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Crop yield forecasting is of great importance to crop market planning, crop insurance, harvest management, and
optimal nutrient management. Commonly used approaches for crop prediction include but are not limited to
conducting extensive manual surveys or using data from remote sensing. Considering the increasing amount of
data provided by remote sensing imagery, this approach is becoming increasingly important for the task of crop
yield forecasting and there is a need for more sophisticated approaches to extract the inherent spatiotemporal
patterns of these data. Although considerable progress has been made in this field by using Deep Learning (DL)
methods such as Convolutional Neural Networks (CNN), no study before has investigated the use of Convolu-
tional Long Short-Term Memory (ConvLSTM) for crop yield forecasting. Here, we propose DeepYield, a com-
bined structure, that integrates the ConvLSTM layers with the 3-Dimensional CNN (3DCNN) for more accurate
and reliable spatiotemporal feature extraction. The models are trained by using county-based historical yield
data and MODIS Land Surface Temperature (LST), Surface Reflectance (SR), and Land Cover (LC) data over 1836
primary soybean growing counites in the Contiguous United States (CONUS). The forecasting performance of the
developed models is compared against the competing approaches including Decision Trees, CNN + GP, and CNN-
LSTM and results indicate that DeepYield significantly outperforms these techniques and also performs better
than both ConvLSTM and 3DCNN.

1. Introduction sensing data (Gallego, Carfagna, & Baruth, 2010). Among these ap-

proaches, remote sensing can provide more affordable yield forecasting

Accurate and timely crop yield forecasting is of great importance for
a variety of reasons. It allows societies to understand the future available
food supply and helps the demand side to optimize the utilization of crop
resources. From a management point of view, future yield estimation
helps farmer plan better for the end-of-season by establishing risk
management policies, insurance premiums, and evaluating the value of
input costs (Johnson, 2014). It can also help better understanding the
impacts of severe weather or changing the climatic conditions such as
drought and hurricanes on crops (Ceglar et al., 2018; Gavahi, Abbas-
zadeh, Moradkhani, Zhan, & Hain, 2020; Liakos, Busato, Moshou,
Pearson, & Bochtis, 2018).

The commonly used crop yield forecasting methods use manual
surveys (United States Department of Agriculture. (2012), 2012), crop
simulation models (Hoogenboom, White, & Messina, 2004), or remote
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tools as several free and open-source remote sensing databases are
available online (Bolton & Friedl, 2013; Mendes, Aratjo, Dutta, &
Heeren, 2019). A variety of pertinent information can be extracted
through remote sensing data for yield forecasting. In particular, vege-
tation indices such as the Normalized Difference Vegetation Index
(NDVI) (Lofton et al., 2012; Shrestha et al., 2016; Shrestha, Di, Eugene,
Kang, & Bai, 2017), Green Leaf Area Index (GLAI) (Duchemin, Mai-
songrande, Boulet, & Benhadj, 2008), Enhanced Vegetation Index (EVI)
(Xue & Su, 2017), Normalized Difference Water Index (NDWI) (Bolton &
Friedl, 2013) have been widely utilized for crop yield forecasting.

The existence of disturbances, modeling errors, and various un-
certainties in the real systems, makes the task of modeling a highly
nonlinear phenomenon with spatiotemporal variability a daunting
challenge (Stojanovic, He, & Zhang, 2020; Wei, Li, & Stojanovic, 2021;
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Zhang, He, Stojanovic, Luan, & Liu, 2021). This is particularly true
where missing data exists in the input data as well (Chen, Zhang, Sto-
janovic, Zhang, & Zhang, 2020). With the advances in Machine Learning
(ML) techniques, considerable attention has been paid to their applica-
tion to multispectral satellite images for crop yield forecasting. These
include Decision Trees (DT) (Johnson, 2014; Kim & Lee, 2016), Support
Vector Machine (SVM) (Kim & Lee, 2016; Kuwata & Shibasaki, 2015),
Artificial Neural Network (ANN) (Kim & Lee, 2016), and Restricted
Boltzmann Machine (RBM) (Kuwata & Shibasaki, 2015). Despite the
widespread use of ML techniques, Deep Learning (DL) has recently been
considered a breakthrough data mining platform in agricultural remote
sensing studies and other applications (Sun, Di, Sun, Shen, & Lai, 2019).
This includes Convolutional Neural Networks (CNN), Long Short-Term
Memory (LSTM), Stacked Sparse Autoencoder (SSAE), and Recurrent
Neural Networks (RNN), which have been applied and outperformed
conventional ML algorithms in many studies (Kim et al., 2019).

