomly assigned participant was tasked 
with controlling the team’s actions in the environment. The other two participants 
were tasked with contributing to the collaboration. Participants were specifically 
instructed to collaborate as a team to complete the levels within 20 min.

After 20 min had elapsed or the team indicated they finished the five levels and 
viewed the three videos, screen sharing was disabled. Participants individually rated 
their satisfaction with their team’s performance, communication, cooperation, and 
agreeableness as follows: “I am satisfied with my team’s performance at complet-
ing the lessons,” “I am satisfied with how we communicated with each other,” “I 
am satisfied with how we mutually cooperated to complete the lessons,” and “I am 
satisfied with how agreeable my teammates are.” They indicated whether they were 
very dissatisfied (1), somewhat dissatisfied, slightly dissatisfied, slightly satisfied, 
somewhat satisfied, or very satisfied (6) on a six-point scale for all items.

1  https​://zoom.us.

https://zoom.us
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4.3.3 � Challenging collaborative problem phase (main task)

After individually completing the ratings, screen sharing was enabled, and teams 
were tasked with collaboratively completing a challenging programming task in the 
same Hour of Code environment. The same team member who controlled interac-
tion with the environment during the lessons also controlled the interaction during 
the coding challenge. In the challenge, teams were given 20  min to build a 4 × 4 
brick building using at least one if statement and one repeat loop. At least three of 
the bricks must be built over water, and the code must total 15 code blocks or less. 
After 20 min had elapsed or the team sufficiently completed the coding challenge, 
screen sharing was disabled. Participants individually completed the same subjec-
tive measures of their team’s performance, communication, cooperation, and agree-
ableness with the wording adapted for the challenge level.

4.3.4 � Post‑test and debriefing

Finally, participants individually completed a ten-item researcher-created multiple-
choice test to assess their conceptual knowledge of the coding concepts (such as 
repeat loops and if statements). Each post-test item had a single correct answer out 
of four possible answers, and the possible range of scores was 0–100%. Figure  2 
shows an example post-test question.

4.4 � Data exclusion

We analyze the coding challenge only since the introductory lessons were primarily 
intended to familiarize participants with their teammates, the Hour of Code environ-
ment, and basic programming principles. Due to technical errors, four teams were 
removed because at least one participant in the team was missing an audio record-
ing, and one team was removed because they were missing a screen recording (both 
audio and screen recordings are used in modeling). In all, 32 teams were analyzed.

Fig. 2   Example post-test question
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4.5 � Automated speech recognition (ASR)

Each participant’s individual audio file was automatically transcribed using the IBM 
Watson Speech to Text service.2 The service generates a transcript, start time, stop 
time, and transcription confidence for each utterance (the ASR also does utterance 
segmentation). Within a team, we interleaved transcripts (using the utterance start 
time) to produce one team-level transcript. Sometimes the ASR improperly seg-
ments utterances by splitting a single utterance (as identified by humans) into mul-
tiple segments. To remedy this, sequential utterances were combined into a single 
utterance if they belonged to the same speaker and there were less than 2 s (we also 
experimented with 1.5 s, 2 s, and 3 s thresholds) between the end of one utterance 
and the start of the next. In total, there were 11,163 utterances across the 32 teams 
for the 20-min challenging task.

To assess accuracy of the automatic transcription, we had a human transcribe a 
randomly selected 10% of the utterances, sampled from all participants. We com-
puted word error rate (Hunt 1990), as: (substitutions + insertions + deletions)/(words 
in human transcript), and set word error rate to zero if the automated transcription 
indicated speech when there was none (6% of the selected utterances). The aver-
age word error rate was 45% (SD = 0.54), indicating considerable imperfections in 
the transcription, which increases challenge for automated modeling as discussed in 
Sect. 5.5.

4.6 � Expert coding of CPS facets

We annotated teammates’ language (utterances) using a theoretically grounded and 
empirically validated CPS framework (Sun et  al. 2020). The framework defines 
three CPS facets: (1) construction of shared knowledge, (2) negotiation/coordina-
tion, and ((3) maintaining team function. Each facet has three observable verbal 
indicators that form the basis of the expert coding and make it an ideal choice for 
coding our data.

Construction of shared knowledge involves sharing ideas and expertise with other 
teammates and establishing shared understanding amongst the team. Verbal indica-
tors include “proposes specific solutions,” “talks about givens and constraints of the 
task,” and “confirms understanding by asking questions/paraphrasing.” Negotiation 
and coordination is an iterative process for developing and executing a team solu-
tion and revising the solution as necessary. It can be captured with the following 
verbal indicators: “provides reasons to support a potential solution,” “responds to 
others questions/ideas,” and “talks about results.” Maintaining team function reflects 
a positive team dynamic where collaborators are conscious about being part of a 
team and proactively contribute to its success. Verbal indicators include the follow-
ing: “asks if others have suggestions,” “compliments or encourages others,” and 
“gives instructions.” In total, there were nine verbal indicators (three per facet). An 

2  https​://www.ibm.com/watso​n/servi​ces/speec​h-to-text/.

https://www.ibm.com/watson/services/speech-to-text/
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example collaborative interaction with high-quality automated transcription and the 
expert-coded indicators is shown in Table 1.

Two experts were initially trained and viewed ten 90-s video clips from ten ran-
domly selected teams. They counted the number of times each indicator occurred 
per clip. After reaching adequate reliability, coders were trained to code the individ-
ual automatically transcribed utterances for the presence of each indicator. Coders 
watched video recordings side-by-side with the transcripts and counted the number 
of times each indicator occurred in an utterance. They reached an agreement of .98 
[Gwet’s AC1 metric (Gwet 2014)] on two 5-min video samples consisting of 254 
utterances. The 32 videos were then randomly assigned to the coders, who individu-
ally coded their videos.

