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A B S T R A C T   

Estimation of actual evapotranspiration (ET) is key to irrigation water application and basin-scale agricultural 
water demand assessment. While modelers and water managers rely on stand-alone ET estimation model 
application in their planning and management, several uncertainties including model structure, parameter set, 
and initial condition exist, cascading in ET calculation leading to inaccurate results. In this study, an ensemble 
data assimilation approach is employed to explore the benefit of remotely sensed actual ET to improve the 
simulations of the widely used Priestley-Taylor ET model while accounting for uncertainties. The study is con
ducted at farm-scale for three different crops (corn, cotton, and soybean) in the Mobile River basin in Deep South 
United States, which has experienced severe droughts during the cropping seasons in the past. Prior to employing 
data assimilation, the Priestley-Taylor model is modified for each crop to simulate actual ET instead of reference 
ET. Following which the model is calibrated over 320,000 farms in the river basin for identifying the optimal 
parameters. The calibrated model is later used for the Open-Loop simulation, as well as in the development and 
implementation of data assimilation. The simulated and observed actual ET is used to calculate the Kalman gain 
and update the model initialization every time step during the assimilation period. The findings of the study 
showed that assimilating the actual ET observation into the Priestley-Taylor model results in more accurate and 
reliable model initialization and also posterior ET estimates at farm-scale compared to open-loop simulation. 
These results highlight, the importance of digital agricultural tools in robust agricultural planning and man
agement and open door for further research.   

1. Introduction 

The continual surge in global food demand is putting immense 
pressure on food systems for boosting crop yields. One approach to 
attain this increasing food demand is by adopting irrigated farming 
(Pandey, 2019; Zhang et al., 2021). Majority of the agricultural opera
tions in several countries across the world have already shifted from 
rainfed to irrigated agriculture including South and Southeast Asia, 
United States (US), China, and European nations (Puy et al., 2021). It is 
anticipated that by 2050, the irrigated areas across the globe may in
crease up to 800 Mha (Puy et al., 2020) relative to the current coverage 
of 367 Mha (Siebert et al., 2005). This projected escalation of irrigated 
arable land will lead to an immense increase in freshwater demand, yet, 
with the world approaching towards a water scarce future (Boretti and 
Rosa, 2019; Falkenmark, 2013), hence, sustainable and judicious water 
application is paramount. Irrigation water demand is a direct function of 
crop water consumption, also known as evapotranspiration (ET). 

Therefore, designing irrigation water projects including regional agri
cultural water demand and water allocation requires reliable and ac
curate estimates of actual ET (Deb et al., 2022). This is more crucial 
during droughts and regions experiencing persistent droughts occur
ring across the world such as in western United States (US) and 
Australia (Deb et al., 2019; Deb and Kiem, 2020; Hatchett et al., 2016; 
Xu et al., 2019). Moreover, it is also a key phenomenon in the water 
cycle. This is because globally actual ET contributes to returning 
approximately 60% of moisture into the atmosphere by using half of the 
solar energy absorbed by the earth’s surface (Trenberth et al., 2007). 

There are several methods for estimating actual ET including eddy 
covariance method (Mizutani et al., 1997), lysimeter (Fisher and Allen, 
1991), and empirical modeling. While the first two methods are very 
location-specific and most accurate, the limitation is in their installation 
that is tedious and expensive. Whereas, models are mathematical rep
resentations of the interactions among different variables that drive the 
ET process. Several models have been developed since the 1940s and are 
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widely used globally. Since actual ET varies with land cover and crops, 
reference ET is a more generalized variable, which is the ET from a 
reference crop, i.e., alfalfa (Medicago sativa) under given climatic con
ditions. Majority of the developed models calculate the reference ET and 
can be converted into actual ET for a specific crop by multiplying the 
stage-wise crop coefficients. While Food and Agricultural Organization 
(FAO-56) Penman-Monteith model (Allen et al., 1998) is considered as 
one of the most sophisticated models in estimating reference ET, it re
quires numerous forcing data including temperature, humidity, wind 
speed, solar radiation, soil heat flux, saturation, and actual vapor pres
sure (Deb et al., 2015; Yadav et al., 2016). Several developing nations 
still lack a good historical record of these variables. Although at global 
scale, gridded information is available for these variables, yet they are 
too coarse to represent the actual magnitude (Sun et al., 2018). 

Alternatively, more simplistic models such as the Priestley-Taylor 
model (solar radiation and temperature-based) (Priestley and Taylor, 
1972) and Hargreaves-Samani (temperature-based) (Hargreaves and 
Samani, 1985) models have also been evaluated in several locations and 
found equally good as the Penman-Monteith model. For instance, Utset 
et al. (2004), and Akumaga and Alderman (2019) compared 
Priestley-Taylor and Penman-Monteith models against observed refer
ence ET in the Mediterranean region, and Oklahoma US, respectively. 
The results show an insignificant difference in the model simulated ET at 
daily time step for the earlier study and similar model performance at 
rainfed farms in humid regions for the latter. 

While modelers tend to calibrate these models in estimating refer
ence ET, often times the results are biased or erroneous due to several 
uncertainties including: 1) forcing data uncertainty due to measurement 
error and spatial and temporal representativeness of data; 2) model 
structural uncertainty due to imperfect representation of the system; 3) 
parameter uncertainty generating from the model conceptualization; 
and 4) initial or boundary condition uncertainty (Abbaszadeh et al., 
2019a; Moradkhani et al., 2019; Pathiraja et al., 2018; Renard et al., 
2010; Xu et al., 2021a). Therefore, it is well recognized that model 
simulations are robust within a probabilistic framework that estimates 
all the above mentioned uncertainties (Moradkhani et al., 2019). 
Bayesian inference is an approach to quantify this, and several Bayesian 
methods are well-acknowledged in the agricultural sector, especially 
crop yield predictions (Abbaszadeh et al., 2022; Besag and Higdon, 
1999; Drury et al., 2017; Gavahi et al., 2021; Morrison et al., 2012; 
Shirley et al., 2020). Data assimilation is a technique that facilitates 
integration of observations into model simulations to result in the best 
model estimates. This is done by sequential Bayesian estimation 
methods within a probabilistic framework that constrains model pre
dictions with the observations at a given time step (Vetra-Carvalho et al., 
2018). 

