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An imperative aspect of agricultural planning is accurate yield prediction. Artificial Intelligence (AI) techniques,
such as Deep Learning (DL), have been recognized as effective means for achieving practical solutions to this
problem. However, these approaches most often provide deterministic estimates and do not account for the
uncertainties involved in model predictions. This study presents a framework that employs the Bayesian Model

Averaging (BMA) and a set of Copula functions to integrate the outputs of multiple deep neural networks,
including the 3DCNN (3D Convolutional Neural Network) and ConvLSTM (Convolutional Long Short-Term
Memory), and provides a probabilistic estimate of soybean crop yield over a hundred counties across three
states in the United States. The results of this study show that the proposed approach produces more accurate and
reliable soybean crop yield predictions than the 3DCNN and ConvLSTM networks alone while accounting for the

models’ uncertainties.

1. Introduction

Soybean is one of the world’s most significant protein and oil sour-
ces. Four countries including the U.S., Brazil, Argentina, and China, are
the largest producers in the world with approximately 90% of total
global soybean production (Schwalbert et al., 2020). The seasonal
fluctuations of soybean produced by these countries have a significant
impact on the global economy and financial market. According to the
recent report by the United States Department of Agriculture (USDA,
2020), after Brazil, the U.S is currently the largest soybean producer in
the world contributing to ~28.7% of global production. Soybean is the
most produced crop in the US, followed by corn. Over 70% of soybeans
grown in the country are turned into animal feed per year, while only
15% is produced for human consumption, and the rest is mainly
exported.

Crop yield prediction plays a pivotal role in agricultural planning
and management. It is also of great importance to food production and
security at regional to global scales (Khaki and Wang, 2019; Pantazi
et al., 2016). Reliable and timely crop yield prediction enables making
timely import and export decisions to promote and reinforce national
food security. This has become even more important as global warming

and the population continues to rise (Mueller et al., 2012; Rosenzweig
et al.,, 2014; Karimiziarani et al., 2021). Empirical relationships have
been widely used for crop yield prediction in agriculture (Doraiswamy
et al., 2004; Funk and Budde, 2009; Johnson, 2014). These approaches
mostly rely on the linearity assumption between the crop yield and other
drivers such as canopy reflectance and weather data. Due to strong
non-linearity and a high degree of autocorrelation among these vari-
ables, the yield forecasts are more prone to overfitting (Johnson et al.,
2016; Schwalbert et al., 2020). To circumvent this problem, the Machine
Learning (ML) models have been successfully utilized in many studies to
predict crop yield (Chlingaryan et al., 2018).

The traditional ML techniques work based on feature extraction to
predict crop yield (Ruf, 2009). However, it is often difficult to find
optimal features when the ML algorithms are trained (Nevavuori et al.,
2019; Abbaszadeh et al., 2018). As an alternative, Deep Learning (DL)
techniques, such as Convolutional Neural Networks (CNNs) and Long
Short Term Memory (LSTM) networks, have been developed in recent
years and successfully used in some studies. For example, in CNNs, no
features need to be precalculated as the feature extraction operation is
already performed by the network’s convolutional layers, and the
optimal features are obtained in the training process (Nevavuori et al.,
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2019). The advantage of DL techniques compared to traditional ML al-
gorithms for crop yield prediction has been discussed in many studies
(Chunjing et al., 2017; Khaki and Wang, 2019; Milioto et al., 2018;
Nevavuori et al., 2019; Sa et al., 2018; You et al., 2017). Despite several
applications of DL techniques in the field of crop yield prediction, most
of the studies are based on deterministic prediction (Choudhury and
Jones, 2014; Everingham et al., 2016; Jeong et al., 2016; Abbaszadeh
et al., 2021), which do not provide any information on the uncertainty
associated with the model predictions. The literature indicates that only
a few studies have been conducted on probabilistic crop yield predic-
tion, most of which are based on the traditional ML algorithms (Gya-
merah et al., 2020; Salinas et al., 2020). However, these approaches may
not be as effective and efficient as DL-based methods and mostly have
suboptimal performance.

Although the probabilistic version of DL algorithms has been intro-
duced in some studies in recent years (Krastanov and Jiang, 2017; Patel
et al., 2016; Wang et al., 2017; Wu et al., 2016), they have not received
much traction in the engineering literature mostly due to its high
complexity and high resource requirements. To address this problem, in
this study we aim to use DL techniques within a statistical framework to
generate probabilistic crop yield predictions. The proposed framework
is based on the Copula-Embedded Bayesian Model Averaging
(COP-BMA) approach introduced and developed by Madadgar and
Moradkhani (2014).