The majority of the counts within an utterance were either 0 or 1 (average of 
99.82% across all indicators), so we converted the resultant indicator counts to 
binary variables. For each facet, if all of the indicator counts were 0, then that utter-
ance was coded as a 0. Otherwise, if at least one of the indicators occurred, it was 
coded as a 1. Distributions of the number of indicators present in each utterance are 
shown in Table 2. In total, 33%, 15%, and 10% of the utterances exhibited evidence 
of constructing shared knowledge, negotiation/coordination, and maintaining team 
function, respectively. In what follows, we investigated whether we can learn mod-
els to reproduce these utterance-level human codes in a team-generalizable fashion. 
We begin with language-based models (Sect. 5), compare them to include nonver-
bal channels (Sect. 6), followed by a detailed analysis of the most accurate models 
(Sect. 7).

5 � Language models

We chose language as the initial modality for modeling the high-level CPS facets 
because language indexes the content of the collaboration, and the expert codes 
were based on verbal contributions (Sect. 4.6). We compared both standard classi-
fiers using n-grams with recurrent neural networks with word embeddings.

Table 2   Percentage of instances that had 0, 1, 2, or all 3 indicators for each facet

No. indicators in utter-
ance

Construction of shared knowl-
edge (%)

Negotiation/coordina-
tion (%)

Maintaining 
team function 
(%)

0 66.96 84.72 90.14
1 31.31 14.69 9.791
2 1.711 .5912 .0717
All .0179 .0000 .0000
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5.1 � Supervised classification with Random Forest classifiers

We chose to use a Random Forest classifier as it achieves equivalent or bet-
ter accuracies than other standard classifiers, including Naïve Bayes, Logistic 
Regression, Support Vector Machine, and Adaboost.3 We used a bag-of-n-grams 
approach, where occurrence counts of words and word phrases in the automati-
cally transcribed utterance served as input features. Utterances were tokenized 
using the nltk (Bird and Loper 2004) tokenizer. We experimented with whether 
to perform word stemming on the n-grams using the nltk Snowball Stemmer 
(Porter 2001), and whether to remove stop words using the Glasgow Information 
Retrieval Group stop word list (Lo et al. 2005). We considered language models 
both with and without stemming, as well as with and without stop word removal. 
Neither stemming, nor removing stop words improved performance of our mod-
els, so we did not do either in our final models. In addition to n-grams, we also 
computed speech rate (words per second) as the total number of words in an 
utterance by the elapsed time (in seconds) of that utterance. Finally, we computed 
the transcription confidence (between 0 and 100%) provided by the IBM Watson 
ASR. In the case of merged utterances (Sect. 4.5), we took the average confidence 
value of the utterances involved.

We used a random under-sampling implementation from the imbalanced-learn 
library (Lemaitre et al. 2017) to account for class imbalance in the dataset. We also 
tested random oversampling and the synthetic minority oversampling technique 
(SMOTE), but found no improvement in prediction accuracy. Under sampling was 
only performed on the training set, and class distributions for the validation and test-
ing sets were left unchanged.

5.2 � Recurrent neural networks with word embeddings

We also trained long short-term memory (LSTM) recurrent neural networks, 
which is a special type of recurrent neural network that can learn long-term 
dependencies (Hochreiter and Schmidhuber 1997) by selectively retaining and 
forgetting information across input sequences. Each utterance was represented as 
a fixed-length sequence of word embedding vectors. We chose 14-word sequences 
as 90% of the utterances had 14 words or less. Shorter sequences were padded 
at the end. We used Global Vectors for Word Representations (gloVe) embed-
dings (Pennington et al. 2014) (100 dimensions) to represent each word and set 
the embedding weights to be trainable, such that the net would update them over 
time.

To reduce computation time, we fixed several of the parameters of the network 
and focused on training the weights instead (cross-validation procedure described 

3  We utilized the same cross-validation procedure described in Sect. 5.3 for these models. We specifi-
cally tuned the following hyperparameters for each classifier: Naïve Bayes—alpha, class prior distribu-
tions; Logistic Regression—regularization norm, regularization strength; Support Vector Machines—
kernel, regularization strength; Adaboost—number of estimators, learning rate.
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in Sect. 5.3). We used one hidden layer, containing 100 units to correspond with the 
embedding dimension of the vectors. Additionally, we used the Adamax optimizer, 
sigmoid activation function, a batch size of 128, and batch normalization. LSTMs 
were trained to 15 epochs. We performed random oversampling on the training set 
only.

5.3 � Cross‑validation and hyperparameter tuning

We used team-level 10-fold nested cross-validation (Fig. 3). By team-level, we mean 
that all the utterances for a given team were in the training set or testing set, but 
never both, which is important for team-level generalizability. On each of the ten 
test set iterations, a different fold was held out as the test set, and the other nine folds 
were used as the training set. This ensures that data used for training were not used 
for testing the model.

Within each of the ten iterations, the training set only was again split into five 
folds for hyperparameter tuning. A model was fit and scored using every combina-
tion of hyperparameters (see below) via a grid search for each of the five validation 
folds. The scores for each parameter combination across each validation fold were 
averaged, and the hyperparameters that resulted in the highest average area under 
the receiver operating characteristic curve (AUROC), which served as our accuracy 
metric, were preserved. A model was then fit on the full training set using these 
hyperparameters, and predictions were generated on the test fold. These predictions 
were pooled over the ten test folds before accuracy metrics were computed for that 
model. Note that the test set was not used to fit the model, but only to compute 
accuracy.

