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A B S T R A C T   

Crop yield forecasting is of great importance to crop market planning, crop insurance, harvest management, and 
optimal nutrient management. Commonly used approaches for crop prediction include but are not limited to 
conducting extensive manual surveys or using data from remote sensing. Considering the increasing amount of 
data provided by remote sensing imagery, this approach is becoming increasingly important for the task of crop 
yield forecasting and there is a need for more sophisticated approaches to extract the inherent spatiotemporal 
patterns of these data. Although considerable progress has been made in this field by using Deep Learning (DL) 
methods such as Convolutional Neural Networks (CNN), no study before has investigated the use of Convolu
tional Long Short-Term Memory (ConvLSTM) for crop yield forecasting. Here, we propose DeepYield, a com
bined structure, that integrates the ConvLSTM layers with the 3-Dimensional CNN (3DCNN) for more accurate 
and reliable spatiotemporal feature extraction. The models are trained by using county-based historical yield 
data and MODIS Land Surface Temperature (LST), Surface Reflectance (SR), and Land Cover (LC) data over 1836 
primary soybean growing counites in the Contiguous United States (CONUS). The forecasting performance of the 
developed models is compared against the competing approaches including Decision Trees, CNN + GP, and CNN- 
LSTM and results indicate that DeepYield significantly outperforms these techniques and also performs better 
than both ConvLSTM and 3DCNN.   

1. Introduction 

Accurate and timely crop yield forecasting is of great importance for 
a variety of reasons. It allows societies to understand the future available 
food supply and helps the demand side to optimize the utilization of crop 
resources. From a management point of view, future yield estimation 
helps farmer plan better for the end-of-season by establishing risk 
management policies, insurance premiums, and evaluating the value of 
input costs (Johnson, 2014). It can also help better understanding the 
impacts of severe weather or changing the climatic conditions such as 
drought and hurricanes on crops (Ceglar et al., 2018; Gavahi, Abbas
zadeh, Moradkhani, Zhan, & Hain, 2020; Liakos, Busato, Moshou, 
Pearson, & Bochtis, 2018). 

The commonly used crop yield forecasting methods use manual 
surveys (United States Department of Agriculture. (2012), 2012), crop 
simulation models (Hoogenboom, White, & Messina, 2004), or remote 

sensing data (Gallego, Carfagna, & Baruth, 2010). Among these ap
proaches, remote sensing can provide more affordable yield forecasting 
tools as several free and open-source remote sensing databases are 
available online (Bolton & Friedl, 2013; Mendes, Araújo, Dutta, & 
Heeren, 2019). A variety of pertinent information can be extracted 
through remote sensing data for yield forecasting. In particular, vege
tation indices such as the Normalized Difference Vegetation Index 
(NDVI) (Lofton et al., 2012; Shrestha et al., 2016; Shrestha, Di, Eugene, 
Kang, & Bai, 2017), Green Leaf Area Index (GLAI) (Duchemin, Mai
songrande, Boulet, & Benhadj, 2008), Enhanced Vegetation Index (EVI) 
(Xue & Su, 2017), Normalized Difference Water Index (NDWI) (Bolton & 
Friedl, 2013) have been widely utilized for crop yield forecasting. 

The existence of disturbances, modeling errors, and various un
certainties in the real systems, makes the task of modeling a highly 
nonlinear phenomenon with spatiotemporal variability a daunting 
challenge (Stojanovic, He, & Zhang, 2020; Wei, Li, & Stojanovic, 2021; 
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Zhang, He, Stojanovic, Luan, & Liu, 2021). This is particularly true 
where missing data exists in the input data as well (Chen, Zhang, Sto
janovic, Zhang, & Zhang, 2020). With the advances in Machine Learning 
(ML) techniques, considerable attention has been paid to their applica
tion to multispectral satellite images for crop yield forecasting. These 
include Decision Trees (DT) (Johnson, 2014; Kim & Lee, 2016), Support 
Vector Machine (SVM) (Kim & Lee, 2016; Kuwata & Shibasaki, 2015), 
Artificial Neural Network (ANN) (Kim & Lee, 2016), and Restricted 
Boltzmann Machine (RBM) (Kuwata & Shibasaki, 2015). Despite the 
widespread use of ML techniques, Deep Learning (DL) has recently been 
considered a breakthrough data mining platform in agricultural remote 
sensing studies and other applications (Sun, Di, Sun, Shen, & Lai, 2019). 
This includes Convolutional Neural Networks (CNN), Long Short-Term 
Memory (LSTM), Stacked Sparse Autoencoder (SSAE), and Recurrent 
Neural Networks (RNN), which have been applied and outperformed 
conventional ML algorithms in many studies (Kim et al., 2019). 

