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A B S T R A C T   

An imperative aspect of agricultural planning is accurate yield prediction. Artificial Intelligence (AI) techniques, 
such as Deep Learning (DL), have been recognized as effective means for achieving practical solutions to this 
problem. However, these approaches most often provide deterministic estimates and do not account for the 
uncertainties involved in model predictions. This study presents a framework that employs the Bayesian Model 
Averaging (BMA) and a set of Copula functions to integrate the outputs of multiple deep neural networks, 
including the 3DCNN (3D Convolutional Neural Network) and ConvLSTM (Convolutional Long Short-Term 
Memory), and provides a probabilistic estimate of soybean crop yield over a hundred counties across three 
states in the United States. The results of this study show that the proposed approach produces more accurate and 
reliable soybean crop yield predictions than the 3DCNN and ConvLSTM networks alone while accounting for the 
models’ uncertainties.   

1. Introduction 

Soybean is one of the world’s most significant protein and oil sour
ces. Four countries including the U.S., Brazil, Argentina, and China, are 
the largest producers in the world with approximately 90% of total 
global soybean production (Schwalbert et al., 2020). The seasonal 
fluctuations of soybean produced by these countries have a significant 
impact on the global economy and financial market. According to the 
recent report by the United States Department of Agriculture (USDA, 
2020), after Brazil, the U.S is currently the largest soybean producer in 
the world contributing to ~28.7% of global production. Soybean is the 
most produced crop in the US, followed by corn. Over 70% of soybeans 
grown in the country are turned into animal feed per year, while only 
15% is produced for human consumption, and the rest is mainly 
exported. 

Crop yield prediction plays a pivotal role in agricultural planning 
and management. It is also of great importance to food production and 
security at regional to global scales (Khaki and Wang, 2019; Pantazi 
et al., 2016). Reliable and timely crop yield prediction enables making 
timely import and export decisions to promote and reinforce national 
food security. This has become even more important as global warming 

and the population continues to rise (Mueller et al., 2012; Rosenzweig 
et al., 2014; Karimiziarani et al., 2021). Empirical relationships have 
been widely used for crop yield prediction in agriculture (Doraiswamy 
et al., 2004; Funk and Budde, 2009; Johnson, 2014). These approaches 
mostly rely on the linearity assumption between the crop yield and other 
drivers such as canopy reflectance and weather data. Due to strong 
non-linearity and a high degree of autocorrelation among these vari
ables, the yield forecasts are more prone to overfitting (Johnson et al., 
2016; Schwalbert et al., 2020). To circumvent this problem, the Machine 
Learning (ML) models have been successfully utilized in many studies to 
predict crop yield (Chlingaryan et al., 2018). 

The traditional ML techniques work based on feature extraction to 
predict crop yield (Ruß, 2009). However, it is often difficult to find 
optimal features when the ML algorithms are trained (Nevavuori et al., 
2019; Abbaszadeh et al., 2018). As an alternative, Deep Learning (DL) 
techniques, such as Convolutional Neural Networks (CNNs) and Long 
Short Term Memory (LSTM) networks, have been developed in recent 
years and successfully used in some studies. For example, in CNNs, no 
features need to be precalculated as the feature extraction operation is 
already performed by the network’s convolutional layers, and the 
optimal features are obtained in the training process (Nevavuori et al., 
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2019). The advantage of DL techniques compared to traditional ML al
gorithms for crop yield prediction has been discussed in many studies 
(Chunjing et al., 2017; Khaki and Wang, 2019; Milioto et al., 2018; 
Nevavuori et al., 2019; Sa et al., 2018; You et al., 2017). Despite several 
applications of DL techniques in the field of crop yield prediction, most 
of the studies are based on deterministic prediction (Choudhury and 
Jones, 2014; Everingham et al., 2016; Jeong et al., 2016; Abbaszadeh 
et al., 2021), which do not provide any information on the uncertainty 
associated with the model predictions. The literature indicates that only 
a few studies have been conducted on probabilistic crop yield predic
tion, most of which are based on the traditional ML algorithms (Gya
merah et al., 2020; Salinas et al., 2020). However, these approaches may 
not be as effective and efficient as DL-based methods and mostly have 
suboptimal performance. 

Although the probabilistic version of DL algorithms has been intro
duced in some studies in recent years (Krastanov and Jiang, 2017; Patel 
et al., 2016; Wang et al., 2017; Wu et al., 2016), they have not received 
much traction in the engineering literature mostly due to its high 
complexity and high resource requirements. To address this problem, in 
this study we aim to use DL techniques within a statistical framework to 
generate probabilistic crop yield predictions. The proposed framework 
is based on the Copula-Embedded Bayesian Model Averaging 
(COP-BMA) approach introduced and developed by Madadgar and 
Moradkhani (2014). 