Fig. 3   Graphical representation of our nested cross-validation procedure
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For the Random Forest classifier, we tuned five hyperparameters. First, we varied 
the range of n-grams to include unigrams or bigrams. We chose not to test beyond 
bigrams because trigrams (and beyond) occurred in less than 1% of the utterances. 
Bigrams were filtered using pointwise mutual information (PMI) (Church and Hanks 
1990; Lin 1998) to ensure that meaningful bigrams (such as “repeat loop”) are pre-
served rather than bigrams that were merely the result of frequent words occurring 
next to one another (such as “next the”). We tested a low PMI of 2 and a high PMI 
of 4. We excluded n-grams that occurred in less than 0%, 1%, or 2% of the training 
utterances with the specific percentage included as a hyperparameter. This minimum 
frequency cutoff is important to ensure that n-grams that are specific to a single team 
are filtered. We also included the number of trees in the forest (100, 500, or 1000) 
and maximum depth of the trees (no maximum depth, 10, or 20) as hyperparam-
eters. For the LSTM word embedding models, we fixed the parameters of the model 
(Sect. 5.2) and used the described procedure to train the weights.

5.4 � Results

We selected the area under the receiver operating characteristic curve (AUROC) as 
our accuracy metric. AUROC assesses the true-positive and false-positive trade-off 
across prediction threshold values (Hanley and McNeil 1982). An AUROC of 0.5 
reflects chance performance. Results are shown in Table 3.

For construction of shared knowledge, the Random Forest and LSTM with word 
embeddings models yield similar AUROC values, which reflect a 72% improvement 
over chance. The Random Forest models yield only slightly better predictions than 
the LSTM with word embeddings model for negotiation/coordination and maintain-
ing team function. For both, the Random Forest models yield a 54% improvement 
over chance, while the word embeddings model yields a 50% improvement over 
chance. Since the LSTM with word embeddings do not improve performance over a 
simpler bag-of-n-grams approach, we use the latter in subsequent analyses.

5.5 � Effect of transcription errors

We investigated the effect of transcription errors (Sect. 4.5, distribution of word error 
rates in Fig. 4) on prediction accuracy. Using the method described in Sect. 5.1, we 
trained a Random Forest classifier on the 1114 human-transcribed utterances and 
compared it to one trained on corresponding automated transcriptions. Results are 
shown in Table 4. The human and automated transcriptions yielded similar AUROC 

Table 3   AUROC for the 
Random Forest n-gram and 
LSTM word embedding models

Model Construction of 
shared knowl-
edge

Negotiation/
coordination

Maintaining 
team func-
tion

N-Grams .86 .77 .77
Word embeddings .86 .75 .75
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values for construction of shared knowledge and negotiation/coordination (i.e., 2.4% 
and 1.5%, boost in accuracy with using human transcriptions). However, for main-
taining team function, the human transcriptions were 8.7% more accurate than the 
automated transcriptions. Therefore, automated transcription inaccuracies have a 
measurable but not excessive (average of 4.2%) effect on detection accuracies.

5.6 � Discussion

We investigated the extent to which high-level collaborative problem-solving 
(CPS) facets could be automatically modeled from language. We compared two 
approaches: Random Forest models that adopted a bag of n-grams approach and 
LSTMs that used sequences of words in an utterance and word embeddings. Impor-
tantly, all models outperformed chance, which is notable given the low base rates 
for all three facets (33% for construction of shared knowledge, 15% for negotiation/
coordination, and 10% for maintaining team function). The Random Forest classi-
fier performed equivalently, or slightly better than the LSTMs, so it is preferable for 

Fig. 4   Histogram of word error 
rates per utterance

Table 4   AUROC for the human 
and automated transcriptions of 
10% of the utterances

Facet Human Automatic

Construction of shared knowledge .84 .82
Negotiation/coordination .69 .68
Maintaining team function .75 .69
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parsimony. That said, a deep sequential learning approach might be more useful on 
a larger dataset. We also demonstrate that automatic speech recognition errors only 
slightly affected classification performance, suggesting robustness of the approach.

Although this initial exploration demonstrates the feasibility of modeling CPS 
facets in a team generalizable way, these results should be interpreted in light of 
some self-imposed constraints. Specifically, we restricted our input to language 
alone, which is an incomplete representation of any social interaction. As such, 
the present results can be considered a useful starting point, with improvement 
possible as additional sources of information that index other aspects of the col-
laboration are added. For example, contextual information might provide insight 
into the team’s actions in the environment and facial expressions or acous-
tic–prosodic features could indicate emotional states. These multimodal models 
are explored next.

6 � Multimodal models

We extend our work to include multimodal data. Previous work detecting CPS 
facets has relied on language features (Flor et  al. 2016; Hao et  al. 2017), thus 
prediction accuracy might be limited to only what language can tell us. Accord-
ingly, we focused on three additional modalities, which should increase model 
performance as they measure unique aspects of the collaboration. We use task 
context features to get a sense of team behaviors in the environment. We also 
included face and acoustic–prosodic features, which index emotional states 
(Eyben et al. 2013; Littlewort et al. 2011), turn-taking dynamics (Levitan et al. 
2012), and coordination (Latif et  al. 2014; Levitan et  al. 2012). As before, we 
also compared standard classifiers with deep sequential learning methods, spe-
cifically Random Forest with LSTMs.