For the first time, You, Li, Low, Lobell, and Ermon (2017) used CNN 
and LSTM for crop yield prediction using Moderate-Resolution Imaging 
Spectroradiometer (MODIS) satellite images. They incorporated a 
Gaussian Processor (GP) into the last layer of the CNN to account for the 
spatiotemporal variability of the inputs. Their proposed method out
performed other competing techniques with a 30% Root Mean Squared 
Error (RMSE) improvement. Wang, Tran, Desai, Lobell, and Ermon 
(2018) continued the work and used deep transfer learning to extend the 
method to other regions in Argentina and Brazil. Their findings 
demonstrated that this approach can effectively learn features from raw 
data and improve performance compared to other ML techniques. Rus
sello (2018) proposed a 3DCNN architecture for crop yield prediction 
and showed that it outperforms other traditional ML methods. In addi
tion, the RNN and LSTM structures have been widely used to predict 
crop yield due to their ability to account for the temporal characteristics 
of the plant growth phenology. Jiang et al. (2018) applied a deep LSTM 
for county-based corn yield prediction using soil and weather data. The 
results in the state of Iowa showed the predictive power of the LSTM for 
yield estimation. Sun et al. (2019) developed a CNN-LSTM model for 
county-based soybean yield prediction and showed that their combined 
approach outperforms the single CNN or LSTM. Khaki, Wang, and 
Archontoulis (2020) proposed a CNN-RNN model for the similar study 
and showed that the combined method significantly outperforms 
traditional ML techniques. 

To the best of our knowledge, no study has investigated the use of 
Convolutional LSTM (ConvLSTM) for crop yield forecasting. Addition
ally, in all those studies, the spatial dimension of the remote sensing 
images were discarded by turning them into histograms of pixel in
tensities or having their pixels averaged per county. Whereas including 
the spatial dimension can provide crucial information about crops’ 
pertinent variables such as soil properties and elevation and thus in
crease the models’ forecasting skills. Moreover, this study provides a 
more rigorous spatiotemporal feature extraction by combining the 
3DCNN and ConvLSTM layers. The comparison with the individual ar
chitectures shows that the proposed combined approach (DeepYield) 
provides more accurate crop yield forecasts. 

Previous studies show that DL algorithms are becoming the main
stream of forecasting and crop yield prediction (Khaki et al., 2020; Sun 
et al., 2019). Thus, the main motivation of this study is to introduce an 
integrated model that uses satellite imagery and produces yield pre
diction without a need to reduce the spatial dimensionality of the images 
or use the handcraft features. In this study, we propose a procedure to 
effectively combine the ConvLSTM and 3DCNN structures for county- 
based crop yield forecasting in the contiguous United States. The main 
contributions of this study are as follows: (1) instead of taking the 
average of pixel values or using histograms of pixel intensities, this study 
preserves the spatial characteristics of the input images by using the full 
image as input. As a result, the spatial correlation of adjacent pixels is 
preserved which enhances the performance of convolutional filters, (2) 
ConvLSTM is used for the first time for the crop yield forecasting 

accounting for the inherent spatiotemporal patterns of the input images, 
(3) a combined architecture, namely DeepYield, based on ConvLSTM 
and 3DCNN is introduced for more accurate and robust crop yield 
forecasting. The proposed approach uses an end-to-end learning scheme, 
to automatically process the input and provide a more accurate and 
reliable yield forecast. 