The multi-model ensemble is an effective approach to quantify pre
diction uncertainty due to the uncertainty in model formulation while 
producing more accurate and reliable predictions compared to any in
dividual model simulation (Hagedorn et al., 2005). Model averaging has 
been recognized as an efficient strategy to combine an ensemble of 
models through a linear combination of different models. These include 
the Granger-Ramanathan averaging, Bates-Granger averaging (Granger 
and Ramanathan, 1984), AIC (Akaike Information Criterion), and BIC 
(Bayesian Information Criterion)-based model averaging (Buckland 
et al., 1997; Guthery et al., 2003; Hansen, 2008), which take the linear 
average of the deterministic model outputs and generate a combined 
single-value prediction. Despite the widespread use of these model 
averaging techniques, Hoeting et al. (1999) showed that the weights do 
not properly represent the actual contribution of single models, and 
instead proposed the Bayesian Model Averaging (BMA). In this method, 
the model weights are calculated based on Bayes’ theorem through 
updating the prior information with the likelihood of model prediction 
given the observation (Raftery et al., 1997). Raftery et al. (2005a) used 
the Expectation-Maximization algorithm (EM) to estimate the model 
weights based on the performance of each model during a training 
period. Although the BMA approach has been rarely used in crop yield 
prediction studies (Huang et al., 2017), it has been widely employed in 
many other applications, such as hydrological modeling (Duan et al., 
2007; Ajami et al., 2007; Madadgar and Moradkhani, 2013; Najafi and 
Moradkhani, 2016, 2015) climate projection (Miao et al., 2014), 
soil-plant simulation (Wöhling et al., 2015), and ecology (van Oijen 
et al., 2013). 

In standard BMA (Raftery et al., 2005), the conditional Probability 
Distribution Function (PDF) of each model is assumed to follow a normal 
distribution. The literature showed that this assumption might not be 
valid for some forecast variables (Sloughter et al., 2007), and the PDF 
should be carefully selected for better representing the posterior distri
bution of model outputs (Sloughter et al., 2010). Moreover, data 
transformation is usually required to transform the model predictions to 
the space of posterior distribution. Madadgar and Moradkhani (2014) 
proposed an approach by integrating multivariate functions, called 
copula functions, into BMA to estimate the posterior distribution of 
model predictions without a need to assume the form of the posterior 
distribution and transform the model predictions. In this study, we use 
this approach within a framework to integrate the two state-of-the-art 
DL-based model predictions and generate probabilistic estimates of 
soybean yield for more than a hundred counties across three different 

states in the US. 
The rest of the paper is structured as follows. Section 2 describes the 

algorithms used in this study including the three-dimensional CNN 
(3DCNN), Convolutional LSTM (ConvLSTM), Bayesian Model Averaging 
(BMA), Copula-Embedded Bayesian Model Averaging (COP-BMA), and 
the proposed probabilistic crop yield prediction approach. Sections 3 
and 4 summarize the datasets and the performance measures, respec
tively. Section 5 presents the results and discussions. Finally, the 
conclusion of this paper is provided in Section 6. 

2. Material and Methods 

This section first summarizes the two DL techniques, i.e., 3DCNN and 
ConvLSTM, and then introduces the proposed approach that works 
based on the COP-BMA algorithm. Note that here we briefly describe the 
3DCNN and ConvLSTM approaches and for more information, the 
interested readers are referred to the original articles. 

2.1. 3DCNN 

CNNs were initially proposed to solve computer vision problems. The 
main idea of this approach dates back to the early 90s when LeCun et al. 
(1989) designed a CNN algorithm to recognize handwritten digits. CNN 
is a class of DL techniques that is known for its superb ability in classi
fying big data. Although 2DCNN mainly accounts for the spatial domain 
features, the 3DCNN has temporal direction providing spatiotemporal 
features of tensors (Zhong et al., 2018). 3DCNN can learn the correlation 
of temporal changes among the sequential images without a need to use 
any additional temporal learning method, which makes it a desirable 
approach for learning the spatiotemporal images (Ji et al., 2018; Pel
letier et al., 2019). 

A standard 3DCNN is composed of multiple layers including an input 
layer, a convolution layer, a pooling layer, a fully-connected layer, and 
an output layer. The convolutional layer is the main core of the CNN 
structure. Through the 3D filter, the convolutional operations are 
applied to the input data to produce the feature map through a set of 
activation functions (i.e., Rectified Linear Unit (ReLU) f(x) = max(0,x), 
Sigmoid function f(x) = 1/(1 + e−x), and tanh function f(x) = tanh(x)). 
The weights and biases of each filter are trained. The hyperparameters of 
convolutional operations include stride denoting the step size that filters 
move each time, padding (a process of adding layers of zeros to the input 
images to maintain the dimension of output as input), and filter size. 
Pooling layers are usually used between the convolutional layers to 
reduce the spatial size of data through down-sampling (Rao and Liu, 
2020). The mathematical expression of the output value γ at position 
(x, y, z) on jth feature map in the ith 3D convolutional layer is as follows 
(Ji et al., 2013): 

γ(i)
j,xyz = ReLU

(

b(i)
j +

∑M(i−1)

m=1

∑P(i)−1

p=0

∑Q
(i)−1

q=0

∑R(i)−1

r=0
w(i)

jm,pqrγ
(i−1)

m,(x+p)(y+q)(z+r)

)

(1)  

where ReLU(.) indicates elementwise ReLU function, b(i)
j denotes the 

bias for the jth feature map, w(i)
jm,pqr is the (p,q, r)th value of the 3D filter 

for the jth feature map at the ith layer associated with the mth feature 
map in the (i − 1)th layer. M(i−1) represents the number of feature maps 
at (i − 1)th layer, and P(i), Q(i) and R(i) are the size of the 3D filter at ith 
layer. 