The Ensemble Kalman Filter (EnKF) algorithm (Crow and Wood, 
2003; Reichle et al., 2002) is the widely used data assimilation tech
nique in hydrology where the ensemble members or “particles” are 
updated based on linear equations. While this technique assumes linear 
and Gaussian distributions of the dataset, for non-Gaussian distribu
tions, the Particle Filter (PF) algorithm provides the flexibility to not 
only generate random replicates of state variables and parameters but 
also updating the weights associated with these quantities (i.e. poste
rior) according to their importance in accurately estimating or fore
casting the model outputs. Further statistical inferences can be made 
based on the ensemble of realizations (Moradkhani et al., 2005). 
Furthermore, in addition to the mean and covariance, a thorough rep
resentation of the posterior distribution can be availed for the ensemble 
of realizations using PF algorithm, and therefore, it is more suited for 
highly non-linear dynamical systems (Dechant and Moradkhani, 2012; 
Moradkhani et al., 2019). In this study, PF in conjunction with Variable 
Variance Multiplier (hereafter PF-VVM) is used to assimilate the actual 
ET observations into the modified Priestley-Taylor model to improve its 
predictive skill and explore the benefit of utilizing data assimilation in 
agricultural planning and management. 

Majority of the data assimilation techniques were developed and 
employed by focusing on improving hydrologic modeling while ac
counting for uncertainties (Abbaszadeh et al., 2021, 2018; Bahrami 
et al., 2021; Gavahi et al., 2020; Jafarzadegan et al., 2021; Kim et al., 
2021; Li et al., 2015; Schumacher et al., 2018; Xu et al., 2020; Zhang 
et al., 2021). Similarly, in the agricultural sector, several of these data 
assimilation algorithms were employed for improving the model pre
dictions. For instance, remote sensing based soil moisture was assimi
lated into crop models using the EnKF algorithm for improving crop 
yield (de Wit and van Diepen, 2007; Ines et al., 2013; Zhuo et al., 2019; 
Ziliani et al., 2022) and agricultural drought prediction (Bolten et al., 
2010). Silvestro et al. (2017) assimilated canopy cover into crop models 
using the EnKF approach for improving crop yield estimation. On the 
other hand, Huang et al. (2015) and Mokhtari et al. (2018) assimilated 
Leaf Area Index (LAI) using a sophisticated four-dimensional variations 
data assimilation algorithm into crop models to improve yield estima
tion. Also, Li et al. (2014) improved corn yield estimations of coupled 
WOFOST-HYDRUS-1D model by assimilating LAI using the EnKF data 
assimilation algorithm. 

These studies illustrate that the application of data assimilation al
gorithms in the agricultural sector is still in its preliminary stage and the 
primary focus of the studies is crop yield estimation. Another major 
drawback of the existing studies is employing the EnKF algorithm, which 
assumes a linear updating rule and a Gaussian distribution of observa
tion and model errors, which may not always be true for the considered 
variables. Given these knowledge gaps and the importance of actual ET 
estimation, the objective of this paper is to assimilate observed ET into a 
widely used ET estimation model (Priestley-Taylor) for improving the 
actual ET estimates at farm-scale. There are two novelties in this study: 
1) data assimilation of satellite-based observed ET into ET estimation 
models (as no other study has investigated this), and 2) employing PF- 
VVM of data assimilation in the agricultural sector, which has not 
been used before. The findings of this study will be useful for regional 
agricultural water resources planning and management. 

2. Study area and datasets 

The Mobile River Basin located in the southeast US spans over four 
states including Tennessee, Georgia, Mississippi, and Alabama (Fig. 1). 
The river basin comprises an area of 115,200 km2 and approximately 
two-thirds of the basin is contained in Alabama. It is the fourth largest 
river basin in the US and contributes to an average annual discharge of 
1760 m3/s. The average annual temperature and precipitation range 
from 15 ◦C to 21 ◦C and 1270 mm to 1524 mm, respectively. Sandy loam 
soil dominates the river basin, however, the central region also com
prises of silty loam soil (Mitchell et al., 2004). The average annual actual 
evapotranspiration is approximately 1023 mm across the river basin 
(Senay et al., 2013). The dominant land cover in the river basin is forest 
(~60%), and agriculture contributes to 26% of the land cover (Warner 
et al., 2005). Crop acreage study suggests corn, cotton, and soybean are 
the most widely grown crops in the basin (Harned et al., 2004). 
Generally, corn is sown between mid-March and is harvested mid-July, 
whereas, cotton and soybean are sown in mid-April and mid-May, and 
harvested in mid-September and mid-October, respectively (Norfleet 
et al., 1997). Also, it is to be noted that the average farm size across the 
Mobile River basin is approximately 161 ha (~398 acres) (USDA, 2020). 

Several datasets were required to pursue the study which are re
ported in Table 1. It is to be noted that due to the unavailability of 
AmeriFlux tower sites within the river basin, the actual ET used in this 
study is a satellite-derived dataset from the operational Simplified Sur
face Energy Balance (SSEBop) by the United States Geological Survey 
(USGS). The dataset is derived by blending the ET fractions from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and 
reference ET from a thermal index approach. This dataset has been 
widely used across the US and has been reported to perform well when 
compared to in situ measurements, especially in croplands (Chen et al., 
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2016). Also, it is worth noting that the cropland data layer which 
comprises of the annual agricultural croplands across the Contiguous US 
was used in this study for the year 2018. 