The remainder of the paper is organized as follows: Section 2 de
scribes the datasets and methods. Section 3 explains the proposed 
method, its implementation, and capabilities. The experimental results 
and analysis are presented in Section 4. Finally, a summary and 
concluding remarks are given in Section 5. 

2. Materials and methods 

2.1. Datasets 

2.1.1. Yield data 
County-based soybean statistics were collected from the USDA Na

tional Agricultural Statistical Services (NASS) Quick Stat tool available 
at https://www.nass.usda.gov/Quick_Stats/index.php. The yield data 
from 2003 to 2019 were used as ground truth labels for model training. 

2.1.2. MODIS Surface reflectance 
The MODIS/Terra Surface Reflectance (SR) product provides 7 bands 

of surface spectral reflectance at 500 m spatial resolution every 8 days 
(Vermote, 2015). Each pixel contains the best possible SR observation 
value selected from all the acquisitions within the 8-day window. The 
product is publicly available at https://lpdaac.usgs.gov/products/mod 
09a1v006/. Here, we used all 7 bands of version 6 of this product for 
soybean yield forecasting. 

2.1.3. MODIS Land cover 
The Terra and Aqua combined MODIS Land Cover type (LC) product 

provides yearly land cover types derived from six classification schemes 
(Sulla-Menashe & Friedl, 2019) at 500 m spatial resolution. The annual 
University of Maryland (UMD) classification (land cover type 2) scheme 
was used in this study to mask cropland areas. The dataset is publicly 
available at https://lpdaac.usgs.gov/products/mcd12q1v006/. 

2.1.4. MODIS Land Surface temperature 
The MODIS Version 6 Land Surface Temperature (LST) provides an 

average 8-day per-pixel daytime and nighttime surface temperature at 1 
km spatial resolution (Wan, 2015). The temperature is collected by using 
7 thermal infrared bands using the LST algorithm (Wan, 2006). This 
dataset has been widely used in multitude of studies (Abbaszadeh et al., 
2021; Benali et al., 2012; Wang et al., 2021). In this study, both daytime 
and nighttime LSTs were used. The product is publicly available at https: 
//lpdaac.usgs.gov/products/myd11a2v006/. 

2.2. 3D convolutional networks 

For the first time, Ji, Xu, Yang, and Yu (2013) proposed a 3DCNN 
structure for human action recognition applying 3D convolutions along 
both temporal and spatial dimensions. As opposed to directly inferring 
the temporal information from raw data, 3DCNNs have shown to be 
more suitable for spatiotemporal presentations (Elboushaki, Hannane, 
Afdel, & Koutti, 2020). This method has been successfully used in many 
applications such as gesture recognition (Elboushaki et al., 2020; Ji, 
Zhang, Xu, Shi, & Duan, 2018; Lin et al., 2016; Liu, Zhang, & Tian, 2016; 
Tran, Bourdev, Fergus, Torresani, & Paluri, 2015), learning 3D struc
tures from LiDAR (Maturana & Scherer, 2015), and learning spatio- 
spectral patterns from hyperspectral images (Li, Zhang, & Shen, 
2017). In general, the 3DCNNs are not as widely used as the 2DCNN 
since the temporal dimension is usually ignored in computer vision 
studies (Ji et al., 2018). However, remote sensing images often contain 
temporal information (feature) which can be more efficiently exploited 
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using the 3DCNN. For instance, surface reflectance images captured 
during the growth season of soybean at different stages of the crop 
phenology contain crop growth information that is necessary for a more 
accurate end-of-season yield forecast. A 3DCNN structure can simulta
neously extract both temporal and spatial information and potentially 
provide more accurate and robust feature extraction. 