For the first time, You, Li, Low, Lobell, and Ermon (2017) used CNN
and LSTM for crop yield prediction using Moderate-Resolution Imaging
Spectroradiometer (MODIS) satellite images. They incorporated a
Gaussian Processor (GP) into the last layer of the CNN to account for the
spatiotemporal variability of the inputs. Their proposed method out-
performed other competing techniques with a 30% Root Mean Squared
Error (RMSE) improvement. Wang, Tran, Desai, Lobell, and Ermon
(2018) continued the work and used deep transfer learning to extend the
method to other regions in Argentina and Brazil. Their findings
demonstrated that this approach can effectively learn features from raw
data and improve performance compared to other ML techniques. Rus-
sello (2018) proposed a 3DCNN architecture for crop yield prediction
and showed that it outperforms other traditional ML methods. In addi-
tion, the RNN and LSTM structures have been widely used to predict
crop yield due to their ability to account for the temporal characteristics
of the plant growth phenology. Jiang et al. (2018) applied a deep LSTM
for county-based corn yield prediction using soil and weather data. The
results in the state of Iowa showed the predictive power of the LSTM for
yield estimation. Sun et al. (2019) developed a CNN-LSTM model for
county-based soybean yield prediction and showed that their combined
approach outperforms the single CNN or LSTM. Khaki, Wang, and
Archontoulis (2020) proposed a CNN-RNN model for the similar study
and showed that the combined method significantly outperforms
traditional ML techniques.

To the best of our knowledge, no study has investigated the use of
Convolutional LSTM (ConvLSTM) for crop yield forecasting. Addition-
ally, in all those studies, the spatial dimension of the remote sensing
images were discarded by turning them into histograms of pixel in-
tensities or having their pixels averaged per county. Whereas including
the spatial dimension can provide crucial information about crops’
pertinent variables such as soil properties and elevation and thus in-
crease the models’ forecasting skills. Moreover, this study provides a
more rigorous spatiotemporal feature extraction by combining the
3DCNN and ConvLSTM layers. The comparison with the individual ar-
chitectures shows that the proposed combined approach (DeepYield)
provides more accurate crop yield forecasts.

Previous studies show that DL algorithms are becoming the main-
stream of forecasting and crop yield prediction (Khaki et al., 2020; Sun
et al., 2019). Thus, the main motivation of this study is to introduce an
integrated model that uses satellite imagery and produces yield pre-
diction without a need to reduce the spatial dimensionality of the images
or use the handcraft features. In this study, we propose a procedure to
effectively combine the ConvLSTM and 3DCNN structures for county-
based crop yield forecasting in the contiguous United States. The main
contributions of this study are as follows: (1) instead of taking the
average of pixel values or using histograms of pixel intensities, this study
preserves the spatial characteristics of the input images by using the full
image as input. As a result, the spatial correlation of adjacent pixels is
preserved which enhances the performance of convolutional filters, (2)
ConvLSTM is used for the first time for the crop yield forecasting
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accounting for the inherent spatiotemporal patterns of the input images,
(3) a combined architecture, namely DeepYield, based on ConvLSTM
and 3DCNN is introduced for more accurate and robust crop yield
forecasting. The proposed approach uses an end-to-end learning scheme,
to automatically process the input and provide a more accurate and
reliable yield forecast.

The remainder of the paper is organized as follows: Section 2 de-
scribes the datasets and methods. Section 3 explains the proposed
method, its implementation, and capabilities. The experimental results
and analysis are presented in Section 4. Finally, a summary and
concluding remarks are given in Section 5.

2. Materials and methods
2.1. Datasets

2.1.1. Yield data

County-based soybean statistics were collected from the USDA Na-
tional Agricultural Statistical Services (NASS) Quick Stat tool available
at https://www.nass.usda.gov/Quick Stats/index.php. The yield data
from 2003 to 2019 were used as ground truth labels for model training.