The multi-model ensemble is an effective approach to quantify pre-
diction uncertainty due to the uncertainty in model formulation while
producing more accurate and reliable predictions compared to any in-
dividual model simulation (Hagedorn et al., 2005). Model averaging has
been recognized as an efficient strategy to combine an ensemble of
models through a linear combination of different models. These include
the Granger-Ramanathan averaging, Bates-Granger averaging (Granger
and Ramanathan, 1984), AIC (Akaike Information Criterion), and BIC
(Bayesian Information Criterion)-based model averaging (Buckland
et al., 1997; Guthery et al., 2003; Hansen, 2008), which take the linear
average of the deterministic model outputs and generate a combined
single-value prediction. Despite the widespread use of these model
averaging techniques, Hoeting et al. (1999) showed that the weights do
not properly represent the actual contribution of single models, and
instead proposed the Bayesian Model Averaging (BMA). In this method,
the model weights are calculated based on Bayes’ theorem through
updating the prior information with the likelihood of model prediction
given the observation (Raftery et al., 1997). Raftery et al. (2005a) used
the Expectation-Maximization algorithm (EM) to estimate the model
weights based on the performance of each model during a training
period. Although the BMA approach has been rarely used in crop yield
prediction studies (Huang et al., 2017), it has been widely employed in
many other applications, such as hydrological modeling (Duan et al.,
2007; Ajami et al., 2007; Madadgar and Moradkhani, 2013; Najafi and
Moradkhani, 2016, 2015) climate projection (Miao et al., 2014),
soil-plant simulation (Wohling et al., 2015), and ecology (van Oijen
et al., 2013).

In standard BMA (Raftery et al., 2005), the conditional Probability
Distribution Function (PDF) of each model is assumed to follow a normal
distribution. The literature showed that this assumption might not be
valid for some forecast variables (Sloughter et al., 2007), and the PDF
should be carefully selected for better representing the posterior distri-
bution of model outputs (Sloughter et al., 2010). Moreover, data
transformation is usually required to transform the model predictions to
the space of posterior distribution. Madadgar and Moradkhani (2014)
proposed an approach by integrating multivariate functions, called
copula functions, into BMA to estimate the posterior distribution of
model predictions without a need to assume the form of the posterior
distribution and transform the model predictions. In this study, we use
this approach within a framework to integrate the two state-of-the-art
DL-based model predictions and generate probabilistic estimates of
soybean yield for more than a hundred counties across three different
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states in the US.

The rest of the paper is structured as follows. Section 2 describes the
algorithms used in this study including the three-dimensional CNN
(3DCNN), Convolutional LSTM (ConvLSTM), Bayesian Model Averaging
(BMA), Copula-Embedded Bayesian Model Averaging (COP-BMA), and
the proposed probabilistic crop yield prediction approach. Sections 3
and 4 summarize the datasets and the performance measures, respec-
tively. Section 5 presents the results and discussions. Finally, the
conclusion of this paper is provided in Section 6.

2. Material and Methods

This section first summarizes the two DL techniques, i.e., 3DCNN and
ConvLSTM, and then introduces the proposed approach that works
based on the COP-BMA algorithm. Note that here we briefly describe the
3DCNN and ConvLSTM approaches and for more information, the
interested readers are referred to the original articles.

2.1. 3DCNN

CNNs were initially proposed to solve computer vision problems. The
main idea of this approach dates back to the early 90s when LeCun et al.
(1989) designed a CNN algorithm to recognize handwritten digits. CNN
is a class of DL techniques that is known for its superb ability in classi-
fying big data. Although 2DCNN mainly accounts for the spatial domain
features, the 3DCNN has temporal direction providing spatiotemporal
features of tensors (Zhong et al., 2018). 3DCNN can learn the correlation
of temporal changes among the sequential images without a need to use
any additional temporal learning method, which makes it a desirable
approach for learning the spatiotemporal images (Ji et al., 2018; Pel-
letier et al., 2019).