In 2DCNNs, extracting features from a local neighborhood on a 
specific feature map is performed by 2D convolutional filters. Then the 
bias is added and the result is passed through a sigmoid function. 
Equation (1) represents the value of a unit at position y(x, y) in a specific 
layer and for a specific feature. 

y(x, y) = σ
(

b +
∑

n

∑I

i=0

∑J

j=0
wijnX(x + i)(y + j)n

)

(1) 

where σ is the sigmoid function. X denotes the input 2D image. b 
represents bias. wijn is the kernel weight for the nth feature at position (i,
j) of the filter, and I and J represent the kernel width and height, 
respectively. 

While in the 2DCNNs, convolutions are applied on the 2D feature 
maps to extract features from spatial dimension only, in the 3DCNNs, the 
convolutional filters exploit features from both temporal and spatial 
dimensions. Formally, the value at position y(x, y, t) in a specific layer 

and for the nth feature is given by Eq. (2): 

y(x, y, t) = σ
(

b +
∑

n

∑R

r=0

∑I

i=0

∑J

j=0
wtijnX(t + r)(x + i)(y + j)n

)

(2) 

where R is the kernel size along the temporal dimension, wtijn is the 
weight at position (r, i, j) of the 3D kernel with size (R, I, J) and for the 
nth feature. In practice, temporal images also consist of multispectral 
channels i.e. spatial, temporal, and spectral dimensions creating 4D 
tensors. Like the 2DCNNs where the relations among spectral bands are 
treated independently, in 3DCNNs each spectral band is treated sepa
rately (e.g., RGB bands in a 2DCNN). This allows for more rigorous in
formation exploitation from various MODIS bands comparing to 
applying 2DCNN Fig. 1. 

2.3. ConvLSTM networks 

LSTM is a special form of RNN, which has been proven to be stable 
for capturing long-term patterns (Hochreiter & Schmidhuber, 1997). 
One important aspect of an LSTM network is its ability to maintain a cell 
state from the previous sequence of observations while eliminating 
irrelevant information. In the LSTM network this is performed by 
maintaining the information through three gates: input gate, forget gate, 

Fig. 1. The inner structure of an LSTM cell.  

Fig. 2. The inner structure of a ConvLSTM cell.  
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and output gate. Each of these gates returns a state variable, i<t>, f<t>, 
and o<t>, respectively, along with the cell output, a<t>. See Eqs. (1)–(6) 
in which (◦) represents the elementwise product. Fig. 2, shows the inner 
structure of an LSTM cell (Gers & Schmidhuber, 2000). 

i〈t〉 = σ
(
Wxix〈t〉 + Waia〈t−1〉 + Wci

◦c〈t−1〉 + bi
)

(3)  

f 〈t〉 = σ
(
Wxf x〈t〉 + Waf a〈t−1〉 + Wcf

◦c〈t−1〉 + bf
)

(4)  

c〈t〉 =◦ f 〈t〉◦c〈t−1〉 + i〈t〉◦tanh
(
Wxcx〈t〉 + Waca〈t−1〉 + bc

)
(5)  

o〈t〉 = σ
(
Wxox〈t〉 + Waoa〈t−1〉 + Wco

◦c〈t〉 + bo
)

(6)  

a〈t〉 = o〈t〉◦tanh
(
c〈t〉 )

(7) 

Shi et al. (2015) proposed a novel combination of convolutional 
filters and LSTM layers, called ConvLSTM, for precipitation nowcasting. 
In this method, the convolutional filters are applied to the input-to-state 
and state-to-state transitions of the LSTM. Equations (7)–(12) describe 
the architecture of the method. In these equations (*) denotes the 
convolution operator and σ represents the sigmoid activation function. 

i〈t〉 = σ
(
Wxi*x〈t〉 + Wai*a〈t−1〉 + Wci

◦c〈t−1〉 + bi
)

(8)  

f 〈t〉 = σ
(
Wxf *x〈t〉 + Waf *a〈t−1〉 + Wcf

◦c〈t−1〉 + bf
)

(9)  

c〈t〉 = f 〈t〉◦c〈t−1〉 + i〈t〉◦tanh
(
Wxc*x〈t〉 + Wac*a〈t−1〉 + bc

)
(10)  

o〈t〉 = σ
(
Wxo*x〈t〉 + Wao*a〈t−1〉 + Wco

◦c〈t〉 + bo
)

