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A B S T R A C T   

Compound flood hazard assessment (CFHA) and modeling are prone to various sources of uncertainty including 
model structure, model parameters, input/forcing data, and those associated with nonlinear interactions among 
flood drivers. Data assimilation (DA) is an efficient method that helps quantify and reduce uncertainty in many 
hydrological applications and has proven to be effective in water level (WL) predictions and/or flood forecasts. 
However, research to date has not yet explored the benefits of DA in coastal to inland transition zones where 
pluvial, fluvial, and coastal flood drivers interact. Here, we present a DA scheme consisting of the Ensemble 
Kalman Filter technique and hydrodynamic modeling to provide (i) reliable WL predictions and (ii) accurate 
(near real-time) flood hazard maps within a 6 h-assimilation cycle. The DA scheme is tested on two well-known 
compound flood events and study sites in the United States, namely Hurricane Harvey for Galveston Bay and 
Hurricane Sandy for Delaware Bay. WL predictions and compound flood hazard maps are validated against 
observational data collected from coastal and inland gauge stations and high-water marks obtained from the U.S. 
Geological Survey, respectively. We show that DA is an effective method that accounts for all sources of un
certainty, reduces errors in peak WL estimates (up to 0.55 m) and mean absolute bias in CFHA (up to 40%). We 
conclude that, regardless of the dominant fluvial/pluvial or coastal drivers, DA can improve CFHAs in low-lying 
areas including coastal to inland transition zones.   

1. Introduction 

Compound events result from a combination of multiple drivers and/ 
or hazards that contributes to societal or environmental risks 
(Zscheischler et al., 2020). During these events, spatiotemporal coinci
dence/succession of multiple (non-) extreme hazards and the associated 
nonlinear interactions among physical processes (e.g., oceanic, hydro
logical, and meteorological) can lead to larger impacts than those from 
isolated hazards (AghaKouchak et al., 2018; Leonard et al., 2014). Such 
nonlinear interactions along with sea level rise and anthropogenic ac
tivities (e.g., land cover land use change, water extraction, and climate 
change) may escalate flood risk globally and impact ~190 million 
people currently living below high tide lines (Kulp and Strauss, 2019). 
Over the past years, compound flooding (CF) has been studied with 
statistical, physically-based, or combined approaches improving com
pound flood hazard assessments (CFHAs) at different spatial scales. In 
this section, we present an overview of current approaches for CFHA, 
identify the associated sources of uncertainty, and describe data 

assimilation (DA) techniques used to improve forecasts from hydrolog
ical, meteorological, and oceanic models. In Section 2, we introduce the 
study sites, indicate available (open-source) data, and develop a DA 
scheme aimed at improving water level prediction and CFHA in coastal 
to inland transition zones. Then, we discuss the results of the proposed 
scheme in Section 3 and further provide conclusions and remarks in 
Section 4. 

1.1. Compound flood hazard assessment 

Statistical approaches for CFHA help characterize the joint occur
rence of extreme events via multivariate analyses (Bensi et al., 2020; 
Sadegh et al., 2018; Salvadori et al., 2016), hence allowing researchers 
to conduct assessments at different spatial scales (Hendry et al., 2019; 
Wahl et al., 2015; Ward et al., 2018). However, these approaches require 
observational data from gauge stations having a considerable length of 
records to account for uncertainties when characterizing flood hazards 
at low frequencies or long return periods (e.g., 25, 50, and 100 years). 
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Moreover, even if data are available for several years, these approaches 
may not necessarily lead to identical CFHAs as gauge (point-based) 
measurements cannot fully capture the spatiotemporal patterns of CF 
(Ghanbari et al., 2021; Moftakhari et al., 2017; Nasr et al., 2021). In 
contrast, physically-based approaches allow for simulating CF and 
generating flood maps over a user-defined model domain for a given 
compound event (Valle-Levinson et al., 2020; Ye et al., 2021). Particu
larly, two-dimensional (2D) hydrodynamic models require a detailed 
mesh resolution (or cell size) to ensure a correct representation of 
relevant topographic and bathymetric (topobathy) features and accu
rately simulate water level (WL) dynamics (Bilskie and Hagen, 2013). 
Therefore, a series of hydrodynamic models have been developed to 
solve the continuity and momentum equations (Equations (1)–(3), in 
section 2.3) in 2D depth-average mode (e.g., ADCIRC, Delft3D-FM, 
HEC-RAS, ROMS, etc.) and subsequently conduct CFHAs. However, 
these approaches are computationally intensive despite the growing 
access to powerful and low-cost computational resources. 

Linking statistical and physically-based approaches can alleviate 
computational burden since hydrodynamic simulations and/or CFHAs 
focus on the most likely boundary (forcing) conditions given the cor
relation structure of hazard drivers and desired return period (Mofta
khari et al., 2019; Muñoz et al., 2020; Serafin et al., 2019). Despite the 
advantages and limitations of both statistical and physically-based ap
proaches, a thorough CFHA should also account for uncertainties 
derived from boundary conditions (BCs) and/or validation data, model 
parameters, and model structure (Moradkhani et al., 2018; Nearing 
et al., 2016; Wu et al., 2020). These sources of uncertainty, when not 
accounted for, can significantly affect the accuracy of inundation depth, 
flood extent, and velocity maps in hydrological and coastal systems 
(Parodi et al., 2020; Saleh et al., 2017; Wechsler, 2007). 