A standard 3DCNN is composed of multiple layers including an input
layer, a convolution layer, a pooling layer, a fully-connected layer, and
an output layer. The convolutional layer is the main core of the CNN
structure. Through the 3D filter, the convolutional operations are
applied to the input data to produce the feature map through a set of
activation functions (i.e., Rectified Linear Unit (ReLU) f(x) = max(0,x),
Sigmoid function f(x) =1/(1 + e™*), and tanh function f(x) = tanh(x)).
The weights and biases of each filter are trained. The hyperparameters of
convolutional operations include stride denoting the step size that filters
move each time, padding (a process of adding layers of zeros to the input
images to maintain the dimension of output as input), and filter size.
Pooling layers are usually used between the convolutional layers to
reduce the spatial size of data through down-sampling (Rao and Liu,
2020). The mathematical expression of the output value y at position
(x,y,z) on jth feature map in the ith 3D convolutional layer is as follows
(Ji et al., 2013):

mi-D pl) 1 Q-1 RO —
(i)
7| xyz ReLU( + Z Z Wim, pqrym X+p (y+q)(2+r)> &)

m=1 p=0 q=0 r=0

where ReLU(.) indicates elementwise ReLU function, bj(i) denotes the

jm pqr 1S the (p,q,r)th value of the 3D filter
for the jth feature map at the ith layer associated with the mth feature

bias for the jth feature map, w

map in the (i — 1)th layer. M(~1) represents the number of feature maps
at (i — 1)th layer, and P, Q¥ and R are the size of the 3D filter at ith
layer.

The output of the convolution and pooling process is flattened into a
single vector of values such that each represents a probability that a
certain feature belongs to a label. Therefore, a Fully Connected (FC)
layer, operated at the end of the 3DCNN layer, take the flattened tensor
as the input and map it to the output vector. This process can be
expressed through the following mathematical relationship:

P = (WD 4 b)) @
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Figure 1. The inner structure of an LSTM cell. ‘>’ denotes the Hadamard
product. ¢ and tanh represent hyperbolic tangent and sigmoid activa-
tion functions.

Hir1, Ceit

Figure 2. The inner structure of the ConvLSTM cell. [This Figure should be
printed in color]

where y~1) and y) are the input and output of the adjacent ith layer. o(.
) is the activation function that operates elementwise. W) and b® are
the trainable weight matrix and bias vector between the ith and (i — 1)th
of the FC layer. For more information, we refer the readers to Ji et al.,
(2013).

2.2. ConvLSTM

The Long Short-Term Memory (LSTM) is a special configuration of
the Recurrent Neural Network (RNN) structure that is known for its
ability for modeling long-range dependencies (Hochreiter and Schmid-
huber, 1997). The LSTM network encompasses three gates, including the
forget gate, input gate, an output gate, that update and control the cell
states. The gates use hyperbolic tangent and sigmoid activation func-
tions. Figure 1 illustrates the inner structure of an LSTM cell. Here, we
only describe the key equations based on which the LSTM structure
operates. For more information, we refer the readers to Hochreiter and
Schmidhuber (1997).

iy = 6(Wyix, + Wiih_| +Wec,_; +b;) 3
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fi = G(foxl + Whehe +Wepec ) + bf) ()]
¢, = foc; + ietanh(WheX, + Wiche_ 1 +be) (5)
0, = 6(WyoX( + Wiohi_j + Wesec, +b,) (6)
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Although the LSTM structure has been proven to be the most stable for
handling temporal correlation, neither in input-to-state nor in state-to-
state transitions the spatial information is encoded, which makes it
inappropriate for handling spatiotemporal data. To cope with this
problem, an extension of LSTM, which has convolutional layers in both
input-to-state and state-to-state transitions, the ConvLSTM has been
introduced (see Figure 2). This network is well-suited for the application
of spatiotemporal sequence prediction. In ConvLSTM, all the inputs 7,
..., 2, cell outputs #71,..., ¢, hidden states 71,..., 7, and gates iy, f;
and o, are 3D tensors whose rows and columns represent the spatial
dimension. Here, we only describe the ConvLSTM equations, and for
more information, we refer the readers to Shi et al., (2015) who pro-
vided a comprehensive description of this approach. In these equations,
‘x> and ‘’ denote the convolution operator and the Hadamard product,
respectively.

i\ = 0(Wy 24 Wik 7 1 +Wao @y +b) N
fo = 0 (W 2+ Wi 5 71+ Wege €y +by) v
¢ = fio @1 +ietanh(Wye + 27 4+ Wi ¥ 7' +by) e
0 = 0(Wyo % 2y + Wi % 711 +Weoo & +b,) o
A\ = opetanh( #) (12)