6.1 � Feature engineering

We did not have direct access to log files since the Hour of Code environment is 
hosted by a third party. As an alternative, we used the screen recording (25 Hz) to 
extract high-level task context features that measure the teams’ actions within the 
environment. We used a validated motion estimation algorithm (Westlund et  al. 
2015) to compute the proportion of pixels that change from a continuously updated 
background image, comprised of the previous four frames. This algorithm was 
applied to two areas of interest of the screen videos: the code runtime environment 
(A in Fig. 1) and the code bank and workspace (B and C in Fig. 1). Changes in the 
code bank/workspace indicate edits to a solution, while changes in the code runtime 
area indicate an attempt to test code. A lack of change in each signals deliberation or 
negotiation as teams discusses their next steps.

We used the videos of participant’s faces (25 Hz) to extract facial and motion fea-
tures. Facial features were extracted using Emotient (Littlewort et al. 2011), which 
is a commercialized version of the Computer Expression Recognition Toolbox 
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(CERT) computer vision software. Emotient provides likelihood estimates of the 
presence of 20 action units [specifically 1, 2, 4, 5, 6,7, 9, 10, 12, 14, 15, 17, 18, 20, 
23, 24, 25, 26, 28, and 43 (Ekman 1997)]. Face motion was computed with the same 
motion estimate algorithm used on the screen videos. Action unit and motion esti-
mates were computed for each frame.

For each participant, we used the openSMILE toolkit (Eyben et al. 2013) on the 
individual audio files to extract acoustic–prosodic features over 10  ms windows 
(i.e., 100  Hz). We extracted the following features: fundamental frequency, loud-
ness, center frequency of the first through third formants, first through third formant 
amplitudes, harmonics to noise ratio, jitter, and shimmer.

6.2 � Data aggregation and standardization

We aggregated features for each utterance because modeling was done at the utter-
ance level. We created three feature sets. First, we created a task context feature set, 
which included the average value of the screen motion in each area of interest over 
the utterance duration. We additionally computed the proportion of the total col-
laborative session completed at each utterance (i.e., the start time of the utterance 
divided by the total collaboration time) to indicate progress in the session.

A facial feature set was formed from the action unit and face motion estimates. 
For motion estimates, we simply took the mean value of movement over the dura-
tion of the utterance. Motion estimates were z-score standardized across the 20-min 
session, per participant to account for individual differences. Because modeling is 
done at the team level, for a given utterance, we then took the mean motion esti-
mates across the three team members, to get a team-level value. For each action unit, 
we similarly computed the mean value over the duration of the utterance, excluding 
values where the face could not be tracked due to occlusions, camera-positioning, or 
quick movements. If the face could not be tracked for the entirety of the utterance, 
the action unit value was marked as missing for that utterance. Action units were 
z-score standardized per participant, to account for individual differences. Missing 
values were then replaced with a zero (i.e., the mean for the participant since we 
are working with z-scored values). We then computed the mean of each action unit 
within the team to yield a single team-level estimate for each action unit. We also 
computed a facial feature validity score (ranging from 0 to 3) by summing the num-
ber of participants in the team where the face was tracked at any point during the 
utterance.

Finally, we generated an acoustic–prosodic feature set by computing the means of 
the 11 openSMILE features for the duration of the utterance. Similar to the motion 
and action unit estimates, we z-scored acoustic–prosodic features for each partici-
pant. These features were only computed for the current speaker of an utterance, 
rather than all team members, because they are not meaningful when a person is not 
speaking. In all, we had three task context features, 22 facial features, and 11 acous-
tic–prosodic features.
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6.3 � Random Forest classifier

We used a Random Forest classifier to model the three CPS facets at the utterance 
level using the same modeling procedure described in Sect. 5.3. We added the task 
context, facial, and acoustic–prosodic features to the utterance-level n-gram counts, 
where n-grams were generated using the same procedure described in Sect. 5.1. We 
focus on the Random Forest classifier because it outperformed or performed equiva-
lently to other standard classifiers including Naïve Bayes, Logistic Regression, Sup-
port Vector Machine, and Adaboost.

6.4 � Deep neural networks

In addition to using a standard Random Forest classifier, we tested two deep neural 
network models. The first was a feed-forward neural network (FFNN) with a single 
fully connected layer. The second was a long short-term memory network (LSTM). 
We chose to use FFNNs and LSTMs because they have been applied to similar data 
and modalities (Fan et al. 2015; Mao et al. 2015; Pham et al. 2017).

The LSTM was trained on sequences of inputs from the utterance-level data. A 
sequence of inputs is formed by using data from sequential utterances. We experi-
mented with sequence lengths of two through five utterances. Additionally, the 
LSTM network used a tanh activation function (Keras, n.d.) with a softmax output 
layer (Bishop 2006). Our final LSTM models had one hidden layer with 32 units. 
We settled on one hidden layer after testing models with one, two, and three hidden 
layers, which achieved similar performance. Similarly, we settled on 32 units after 
comparing validation loss (mean square error) across models with 8, 32, and 128 
units. The FFNN was trained on individual inputs from utterance. It employed a sin-
gle hidden layer and used a leaky rectified linear unit activation function (Maas et al. 
2013) between the hidden and softmax output layer. The LSTM model performed 
better than or equivalent to the FFNN, thus we focus on it in this paper.