The output of the convolution and pooling process is flattened into a 
single vector of values such that each represents a probability that a 
certain feature belongs to a label. Therefore, a Fully Connected (FC) 
layer, operated at the end of the 3DCNN layer, take the flattened tensor 
as the input and map it to the output vector. This process can be 
expressed through the following mathematical relationship: 

γ(i) = σ
(
W(i)γ(i−1) + b(i)) (2) 
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where γ(i−1) and γ(i) are the input and output of the adjacent ith layer. σ(.

) is the activation function that operates elementwise. W(i) and b(i) are 
the trainable weight matrix and bias vector between the ith and (i − 1)th 
of the FC layer. For more information, we refer the readers to Ji et al., 
(2013). 

2.2. ConvLSTM 

The Long Short-Term Memory (LSTM) is a special configuration of 
the Recurrent Neural Network (RNN) structure that is known for its 
ability for modeling long-range dependencies (Hochreiter and Schmid
huber, 1997). The LSTM network encompasses three gates, including the 
forget gate, input gate, an output gate, that update and control the cell 
states. The gates use hyperbolic tangent and sigmoid activation func
tions. Figure 1 illustrates the inner structure of an LSTM cell. Here, we 
only describe the key equations based on which the LSTM structure 
operates. For more information, we refer the readers to Hochreiter and 
Schmidhuber (1997). 

it = σ(Wxixt + Whiht−1 + Wci∘ct−1 + bi) (3)  

ft = σ
(
Wxfxt + Whfht−1 + Wcf∘ct−1 + bf

)
(4)  

ct = ft∘ct−1 + it∘tanh(Whcxt + Whcht−1 + bc) (5)  

ot = σ(Wxoxt + Whoht−1 + Wco∘ct + bo) (6)  

ht = ot∘tanh(ct) (7)  

Although the LSTM structure has been proven to be the most stable for 
handling temporal correlation, neither in input-to-state nor in state-to- 
state transitions the spatial information is encoded, which makes it 
inappropriate for handling spatiotemporal data. To cope with this 
problem, an extension of LSTM, which has convolutional layers in both 
input-to-state and state-to-state transitions, the ConvLSTM has been 
introduced (see Figure 2). This network is well-suited for the application 
of spatiotemporal sequence prediction. In ConvLSTM, all the inputs X i, 
…,X t, cell outputs C 1,…, C t, hidden states H 1,…, H t, and gates it, ft 

and ot are 3D tensors whose rows and columns represent the spatial 
dimension. Here, we only describe the ConvLSTM equations, and for 
more information, we refer the readers to Shi et al., (2015) who pro
vided a comprehensive description of this approach. In these equations, 
‘∗’ and ‘∘’ denote the convolution operator and the Hadamard product, 
respectively. 

it = σ(Wxi ∗ X t + Whi ∗ H t−1 + Wci∘C t−1 + bi) (8)  

ft = σ
(
Wxf ∗ X t + Whf ∗ H t−1 + Wcf∘C t−1 + bf

)
(9)  

ct = ft∘C t−1 + it∘tanh(Whc ∗ X t + Whc ∗ H t−1 + bc) (10)  

ot = σ(Wxo ∗ X t + Who ∗ H t−1 + Wco∘C t + bo) (11)  

H t = ot∘tanh(C t) (12)  

2.3. Bayesian Model Averaging 

Bayesian Model Averaging (BMA) is a method that integrates the 
predicted forecast densities from multiple models to produce a new 
forecast Probability Density Function (PDF). Based on the law of total 
probability, the predictive distribution of a forecast variable y, given the 
observations Y during the training period and the independent pre
dictions of k models, can be expressed by: 

p(y|M1, M2, …, MK=k, Y) =
∑K

i=1
p(Mi|Y)p(y|Mi, Y) (13)  

where p(y|Mi, Y) is the posterior distribution of y given the model pre
diction Mi and training data Y. p(Mi|Y) is the likelihood of model pre
diction given the observations Y during the training period, which also 
reflects the weight of each model Mi. Therefore, the outcome of the BMA 
approach is the weighted average of forecast PDF generated by each 
model. Since the model predictions are time-variant, equation (13) can 
be rewritten as: 

p
(
yt

⃒
⃒Mt

1, Mt
1, …, Mt

k, Y
)

=
∑K

i=1
wip

(
yt

⃒
⃒Mt

i, Y
)