(11)  

a〈t〉 = o〈t〉◦tanh
(
c〈t〉 )

(12) 

ConvLSTM is known to be well suited for capturing the inherent 
spatiotemporal patterns of large-scale datasets (Lee & Kim, 2020). Like 
the traditional CNN networks, the output dimension of a ConvLSTM 
layer is specified by the number of filters used in the network. However, 
in the ConvLSTM structure, eight filters are required for each desired 
output. It is important to note that applying the convolutional filters to 

the LSTM significantly reduces the number of model parameters 
compared to a single LSTM structure and thus allows for training even 
deeper models (Elboushaki et al., 2020; Petersen, Rodrigues, & Pereira, 
2019). 

3. Proposed approach 

3.1. Data preprocessing 

The datasets used in this study include MODIS LST (2 bands), SR (7 
bands), and Land Use Land Cover (1 band). The latter was used to mask 
the cropland areas over each county. 14 tiles of the MODIS satellite 
cover the CONUS, which were downloaded using an Application Pro
gramming Interface (API) developed by the authors. The tiles were then 
mosaiced into a singular raster image that covers the extent of the 
CONUS. The mosaiced raster was later clipped over each county and 
images for the selected periods were concatenated creating 3D tensors. 
All the datasets used in this study have a temporal resolution of 8 days 
(per image) from January 2003 to December 2019. However, the spatial 
resolution of MODIS SR and LC is 500 m which is different from the 
MODIS LST dataset that has a 1 km spatial resolution. Hence the 500 m 
images were upscaled to 1 km resolution using a linear interpolation 
method. Finally, bands of each product were concatenated to the 3D 
tensors created before to produce 4D tensors with the dimension of 
Time × Height × Width × band. Zero paddings, a process for expanding 
the size of the input images by adding rows and columns of zero values, 
were used to make image sizes identical before feeding to the CNN. The 
detailed preprocessing pipeline of the MODIS images is described in 
Fig. 3. Owing to the high spatial resolution of the MODIS data and the 
number of counties, the preprocessing workflow operation creates a 
tremendous computational burden. To overcome this challenge, the 
preprocessing workflow was parallelized over the University of Alabama 
High Performance Computing (UAHPC) server to speed up the process. 

3.2. Networks topology 

Fig. 3 shows the 3DCNN and ConvLSTM architectures used in this 

Fig. 3. MODIS data preprocessing workflow.  
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study for county-based soybean forecasting over the CONUS. MODIS 
images were converted into 4D tensors during the data preprocessing 
step and used as inputs to the networks. As depicted in this figure, the 
tensors passed through multiple convolutions and max-pooling layers. 
Multiple experiments were performed to find the optimum number of 
blocks and their respective parameters. In total 4 to 7 blocks were tested. 
For each block, 32, 64, 128, 512, or 1024 3D filters were considered, 
conditioned that the number of filters must increase by moving forward 
to the next block. For example, considering a total of 4 blocks, this will 
create 20 combinations. The number of neurons in the final dense layer 
was selected to be either 512 or 1024. Thus, in total, 42*2 = 84 com
binations were tested and the best combination with 5 blocks of 
convolution and max-pooling layers followed by a flatten layer and a 

final dense layer with 1024 neurons was selected. The first block is a 
dimension reduction block in which 9 spectral bands of MODIS LST and 
SR are converted to 3 feature maps. The next four blocks perform the 
spatiotemporal feature extraction. ReLU activation function was used in 
these blocks for faster convergence of the network (Nair & Hinton, 
2010). Extracted features are then connected to a flatten layer followed 
by two dense layers and a dropout layer with 0.5 probability in between. 
Dropout is a regularization method that at each epoch, randomly ignores 
some neurons during the training process. The method has proven to be 
effective in reducing the chance of overfitting (Srivastava, Hinton, 
Krizhevsky, & Salakhutdinov, 2014). 