3. Methodology 

This section first describes the steps taken to extract the forcing 
variables at farm-scale from the cropland data layer. Following this, the 
ET estimation model is summarized, i.e. Priestley-Taylor equation, and 
its modifications in this study, then the calibration/validation of the 
model. This is followed by the steps of data assimilation of the Priestley- 
Taylor model. A Bayesian data assimilation approach was employed 
where the prior and the posterior probability distributions of the 
variables were obtained, and the predictive uncertainty was 
characterized. A schematic data assimilation framework employed 
in this study is shown in Fig. 2 and further details on the approach 

are given in Section 3.4. 

3.1. Extraction of input variables at farm-scale 

Since in this study the analysis was conducted at farm-scale, all the 
forcing variables were required at the same spatial scale. To do this, first, 
the cropland data layer (which was in raster format) was converted to 
polygons, where each polygon represented a farm. This resulted in over 
224 million polygons across the river basin comprising of 59 crops. Since 
the target crops were corn, cotton, and soybean, the polygons corre
sponding to these three crops were extracted and stored. Thereafter, the 
forcing variables (incoming shortwave radiation, minimum and 
maximum temperature, and minimum and maximum relative humidity) 
of different spatial resolutions (as in Table 1) were regridded to the 
spatial resolution of the output variable, i.e., observed actual ET of 900 
m. The regridding was done by using the resampling tool in ArcPy 

Fig. 1. Location of Mobile River Basin within southeast US.  
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using the bilinear interpolation since it accounts for the weighted 
distance average of the nearest four grids in assigning the value. It 
is worth noting that since the average farm size is 161 ha in the river 
basin, each pixel (810,000 m2 or 81 ha) of the regridded variables was 
well within the farm size. 

3.2. Priestley-Taylor ET model 

The Priestley-Taylor model (Priestley and Taylor, 1972) was 
employed for the calculation of reference ET in this study since it was 
identified to be the best performing model at a daily time step in a suit of 
six models within the southeast US (Lu et al., 2005). The basic model 
structure is given in Eq. (1). 

ET = α ×
Δ × (Rn − G)

λ × (Δ + γ)
(1)  

where ET is reference ET in mm/day, α is model parameter used in 
model calibration, Δ is slope of saturated vapor pressure, Rn is net solar 
radiation in W/m2, G is soil heat flux in W/m2 and can be considered as 
zero at a daily time step (Purdy et al., 2016), λ is latent heat of 

vaporization of water which is constant (2.26 MJ/kg), and γ is the 
psychrometric constant. 

The variables Δ, Rn, and γ need further calculation and the basic 
equations are provided here in Eqs. (2), (3), and (5) respectively. 

Δ =
2504 × exp(17.27×T

T+237.2)

(T + 237.2)
2 . (2)  

where T is the average temperature in ◦C calculated from the minimum 
and maximum temperatures. 

Rn = Rns − Rnl (3)  

where Rns and Rnl are net shortwave and longwave radiation in W/m2. 
Rns is calculated as (1- α) × Rs, where Rs is the incoming shortwave 
radiation, and Rnl is calculated as in Eq. (4).  

where σ is Stefan-Boltzman constant (5.67 × 10−8 W/m2/K4), Tmax and 
Tmin are maximum and minimum temperature in ◦C, ea is actual vapor 
pressure in kPa, Rs and Rso are intermediate variables which are calcu
lated based on different forcing variables and more details can be found 
in De Bruin and Keijman (1979). 

Table 1 
The datasets used in this study with their spatial and temporal resolutions and their sources.  

Data Spatial resolution Temporal resolution Source 

Observed actual ET 900 m Daily SSEBop, USGS (Senay et al., 2013) 
Incoming shortwave radiation 4 km Daily gridMET (Abatzoglou, 2013) 
Maximum temperature 4 km Daily gridMET (Abatzoglou, 2013) 
Minimum temperature 4 km Daily gridMET (Abatzoglou, 2013) 
Maximum relative humidity 4 km Daily gridMET (Abatzoglou, 2013) 
Minimum relative humidity 4 km Daily gridMET (Abatzoglou, 2013) 
Elevation 30 m - National Elevation Dataset, USGS 
Cropland data layer 30 m - United States Department of Agriculture (USDA) (Johnson, 2019)  

Fig. 2. A schematic of the framework of the study. The box in the right-hand side displays a schematic of the Priestley-Taylor model.  

Rnl = σ ×

{
(Tmax + 273.2)

4
+ (Tmin + 273.2)

4

2
× (0.34 − 0.14

̅̅̅̅̅
ea

√
) ×

(

1.35 ×
Rs

(Rso − 0.35)

)}

(4)   
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γ = 0.00163 ×
P

2.264
(5)  

where P is an intermediate variable and calculated as in Eq. (6). 

P = 101.3 ×

{
(293 − 0.0065) × hGeo

293

}5.26

(6)  

where hGeo is the elevation in m. 
It is to be noted that the original Priestley-Taylor model simulates the 

reference ET, however, due to the requirement of the study, the model 
was modified by multiplying the reference ET with stage wise crop co
efficients so that the final outcome is actual ET (modified Priestley- 
Taylor model called from here on). The crop coefficients were derived 
from Allen et al. (1998) for corn, cotton, and soybean crops for the four 
crop stages, initial, development, middle, and late. Additionally, the 
modified Priestley-Taylor model is static in nature, i.e. for the forcing 
data at a given day, the model simulates the reference ET for the cor
responding day and there is no relationship in the inherent processes or 
calculations. This may not be true at locations with low annual precip
itation or during low-precipitation months since the net soil heat flux 
may be close to zero during the start of the simulation, however, during 
low precipitation months, the flux can accumulate into higher values. 
Therefore, to rectify this, in this study incoming shortwave radiation 
that drives the soil heat flux was considered as a state variable, meaning 
the past day’s condition of the incoming shortwave radiation will affect 
the present day, and thus the rest of the model calculation. To account 
for this in this study, from literature one percent of the net solar radia
tion is assumed to be absorbed by the soil at any given day (Fig. 1 from 
Trenberth et al., 2009). Also, to relate the antecedent soil heat condi
tions with the following day Eq. (7) was employed in this study. 