(14)  

Note that w represents the performance of the model during the training 
period. To solve this equation, it is usually assumed that the posterior 
distribution follows a Gaussian distribution with mean ft

i and variance 
σ2

i , such that p(yt
⃒
⃒ft

i, Y) ∼ g(yt
⃒
⃒ft

i, σ2
i ). It should be noted that for non- 

Gaussian forecast variables, a power transformation (e.g., Box-Cox) is 
used to map them from their original space to a Gaussian space. Using 
the following log-likelihood function, the variance and weight of each 
forecast model can be estimated. Raftery et al., (2005) developed a 
procedure called the Expectation-Maximization (EM) algorithm to 

Figure 1. The inner structure of an LSTM cell. ‘∘’ denotes the Hadamard 
product. σ and tanh represent hyperbolic tangent and sigmoid activa
tion functions. 

Figure 2. The inner structure of the ConvLSTM cell. [This Figure should be 
printed in color] 
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maximize the equation (15), which is not analytically computable. 

I(θ) = log

(
∑K

i=1
wi.p(y|fi, Y)

)

(15)  

EM algorithm iteratively updates the variance (σ2
i ) and weight (wi) using 

the equations (18-21) until the termination criterion of 
|I(θiter) −I(θiter−1)| becomes less than ε. In the first iteration, the initial 
weight and variance for each model are set to: 

wi,iter =
1
K

(16)  

σ2
i,iter =

1
KT

∑T

t=1

∑K

k=1

(
yt − ft

i

)2 (17)  

Then the algorithm proceeds based on the following equations. 

wi,iter =
1
T

∑T

t=1
zt

i,iter (18)  

σ2
i,iter =

∑T
t=1zt

i,iter.
(
yt − ft

i

)2

∑T
t=1zt

i,iter
(19)  

zt
i,iter =

wi,iter−1.g
(

yt
⃒
⃒
⃒ft

i, σ2
i,iter−1

)

∑K
i=1wi,iter−1.g

(
yt

⃒
⃒ft

i, σ2
i,iter−1

) (20)  

I(θiter) = log

(
∑K

i=1
wi,iter

∑T

t=1
g
(

yt
⃒
⃒
⃒ft

i, σ2
i,iter

)
)

(21)  

where T is the length of the training period and z is a latent variable. 

2.4. Copula-Embedded Bayesian Model Averaging 

As mentioned earlier, in the BMA approach the forecast PDFs are 
generally assumed to be a parametric distribution, such as Gaussian 
distribution. Madadgar and Moradkhani (2014) proposed an approach 
called the Copula-Embedded Bayesian Model Averaging (COP-BMA) 
that modifies the BMA predictive distribution through relaxing the 
assumption on parametric posterior distribution, which results in 

increased multimodeling reliability. In this approach, g(y
⃒
⃒fi, σ2

i ) is 
replaced with a group of multivariate copula functions. In the COP-BMA 
approach, the posterior distribution of forecast variables for each model 
p(yt

⃒
⃒ft

i, Y) is estimated using copula functions. Based on copula func
tions, a multivariate distribution P(x1..xn) can be expressed as follows: 

P(x1, …, xi, …, xn) = C[P(x1), …, P(xi), …, P(xn)] = C(u1, …, ui, …, un)

(22)  

where C is the Cumulative Distribution Function (CDF) of the copula and 
P(xi) is the marginal distribution of xi being uniform on the interval 
[0,1], which is denoted by ui. The joint probability density function of 
(x1..xn) can be expressed by: 

P(x1, …, xn) = c(u1, …, un)
∏n

i=1
p(xi) (23)  

where c represents the PDF of the copula. The conditional probability 
distribution of x1 given x2 is also defined as: 

p(x1|x2) =
p(x1, x2)

p(x2)
(24)  

This equation can be revised by replacing the joint probability distri
bution of p(x1, x2) in equation (24). 

p(x1|x2) =
p(x1, x2)

p(x2)
=

c(u1, u2).p(x1).p(x2)

p(x2)
= c(u1, u2). p(x1) (25)  

In this equation, x1 and x1 are considered as the forecasted variable yt 

and the ith model prediction ft
i, respectively. If the posterior distribution 

in equation (13) is replaced with the conditional probability distribution 
in (25), the predictive distribution of BMA becomes: 

p
(
yt

⃒
⃒ft

1, ft
2, …, ft

k, Y
)

=
∑K

i=1
wip

(
yt

⃒
⃒ft

i, Y
)

=
∑K

i=1
wic

(
uyt , uft

i

)
p(yt) (26)  

Unlike the BMA approach where the posterior distribution p(y
⃒
⃒fi, Y) is 

computed using the EM algorithm, in COP-BMA, it is directly achievable 
from equation (26). This equation also relaxes any assumption on the 
type of posterior distribution and also removes bias from model pre
dictions. After defining the posterior distribution, we use the EM 