Fig. 3 also depicts the deep ConvLSTM architecture. In deep archi
tecture, the output from one ConvLSTM layer is the input for the next 

Fig. 4. Model architectures of the developed ConvLSTM and 3DCNN networks.  

Fig. 5. The model architecture of DeepYield.  
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layer. Several experiments, similar to the method explained for 3DCNN, 
were performed with up to 10 ConvLSTM layers and the best architec
ture was selected. The proposed ConvLSTM network consists of 8 layers 
such that each layer has 10 filters of size (3, 3) and a stride size of 1. The 
same padding is used in each ConvLSTM layer to preserve the spatial 
dimension of the extracted spatiotemporal features during the con
volutional process. Batch normalization, an operation that normalizes 
layers of inputs, is also performed before each ConvLSTM layer to speed 
up the learning process and ensure reasonable inputs for activations 
(Ioffe & Szegedy, 2015). Each ConvLSTM layer returns a sequence of last 
k time steps which is fed into the next layer. Except for the last layer 
which returns the final long short-term spatiotemporal features with the 
temporal dimension of one. The features are then flattened and con
nected to a dense layer with 512 neurons. Similar to the 3DCNN archi
tecture, the linear activation function is used for the dense layers, and 
dropout with 0.5 probability is used to avoid overfitting. 

3.3. DeepYield arcitecture 

Fig. 4 presents the DeepYield architecture. In DeepYield, 3DCNN and 
ConvLSTM networks are combined for improved crop yield forecasting. 
Several experiments, similar to what was explained for 3DCNN and 
ConvLSTM, were performed to find the best number of 3DCNN and 
ConvLSTM blocks, and their respective parameters, to achieve the best 
performance. The LSTM blocks are connected to 5 blocks of 3DCNN for 
more rigorous spatiotemporal feature extraction. Since the ConvLSTM 
layers require fewer learning parameters DeepYield architecture allows 
for a deeper network to be trained. After processing the complete 
sequence of 3D inputs, the 3DCNN network performs several convolu
tions and max-pooling operations on the input images and prepares the 
final feature maps to be fed to the LSTM blocks. Then the LSTM blocks 
receive the extracted feature maps provided by the 3DCNN to perform 
more rigorous spatiotemporal feature extraction. Finally, the final 
feature maps will be fed to a dense layer with 1024 neurons. A dropout 
layer with 0.5 probability is used between two dense layers to avoid 

Fig. 6. A county-based map of forecasting error results for the test dataset.  

K. Gavahi et al.                                                                                                                                                                                                                                 



Expert Systems With Applications 184 (2021) 115511

7

overfitting. 

4. Experimental results and analysis 

4.1. Evaluation metrics 

In order to be consistent with the literature, we used Root Mean 
Squared Error (RMSE) and Pearson Correlation Coefficient (PCC) mea
sures to evaluate and compare the performance of the methods used in 
this study. Furthermore, errors are squared in RMSE before they are 
averaged giving a relatively high weight to large errors. This is most 
useful in the case of crop yield forecasting where large errors are 
particularly undesirable (Abbaszadeh, Gavahi, & Moradkhani, 2020; 
Gavahi, Mousavi, & Ponnambalam, 2019; Ravichandran, Gavahi, Pon
nambalam, Burtea, & Mousavi, 2021). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=0(Mi − Oi)
2

n

√

(13)  

PCC =

∑N
i=0

(
Mi − M

)(
Oi − O

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=0

(
Mi − M

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=0

(
Oi − O

)2
√ (14) 

where Mi and Oi denote the model forecast and observed yield value, 
respectively, and M and O are their respective mean values. 

4.2. Implementation details 

In this study, Tensorflow 1.14 (Abadi et al., 2016) and Keras library 
(Gulli & Pal, 2017) in python were used to implement the proposed 
models on the University of Alabama High-Performance Computing 
(UAHPC) server with two Tesla V100-PCIE GPU. 