We used team-level 10-fold cross-validation to train and test our models. Within 
each fold, we further split the data into 60% training, 30% validation, and 10% test-
ing. Further, within each fold, we z-scored and normalized all features to a range of 
− 1 to 1. We also tested normalizing with a − 3 to 3 range, but found that it yielded 
similar performance to a − 1 to 1 normalization scheme. We only used the train-
ing data to compute the statistics needed for the z-scoring and normalization (e.g., 
mean, standard deviation), which were subsequently applied to the validation and 
testing sets. Missing values were replaced with a value of five, which was chosen 
to be outside the normalized range. Further, a binary mask was used to indicate if 
data were missing for each modality as this was shown to be useful for training deep 
models with missing data (Lipton et al. 2016).

Neural networks use gradient descent and backpropagation to update the weights 
during each pass of the training (referred to as a training epoch). At each epoch, a 
loss function (mean-squared error) was computed and the weights were updated. We 
used a Nesterov Adam (Dozat 2016) adaptive learning rate algorithm, to tune the 
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learning rate. We fixed the number of training epochs to 50 since the models con-
verged within 50 epochs.

We experimented with batch normalization (Ioffe and Szegedy 2015), l2 weight 
regularization (Ng 2004), and dropout (Srivastava et al. 2014) to prevent overfitting. 
Dropout had no discernible impact when combined with the other two methods, so 
we did not use dropout. Additionally, the default batch normalization and kernel reg-
ularization from Keras were adequate for our data.

6.5 � Results

6.5.1 � Main results

We used the language models as a starting point and incrementally added modali-
ties. Using feature-level fusion, we first added task context features to assess what 
the team was doing in addition to what they were saying. Then, we included face and 
acoustic–prosodic features as measures of emotional content, turn-taking dynam-
ics, and coordination, again using feature-level fusion. Results of these models are 
shown in Table 5.

We found that the multimodal Random Forest models tied or outperformed the 
LSTM models in almost all cases, suggesting that the additional computational 
expense of deep sequential learning models does not improve accuracy in our case. 
Random Forest models achieved an average AUROC of .75, .67, and .68 for con-
struction of shared knowledge, negotiation/coordination, and maintaining team 
function, respectively, whereas LSTM models yielded average scores of 72, .65, and 
.64. Therefore, we focus on the Random Forest models for subsequent comparisons.

For the Random Forest models of negotiation/coordination and maintaining team 
function, the addition of task context features to language provided a marginal boost 

Table 5   AUROC for the Random Forest (RF) n-gram and LSTM models

Modalities Construction of 
shared knowledge

Negotiation/coordination Maintaining team 
function

RF LSTM RF LSTM RF LSTM

Language Based
Language .86 .80 .77 .75 .77 .73
Language + Task .86 .80 .78 .75 .79 .73
L�anguage + Task + Face +  

Acoustic–Prosodic
.85 .81 .76 .75 .75 .72

Nonverbal Only
Task .60 .56 .55 .53 .62 .58
Face .60 .60 .55 .56 .54 .57
Acoustic–Prosodic .74 .72 .64 .62 .61 .58
Task + Face + Acoustic–Prosodic .75 .72 .65 .62 .65 .59
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(1.3% for negotiation/coordination and 2.6% for maintaining team function) in clas-
sification accuracy. Thus, adding the context of what the team was doing to language 
data is marginally helpful to prediction accuracy for these two facets. However, there 
was no boost in classification accuracy for construction of shared knowledge, dem-
onstrating that context is not as integral to detection of this facet.

Interestingly, adding nonverbal (face and acoustic–prosodic) information to lan-
guage and task features slightly (average decrease of 2.9%) inhibited performance 
for all three facets, suggesting that these features might be adding noise or conflict 
with the language features. Taken altogether, we conclude that language provides 
the best foundation for modeling CPS facets, but task context features can margin-
ally increase model performance.

Do the nonverbal behaviors contain any viable signals? We found that the lan-
guage-free Random Forest models yielded at least 8% above-chance accuracies (i.e., 
all AUROC values at least .54), suggesting that they do contain some pertinent infor-
mation. Models constructed from acoustic–prosodic features were the most accurate 
of the unimodal models, yielding an average 12.7% and 17.6% improvement over 
the task context and facial feature unimodal models. The multimodal model com-
bining all nonverbal behavioral features yielded a slight boost in accuracy (average 
3.2%) over the acoustic–prosodic features.

Given the above two sets of results, we trained an additional model that com-
bined features from the best language-based (language + task) and unimodal nonver-
bal model (acoustic–prosodic). We found that this model yielded no improvement 
over the combined language and task models, with AUROC scores of .85, .78, and 
.77 for construction of shared knowledge, negotiation/coordination, and maintaining 
team function, respectively. Note, we also evaluated whether decision-level fusion 
improved results by averaging prediction probabilities of the unimodal models. This 
did not improve model accuracy irrespective of the modalities combined.

Table 6   AUROC for the nonverbal models with additional feature sets

Modalities Additional fea-
tures included?

Construction 
of shared 
knowledge

Negotiation/
coordination

Maintaining 
team func-
tion

Improvement 
over restricted 
feature set

Face No .60 .55 .54 Yes
Yes .77 .65 .64

Acoustic–Prosodic No .74 .64 .61 Yes
Yes .83 .70 .70

Task + Face + Acoustic–Prosodic No .75 .65 .65 Yes
Yes .83 .70 .70

Language + Task + Face + Acous-
tic–Prosodic

No .85 .76 .75 No
Yes .84 .73 .73
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6.5.2 � Supplemental analyses

We initially utilized a relatively small subset of face and acoustic–prosodic feature, 
so we expanded them to understand if more comprehensive features yielded model 
improvements. In particular, we considered additional aggregation strategies rather 
than simply averaging over the utterance duration. For each utterance, teammate, 
and facial feature (Sect. 6.1, 20 action units + 1 motion feature), we computed the 
following statistics over the duration of the utterance: standard deviation, minimum, 
maximum, skew, and kurtosis. We again, took the mean of each of these features 
across the three teammates, to get a single team-level value. This yielded 127 face 
features ([21 features × 6 aggregation strategies] + 1 validity feature).