2.1.2. MODIS Surface reflectance

The MODIS/Terra Surface Reflectance (SR) product provides 7 bands
of surface spectral reflectance at 500 m spatial resolution every 8 days
(Vermote, 2015). Each pixel contains the best possible SR observation
value selected from all the acquisitions within the 8-day window. The
product is publicly available at https://Ipdaac.usgs.gov/products/mod
09alv006/. Here, we used all 7 bands of version 6 of this product for
soybean yield forecasting.

2.1.3. MODIS Land cover

The Terra and Aqua combined MODIS Land Cover type (LC) product
provides yearly land cover types derived from six classification schemes
(Sulla-Menashe & Friedl, 2019) at 500 m spatial resolution. The annual
University of Maryland (UMD) classification (land cover type 2) scheme
was used in this study to mask cropland areas. The dataset is publicly
available at https://Ipdaac.usgs.gov/products/med12q1v006/.

2.1.4. MODIS Land Surface temperature

The MODIS Version 6 Land Surface Temperature (LST) provides an
average 8-day per-pixel daytime and nighttime surface temperature at 1
km spatial resolution (Wan, 2015). The temperature is collected by using
7 thermal infrared bands using the LST algorithm (Wan, 2006). This
dataset has been widely used in multitude of studies (Abbaszadeh et al.,
2021; Benali et al., 2012; Wang et al., 2021). In this study, both daytime
and nighttime LSTs were used. The product is publicly available at https:
//lpdaac.usgs.gov/products/myd11a2v006/.

2.2. 3D convolutional networks

For the first time, Ji, Xu, Yang, and Yu (2013) proposed a 3DCNN
structure for human action recognition applying 3D convolutions along
both temporal and spatial dimensions. As opposed to directly inferring
the temporal information from raw data, 3DCNNs have shown to be
more suitable for spatiotemporal presentations (Elboushaki, Hannane,
Afdel, & Koutti, 2020). This method has been successfully used in many
applications such as gesture recognition (Elboushaki et al., 2020; Ji,
Zhang, Xu, Shi, & Duan, 2018; Lin et al., 2016; Liu, Zhang, & Tian, 2016;
Tran, Bourdev, Fergus, Torresani, & Paluri, 2015), learning 3D struc-
tures from LiDAR (Maturana & Scherer, 2015), and learning spatio-
spectral patterns from hyperspectral images (Li, Zhang, & Shen,
2017). In general, the 3DCNNs are not as widely used as the 2DCNN
since the temporal dimension is usually ignored in computer vision
studies (Ji et al., 2018). However, remote sensing images often contain
temporal information (feature) which can be more efficiently exploited
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Fig. 2. The inner structure of a ConvLSTM cell.

using the 3DCNN. For instance, surface reflectance images captured
during the growth season of soybean at different stages of the crop
phenology contain crop growth information that is necessary for a more
accurate end-of-season yield forecast. A 3DCNN structure can simulta-
neously extract both temporal and spatial information and potentially
provide more accurate and robust feature extraction.

In 2DCNNs, extracting features from a local neighborhood on a
specific feature map is performed by 2D convolutional filters. Then the
bias is added and the result is passed through a sigmoid function.
Equation (1) represents the value of a unit at position y(x, y) in a specific
layer and for a specific feature.

1 J
s )= a4 53 St 9043, ) w
n =0 j=0

where ¢ is the sigmoid function. X denotes the input 2D image. b
represents bias. wy, is the kernel weight for the nth feature at position (i,
j) of the filter, and I and J represent the kernel width and height,
respectively.