Figure 3. Schematic of the proposed framework. Step 1 represents two different Machine Learning (ML) models (i.e., M1 and M2) used to predict the testing data. 
The testing data is unseen during the training (model calibration) process. Step 2 shows the implementation of the COP-BMA model to integrate the predicted testing 
values obtained in Step 1 and generate probabilistic simulations. 
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algorithm with a few adjustments to estimate their weights. 

wi,iter =
1
T

∑T

t=1
zt

i,iter (27)  

zt
i,iter =

wi,iter−1.p
(
yt

⃒
⃒ft

i

)

∑K
i=1wi,iter−1.p

(
yt

⃒
⃒ft

i

) =
wi,iter−1.c

(
uyt , uft

i

)
p(yt)

∑K
i=1wi,iter−1.c

(
uyt , uft

i

)
p(yt)

(28)  

I(θiter) = log

(
∑K

i=1
wi,iter

∑T

t=1
c
(

uyt , uft
i

)
.p(yt)

)

(29)  

2.5. The Proposed Approach 

T his study for the first time utilizes the Baysian multi-modeling to 
integrate different ML-based model outputs and generate the probabi
listic soybean predictions while accounting for the uncertainties 
involved in the model predictions. Figure 3 illustrates the proposed 
framework. It uses the deterministic outputs from two different ML 
models (M1 and M2) to generate probabilistic predictions. Step 1 shows 
the training and testing of ML models, which are 3DCNN and 
ConvLSTM. Step 2 indicates how the COP-BMA approach is used for 
generating probabilistic simulations. It should be noted that the testing 
data is unseen during the ML model development process and therefore 
it can be properly used for validation of the predicted testing values in 
both steps 1 and 2. To implement the COP-BMA approach, those training 
datasets which had been used for ML model training/calibration in step 
1 are used to train the COP-BMA model parameters. Then, we use the 
predicted deterministic values from ML models in step 1 as input to the 
trained COP-BMA model to generate probabilistic predicted testing 
values, which is hereafter referred to as COP-BMA results. 

3. Datasets 

In this study, the input variables of the ML models are MODIS 
(Moderate Resolution Imaging Spectroradiometer) surface reflectance, 
MODIS land cover, and MODIS land surface temperature. The MODIS/ 
Terra surface reflectance product provides 7 bands of surface spectral 
reflectance at 500 m spatial resolution every 8 days. Each pixel contains 
the best possible surface reflectance observation value selected from all 
the acquisitions within the 8-day window. The product is publicly 
available at https://lpdaac.usgs.gov/products/mod09a1v006/. Here, 
we used all 7 bands of version 6 of this product as input to 3DCNN and 
ConvLSTM networks (Gavahi et al., 2021). The Terra and Aqua com
bined MODIS Land Cover type product provides yearly land cover types 
derived from six classification schemes at 500 m spatial resolution. The 
University of Maryland (UMD) classification (land cover type 2) was 
used in this study to mask the cropland areas. The dataset can be 
retrieved from https://lpdaac.usgs.gov/products/mcd12q1v006/. The 
MODIS Version 6 Land Surface Temperature (LST) provides an average 
8-day per-pixel daytime and nighttime surface temperature at 1 km 
spatial resolution. The temperature is collected by using 7 thermal 
infrared bands using the LST algorithm. Both daytime and nighttime 
LSTs were used in the input layer of the deep NNs (i.e., 3DCNN and 
ConvLSTM) used in this study. This data is available at https://lpdaac. 
usgs.gov/products/myd11a2v006/. The models’ output variable is the 
soybean yield data. This study aims at predicting the soybean yield data 
probabilistically across three states of Kansas, Louisiana, and Kentucky 
at the county scale. The dataset was collected from the USDA (United 
States Department of Agriculture) National Agricultural Statistical Ser
vices (NASS) repository available at https://www.nass.usda.gov/Qu 
ick_Stats/index.php. The soybean yield data time series were retrieved 
from 2003 to 2019. The first 15 years, from 2003 to 2017 (62 counties ×
15 years =930 data), were used for training the ML models and the 
COP-BMA model. The remaining two years of 2018 and 2019 (62 

counties × 2 years = 124 data), were used for testing the trained models 
and evaluating their predictive skills. In this study, 20% validation set 
was used for tuning deep NN models’ hyperparameters. Cross-validation 
and early stopping were performed to avoid overfitting (more infor
mation can be found in our previous study, Gavahi et al., 2021). 

4. Performance Measures 

To assess the usefulness and effectiveness of the ML models used in 
this study and also the proposed COP-BMA approach, we use the per
formance measures listed in Table 1. In the following equations, yt and y′

t 

are the observation and model prediction at time t, respectively. σ and σ′

represent the standard deviation of the observation and model predic
tion, respectively. μ and μ′ are the mean of observation and model 
prediction, respectively. T is the total time steps. 