We expanded the acoustic–prosodic feature set to include the additional openS-
MILE features, including those described in Sect. 6.1 and the following additions: 
ratio of energy of the first F0 harmonic to the energy of the second F0 harmonic, 
ratio of energy of the first F0 harmonic to the energy of the highest harmonic in 
the third formant, Hammarberg Index, first formant bandwidth, Mel Frequency 
Cepstral Coefficients 1 to 4, ratio of the summed energy from 50–1000  Hz and 
1000–5000 Hz, spectral slope 0–500 and 500–1500, and spectral flux. For each of 
these features, we computed the mean over the utterance duration for the speaker 
only (same as Sect. 6.2). We additionally computed the additional aggregation sta-
tistics (standard deviation, minimum, maximum, skew, and kurtosis), resulting in 
138 acoustic–prosodic features (23 features × 6 aggregation strategies).

We adopted the same modeling procedure described in Sect. 6.3 (Random Forest 
only) including the additional face and acoustic–prosodic features along with the 
language and task context features. Results are shown in Table  6. The additional 
features did not improve model performance when also using language information, 
likely due to the model overfitting in a given fold because of a relatively large num-
ber of features. However, when language is not included, the additional features do 
improve model accuracy. This suggests these additional features serve to provide 
complementary information in the absence of language.

6.6 � Discussion

We examined the trade-offs amongst various multimodal models. We found that all 
of our models outperformed chance, demonstrating that nonverbal signals can be 
indeed be useful for this inherently verbal collaboration. Further, Random Forest 
models consistently performed as well as or better than LSTM models, which is par-
ticularly important to a real-time system, where computational resources might be 
limited.

Unsurprisingly, language-based models outperformed nonverbal models, since 
the basis of the coding scheme was verbal and language was the primary mode of 
communication in this task. However, we demonstrated that the nonverbal modali-
ties do still contain viable signals, more so for acoustic–prosodic features. This is 
again unsurprising, given the emphasis on verbal communication. The acoustic–pro-
sodic features might also generalize better than language features because they are 
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not as specific to the particular task compared to the n-grams. However, this hypoth-
esis needs further validation. A multimodal combination of the nonverbal feature 
sets yielded better prediction accuracy than unimodal models, with additional accu-
racy boosts when a more comprehensive feature set was included for face and acous-
tic–prosodic features.

Our best-performing models used a combination of language and task context 
features. The addition of task context features marginally boosted prediction accu-
racy for the negotiation/coordination and maintaining team function facets, above 
using language alone. This small boost in accuracy could suggest that the model was 
picking up on behaviors integral to interaction patterns. For example, a key indicator 
of negotiation/coordination is talking about results. In order for results to be dis-
cussed, the code must be run (i.e., motion in the runtime area of interest). Further, 
providing instructions to teammates is another indicator of maintaining team func-
tion. There should be reflected as a change in the code bank and workspace area 
according to the instruction being given. We did not obtain a comparative boost for 
shared knowledge construction, presumably because the verbal content was suffi-
cient for this facet, and accuracy was already quite high.

Taken together, we demonstrate that all modality combinations perform better 
than chance, although language is the most powerful modality, with small boosts 
obtained from task context features. Therefore, we further examine the language and 
task context models for inclusion in real-time systems that support CPS.

7 � Deeper analysis of language and task context model analyses

The Random Forest model combining language and task context feature yielded 
the best accuracy results. In this section, we aim to get a fuller picture of the con-
ditions under which the model should be used, with an eye toward using them to 
drive real-time interventions (future work). Specifically, we investigate trade-offs 
between false-positive and false-negative rates and how well the models discrimi-
nate between the three facets.

7.1 � Precision and recall

Real-time systems must balance the false-positive versus false-negative trade-off. 
Accordingly, we analyzed precision and recall by first computing binary predictions 
from the continuous probabilities output by the Random Forest model. Figure  5 
shows how precision and recall vary as a function of the threshold. We analyzed 
two prediction thresholds. The first threshold is where precision and recall of the 
positive class (i.e., presence of each of the facets) are equal. The second threshold is 
where F1, the harmonic mean of precision and recall, is maximized.

Fig. 5   Precision and recall across thresholds for the three CPS facets. The threshold where precision and 
recall match and F1 is maximized is shown. Constr. of Shared Knowledge construction of shared knowl-
edge, Neg./Coord. negotiation/coordination, Maintain. maintaining team function

▸
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Accuracy metrics are shown in Table  7 and confusion matrices in Fig.  6. As 
expected, there is clear evidence of a precision–recall trade-off. Specifically, recall 
is higher when using the threshold that maximizes F1, but this comes at the cost 
of over predicting the positive class by an average of 66%, thus decreasing preci-
sion. That said, when comparing the matched precision and recall threshold to the 
maximized F1 threshold, the increase in recall (average = 41%) is greater than the 
decrease in precision (average = 14%). The choice of model therefore depends on the 
specific application. 