While in the 2DCNNs, convolutions are applied on the 2D feature
maps to extract features from spatial dimension only, in the 3DCNNs, the
convolutional filters exploit features from both temporal and spatial
dimensions. Formally, the value at position y(x,y,t) in a specific layer

and for the nth feature is given by Eq. (2):

y(x, v, t)—a(b-i-zz Z

J
7 =0 i=0 j=0

Wtian(t+r)(x+i)(y +j)n) (2)

where R is the kernel size along the temporal dimension, wy;, is the
weight at position (r,1,j) of the 3D kernel with size (R,I,J) and for the
nth feature. In practice, temporal images also consist of multispectral
channels i.e. spatial, temporal, and spectral dimensions creating 4D
tensors. Like the 2DCNNs where the relations among spectral bands are
treated independently, in 3DCNNs each spectral band is treated sepa-
rately (e.g., RGB bands in a 2DCNN). This allows for more rigorous in-
formation exploitation from various MODIS bands comparing to
applying 2DCNN Fig. 1.

2.3. ConvLSTM networks

LSTM is a special form of RNN, which has been proven to be stable
for capturing long-term patterns (Hochreiter & Schmidhuber, 1997).
One important aspect of an LSTM network is its ability to maintain a cell
state from the previous sequence of observations while eliminating
irrelevant information. In the LSTM network this is performed by
maintaining the information through three gates: input gate, forget gate,
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and output gate. Each of these gates returns a state variable, i<*>, f<t>,
and 0<*>, respectively, along with the cell output, a<*>. See Egs. (1)-(6)
in which (°) represents the elementwise product. Fig. 2, shows the inner
structure of an LSTM cell (Gers & Schmidhuber, 2000).
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Shi et al. (2015) proposed a novel combination of convolutional
filters and LSTM layers, called ConvLSTM, for precipitation nowcasting.
In this method, the convolutional filters are applied to the input-to-state
and state-to-state transitions of the LSTM. Equations (7)-(12) describe
the architecture of the method. In these equations (*) denotes the
convolution operator and ¢ represents the sigmoid activation function.

i = o(Wx® + W™ + W + ;) €)
fi = (r(W,Cf"*x<r> —+ W,,f*01<"l> + W(f(’c“’1> —+ bf) (©)]
¢ = fO°CN {0  tanh (W *x 0 + W a4 b, ) (10)
0 = o (W x4+ W, *a"" + W, °c 4+ b,) 11
a = 0<’>omnh(c<’> ) (12)

ConvLSTM is known to be well suited for capturing the inherent
spatiotemporal patterns of large-scale datasets (Lee & Kim, 2020). Like
the traditional CNN networks, the output dimension of a ConvLSTM
layer is specified by the number of filters used in the network. However,
in the ConvLSTM structure, eight filters are required for each desired
output. It is important to note that applying the convolutional filters to

the LSTM significantly reduces the number of model parameters
compared to a single LSTM structure and thus allows for training even
deeper models (Elboushaki et al., 2020; Petersen, Rodrigues, & Pereira,
2019).

3. Proposed approach
3.1. Data preprocessing

The datasets used in this study include MODIS LST (2 bands), SR (7
bands), and Land Use Land Cover (1 band). The latter was used to mask
the cropland areas over each county. 14 tiles of the MODIS satellite
cover the CONUS, which were downloaded using an Application Pro-
gramming Interface (API) developed by the authors. The tiles were then
mosaiced into a singular raster image that covers the extent of the
CONUS. The mosaiced raster was later clipped over each county and
images for the selected periods were concatenated creating 3D tensors.
All the datasets used in this study have a temporal resolution of 8 days
(per image) from January 2003 to December 2019. However, the spatial
resolution of MODIS SR and LC is 500 m which is different from the
MODIS LST dataset that has a 1 km spatial resolution. Hence the 500 m
images were upscaled to 1 km resolution using a linear interpolation
method. Finally, bands of each product were concatenated to the 3D
tensors created before to produce 4D tensors with the dimension of
Time x Height x Width x band. Zero paddings, a process for expanding
the size of the input images by adding rows and columns of zero values,
were used to make image sizes identical before feeding to the CNN. The
detailed preprocessing pipeline of the MODIS images is described in
Fig. 3. Owing to the high spatial resolution of the MODIS data and the
number of counties, the preprocessing workflow operation creates a
tremendous computational burden. To overcome this challenge, the
preprocessing workflow was parallelized over the University of Alabama
High Performance Computing (UAHPC) server to speed up the process.