2.3. Bayesian Model Averaging

Bayesian Model Averaging (BMA) is a method that integrates the
predicted forecast densities from multiple models to produce a new
forecast Probability Density Function (PDF). Based on the law of total
probability, the predictive distribution of a forecast variable y, given the
observations Y during the training period and the independent pre-
dictions of k models, can be expressed by:

K

p(Y[Mi, Ms, .., My, Y) = D p(Mi|Y)p(y[Mi, Y) 13)

i=1

where p(y|M;, Y) is the posterior distribution of y given the model pre-
diction M; and training data Y. p(M;|Y) is the likelihood of model pre-
diction given the observations Y during the training period, which also
reflects the weight of each model M;. Therefore, the outcome of the BMA
approach is the weighted average of forecast PDF generated by each
model. Since the model predictions are time-variant, equation (13) can
be rewritten as:

K
Py M M, ML Y) =S S wip(y M1, Y) as

i=1

Note that w represents the performance of the model during the training
period. To solve this equation, it is usually assumed that the posterior
distribution follows a Gaussian distribution with mean f; and variance
o2, such that p(y'|f}, Y) ~ g(y'|f}, 62). It should be noted that for non-
Gaussian forecast variables, a power transformation (e.g., Box-Cox) is
used to map them from their original space to a Gaussian space. Using
the following log-likelihood function, the variance and weight of each
forecast model can be estimated. Raftery et al., (2005) developed a
procedure called the Expectation-Maximization (EM) algorithm to
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Figure 3. Schematic of the proposed framework. Step 1 represents two different Machine Learning (ML) models (i.e., M1 and M2) used to predict the testing data.
The testing data is unseen during the training (model calibration) process. Step 2 shows the implementation of the COP-BMA model to integrate the predicted testing

values obtained in Step 1 and generate probabilistic simulations.

maximize the equation (15), which is not analytically computable.
K

10) = 10g<ZWi~p(y|fi7Y)> 1s)
i=1

EM algorithm iteratively updates the variance (¢2) and weight (w;) using
the equations (18-21) wuntil the termination criterion of
|I(Oiter) —1(Oiter—1)| becomes less than e. In the first iteration, the initial
weight and variance for each model are set to:

Wiier = (16)

2 I v t )2
Gi.iler = 7—[‘ Z Z (y - f]) (17)

|7
Wijter = ZZ;;[E, 18)

2 Z?‘:lzrjler' (y[ - f:)z

iiter ZT IZ!' (19)
t=1%i,iter

. Wi,ilerfl g(y[ f:l Giz,ncr—]) (20)
Zi,i er =
: Zil(zlwi.iler—l -g (yl ‘ﬁv Uiz,iter—l)

, aﬁm)> @D

where T is the length of the training period and z is a latent variable.

K

T
{(600) — log ( 3w (v
t=1

i=1

2.4. Copula-Embedded Bayesian Model Averaging

As mentioned earlier, in the BMA approach the forecast PDFs are
generally assumed to be a parametric distribution, such as Gaussian
distribution. Madadgar and Moradkhani (2014) proposed an approach
called the Copula-Embedded Bayesian Model Averaging (COP-BMA)
that modifies the BMA predictive distribution through relaxing the
assumption on parametric posterior distribution, which results in

increased multimodeling reliability. In this approach, g(y!fi, 6?) is
replaced with a group of multivariate copula functions. In the COP-BMA
approach, the posterior distribution of forecast variables for each model
p(y‘}ﬁ,Y) is estimated using copula functions. Based on copula func-
tions, a multivariate distribution P(x;..x,) can be expressed as follows:

P(X1, .., Xiy oy Xn) = C[P(X1), .., P(Xi), ..o, P(X0)] = C(uy, ..., Uj, ..y uy)
(22)

where C is the Cumulative Distribution Function (CDF) of the copula and
P(x;) is the marginal distribution of x; being uniform on the interval
[0,1], which is denoted by u;. The joint probability density function of
(x1..Xn) can be expressed by:

P(Xy, ...y Xp) :c(ul.,...,un)Hp(xi) (23)
i

where c represents the PDF of the copula. The conditional probability
distribution of x; given xz is also defined as:
P(x1,%2)

P =) .