G = 0.01 × Rn − G0 (7)  

where G and Rn are the present day absorbed soil heat and net solar 
radiation in W/m2, and G0 is the past day’s absorbed soil heat in W/m2. 
For the initialization of the model run G0 was considered as 0. 

3.3. Modified Priestley-Taylor model calibration 

The modified model was first calibrated for each polygon for all three 
crops using a global optimization technique, the Shuffled Complex 
Evolution algorithm (Duan et al., 1994). This algorithm first stochasti
cally distributes a sample of points within the parameter space using the 
lower and upper parameter bounds. Then each sample point is treated as 
a member of population and a unique genetic information is assigned to 
each individual. Thereby the population tends to attain an optimum 
value by altering the genetic information among themselves (parameter 
values). Here the optimum value is the user defined objective function 
corresponding to the model simulated and observed values. The initial 
sample is also sub-divided into several smaller samples (called com
plexes). Theoretically, each complex combines with another to produce 
offspring using the simplex procedure of Nelder and Mead (1965). Since 
the fitness of an individual contributes to the likelihood of an offspring, 
the older points are replaced by the younger ones. This proceeds to a 
global optimum which is assisted by (a) probability that the newer 
points are created automatically within the parameter space, and (b) a 
continuous combination of points into new complexes. Further details 
on the Shuffled Complex Evolution algorithm and its use in model 
calibration can be found in Duan et al. (1994, 1993). 

The modified Priestley-Taylor model was calibrated for α parameter 
against the observed actual ET at each polygon. Generally, α =1.26 is 
used for the parameter in model simulations (Priestley and Taylor, 1972; 
Stewart and Rouse, 1977), however, it can vary widely across different 
land use types and climatic zones. For instance, for humid conditions, 
the parameter can be lower than one, whereas, in arid conditions, it can 
be more than two. Therefore, in this study to define the parameter space, 

the lower and upper bounds were set as 0.50 and 2.0. Several objective 
functions were used for the model calibration which are discussed in 
detail in Section 4. The model was calibrated for all three crops for the 
cropping season of 2018 for each crop. 

3.4. Data assimilation 

The basics of the data assimilation approach, i.e., PF-VVM used in 
this study is described here. Following previous work by Moradkhani 
et al. (2005 and 2019), the differential equations that illustrate the 
generic nonlinear dynamic system in a hydrologic system are described 
as follows: 

xt = f (xt−1, ut, θ) + ωt (8)  

yt = h(xt) + υt (9)  

where xt ∈ Rn is a vector of the uncertain state variables (incoming 
shortwave radiation in this study) at time step t, ut is the uncertain 
forcing inputs (which are minimum and maximum temperature, and 
minimum and maximum relative humidity), θ ∈ Rd is a vector of model 
parameters (α in this study), yt ∈ Rm is a vector of observation data 
(observed actual ET), ωt represents the model errors due to the imperfect 
model, υt is the measurement error. In most cases, ωt and υt were 
assumed as white noises with mean zero and covariance Qt and Rt, 
respectively. Furthermore, the two noises ωt and υt were assumed to be 
independent. Because Moradkhani et al. (2005) and Moradkhani et al. 
(2019) provided a complete literature of the sequential Bayesian 
filtering formalism, this study just provides a brief overview. The pos
terior distribution of the state variables at time t, according to Bayes’ 
Law, is as follows: 

p(xt|y1:t) = p(xt|y1:t−1, yt) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
=

p(yt|xt)p(xt|y1:t−1)
∫ p

(yt|xt)p(xt|y1:t−1)dxt

(10)  

p(xt|y1:t−1) =

∫ p

(xt, xt−1 |y1:t−1)dxt−1 =

∫ p

(xt|xt−1)p(xt−1|y1:t−1)dxt−1

(11)  

where p(yt
⃒
⃒xt) is the likelihood for time step t, p(xt

⃒
⃒y1:t−1) is the prior 

distribution, and p(yt
⃒
⃒y1:t−1) is the normalization factor. The marginal 

likelihood function p(y1:t) can be computed as: 

p(y1:t) = p(y1)
∏p

(yt|y1:t−1) (12)  

where the normalization factor p(yt
⃒
⃒y1:t−1) is as follows: 

p(yt|y1:t−1) =

∫ p

(yt, xt |y1:t−1)dxt =

∫ p

(yt|xt)p(xt|y1:t−1)dxt (13) 

Only in special cases, such as the linear system with Gaussian 
assumption of noises in the system (i.e., the Kalman filter), an analytic 
solution is available for Eq. (10). In most cases, a group of random 
samples were used to approximate the posterior distribution. 

p(xt|y1:t) ≈
∑N

i=1
wi+δ

(
xt − xi

t

)
(13)  

where wi+ is the posterior weight of the i-th particle, δ is the Dirac delta 
function, and N is the number of particles. The normalized weights were 
calculated using: 

wi+ =
wi−.p

(
yt

⃒
⃒xi

t, θi
t

)

∑N
i=1wi−.p

(
yt

⃒
⃒xi

t, θi
t

) (14)  

where wi− is the prior particle weights, and the p(yt
⃒
⃒xi

t , θi
t) was be 

computed from the likelihood L(yt
⃒
⃒xi

t , θi
t ). Generally, a Gaussian likeli
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hood was used to estimate L(yt
⃒
⃒xi

t , θi
t ): 