3.2. Networks topology

Fig. 3 shows the 3DCNN and ConvLSTM architectures used in this
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study for county-based soybean forecasting over the CONUS. MODIS
images were converted into 4D tensors during the data preprocessing
step and used as inputs to the networks. As depicted in this figure, the
tensors passed through multiple convolutions and max-pooling layers.
Multiple experiments were performed to find the optimum number of
blocks and their respective parameters. In total 4 to 7 blocks were tested.
For each block, 32, 64, 128, 512, or 1024 3D filters were considered,
conditioned that the number of filters must increase by moving forward
to the next block. For example, considering a total of 4 blocks, this will
create 20 combinations. The number of neurons in the final dense layer
was selected to be either 512 or 1024. Thus, in total, 42*2 = 84 com-
binations were tested and the best combination with 5 blocks of
convolution and max-pooling layers followed by a flatten layer and a

final dense layer with 1024 neurons was selected. The first block is a
dimension reduction block in which 9 spectral bands of MODIS LST and
SR are converted to 3 feature maps. The next four blocks perform the
spatiotemporal feature extraction. ReLU activation function was used in
these blocks for faster convergence of the network (Nair & Hinton,
2010). Extracted features are then connected to a flatten layer followed
by two dense layers and a dropout layer with 0.5 probability in between.
Dropout is a regularization method that at each epoch, randomly ignores
some neurons during the training process. The method has proven to be
effective in reducing the chance of overfitting (Srivastava, Hinton,
Krizhevsky, & Salakhutdinov, 2014).

Fig. 3 also depicts the deep ConvLSTM architecture. In deep archi-
tecture, the output from one ConvLSTM layer is the input for the next
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Fig. 6. A county-based map of forecasting error results for the test dataset.

layer. Several experiments, similar to the method explained for 3DCNN,
were performed with up to 10 ConvLSTM layers and the best architec-
ture was selected. The proposed ConvLSTM network consists of 8 layers
such that each layer has 10 filters of size (3, 3) and a stride size of 1. The
same padding is used in each ConvLSTM layer to preserve the spatial
dimension of the extracted spatiotemporal features during the con-
volutional process. Batch normalization, an operation that normalizes
layers of inputs, is also performed before each ConvLSTM layer to speed
up the learning process and ensure reasonable inputs for activations
(loffe & Szegedy, 2015). Each ConvLSTM layer returns a sequence of last
k time steps which is fed into the next layer. Except for the last layer
which returns the final long short-term spatiotemporal features with the
temporal dimension of one. The features are then flattened and con-
nected to a dense layer with 512 neurons. Similar to the 3DCNN archi-
tecture, the linear activation function is used for the dense layers, and
dropout with 0.5 probability is used to avoid overfitting.

3.3. DeepYield arcitecture

Fig. 4 presents the DeepYield architecture. In DeepYield, 3DCNN and
ConvLSTM networks are combined for improved crop yield forecasting.
Several experiments, similar to what was explained for 3DCNN and
ConvLSTM, were performed to find the best number of 3DCNN and
ConvLSTM blocks, and their respective parameters, to achieve the best
performance. The LSTM blocks are connected to 5 blocks of 3DCNN for
more rigorous spatiotemporal feature extraction. Since the ConvLSTM
layers require fewer learning parameters DeepYield architecture allows
for a deeper network to be trained. After processing the complete
sequence of 3D inputs, the 3DCNN network performs several convolu-
tions and max-pooling operations on the input images and prepares the
final feature maps to be fed to the LSTM blocks. Then the LSTM blocks
receive the extracted feature maps provided by the 3DCNN to perform
more rigorous spatiotemporal feature extraction. Finally, the final
feature maps will be fed to a dense layer with 1024 neurons. A dropout
layer with 0.5 probability is used between two dense layers to avoid
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Table 1

The RMSE of the developed models comparing to other competing methods.
Year DT CNN + CNN- 3DCNN  ConvLSTM  DeepYield

GP LSTM

2018 7.20 5.89 5.97 5.97 5.62 4.85
2019 7.68 5.67 5.78 5.82 5.55 4.73
Average 7.44 5.78 5.88 5.90 5.59 4.79

overfitting.