For the training process, different batch sizes of 16, 32, and 64 were 
tested and the best performance was achieved by the batch size of 32. 
The number of epochs was set to 50. We experimented with Stochastic 
Gradient Decent (SGD) (Fuh & Hu, 2006) and Adam optimizer (Kingma 
& Ba, 2015) with different learning rates and selected Adam optimizer 
with a learning rate of 0.001. Early stopping was used on the validation 
set to prevent models from overfitting. 

The input images are 4D tensors with the dimension of Time ×

Height × Width × band. This will create an enormous computational 
burden for the training process. Thus it is recommended to train such 
deep architectures with big datasets as inputs over GPU configurations 
(Wang, Wei, & Brooks, 2019). Considering the above implementation 
details, each training process for DeepYield architecture takes about 7 h 
and 42 min. Also, this high computational intensity makes it difficult to 
test different configurations which can be considered as one of the set
backs of such deep architectures. 

4.3. Forecasting performance for years 2018 and 2019 

We used 15 years of data (from 2003 to 2017) for training and 2 
years (from 2018 to 2019) for testing the trained models. A 20% vali
dation set was also used for tuning model hyperparameters and checking 
on the stopping criteria. Fig. 5 shows the forecast error in bu/acre for the 
years 2018 and 2019 over the CONUS. As it is shown in this figure, 
DeepYield results in the best performance with errors of less than 5 bu/ 
acre for the majority of the counties. The performance is specifically 
improved in major soybean-producing states including Ohio, Indiana, 
Illinois, and Iowa. States with lower rates of soybean production such as 

Fig. 7. Boxplots of loss values on the test dataset. The results are over 10 ex
periments with the same parameters for each model. The blue star represents 
the mean value which its value is also showed on top of each boxplot. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
The RMSE of the developed models comparing to other competing methods.  

Year DT CNN +
GP 

CNN- 
LSTM 

3DCNN ConvLSTM DeepYield 

2018  7.20  5.89  5.97  5.97  5.62  4.85 
2019  7.68  5.67  5.78  5.82  5.55  4.73 
Average  7.44  5.78  5.88  5.90  5.59  4.79  

Fig. 8. Loss versus the number of training epochs for training and validation sets.  
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Mississippi, Arkansas, and Louisiana are showing the worst perfor
mance. This is because most of the soybean-producing counties in these 
states have less than 10 to 30 percent cropland area which makes it 
difficult for models to accurately forecast their yield. 

The main comparison between the developed structures is illustrated 
in Fig. 6. It shows the boxplots of loss values on the test dataset by the 
network structure. Results are based on 10 runs of experiments for each 
network structure. The results based on RMSE clearly show that on 
average the DeepYield outperforms the ConvLSTM and 3DCNN net
works by 16 and 25 percent respectively. Also, it has the lowest variance 
of 0.0035 comparing to 0.0121 and 0.0073 for ConvLSTM and 3DCNN 
respectively. This shows that the DeepYield structure is not only per
forming better but also has higher stability. 

Fig. 7 demonstrates the convergence speed of the three deep net
works used in this study during the training phase for one of the sample 
runs. All the methods experience a sharp reduction in loss value in the 
first few epochs. However, despite some fluctuations, DeepYield con
verges faster to the optimal values of parameters. In addition, comparing 
the networks from the validation loss rate angle, it achieves the lowest 
RMSE value. 

4.4. Comparing with competing approaches 

To provide a comprehensive comparison with other methodologies 
presented in the literature, we have replicated the works by Johnson 
(2014) (Decision Tree), You et al. (2017) (histogram-based CNN + GP), 
and Sun et al. (2019) (histogram-based CNN-LSTM) to assess their per
formance in the same testing period (years 2018 and 2019). The county- 

level RMSE forecasts performances are presented in Table 1. The results 
are the average over 10 runs. Each row corresponds to the forecast for 
that year based on a model trained from 2003 to 2017. Model hyper
parameters and stopping criteria are tuned on a 20% hold-out validation 
set. The results show that DeepYield significantly outperforms other 
deep networks introduced in the literature. 