5. Results and Discussions 

Figure 4 shows the performance of two deep learning algorithms and 
also their combined version, called the COP-BMA. Here we assess the 
usefulness of deep learning models in predicting the soybean crop yield 
and compare them with the COP-BMA approach through multiple 
deterministic performance measures (i.e., R, Bias, RMSE, and MAE). 
Except for MAE, all the measures indicate that the ConvLSTM performs 
better than the 3DCNN structure. Please note that this figure reports the 
predicted soybean values over 62 counties for the two years of 2018 and 
2019. Depending on the nature of the predicted values (i.e., outliers, 
high values, and variance), the results of the MAE and RMSE can be 
different. The MAE is a linear score in which all the individual differ
ences are weighted equally. While RMSE is a quadratic scoring rule 
which measures the average magnitude of the error and gives a rela
tively high weight to large errors. It should be noted that in this figure, 
all the model simulations for three states at the county level are 
collectively analyzed. The results clearly show that the COP-BMA 
approach outperforms both deep neural nets. Unlike the 3DCNN and 
ConvLSTM that provide a predicted value deterministically, the COP- 
BMA results in a probabilistic crop yield prediction. In this study, we 
have performed multiple experiments to find the optimum architecture 
for each 3DCNN and ConvLSTM model. The 3DCNN network consists of 
5 blocks, each of which containing one Conv3D and one MaxPooling 
layer. The first block serves as a dimension reduction layer that includes 
two Conv3D layers with 9 and 3 filters. The extracted features from the 
last block are then connected to a flatten layer followed by two dense 
layers with 1024 and 1 neurons, respectively, and a dropout layer with 
0.5 probability in between (Gavahi et al., 2021). For the ConvLSTM 
model, ConvLSTM2D layers with 10 and 5 filters with BatchNorma
liztion and Maxpooling layers in between, were consecutively connected 
(LSTM block). Similar to the 3DCNN network, the spatiotemporal fea
tures extracted by the LSTM block were then flatted and then 

Table 1 
Summary of performance measures used in this study  

Performance Measure Mathematical Representation 

Bias ∑T
t=1(y′

t − yt)

Root Mean Square Error (RMSE) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T

∑T

t=1
(y

′

t − yt)
2

√

Normalized Root Mean Square Difference 
(RMSD) 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T

∑T
t=1

((y
′

t − y
′

t) − (yt − yt))
2

√

Correlation Coefficient (R) 1
T − 1

∑T

t=1

(y′

t − μ′

σ′

)(yt − μ
σ

)

Mean Absolute Error (MAE) 1
T

∑T
t=1

⃒
⃒(y

′

t − yt)
⃒
⃒

Coefficient of Variation (CV) σ′

μ′

Residual Standard Deviation (Std. Dev)  ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(y′

t − yt)
2

T − 2

√
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consecutively fed to a Dense (1024), Dropout (0.5), and Dense (1) layers. 
For a more detailed explanation of finding the optimum architecture of 
each network, we refer the interested readers to our previous work 
(Gavahi et al., 2021). At each time step, the COP-BMA integrates the 
deterministic predicted values from 3DCNN and ConvLSTM networks 

within a Bayesian framework and provides a PDF, such that its median 
value and distribution represent the predicted value and its associated 
uncertainty, respectively. Also, Figure 4 reports the distribution of the 
predicted soybean crop yield values by three approaches and compares 
them with that of the observation data. The COP-BMA results in 

Figure 4. Performance of the three models used in this study, i.e., 3DCNN, ConvLSTM, and their combined version using the COP-BMA (3DCNN+ConvLSTM). The 
results are reported for the testing period. The boxplots also represent the model simulations’ distributions compared to that of the observation. Bu/acre denotes 
“bushels per acre”. 

Figure 5. Probabilistic simulation of crop yield using the COP-BMA approach. The green points indicate the median of the predicted distribution, and the yellow 
points represent the observation. The shaded area around each point displays the predictive interval at different percentages ranging from 1% to 99%. [This 
Figure should be printed in color] 
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predicted values with a distribution very similar to that of the 
observation. 

Figure 5 shows the probabilistic simulation of soybean crop yield 
provided by the proposed approach across more than 100 counties in 
three states (i.e., Kansas, Louisiana, and Kentucky). As this figure in
dicates, the median of the predicted distribution, shown as green points, 
closely follows the observation, and in most cases, they fall within the 
20% predictive interval, which implies the higher accuracy of the pre
dicted crop yield by the proposed methodology compared to the 3DCNN 
and ConvLSTM networks. The developed framework provides the 
deterministic estimates of the crop yield along with their associated 
uncertainty. Here, the uncertainty in crop yield prediction is associated 
with the structure of the deep neural networks including their parame
terization, topology, and input variables. The median of the predicted 
soybean yield predictions along with the associated uncertainty interval 
helps the farmers and agriculture sectors to effectively decide and plan 
for the growing season while taking into account the risk of crop pro
duction failure. The proposed methodology is a general strategy that 
provides the possibility of taking advantage of multiple predictive crop 
models to generate more accurate crop yield values considering the 
uncertainty associated with the crop model choice. Therefore, regardless 
of the type of model used that is either physically-based data-driven 
models, or a combination of both, the proposed methodology can be 
used to integrate all the model outputs and provide more accurate and 
reliable crop yield predictions compared to the individual models. In 

this study, although the uncertainty associated with the hydrometeo
rological and agrometeorological data are not directly taken into ac
count, it is presumed that the uncertainty imposed by input data is 
already represented in the ML model outputs for which the Copula 
function is fitted. 