This equation can be revised by replacing the joint probability distri-
bution of p(x1,x2) in equation (24).

p(xi|x2) = P(x1,%2) _ c(ui,u).p(x1)-p(x2)

p(x2) p(x2)

= c(ur,uz). p(x1) (25)

In this equation, x; and x; are considered as the forecasted variable y*
and the ith model prediction f, respectively. If the posterior distribution
in equation (13) is replaced with the conditional probability distribution
in (25), the predictive distribution of BMA becomes:

K K
P(y[‘fllﬁftzﬁ ---7f:<’Y) = Zwip(y[}ﬂvY) = Zwic<uy‘7uf:)p(yl) (26)
i=1 i=1

Unlike the BMA approach where the posterior distribution p(y|f;, Y) is
computed using the EM algorithm, in COP-BMA, it is directly achievable
from equation (26). This equation also relaxes any assumption on the
type of posterior distribution and also removes bias from model pre-
dictions. After defining the posterior distribution, we use the EM
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algorithm with a few adjustments to estimate their weights.

1
Wiiter = T Z Z:.ilcr (27)

t=1

Wi iter—1-C (uy‘ ) uf: ) p(yl)

¢ WLiLer—lP(y‘{f}) _
f:) Z,Kzl Wiiter—1-C (Uy' , Uf:)P(y[)

Zi iter — (28)
. Zi] Wiiter—1-P (y‘

K

I(0ier) = log ( Z Wi jter Z c (Uy‘ ) uf:) »P(yl)> (29)

i=1 t=1

2.5. The Proposed Approach

T his study for the first time utilizes the Baysian multi-modeling to
integrate different ML-based model outputs and generate the probabi-
listic soybean predictions while accounting for the uncertainties
involved in the model predictions. Figure 3 illustrates the proposed
framework. It uses the deterministic outputs from two different ML
models (M1 and M2) to generate probabilistic predictions. Step 1 shows
the training and testing of ML models, which are 3DCNN and
ConvLSTM. Step 2 indicates how the COP-BMA approach is used for
generating probabilistic simulations. It should be noted that the testing
data is unseen during the ML model development process and therefore
it can be properly used for validation of the predicted testing values in
both steps 1 and 2. To implement the COP-BMA approach, those training
datasets which had been used for ML model training/calibration in step
1 are used to train the COP-BMA model parameters. Then, we use the
predicted deterministic values from ML models in step 1 as input to the
trained COP-BMA model to generate probabilistic predicted testing
values, which is hereafter referred to as COP-BMA results.

3. Datasets

In this study, the input variables of the ML models are MODIS
(Moderate Resolution Imaging Spectroradiometer) surface reflectance,
MODIS land cover, and MODIS land surface temperature. The MODIS/
Terra surface reflectance product provides 7 bands of surface spectral
reflectance at 500 m spatial resolution every 8 days. Each pixel contains
the best possible surface reflectance observation value selected from all
the acquisitions within the 8-day window. The product is publicly
available at https://Ipdaac.usgs.gov/products/mod09alv006/. Here,
we used all 7 bands of version 6 of this product as input to 3DCNN and
ConvLSTM networks (Gavahi et al., 2021). The Terra and Aqua com-
bined MODIS Land Cover type product provides yearly land cover types
derived from six classification schemes at 500 m spatial resolution. The
University of Maryland (UMD) classification (land cover type 2) was
used in this study to mask the cropland areas. The dataset can be
retrieved from https://Ipdaac.usgs.gov/products/med12q1v006/. The
MODIS Version 6 Land Surface Temperature (LST) provides an average
8-day per-pixel daytime and nighttime surface temperature at 1 km
spatial resolution. The temperature is collected by using 7 thermal
infrared bands using the LST algorithm. Both daytime and nighttime
LSTs were used in the input layer of the deep NNs (i.e., 3DCNN and
ConvLSTM) used in this study. This data is available at https://Ipdaac.
usgs.gov/products/myd11a2v006/. The models’ output variable is the
soybean yield data. This study aims at predicting the soybean yield data
probabilistically across three states of Kansas, Louisiana, and Kentucky
at the county scale. The dataset was collected from the USDA (United
States Department of Agriculture) National Agricultural Statistical Ser-
vices (NASS) repository available at https://www.nass.usda.gov/Qu
ick _Stats/index.php. The soybean yield data time series were retrieved
from 2003 to 2019. The first 15 years, from 2003 to 2017 (62 counties x
15 years =930 data), were used for training the ML models and the
COP-BMA model. The remaining two years of 2018 and 2019 (62
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Table 1
Summary of performance measures used in this study