4. Experimental results and analysis
4.1. Evaluation metrics

In order to be consistent with the literature, we used Root Mean
Squared Error (RMSE) and Pearson Correlation Coefficient (PCC) mea-
sures to evaluate and compare the performance of the methods used in
this study. Furthermore, errors are squared in RMSE before they are
averaged giving a relatively high weight to large errors. This is most
useful in the case of crop yield forecasting where large errors are
particularly undesirable (Abbaszadeh, Gavahi, & Moradkhani, 2020;
Gavahi, Mousavi, & Ponnambalam, 2019; Ravichandran, Gavahi, Pon-
nambalam, Burtea, & Mousavi, 2021).
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where M; and O; denote the model forecast and observed yield value,
respectively, and M and O are their respective mean values.

4.2. Implementation details

In this study, Tensorflow 1.14 (Abadi et al., 2016) and Keras library
(Gulli & Pal, 2017) in python were used to implement the proposed
models on the University of Alabama High-Performance Computing
(UAHPC) server with two Tesla V100-PCIE GPU.

For the training process, different batch sizes of 16, 32, and 64 were
tested and the best performance was achieved by the batch size of 32.
The number of epochs was set to 50. We experimented with Stochastic
Gradient Decent (SGD) (Fuh & Hu, 2006) and Adam optimizer (Kingma
& Ba, 2015) with different learning rates and selected Adam optimizer
with a learning rate of 0.001. Early stopping was used on the validation
set to prevent models from overfitting.

The input images are 4D tensors with the dimension of Time X
Height x Width x band. This will create an enormous computational
burden for the training process. Thus it is recommended to train such
deep architectures with big datasets as inputs over GPU configurations
(Wang, Wei, & Brooks, 2019). Considering the above implementation
details, each training process for DeepYield architecture takes about 7 h
and 42 min. Also, this high computational intensity makes it difficult to
test different configurations which can be considered as one of the set-
backs of such deep architectures.

4.3. Forecasting performance for years 2018 and 2019

We used 15 years of data (from 2003 to 2017) for training and 2
years (from 2018 to 2019) for testing the trained models. A 20% vali-
dation set was also used for tuning model hyperparameters and checking
on the stopping criteria. Fig. 5 shows the forecast error in bu/acre for the
years 2018 and 2019 over the CONUS. As it is shown in this figure,
DeepYield results in the best performance with errors of less than 5 bu/
acre for the majority of the counties. The performance is specifically
improved in major soybean-producing states including Ohio, Indiana,
Illinois, and Iowa. States with lower rates of soybean production such as
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Fig. 8. Loss versus the number of training epochs for training and validation sets.
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Fig. 9. Heat scatter plots of the predicted versus observed yield values for different models.

Mississippi, Arkansas, and Louisiana are showing the worst perfor-
mance. This is because most of the soybean-producing counties in these
states have less than 10 to 30 percent cropland area which makes it
difficult for models to accurately forecast their yield.

The main comparison between the developed structures is illustrated
in Fig. 6. It shows the boxplots of loss values on the test dataset by the
network structure. Results are based on 10 runs of experiments for each
network structure. The results based on RMSE clearly show that on
average the DeepYield outperforms the ConvLSTM and 3DCNN net-
works by 16 and 25 percent respectively. Also, it has the lowest variance
of 0.0035 comparing to 0.0121 and 0.0073 for ConvLSTM and 3DCNN
respectively. This shows that the DeepYield structure is not only per-
forming better but also has higher stability.

Fig. 7 demonstrates the convergence speed of the three deep net-
works used in this study during the training phase for one of the sample
runs. All the methods experience a sharp reduction in loss value in the
first few epochs. However, despite some fluctuations, DeepYield con-
verges faster to the optimal values of parameters. In addition, comparing
the networks from the validation loss rate angle, it achieves the lowest
RMSE value.

4.4. Comparing with competing approaches

To provide a comprehensive comparison with other methodologies
presented in the literature, we have replicated the works by Johnson
(2014) (Decision Tree), You et al. (2017) (histogram-based CNN + GP),
and Sun et al. (2019) (histogram-based CNN-LSTM) to assess their per-
formance in the same testing period (years 2018 and 2019). The county-

level RMSE forecasts performances are presented in Table 1. The results
are the average over 10 runs. Each row corresponds to the forecast for
that year based on a model trained from 2003 to 2017. Model hyper-
parameters and stopping criteria are tuned on a 20% hold-out validation
set. The results show that DeepYield significantly outperforms other
deep networks introduced in the literature.