L
(
yt|xi

t, θi
t

)
=

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(2π)

m
|Rt|

√ exp
[

−
1
2
(
yt − h

(
xi

t

))T Rt
−1(

yt − h
(
xi

t

))
]

(15) 

A resampling procedure is needed to acquire approximate samples 
from p(xt |y1:t). To resample particles with a probability greater than the 
uniform probability, the sequential importance resampling (SIR) algo
rithm was used. The particles with lower weights were eliminated using 
this procedure, while the particles with higher weights were kept. After 
application of the SIR algorithm, all the particle weights were set equal 
to 1/N. Particles with large weights were more likely to be drawn several 
times during resampling, resulting in a loss of particle diversity. A 
perturbation of the resampled parameters is recommended to avoid 
sample impoverishment. Then, a proposal distribution was formed to 
generate proposed parameters θi,p

t : 

θi,p
t = θi+

t + εi
t εi

t ∼ N
[
0, stVar

(
θi−

t

)]
(16)  

where θi+
t is the parameters after SIR, Var(θi−

t ) is the variance of the prior 
parameters at the current time step, and st is a small tuning time-variant 
parameter. Since the optimal tuning factor st was unknown in a 
sequential framework, it was beneficial to treat the st as a time-variant 
variable and estimate it automatically. Moradkhani et al. (2012) pro
posed an approach which automatically finds the most fitting tuning 
factor st in Eq. (16). The tuning factor is self-adaptive based on the 
spread of the previous states. The procedure of VVM includes: 

ε̂t =
⃒
⃒E

(
y′

t

)
− yt

⃒
⃒ (17)  

ubt =

{
y′75

t − E
(
y′

t

)
E

(
y′

t

)
< yt

E
(
y

′

t

)
− y

′ 25
t E

(
y

′

t

)
> yt

(18)  

ert = τ
[

median
( ε′

(t−lag):t

ub(t−lag):t

)

− 1
]

+ 1 (19)  

st = ert.E
[
s(t−lag):t

]
(20)  

where E(y′

t) is the forecast expected value, yt is the observation, y′25
t and 

y′75
t are the 25th and 75th forecast percentiles, respectively; τ is the 

smoothing value and was set to 0.5 as per recommendation of Abbas
zadeh et al. (2018). 

Prior to employing the data assimilation, an open-loop simulation of 
the modified Priestley-Taylor model was done for the cropping periods 
of the three crops at all polygons within the study basin. For both open- 
loop and data assimilation scenarios, an ensemble size of 100 was used. 
The ensemble mean of actual ET simulations was derived with and 
without using data assimilation for all the polygons using different 
performance measures explained in the following section. It should be 
noted that the ensemble members were generated by introducing noise 
of 10% (percentage of error) to the forcing variables (minimum and 
maximum relative humidity, and minimum and maximum tempera
ture), and the state variable (net solar radiation; noise was introduced to 
the daily values calculated by the model during the calibration). Please 
note that in the data assimilation scenario, the model parameters were 
used which were calibrated before (and used in the open-loop simula
tion), and added noise to them to ensure avoiding the sample impov
erishment during the assimilation process. This was done according to 
Eq. (16). In other words, the calibrated model parameter was used as an 
initial guess (priori) for the dynamic Priestley-Taylor model and then 
sequentially updated it in conjunction with model state-variable (i.e., 
net solar radiation) during the assimilation period. In this study, white 
noise was added with mean zero and variance equal to 10 percent of the 
actual value. 

4. Performance measures 

In this study, two deterministic performance measures were used to 
assess the model performance during model calibration (Mean Absolute 
Error (Moriasi et al., 2007), and Pearson correlation coefficient (Pear
son, 1895)), and additional two performance measures (Root Mean 
Square Error (Moriasi et al., 2015), and Kling-Gupta Efficiency (Gupta 
et al., 2009)) were used to evaluate the data assimilation of the model. 
Furthermore, a probabilistic measure (Reliability (Renard et al., 2010)) 
was also used to investigate the probabilistic actual ET simulation by the 
data assimilation of the modified Priestley-Taylor model. These mea
sures are defined in Eqs. (21)–(25). 

MAE =
1
n

∑n

i=1
|yi − xi| (21)  

r =

∑(xi−x)
(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑(xi−x)2

×
∑(yi−y)2

√ (22)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − xi)
2

n

√

(23)  

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[(

Covx,y

σxσy

)

− 1
]2

+

[(
σx

σy

)

− 1
]2

+

[(
μx

μy

)

− 1

]2
√
√
√
√ (24)  

Reliability = 1 −
2
T

∑T

t=1

⃒
⃒
⃒
⃒
Zt

T
− Ut

⃒
⃒
⃒
⃒ (25)  

where MAE is Mean Absolute Error in mm/day, n is the total number of 
observations, yi is observed value of ith observation, xi is model simu
lated value of ith observation. r is Pearson correlation coefficient, y and x 
represent the mean observed and model simulated values. RMSE is Root 
Mean Square Error in mm/day. KGE represents Kling-Gupta efficiency, 
Covx,y denotes the covariance calculated between the model simulated 
and observed values; σx, and σy represent the standard deviations of the 
model simulated and observed values respectively. μx and μy denote the 
average of the model simulations and observed values respectively. Zt 
represents the score corresponding to quantile of each observation time 
step (T), and Ut represents the uniform distribution between 0 and 1. 
While lower value (close to zero) is ideal for MAE, and RMSE, higher 
value (close to 1) is ideal for r, KGE, and Reliability. In this study MAE 
was employed as the objective function for the calibration of the 
modified Priestley-Taylor model, whereas, for model performance 
evaluation MAE and Pearson correlation coefficient was employed. 
Similarly, for evaluating the performance of the open-loop simulation 
and data assimilation of the modified Priestley-Taylor model, KGE, 
RMSE, and MAE were used. For evaluation of the probabilistic simula
tion of the model at specific locations, Reliability was employed. 