Performance Measure Mathematical Representation

Bias 211 (y/z =Y
Root Mean Square Error (RMSE) 1 T 2
T Z‘, (e=w)
Normalized Root Mean Square Difference 1 2

=1
7 3 (-5~ 00— 5)
1T (VKN (Y H
'{le‘—l( 05
TZLI‘(Y; -yl
7

(RMSD)
Correlation Coefficient (R)

Mean Absolute Error (MAE)

Coefficient of Variation (CV)

Residual Standard Deviation (Std. Dev)

counties x 2 years = 124 data), were used for testing the trained models
and evaluating their predictive skills. In this study, 20% validation set
was used for tuning deep NN models’ hyperparameters. Cross-validation
and early stopping were performed to avoid overfitting (more infor-
mation can be found in our previous study, Gavahi et al., 2021).

4. Performance Measures

To assess the usefulness and effectiveness of the ML models used in
this study and also the proposed COP-BMA approach, we use the per-
formance measures listed in Table 1. In the following equations, y, and y;
are the observation and model prediction at time t, respectively. ¢ and o
represent the standard deviation of the observation and model predic-
tion, respectively. u and y' are the mean of observation and model
prediction, respectively. T is the total time steps.

5. Results and Discussions

Figure 4 shows the performance of two deep learning algorithms and
also their combined version, called the COP-BMA. Here we assess the
usefulness of deep learning models in predicting the soybean crop yield
and compare them with the COP-BMA approach through multiple
deterministic performance measures (i.e., R, Bias, RMSE, and MAE).
Except for MAE, all the measures indicate that the ConvLSTM performs
better than the 3DCNN structure. Please note that this figure reports the
predicted soybean values over 62 counties for the two years of 2018 and
2019. Depending on the nature of the predicted values (i.e., outliers,
high values, and variance), the results of the MAE and RMSE can be
different. The MAE is a linear score in which all the individual differ-
ences are weighted equally. While RMSE is a quadratic scoring rule
which measures the average magnitude of the error and gives a rela-
tively high weight to large errors. It should be noted that in this figure,
all the model simulations for three states at the county level are
collectively analyzed. The results clearly show that the COP-BMA
approach outperforms both deep neural nets. Unlike the 3DCNN and
ConvLSTM that provide a predicted value deterministically, the COP-
BMA results in a probabilistic crop yield prediction. In this study, we
have performed multiple experiments to find the optimum architecture
for each 3DCNN and ConvLSTM model. The 3DCNN network consists of
5 blocks, each of which containing one Conv3D and one MaxPooling
layer. The first block serves as a dimension reduction layer that includes
two Conv3D layers with 9 and 3 filters. The extracted features from the
last block are then connected to a flatten layer followed by two dense
layers with 1024 and 1 neurons, respectively, and a dropout layer with
0.5 probability in between (Gavahi et al., 2021). For the ConvLSTM
model, ConvLSTM2D layers with 10 and 5 filters with BatchNorma-
liztion and Maxpooling layers in between, were consecutively connected
(LSTM block). Similar to the 3DCNN network, the spatiotemporal fea-
tures extracted by the LSTM block were then flatted and then
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consecutively fed to a Dense (1024), Dropout (0.5), and Dense (1) layers.
For a more detailed explanation of finding the optimum architecture of
each network, we refer the interested readers to our previous work
(Gavahi et al., 2021). At each time step, the COP-BMA integrates the
deterministic predicted values from 3DCNN and ConvLSTM networks

within a Bayesian framework and provides a PDF, such that its median
value and distribution represent the predicted value and its associated
uncertainty, respectively. Also, Figure 4 reports the distribution of the
predicted soybean crop yield values by three approaches and compares
them with that of the observation data. The COP-BMA results in
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predicted values with a distribution very similar to that of the
observation.