Fig. 8 shows the heat-scatter plots of the predicted versus observed 
soybean yield for each model. This figure indicates, our proposed 
approach has had the lowest bias and RMSE and the highest correlation 
coefficient compared to other networks presented in the literature. As it 
is expected the DT method is the simplest approach and has the lowest 
performance. The CNN + GP and CNN-LSTM results are relatively close 
while the CNN + GP slightly outperforms the CNN-LSTM. Comparing 
the performance metrics of DeepYield with CNN + GP shows that this 
method improves the RMSE and correlation coefficient by 16.5 and 7.6 
percent, respectively. The error distribution maps of these approaches 
are also depicted in Fig. 9, which indicates that DeepYield significantly 
outperforms the other methods. The DT model is mostly under
estimating the yield values (counties with dark red colors) which is 
consistent with the heat-scatter plot provided in Fig. 8 in which the 
points are mostly below the y = x line. The CNN + GP and CNN-LSTM 
models are performing much better by showing few sporadic counties 
with error values higher than 10 bu/acre. However, the best perfor
mance is achieved by the DeepYield model in which the majority of the 
counties have forecasting errors below 5 bu/acre. 

To further bolster the effectiveness of the proposed DeepYield, the 
method was also tested for forecasting corn yield in major corn- 
producing counties in the CONUS. To illustrate more on differences 

Fig. 9. Heat scatter plots of the predicted versus observed yield values for different models.  
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between corn and soybean, Fig. S1 (in supplementary file) shows a 
comparison between corn and soybean distributions for all the counties 
that produce these crops for the years 2003 to 2019. As it has been 
shown in Figs. S2 and S3, DeepYield has been successful in forecasting 

county-based corn yields for the test years as well. Similar to soybean, 
DeepYield still outperforms individual models and also shows higher 
performance in terms of RMSE and R, when compared with competing 
approaches in Fig. S3. This shows that the proposed DeepYield 

Fig. 10. Maps of forecasting error distribution of different approaches compared with DeepYield.  
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architecture can effectively capture the spatiotemporal patterns and 
successfully be used for the task of crop yield forecasting. 

5. Conclusion and future work 

In this study, a combined deep convolutional network based on 
ConvLSTM and 3DCNN, called DeepYield, was proposed for county- 
based crop yield forecasting across the CONUS. For the first time, a 
ConvLSTM network was used for crop yield forecasting. We further 
improved the effectiveness and usefulness of the deep network by 
combining the ConvLSTM with 3DCNN for better spatiotemporal feature 
extraction. Furthermore, instead of taking the average of pixel values or 
using histograms of pixel intensities, this study preserves the spatial 
dimension of the input images by using the full image as input. Remote 
sensing images from the MODIS satellite have been used as predictors to 
forecast the end-of-season soybean yield. The findings of this study 
indicated that the most efficient deep features were determined by the 
proposed approach, outperforming other individual methods i.e., 
ConvLSTM, and 3DCNN. The models were tested for forecasting soybean 
yields for two years of 2018 and 2019 and the results showed that they 
provide reasonably accurate forecast yields for these years. Finally, we 
compared the results of our proposed approach with those obtained by 
other methods such as Decision Tree, CNN + GP, and CNN-LSTM and 
concluded that our developed approach significantly outperforms the 
other competing methods. The outcome of this study can be beneficial 
for farmers, agricultural planners, and other agencies such as the United 
States Department of Agriculture (USDA), responsible for the national 
and regional crop yield forecasting. 

In this study, only SR and LST have been considered as the most 
attributing factors. Future works include adding other important inputs 
that affect plant growth and final yields such as hydrological variables, 
weather and environmental data, and plant genotypes. Moreover, the 
results of this study can only provide yield forecasts on a county level. 
More research is required to find solutions that could provide informa
tion at a finer scale. Also, as it is apparent in Figs. 6 and 10, there exists a 
high spatial correlation between the counties in proximity. This will 
provide room for further investigation by taking the spatial correlations 
into account. Furthermore, one important aspect to be investigated is 
the impacts of extreme events such as drought and hurricanes on the 
predictability of machine learning models and how to improve their 
accuracy during these events. 
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