In Figure 6, we display the results for four counties in Kansas State to 
clearly show how the developed approach results in improved predic
tion of soybean crop yield. It is important to note that in three cases (i.e., 
Bourbon County, Republic County, and Ellsworth County) the 3DCNN 
and ConvLSTM networks underestimated and overestimated the crop 
yield, respectively. However, the proposed COP-BMA approach by 
integrating the model outputs from two networks and providing prob
abilistic crop yield estimates resulted in a more accurate predicted value 
(the median of the fitted Kernel distribution). In Sedgwick County, both 
3DCNN and ConvLSTM networks overestimated the crop yield, how
ever, our probabilistic approach reduced the bias and increased the 
prediction accuracy. As per USDA (please see https://www.nass.usda. 
gov/Statistics_by_State/Kansas/Publications/County_Estimates/18KSs 
oy.pdf and https://www.nass.usda.gov/Statistics_by_State/Kansas/Pu 
blications/County_Estimates/19KSsoy.pdf for more information), for 
the years 2018 and 2019 soybean yields are observed to be 38.7 bu/ac 
and 35.9 bu/ac respectively for Bourbon County, Kansas. Similarly, for 
Republic and Sedgwick counties, the soybean yield is reported to be 51.4 
bu/ac and 45.1 bu/ac, and 44.0 bu/ac and 36.6 bu/ac respectively for 
the corresponding 2018 and 2019 years. Although these three counties 

Figure 6. Accuracy of three models used in this study, i.e., 3DCNN, ConvLSTM, and their combined version using the COP-BMA (3DCNN+ConvLSTM) in predicting 
crop yield at four different counties in Kansas. The green curve shows the Kernel distribution fitted to the COP-BMA predicted simulations, and its corresponding 
median value is shown by a green point. [This Figure should be printed in color] 

P. Abbaszadeh et al.                                                                                                                                                                                                                            

https://www.nass.usda.gov/Statistics_by_State/Kansas/Publications/County_Estimates/18KSsoy.pdf
https://www.nass.usda.gov/Statistics_by_State/Kansas/Publications/County_Estimates/18KSsoy.pdf
https://www.nass.usda.gov/Statistics_by_State/Kansas/Publications/County_Estimates/18KSsoy.pdf
https://www.nass.usda.gov/Statistics_by_State/Kansas/Publications/County_Estimates/19KSsoy.pdf
https://www.nass.usda.gov/Statistics_by_State/Kansas/Publications/County_Estimates/19KSsoy.pdf


Agricultural and Forest Meteorology 314 (2022) 108773

8

Figure 7. Residuals (%) histogram for three models used in this study, i.e., 3DCNN, ConvLSTM, and their combined version using COP-BMA (3DCNN+ConvLSTM). 
Std. Dev represents the standard deviation of residual values computed between the observation and model simulation. 

Figure 8. The probabilistic (CV) and deterministic (Error) performance measures were reported for the predicted crop yield across more than a hundred counties in 
the year 2018 and 2019. CV represents the coefficient of variation. [This Figure should be printed in color] 
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are reported to experience mild to extreme drought during 2018 (which 
is likely to have contributed to the crop yield reduction compared to the 
long-term average) (https://www.drought.gov/states/kansas/count 
y/bourbon), all of these counties experienced extreme precipitation 
and flooding during the soybean growing season (starting from May to 
September) (Shorman, 2019). This is likely to have contributed to the 
higher soybean yield loss relative to the dry year (2018). Flooding in 
croplands affects crop yield directly by wilting the crops, whereas, 
extreme precipitation during the critical stages of soybean crops such as 
leaf development, and flowering indirectly affects the crop yield by 
restricting the plant growth (Kukal and Irmak, 2018). It is also worth 
mentioning that extreme events such as floods and droughts, which are 
known as frequent catastrophes in the US (Abbaszadeh et al., 2020; 
Alipour et al., 2020b, 2020a; Gavahi et al., 2020), can have a significant 
impact on the predictive capabilities of crop yield forecasting models. 

Figure 7 represents the performance of the three models used in this 
study. It shows the residual standard deviation (in percent) computed 
between the observation and model simulation. This metric measures 
how much the data points spread around the regression line. The lower 
the residual standard deviation, the higher the accuracy of predicted 
soybean crop yield. The results indicate that the proposed approach has 
the lowest residual standard deviation compared to the 3DCNN and 
ConvLSTM networks. This implies the higher predictability of the pro
posed probabilistic crop yield simulation framework compared to its 
counterparts. 