Figure 5 shows the probabilistic simulation of soybean crop yield
provided by the proposed approach across more than 100 counties in
three states (i.e., Kansas, Louisiana, and Kentucky). As this figure in-
dicates, the median of the predicted distribution, shown as green points,
closely follows the observation, and in most cases, they fall within the
20% predictive interval, which implies the higher accuracy of the pre-
dicted crop yield by the proposed methodology compared to the 3DCNN
and ConvLSTM networks. The developed framework provides the
deterministic estimates of the crop yield along with their associated
uncertainty. Here, the uncertainty in crop yield prediction is associated
with the structure of the deep neural networks including their parame-
terization, topology, and input variables. The median of the predicted
soybean yield predictions along with the associated uncertainty interval
helps the farmers and agriculture sectors to effectively decide and plan
for the growing season while taking into account the risk of crop pro-
duction failure. The proposed methodology is a general strategy that
provides the possibility of taking advantage of multiple predictive crop
models to generate more accurate crop yield values considering the
uncertainty associated with the crop model choice. Therefore, regardless
of the type of model used that is either physically-based data-driven
models, or a combination of both, the proposed methodology can be
used to integrate all the model outputs and provide more accurate and
reliable crop yield predictions compared to the individual models. In

this study, although the uncertainty associated with the hydrometeo-
rological and agrometeorological data are not directly taken into ac-
count, it is presumed that the uncertainty imposed by input data is
already represented in the ML model outputs for which the Copula
function is fitted.

In Figure 6, we display the results for four counties in Kansas State to
clearly show how the developed approach results in improved predic-
tion of soybean crop yield. It is important to note that in three cases (i.e.,
Bourbon County, Republic County, and Ellsworth County) the 3DCNN
and ConvLSTM networks underestimated and overestimated the crop
yield, respectively. However, the proposed COP-BMA approach by
integrating the model outputs from two networks and providing prob-
abilistic crop yield estimates resulted in a more accurate predicted value
(the median of the fitted Kernel distribution). In Sedgwick County, both
3DCNN and ConvLSTM networks overestimated the crop yield, how-
ever, our probabilistic approach reduced the bias and increased the
prediction accuracy. As per USDA (please see https://www.nass.usda.
gov/Statistics_by_State/Kansas/Publications/County_Estimates/18KSs
oy.pdf and https://www.nass.usda.gov/Statistics_by_State/Kansas/Pu
blications/County_Estimates/19KSsoy.pdf for more information), for
the years 2018 and 2019 soybean yields are observed to be 38.7 bu/ac
and 35.9 bu/ac respectively for Bourbon County, Kansas. Similarly, for
Republic and Sedgwick counties, the soybean yield is reported to be 51.4
bu/ac and 45.1 bu/ac, and 44.0 bu/ac and 36.6 bu/ac respectively for
the corresponding 2018 and 2019 years. Although these three counties
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Figure 8. The probabilistic (CV) and deterministic (Error) performance measures were reported for the predicted crop yield across more than a hundred counties in

the year 2018 and 2019. CV represents the coefficient of variation. [This Figure should be printed in color]
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Figure 9. Taylor diagram showing three deterministic performance measures
(i.e., RMSD, correlation coefficient, and standard deviation ratio) simulta-
neously. The black point displays the observation. Normalized standard devi-
ation and correlation coefficient are on the radial axis and angular axis,
respectively. The observation is shown with a black point on the horizontal axis.
The red, blue, and green colors represent the three models used in this study.
Each symbol indicates the state for which the crop yield was predicted. These
results are reported collectively for the years 2018 and 2019. [This
Figure should be printed in color]

are reported to experience mild to extreme drought during 2018 (which
is likely to have contributed to the crop yield reduction compared to the
long-term average) (https://www.drought.gov/states/kansas/count
y/bourbon), all of these counties experienced extreme precipitation
and flooding during the soybean growing season (starting from May to
September) (Shorman, 2019). This is likely to have contributed to the
higher soybean yield loss relative to the dry year (2018). Flooding in
croplands affects crop yield directly by wilting the crops, whereas,
extreme precipitation during the critical stages of soybean crops such as
leaf development, and flowering indirectly affects the crop yield by
restricting the plant growth (Kukal and Irmak, 2018). It is also worth
mentioning that extreme events such as floods and droughts, which are
known as frequent catastrophes in the US (Abbaszadeh et al., 2020;
Alipour et al., 2020b, 2020a; Gavahi et al., 2020), can have a significant
impact on the predictive capabilities of crop yield forecasting models.

Figure 7 represents the performance of the three models used in this
study. It shows the residual standard deviation (in percent) computed
between the observation and model simulation. This metric measures
how much the data points spread around the regression line. The lower
the residual standard deviation, the higher the accuracy of predicted
soybean crop yield. The results indicate that the proposed approach has
the lowest residual standard deviation compared to the 3DCNN and
ConvLSTM networks. This implies the higher predictability of the pro-
posed probabilistic crop yield simulation framework compared to its
counterparts.