5. Results and discussion 

As mentioned earlier, the overarching goal of this study is to improve 
the actual ET estimation of the Priestley-Taylor model at farm-scale by 
employing the data assimilation technique. In order to achieve this, the 
first step is to calibrate the model at farm-scale and the performance of 
the model without considering any uncertainty in the forcing data and 
model initialization. The results are shown in Fig. 3. The model per
formance was evaluated using two deterministic performance measures, 
i.e., MAE and Pearson correlation coefficient. The results indicate that 
the MAE for corn ranges from 0.62 mm/day to 2.45 mm/day across the 
Mobile River basin, with higher values in the west-central and the south- 
central region. Lower magnitudes are noted for the western, northern, 
and eastern farms (Fig. 3(a)). For cotton and soybean, the MAE ranges 
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from 0.39 mm/day to 2.75 mm/day, and 0.28 mm/day to 2.00 mm/day, 
respectively (Fig. 3(b) and (c)). For both crops (cotton and soybean), a 
higher magnitude of MAE, within the range of 1.32 mm/day to 2.75 
mm/day for cotton, and 1.35 mm/day to 2.00 mm/day for soybean are 
observed for the southern, central, and the central-east farms. A rela
tively higher number of farms with low MAE are observed in the eastern 
region for both crops. 

The Pearson correlation coefficient for the model calibration ranges 
from 0 to 0.55, 0 to 0.75, and 0 to 0.40 for corn, cotton, and soybean 
crops, respectively (Fig. 3(d) to (e)). Lower magnitude of the correlation 
coefficient (within the range of 0 to 0.30) is more dominant across the 
river basin for corn and soybean crops. On the other hand, for cotton, a 
relatively higher magnitude 0.36 to 0.65 is noted to be dominant (Fig. 3 
(e)). It is worth noting that in the majority of farms, a lower MAE cor
responds to a higher Pearson correlation coefficient. Overall these re
sults indicate that in a majority of the farms model performance is 
unsatisfactory solely based on the optimization of the model parameter 
α. Similar results of poor to moderate performance of the Priestley- 
Taylor model were also reported by Islam and Alam (2021) and Yang 
et al. (2016) in humid and semi-humid regions of Bangladesh and China, 
respectively. One of the primary causes of the poor model performance 
is due to the fact that the model was developed for saturated and open 
water body conditions (De Bruin and Keijman, 1979) by eliminating the 
product of wind function and vapor pressure deficit from the 
Penman-Monteith equation. Since croplands do not correspond to these 
ideal conditions as assumed in the model and are water/energy-limited 
(Javadian et al., 2020), the model performance declines. 

Fig. 4 displays the heterogeneity in MAE calculated for the modified 

Priestley-Taylor model during calibration at three randomly selected 
sites with corn, cotton, and soybean farmlands. Clearly, at the selected 
locations, MAE ranges from 2.021 mm/day to 2.220 mm/day, 1.151 
mm/day to 1.350 mm/day, and 1.271 to 1.530 mm/day for corn, cotton, 
and soybean crops respectively. This indicates that at the selected sites 
the best performance for the model is obtained for the cotton crop, 
followed by soybean, and corn, yet overall, the performance is quite 
poor. This is because error within the range of 0 – 25% with respect to 
the observed actual ET for a given period is considered acceptable 
(Melton et al., 2021), whereas in this study at several locations the MAE 
> 45%. It is to be noted that these results are obtained for the best 
parameter value optimized using the Shuffle Complex Evolution algo
rithm and minor departure from the optimal value results in worsening 
the model performance. 

As mentioned in the last paragraph of Section 3.4, before conducting 
the data assimilation on the modified Priestley-Taylor model, an open- 
loop simulation analysis was performed. The mean ensembles for the 
open-loop simulation are presented in the form of a heat scatter plot in 
the top row of Fig. 5. As per results, the model performs similarly for the 
three crops with close values for the deterministic performance mea
sures. In the case of corn, KGE, RMSE, and MAE are observed to be 0.47, 
1.20 mm/day, and 0.97 mm/day respectively. Similarly, for cotton and 
soybean the values are noted to be 0.46, 1.28 mm/day, and 1.05 mm/ 
day, and 0.46, 1.17 mm/day, and 0.95 mm/day respectively. Although, 
these performance measures indicate superior performance over the 
model calibration results (as presented in Figs. 3 and 4), yet the results 
are moderate (Melton et al., 2021; Moriasi et al., 2007). Also, the darker 
red color in case of soybean is due to the larger number of pixels (farms) 

Fig. 3. Spatial variability of MAE and Pearson correlation coefficient calculated for modified Priestley-Taylor model during its calibration (in 2018) for corn, cotton, 
and soybean at Mobile River basin. Note: each dot represents a farm; CC stands for Pearson correlation coefficient. 
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in the case of soybean relative to corn and cotton cropped farms. Here, it 
is noted that although open-loop simulations represent the prior distri
butions of the outputs (actual ET here), the model run is dependent on 
the initial conditions which are updated based on the observed values 
(observed actual ET here) from the previous time step (Abbaszadeh 
et al., 2020; Jafarzadegan et al., 2021). Similar improvements in ET 
estimation and water balance estimation of models for open-loop 
simulation over model calibration were also obtained by Khaki et al. 
(2020) and Tian et al. (2021) respectively. 