Figure 8 shows the probabilistic (coefficient of variation) and 
deterministic (absolute error) performance measures calculated for the 
predicted crop yield across more than a hundred counties in three states 
in the year 2018 and 2019. The coefficient of variation (CV) is a stan
dardized measure of the dispersion of a probability distribution or fre
quency distribution. It is defined as the ratio of the standard deviation to 
the mean and represents the precision or relative variability of 

estimates. For better interpretation and analysis of results, CV and Error 
are normalized between 0 and 1, such that the lower the CV and Error, 
the higher the performance of the proposed approach in predicting 
soybean crop yield. It is noted that Error is the absolute difference be
tween the median of the predicted ensemble and the corresponding 
observed value. This figure indicates that our proposed approach, 
overall, has had the lowest and highest performance respectively in 
Neosho County (KS) and West Carroll County (LA) in 2018, and in 2019, 
similar results can be attributed to Harper County (KS) and East Carroll 
County (LA). The results also revealed that the reliability (CV) and ac
curacy (Error) of the proposed approach varies depending on the loca
tion of the counties where the hydroclimate and land surface conditions 
can be different, resulting in changes in the input variables of the deep 
neural networks and their ultimate performance, which accordingly 
affects the efficacy of the developed probabilistic approach. 

The results also reveal that in general there is a relatively significant 
positive correlation (or trend) between the probabilistic and determin
istic performance measures such that the counties whose error values 
are high are associated with larger predictive uncertainty intervals. 
More investigation showed that those counties with higher coverage of 
croplands (>90%) result in more reliable soybean yield prediction (with 
less predictive uncertainty interval) compared to the counties with less 
cropland coverage. For example, Brown county with 97% cropland 
coverage has predicted soybean yield with a CV of 0.21, while Burbon 
County with 27% cropland coverage has the higher CV value of 0.55. 
The potential reason behind this is that the deep learning network’s 
input image that has only nonzero values for cropland pixels contains 
more information for the network to learn from the inherent spatio
temporal patterns related to the crop yield. 

Figure 9 compares the performance of the three models used in this 
study to simulate the soybean crop yield. The following Taylor diagram 
simultaneously reports three performance measures including standard 
deviation ratio, correlation coefficient, and normalized RMSD. The 
distance from the origin (shown as a black point) to each radial curve is 
the ratio of simulated to observed crop yield amplitude. Therefore, the 
model with a normalized standard deviation close to 1.0 produces a 
seasonal amplitude very close to the observation. The results indicate 
that in all three states the proposed approach outperforms the 
ConvLSTM and 3DCNN networks. 

It is noted that in this paper the COP-BMA is a post-processing 
approach that we used to integrate the outputs of two deep NNs to 
provide more reliable and accurate prediction. The COP-BMA is a 
Bayesian approach that is used for multi-modeling. In this paper, we are 
not proposing a new ML technique, instead, we underscore the useful
ness of the COP-BMA technique for multi-modeling of deep NNs and 
providing the probabilistic estimates of target values. This technique 
enables us to utilize multiple NN-based models and integrate their 
outputs to provide more accurate prediction while accounting for the 
uncertainty associated with the choice of the predictive model. The main 
idea behind multi-modeling is that the integrated outputs from multiple 
models is more accurate than those from individual models. Our analysis 
indicated that the COP-BMA is an efficient approach that performs well 
in integrating the outputs from multiple deep NNs. This Bayesian tech
nique has been widely used for multi-modeling of physical hydrologic 
models, however, its applicability and usefulness for multi-modeling of 
data-driven models had not been explored before. 

6. Conclusions 

This study presents a new framework to integrate deterministic 
outputs from two deep neural network models to generate probabilistic 
simulation. The core of the proposed framework is the COP-BMA 
approach. COP-BMA integrates a group of multivariate Copula func
tions into Bayesian Model Averaging that relaxes any assumption on the 
shape of conditional PDF of each model and consequently provides more 
accurate and reliable predictive distributions. This study has been 

Figure 9. Taylor diagram showing three deterministic performance measures 
(i.e., RMSD, correlation coefficient, and standard deviation ratio) simulta
neously. The black point displays the observation. Normalized standard devi
ation and correlation coefficient are on the radial axis and angular axis, 
respectively. The observation is shown with a black point on the horizontal axis. 
The red, blue, and green colors represent the three models used in this study. 
Each symbol indicates the state for which the crop yield was predicted. These 
results are reported collectively for the years 2018 and 2019. [This 
Figure should be printed in color] 
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conducted on probabilistic simulation of soybean crop yield across more 
than a hundred counties in three states in the United States. The results 
showed that the proposed approach provides more accurate predicted 
crop yield values compared to other deep neural networks such as 
ConvLSTM and 3DCNN while accounting for uncertainties involved in 
model predictions. Although the model outputs from these two networks 
were used in this study to generate probabilistic simulation, any other 
physically-based or data-driven based model outputs can also be used 
within the proposed framework. For future study, we plan to implement 
the developed approach to provide probabilistic yield predictions for 
different crops (such as maize and corn) across other states in the United 
States. 
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