Figure 8 shows the probabilistic (coefficient of variation) and
deterministic (absolute error) performance measures calculated for the
predicted crop yield across more than a hundred counties in three states
in the year 2018 and 2019. The coefficient of variation (CV) is a stan-
dardized measure of the dispersion of a probability distribution or fre-
quency distribution. It is defined as the ratio of the standard deviation to
the mean and represents the precision or relative variability of
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estimates. For better interpretation and analysis of results, CV and Error
are normalized between 0 and 1, such that the lower the CV and Error,
the higher the performance of the proposed approach in predicting
soybean crop yield. It is noted that Error is the absolute difference be-
tween the median of the predicted ensemble and the corresponding
observed value. This figure indicates that our proposed approach,
overall, has had the lowest and highest performance respectively in
Neosho County (KS) and West Carroll County (LA) in 2018, and in 2019,
similar results can be attributed to Harper County (KS) and East Carroll
County (LA). The results also revealed that the reliability (CV) and ac-
curacy (Error) of the proposed approach varies depending on the loca-
tion of the counties where the hydroclimate and land surface conditions
can be different, resulting in changes in the input variables of the deep
neural networks and their ultimate performance, which accordingly
affects the efficacy of the developed probabilistic approach.

The results also reveal that in general there is a relatively significant
positive correlation (or trend) between the probabilistic and determin-
istic performance measures such that the counties whose error values
are high are associated with larger predictive uncertainty intervals.
More investigation showed that those counties with higher coverage of
croplands (>90%) result in more reliable soybean yield prediction (with
less predictive uncertainty interval) compared to the counties with less
cropland coverage. For example, Brown county with 97% cropland
coverage has predicted soybean yield with a CV of 0.21, while Burbon
County with 27% cropland coverage has the higher CV value of 0.55.
The potential reason behind this is that the deep learning network’s
input image that has only nonzero values for cropland pixels contains
more information for the network to learn from the inherent spatio-
temporal patterns related to the crop yield.

Figure 9 compares the performance of the three models used in this
study to simulate the soybean crop yield. The following Taylor diagram
simultaneously reports three performance measures including standard
deviation ratio, correlation coefficient, and normalized RMSD. The
distance from the origin (shown as a black point) to each radial curve is
the ratio of simulated to observed crop yield amplitude. Therefore, the
model with a normalized standard deviation close to 1.0 produces a
seasonal amplitude very close to the observation. The results indicate
that in all three states the proposed approach outperforms the
ConvLSTM and 3DCNN networks.

It is noted that in this paper the COP-BMA is a post-processing
approach that we used to integrate the outputs of two deep NNs to
provide more reliable and accurate prediction. The COP-BMA is a
Bayesian approach that is used for multi-modeling. In this paper, we are
not proposing a new ML technique, instead, we underscore the useful-
ness of the COP-BMA technique for multi-modeling of deep NNs and
providing the probabilistic estimates of target values. This technique
enables us to utilize multiple NN-based models and integrate their
outputs to provide more accurate prediction while accounting for the
uncertainty associated with the choice of the predictive model. The main
idea behind multi-modeling is that the integrated outputs from multiple
models is more accurate than those from individual models. Our analysis
indicated that the COP-BMA is an efficient approach that performs well
in integrating the outputs from multiple deep NNs. This Bayesian tech-
nique has been widely used for multi-modeling of physical hydrologic
models, however, its applicability and usefulness for multi-modeling of
data-driven models had not been explored before.

6. Conclusions

This study presents a new framework to integrate deterministic
outputs from two deep neural network models to generate probabilistic
simulation. The core of the proposed framework is the COP-BMA
approach. COP-BMA integrates a group of multivariate Copula func-
tions into Bayesian Model Averaging that relaxes any assumption on the
shape of conditional PDF of each model and consequently provides more
accurate and reliable predictive distributions. This study has been
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conducted on probabilistic simulation of soybean crop yield across more
than a hundred counties in three states in the United States. The results
showed that the proposed approach provides more accurate predicted
crop yield values compared to other deep neural networks such as
ConvLSTM and 3DCNN while accounting for uncertainties involved in
model predictions. Although the model outputs from these two networks
were used in this study to generate probabilistic simulation, any other
physically-based or data-driven based model outputs can also be used
within the proposed framework. For future study, we plan to implement
the developed approach to provide probabilistic yield predictions for
different crops (such as maize and corn) across other states in the United
States.
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