The bottom row of Fig. 5 illustrates the assimilated actual ET vs 
observed actual ET for the three crops and the performance measures. A 
significant improvement in the actual ET estimates can be seen here 
compared to the open-loop simulations with the concentration of bins 
near the diagonal 1:1 line for all three crops. Moreover, the calculated 
KGE, RMSE, and MAE are noted to be 0.82, 0.59 mm/day, and 0.49 mm/ 

day for corn, 0.84, 0.59 mm/day, and 0.50 mm/day for cotton, and 0.82, 
0.58 mm/day, and 0.48 mm/day for soybean respectively. The 
improved performance is resulting from the posterior distributions of 
the actual ET in the data assimilation which accounts for the prior dis
tributions from the open-loop simulation and the updated observations. 
Given that the posterior distribution of the actual ET is generated for 
each polygon, resulting in the spatial representation of actual ET data 
assimilation, overall, higher performance is noticed for the entire basin 
compared to other studies where soil moisture is assimilated for 
streamflow prediction such as in Jadidoleslam et al. (2021). 

Fig. 6 illustrates the spatial variability of MAE and Pearson correla
tion coefficient calculated for the assimilated actual ET compared to the 
observed actual ET at the study basin. The results indicate that for a 
majority of the polygons (farms), MAE is in the range of 0.448 – 0.501 
mm/day, 0.460 – 0.510 mm/day, and 0.466 – 0.503 mm/day for corn, 

Fig. 4. MAE calculated for modified Priestley-Taylor model calibration at three randomly selected locations growing corn, cotton, and soybean crops within the 
study area. Note: each polygons in the zoomed frames represents a farm. 
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cotton, and soybean respectively. Additionally, the Pearson correlation 
coefficient ranges from 0.823 – 0.907, 0.834 – 0.859, and 0.813 – 0.840 
for the corresponding crops. A significant improvement in these per
formance measures can be seen when compared to the ones obtained for 
the model calibration results as shown in Fig. 3. Similarly, spatially 
improved results were also reported for soil moisture using data 
assimilation techniques in other studies such as Abbaszadeh et al. 
(2019b) and Seo et al. (2021). 

To better display the farm-scale performance of the data assimila
tion, the calculated MAEs for the three different crops are zoomed in and 
are presented in Fig. 7. The MAE for corn farms ranges from 0.424 to 
0.531. Similarly, for cotton and soybean, it ranges from 0.453 to 0.555 
and 0.423 to 0.544 respectively. This implies a significant improvement 
over the MAE calculated for the model calibration results obtained in 
Fig. 4, where the corresponding MAE ranged from 2.021 to 2.220, 1.151 
to 1.350, and 1.271 to 1.530. Given that these MAE ranges are well 
within the recommended range of 0 – 25% of the observed actual ET for 
a given period, the findings suggest that assimilating the actual ET in the 
model simulation significantly improves the model results at the farm- 
scale. 

Evaluation of the data assimilation involves satisfactory performance 
for both deterministic and probabilistic performance measures. There
fore, in this study, three deterministic measures (KGE, RMSE, and MAE) 
and a probabilistic measure (Reliability) were used to compare the 

observed actual ET and the assimilated actual ET from the modified 
Priestley-Taylor model. Moreover, the Reliability was also calculated for 
the open-loop model simulation. The results in Fig. 8 are presented for 
three locations with the largest polygons of Figs. 4 and 7. Here the time- 
series plots indicate that the ensemble means of the open-loop simula
tion overestimate (dashed green line) the observed actual ET at all three 
locations for the three crops, especially during the peak ET months (i.e., 
May – mid-June for corn, July – August for cotton, and July – September 
for soybean). The results also indicate a significant improvement in the 
assimilated actual ET with KGE, RMSE, and MAE in the range of 0.69 to 
0.78, 0.53 mm/day to 0.57 mm/day, and 0.44 to 0.50 mm/day, 
respectively for the three crops. 

The right column in Fig. 8 illustrates Q-Q plots for comparing the 
Reliability of open-loop simulation and the assimilated actual ET at the 
three locations (mentioned above) for all three crops. An ideal Q-Q plot 
should have an S-shape and Reliability index should be 1. Among the 
three crops, the best results are obtained for the cotton crop, followed by 
corn, and soybean in case of open-loop simulated and assimilated actual 
ET. Overall, the Reliability is observed to be 0.95, 0.78, and 0.67 for 
cotton, corn, and soybean, respectively, and these values reflect the 
satisfactory performance of the probabilistic performance measure for 
the assimilated ET for all three crops (Gavahi et al., 2020; Renard et al., 
2010). A closer look into the time series for all three crops indicates that 
the assimilated actual ET results are slightly overestimated relative to 

Fig. 5. Heatscatter plot of the observed actual ET and open-loop simulation of the modified Priestley-Taylor model (top row), and assimilated ET (bottom row) for 
the three crops across the study area. Note: The color intensity represents the density of the points in scatterplot. 
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the observed actual ET which is likely due to the systemic bias associated 
with model structure. Since this research is a proof-of-concept study, 
some limitations are acknowledged by the authors, however, it is to be 
noted that using a robust and superior model such as Penman-Monteith 
model can likely minimize these biases in results. 

For operational irrigation management and planning robust water 
requirement estimates are crucial, especially during drought periods. 
For calculating these water requirements, generally reference ET simu
lation models are employed and converted into the crop water 
requirement using crop coefficients (Darouich et al., 2021; Pereira et al., 
2020; Tang et al., 2018) or employ crop simulation models (Amiri et al., 
2022; Moseki et al., 2019). While employing a model in actual ET 
simulation, performing model calibration is meaningful and useful, 
since the optimal parameter value(s) can be comparable among different 
locations/sites. However, often times the calculation of actual ET and 
crop water requirement at regional scale faces shortfall due to several 
assumptions including the same cultivar of crops grown throughout the 
region, lack of high-quality weather data, and model structure associ
ated uncertainties. All of these cascade in the irrigation water require
ment simulation leading to significant bias in estimation (Lu et al., 
2021). This can create a critical challenge for policymakers/water 
managers due to the incorrect amount of water diversion to agricultural 
farms. For such conditions, data assimilation can enhance the estimation 
of actual ET significantly and thus the crop water requirement. 