That said, the precision for the negotiation/coordination and maintaining team 
function models are still quite low, ostensibly due to the considerable class imbal-
ance. To address this, we also trained a model after combining these two facets. We 
calculated the binary combined value as one if either negotiation/coordination or 
maintaining team function was one (note, both facets could be coded as a one). Oth-
erwise, the binary combined value was zero. This resulted in an increased base rate 
24%. This approach yielded an AUROC of .76 and increased the precision and recall 
quite substantially for the model that equated the two (see Table 7). Thus, it might 
be prudent to combine these two facets for applications that prefer higher accuracy 
at the cost of discriminability.

7.2 � Discriminability

Discriminability pertains to the extent to which items that are supposed to be unre-
lated are actually unrelated. We computed correlations between the model predic-
tions of each of the three facets to assess discriminability of our models. To do this, 
we first computed individual-level scores of the CPS facets as the average (across all 
utterances for a participant) of the binary human codes and model predictions based 
on the two aforementioned thresholding methods. We then computed the Pearson 
correlation among the facets, which are shown in Table 8. A lower correlation value 
corresponds to higher discriminability.

Table 7   Precision, recall, and predicted rate at the threshold where precision and recall match and where 
F1 is highest

Constr. of Shared Knowledge construction of shared knowledge, Neg./Coord. negotiation/coordination, 
Maintain. maintaining team function

Threshold type Threshold value Precision Recall Pred. rate Base rate

Constr. of shared knowl-
edge

Precision = Recall .61 .68 .67 .33 .33
Max F1 .48 .62 .83 .44

Neg./Coord Precision = Recall .64 .41 .41 .15 .15
Max F1 .54 .33 .64 .29

Maintain Precision = Recall .68 .33 .32 .10 .10
Max F1 .62 .28 .46 .17

Neg./Coord. + Maintain Precision = Recall .61 .49 .48 .24 .24
Max F1 .52 .43 .67 .38
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Fig. 6   Confusion matrices for the Precision = Recall and Maximum F1 thresholds are shown. Constr. of 
Shared Knowledge construction of shared knowledge, Neg./Coord. negotiation/coordination, Maintain. 
maintaining team function

Table 8   Discriminability (Pearson correlations) between human and model scores of the three CPS fac-
ets

Constr. of Shared Knowledge construction of shared knowledge, Neg.Coord. negotiation/coordination, 
Maintain. maintaining team function

Human scores Precision = Recall Max F1

Constr. of shared knowledge and Neg./Coord − .07 .57 .50
Constr. of shared knowledge and Maintain − .18 .57 .68
Neg./Coord. and Maintain .40 .38 .59
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We found that when comparing the matched precision–recall threshold to the 
max F1 threshold, discriminability is either similar or higher. For the matched preci-
sion–recall threshold, discriminability between negotiation/coordination and main-
taining team function mimics the human codes most similarly. However, discrimi-
nability is low between construction of shared knowledge and the other two facets, 
demonstrating that work remains to be done in increasing discriminability of our 
models.

7.3 � Discussion

We expanded our analysis of the language and task context Random Forest models 
to better understand validity and the contexts in which they should be used. We first 
selected a threshold to transform continuous model prediction into binary predic-
tions, which is also required for many real-world applications. We found that select-
ing a threshold where precision and recall matched is desirable for mimicking the 
base rate of the facets and thus controlling false-positive rate. This model is use-
ful for situations where proper identification of negative instances is crucial. Con-
versely, the threshold where F1 is maximized is most useful for situations where 
all positive cases are detected (i.e., high recall), even if it means incurring some 
false alarms. Next, we provided some evidence of the discriminability of our mod-
els, but work remains to be done. Specifically, discriminability for negotiation/coor-
dination and maintaining team function mimics that of the human codes. However, 
correlations between construction of shared knowledge and the other two facets are 
high. This is most likely due to the model detecting generally positive CPS behav-
iors, rather than behaviors specific to construction of shared knowledge. Indeed, the 
behavioral indicators for this facet are related to overall CPS discussion and solution 
generation (Sect. 4.6).

8 � General discussion

Collaborative problem-solving (CPS) is a key twenty-first century skill, crucial for 
people entering the modern workforce (Graesser et al. 2018; OECD 2016). However, 
teams often do not perform as well as they theoretically could, a phenomena known 
as process loss (Kerr and Tindale 2004). Process loss is even more pronounced in 
computer-mediated interactions where rich social signals available in face-to-face 
interactions are suppressed or nonexistent (Schulze and Krumm 2017). Our eventual 
goal is to build real-time systems that mitigate the problems of process loss in com-
puter-mediated interactions by monitoring CPS and intervening appropriately. This 
requires automatic method to model key CPS facets, which was our goal.

Specifically, we developed fully automated detectors of three key CPS facets: 
construction of shared knowledge, negotiation/coordination, and maintaining team 
function. To do this, we leveraged data from teams collaborating in an open-ended 
virtual environment where they could communicate naturalistically. From this com-
plex social interaction, we extracted a rich multimodal dataset of language, task 
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context, facial expression, and acoustic–prosodic features, which we used to predict 
the CPS facets. We compared deep sequential learning models to standard machine 
learning classifiers and also contrasted unimodal and multimodal models. We ana-
lyzed our best-performing model with respect to incorporating it into a real-time 
system, which is an item for future work.