Fig. 8 shows the heat-scatter plots of the predicted versus observed
soybean yield for each model. This figure indicates, our proposed
approach has had the lowest bias and RMSE and the highest correlation
coefficient compared to other networks presented in the literature. As it
is expected the DT method is the simplest approach and has the lowest
performance. The CNN + GP and CNN-LSTM results are relatively close
while the CNN + GP slightly outperforms the CNN-LSTM. Comparing
the performance metrics of DeepYield with CNN + GP shows that this
method improves the RMSE and correlation coefficient by 16.5 and 7.6
percent, respectively. The error distribution maps of these approaches
are also depicted in Fig. 9, which indicates that DeepYield significantly
outperforms the other methods. The DT model is mostly under-
estimating the yield values (counties with dark red colors) which is
consistent with the heat-scatter plot provided in Fig. 8 in which the
points are mostly below the y = x line. The CNN + GP and CNN-LSTM
models are performing much better by showing few sporadic counties
with error values higher than 10 bu/acre. However, the best perfor-
mance is achieved by the DeepYield model in which the majority of the
counties have forecasting errors below 5 bu/acre.

To further bolster the effectiveness of the proposed DeepYield, the
method was also tested for forecasting corn yield in major corn-
producing counties in the CONUS. To illustrate more on differences
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Fig. 10. Maps of forecasting error distribution of different approaches compared with DeepYield.

between corn and soybean, Fig. S1 (in supplementary file) shows a
comparison between corn and soybean distributions for all the counties
that produce these crops for the years 2003 to 2019. As it has been
shown in Figs. S2 and S3, DeepYield has been successful in forecasting

county-based corn yields for the test years as well. Similar to soybean,
DeepYield still outperforms individual models and also shows higher
performance in terms of RMSE and R, when compared with competing
approaches in Fig. S3. This shows that the proposed DeepYield
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architecture can effectively capture the spatiotemporal patterns and
successfully be used for the task of crop yield forecasting.

5. Conclusion and future work

In this study, a combined deep convolutional network based on
ConvLSTM and 3DCNN, called DeepYield, was proposed for county-
based crop yield forecasting across the CONUS. For the first time, a
ConvLSTM network was used for crop yield forecasting. We further
improved the effectiveness and usefulness of the deep network by
combining the ConvLSTM with 3DCNN for better spatiotemporal feature
extraction. Furthermore, instead of taking the average of pixel values or
using histograms of pixel intensities, this study preserves the spatial
dimension of the input images by using the full image as input. Remote
sensing images from the MODIS satellite have been used as predictors to
forecast the end-of-season soybean yield. The findings of this study
indicated that the most efficient deep features were determined by the
proposed approach, outperforming other individual methods i.e.,
ConvLSTM, and 3DCNN. The models were tested for forecasting soybean
yields for two years of 2018 and 2019 and the results showed that they
provide reasonably accurate forecast yields for these years. Finally, we
compared the results of our proposed approach with those obtained by
other methods such as Decision Tree, CNN + GP, and CNN-LSTM and
concluded that our developed approach significantly outperforms the
other competing methods. The outcome of this study can be beneficial
for farmers, agricultural planners, and other agencies such as the United
States Department of Agriculture (USDA), responsible for the national
and regional crop yield forecasting.

In this study, only SR and LST have been considered as the most
attributing factors. Future works include adding other important inputs
that affect plant growth and final yields such as hydrological variables,
weather and environmental data, and plant genotypes. Moreover, the
results of this study can only provide yield forecasts on a county level.
More research is required to find solutions that could provide informa-
tion at a finer scale. Also, as it is apparent in Figs. 6 and 10, there exists a
high spatial correlation between the counties in proximity. This will
provide room for further investigation by taking the spatial correlations
into account. Furthermore, one important aspect to be investigated is
the impacts of extreme events such as drought and hurricanes on the
predictability of machine learning models and how to improve their
accuracy during these events.
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