It is worth mentioning that in this study only the advantage of 
observed actual ET was employed in the data assimilation. These esti
mates can be further enhanced by using satellite-based fine resolution 
soil moisture (Abbaszadeh et al., 2019b; Yin et al., 2020) and LAI 

(Houborg and McCabe, 2018). Moreover, this study only employed a 
radiation-based reference ET estimation model (Priestley-Taylor 
model), which ignores the components of wind speed and the vapor 
pressure deficit. These variables can have a significant influence in the 
humid, and tropical regions, and therefore, data assimilation using the 
PF-VVM on a more robust model such as the Penman-Monteith model 
can be more suitable. To the best of the authors’ knowledge, this is the 
first attempt to predict the farm-scale actual ET using data assimilation 
technique in conjunction with the Priestley-Taylor model. 

Overall, the data assimilation using the PF-VVM on the modified 
Priestley-Taylor model is readily transferrable to other locations as well, 
with some minor changes in the model calibration process, forcing 
variables, and the observed actual ET data. Also, the cropping season 
(day of year) including date when crops are planted through harvested, 
and the elevation data are also required which are location specific and 
are needed to be altered. Additionally, it is important to highlight that 
the recently developed open ET dataset (Melton et al., 2021) which has a 
spatial resolution of 30 m can further improve the actual ET estimates of 
this study, however, the dataset is only limited to the western US region. 
While finer scale ET data (~30 m) is not available globally for irrigation 
and water resources planning and management, our results demonstrate 
that accounting for uncertainties associated with the forcing data, state 
variable, and model parameter using data assimilation can result in 
superior actual ET estimates even with coarser resolutions relative to 
stand-alone model run which is generally employed for water resources 
planning and management. 

Fig. 6. Spatial variability of MAE and Pearson correlation coefficient calculated for the assimilated actual ET (in 2018) for corn, cotton, and soybean at Mobile River 
basin. Note: each dot represents a farm; CC stands for correlation coefficient. 
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6. Conclusions 

A novel approach of farm-scale actual ET estimation is developed in 
this study by employing PF-VVM algorithm integrated with the modified 
Priestley-Taylor model for corn, cotton, and soybean crops at the Mobile 
River basin in Deep South. The approach uses calibration of the model to 
identify optimal model parameter, followed by perturbation of the 
forcing data and state variable to perform the open-loop model run. To 
implement DA, the observed and model simulated actual ET were used 
at each time step to calculate the Kalman gain and use it to update the 
model initialization and generate posterior ET estimates during the 
assimilation period. The results of the assimilated actual ET, stand-alone 

model simulated actual ET during calibration and the observed ET were 
compared at three selected farms and over 320,000 farms within the 
river basin. Overall, the major outcomes of the study can be sum
marized as:  

• For stand-alone modified Priestley-Taylor model calibration 
MAE ranges from 0.62 to 2.45 mm/day, 0.39 to 2.75 mm/day, 
and 0.28 to 2.00 mm/day for corn, cotton, and soybean, 
respectively. Similarly, for the corresponding crops, the Pear
son correlation coefficient ranges from 0 to 0.55, 0 to 0.75, and 
0 to 0.40, respectively. 

Fig. 7. MAE calculated for assimilated actual ET at three randomly selected locations growing corn, cotton, and soybean crops within the study area. Note: these 
three locations correspond to the same ones reported in Fig. 4. Also, each polygon in the zoomed frames represents a farm. 
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• For open-loop model simulation, KGE, and RMSE ranges be
tween 0.46 to 0.47, and 1.17 to 1.28 mm/day, respectively for 
the three crops across the study area. On the other hand for the 
assimilated actual ET, KGE and RMSE ranges from 0.82 to 0.84, 
and 0.48 to 0.50 mm/day, respectively.  

• The calculated reliabilities for assimilated actual ET at three 
selected farms are noted to be 0.78, 0.95, and 0.67 for corn, 
cotton, and soybean, respectively.  

• Overall, these results demonstrate that assimilated actual ET is 
significantly improved over the stand-alone modified Priestley- 
Taylor model simulated actual ET. 

More efficient and reliable actual ET estimates at farm-scale can 
enable improved strategies for agricultural interventions including 
irrigation and as an enhancement in the farm net profitability. Although, 
there are a number of areas of the development of the proposed 
approach including sequential assimilation of finer resolution observed 
ET data, using in situ data in the analysis, and employing more 

sophisticated data assimilation algorithms such as four-dimensional 
variational data assimilation algorithm and sequential filtering ap
proximations based on three-dimensional variational data assimilation 
algorithms. Furthermore, the proposed approach can also be employed 
in forecasting the actual ET at farm-scale which this study did not ac
count for given that this study is a proof-of-concept study, and other 
studies demonstrated that forecast skills decline with increase with lead- 
time Abbaszadeh et al., 2018; Hatfield et al., 2018; Stern et al., 2015). In 
general, this study illustrates farm-scale estimation of actual ET by 
modified Priestley-Taylor model can result in deceptive actual ET esti
mates even using a global parameter optimization algorithm. This is 
decisive especially during droughts when appropriate diversion of irri
gation water is crucial and stand-alone model application (which water 
managers and modelers employ) can lead to inaccurate water allocation. 
The findings of this study will be beneficial in regional water resource 
planning and management, especially during drought periods and in 
data scarce-regions. This is salient given that droughts are expected to be 
more severe and frequent under projected climate change (Stewart et al., 

Fig. 8. The left column shows the time series of observed actual ET vs simulated actual ET with and without data assimilation. The right column shows the Q-Q plot 
of open-loop simulation vs data assimilation. Note: these results correspond to the same locations as pointed in Figs. 4 and 7 for corn, cotton, and soybean crops. 
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2020; Xu et al., 2021b). 
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