8.1 � Main findings

We had three research questions. Our first question asked: to what extent can behav-
ioral signals be used to automatically model CPS facets? We analyzed four behav-
ioral signals to address this question: language, task context, facial expression, and 
acoustic–prosodic. All of our models performed 8–72% better than a chance base-
line (relative improvement), demonstrating that we can indeed automatically model 
CPS facets from behavioral patterns. Language-based models outperformed nonver-
bal models, which is unsurprising given that the coding scheme was primarily ver-
bal. That said our best nonverbal model (with extended feature sets) performed 66%, 
40%, and 40% better than chance (relative improvement) for the three facets. This is 
particularly because it suggests that nonverbal behavioral signals can be useful for 
modeling CPS facets based on a verbal coding scheme in a verbally dominated task.

We further examined the trade-offs of different modeling approaches for our sec-
ond question: do deep sequential learning approaches improve prediction accuracy 
of CPS facets compared to standard machine learning classifiers? We used long 
short-term memory (LSTM) neural networks with word embeddings for language-
only models, as well as LSTMs and feed-forward neural networks for combined lan-
guage and nonverbal models. Neither of these deep sequential learning approaches 
yielded higher accuracies than the standard machine learning classifiers (Random 
Forest). This finding is particularly important for real-world applications where less 
time- and resource-intensive models are of value.

We also examined whether multimodal features improve modeling compared 
to unimodal feature sets for our third question. We found that the addition of task 
context features to language slightly improved classification accuracy for negotia-
tion/coordination and maintaining team function, while accuracy for construction of 
shared knowledge stayed the same. This suggests our task features do indeed con-
textualize the language, even if to a small degree and only for some facets. Further, 
the addition of facial expression and acoustic–prosodic features to language and task 
context models decreased classification accuracy for all three facets, and are thus 
not useful when combined with previously predictive features. Finally, when relying 
on nonverbal features alone, there was also benefit to a multimodal approach with a 
combination of all nonverbal feature sets outperforming unimodal models.

It is unsurprising that multimodal models yielded slightly better (or at least 
equivalent) accuracies to unimodal models as different modalities provide differ-
ent insight into the interaction. For example, language indexes verbal communica-
tion, task context features index actions taken by the team, and facial expression and 
acoustic–prosodic features index nonverbal communication and emotional aspects 
of the conversation. Improvement over unimodal models was most pronounced 
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for multimodal nonverbal-only models (task context, facial expression, and acous-
tic–prosodic), which yielded accuracies an average of 3.2% better than the best-per-
forming unimodal model (acoustic–prosodic). By comparison, the best multimodal 
language-based model yielded an average boost in accuracy of only 1.3%, when 
compared to the unimodal language model. Since language is already a powerful 
modality for our task, adding nonverbal features provided limited insight.

We initially relied on a fairly limited set of features, particularly for facial expres-
sion and acoustic–prosodic signals. Accordingly, we expanded our analyses to 
include a more comprehensive set of features for these two modalities. For nonver-
bal models (both unimodal and multimodal), the expanded feature set improved pre-
diction accuracy, but still did not outperform the language-only models. Importantly, 
the unimodal acoustic–prosodic model with expanded features performed equiva-
lently to the multimodal task context, face, and acoustic–prosodic model suggesting 
that prediction power is primarily in paraverbal signals.

Our best-performing model used a combination of language and task context fea-
tures, presumably because it combined modalities that measure verbal communica-
tion and action in the collaborative environment. Can it be used for real-time inter-
ventions, which might require binary predictions? At the threshold that maximizes 
F1 score, recall was quite high; however, false-positive rate was inflated and discrim-
inability was low. Thus, this model is most useful in detecting general positive CPS 
behaviors rather than specific facets. We successfully limited facet over prediction 
(and false-positive rate) using a threshold where precision and recall were matched. 
This also improved the discriminability of the model, but it is still somewhat high, 
an item that needs to be addressed in the future.

8.2 � Limitations and future work

Our work has limitations that must be addressed in the future. First, our dataset is 
relatively small (32 teams) and contains little ethnic, socioeconomic, or age diver-
sity. Thus, this limits claims of generalizability. We are currently working to remedy 
this limitation by exploring an extended dataset of teams from multiple universities 
with more ethnic and socioeconomic diversity.

Second, we only model CPS during a single collaborative task. While our method 
is likely to generalize to other tasks, the specific model might not as the vocabulary 
used by teams is specific to this task. We are also working to address this limitation 
by modeling CPS across multiple tasks.

Third, our models were trained in the lab, which limits distractions and produces 
relatively clean data signals (e.g., background noise is limited). We are currently 
working to address this concern with artificiality of context by collecting data on 
teams engaged in remote CPS from their homes using their own equipment.

Fourth, our deep sequential learning approaches did not outperform stand-
ard machine learning classifiers. It is likely that gains can be expected when using 
other state-of-the-art language models, such as Bidirectional Encoder Representa-
tions from Transformers (BERT) models (Kenton et  al. 2017). We are exploring 
this approach on our data while also investigating how to improve generalizability, 
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discriminability, and model accuracy using these state-of-the-art deep sequential 
learning architectures.

8.3 � Conclusion

We developed multimodal, team-generalizable models of three key CPS facets: 
construction of shared knowledge, negotiation/coordination, and maintaining team 
function. We modeled these CPS facets in a computer-mediated videoconferenc-
ing environment where teams were free to use language, gesture, voice tone, and 
facial expression to communicate. Thus, we take a critical step forward in automated 
detection of high-level CPS facets in open-communication collaboration environ-
ments. The next step is to deploy these models in real-time systems, for example, by 
providing teammates formative on CPS facets based on the model assessments.
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