1.2. Uncertainty sources 

Uncertainty from BCs in compound flood modeling is associated with 
the initial state and forcing data of the system. The initial state is 
affected by the uncertainty of topobathy data including an inadequate 
representation of flood-protection infrastructure in digital elevation 
models (DEMs) (e.g., seawalls, levees, and coastal barriers) (Gallien 
et al., 2018; Sanders and Schubert, 2019). In coastal systems, wetland 
coverage is a well-known source of vertical bias especially in light 
detection and ranging-derived DEMs where overestimation of true 
topographic elevation can be as high as 0.65 m (Alizad et al., 2018; 
Medeiros et al., 2015). Uncertainty of bathymetric data directly affects 
velocity and current speed magnitudes, which in turn alters complex 
processes such as sedimentation, salinization, and mixing in rivers and 
estuaries (Cea and French, 2012). Likewise, forcing data (or BCs) and 
observations are other sources of uncertainty that can potentially affect 
the accuracy of CFHA. These uncertainties are often estimated a priori 
(Moradkhani et al., 2018) or ignored depending on the quality of the 
data source. For example, observation errors from WL stations of the 
National Oceanic and Atmospheric Administration (NOAA) are in the 
order of millimeters (1 mm) (Asher et al., 2019) whereas discharge 
measurements from U.S. Geological Survey (USGS) stations can range 
from excellent to poor quality, i.e., data within 2% and >8% of actual 
flow, respectively (USGS, 2011). 

Another important source of uncertainty is derived from model pa
rameters including roughness coefficient, wind-drag, eddy viscosity and 
diffusivity, and other physically-related coefficients that control the 
dynamics of coastal processes. Among those parameters, the Manning’s 
roughness coefficient is known to alter WL and/or inundation dynamics 
and therefore requires a robust calibration based on land cover and land 
use maps. When such maps are not available at the desired resolution, 
alternatively, land cover maps derived from remote sensing data can be 
used (Muñoz et al., 2021a; Potapov et al., 2020). This in turn aims at 
improving traditional approaches that rely on a single roughness coef
ficient for estuarine, riverine and floodplain areas (Liu et al., 2018; Ye 

et al., 2020). Lastly, uncertainty from model structure (or process un
certainty) refers to limitations and a priori assumptions of underlying 
processes simulated in physically-based models (Moradkhani et al., 
2018; Nearing et al., 2016). Models are themselves uncertain as they 
discretize oceanic, hydrological, and meteorological processes to make 
them suitable for numerical evaluation. Moreover, when using model 
coupling frameworks to provide CFHAs, the uncertainty of modeling 
processes propagates through the coupled models in series (Hasan 
Tanim and Goharian, 2021; Joyce et al., 2018). This in turn requires 
advanced statistical methods to account for model’s uncertainty and 
reduce systematic errors. 

1.3. Accounting for uncertainties using data assimilation 

The aforementioned uncertainties can be accounted for with 
sequential DA procedures. The purpose of DA is to combine information 
from model states with in-situ and/or remotely-sensed observations for a 
better forecast of the fields of interest (Moradkhani, 2008). DA has been 
widely used to estimate uncertainties and improve forecasts from hy
drological (Abbaszadeh et al., 2020; Pathiraja et al., 2018), meteoro
logical (Houtekamer and Zhang, 2016; Navon, 2009) and oceanic 
models (Bertino et al., 2003; Ghil and Malanotte-Rizzoli, 1991). In 
contrast, relatively few studies have successfully implemented DA 
techniques with coastal-ocean models to reduce uncertainties in 
storm-surge forecasting and coastal inundation. Heemink (1986) con
ducted one of the pioneer studies for storm-surge prediction using Kal
man filtering (Kalman, 1960). Later on, Verlaan and Heemink (1997) 
and Cañizares et al. (1998) proposed an approximation of the Kalman 
Filter algorithm via reduced-rank square-root filter to forecast tidal 
flows and initialize storm-surge models, respectively. Madsen and 
Cañizares (1999) evaluated the performance of extended and Ensemble 
Kalman Filter (EnKF) methods for assimilation of WL measurements in 
an idealized bay region. They pointed out the ability of both methods to 
efficiently correct model states given a suitable number of leading ei
genvalues and ensemble size, and further recommend EnKF for assimi
lating coastal WLs due to highly nonlinear dynamics that arise in 
flooding and drying of tidal areas. 

More recent studies in storm-surge modeling have proposed alter
natives of the Kalman filter algorithm to better propagate the error 
covariance and reduce the computational burden of stochastic re
alizations of coastal ocean models. Among those studies, Mayo et al. 
(2014) used the singular evolutive interpolated Kalman Filter to esti
mate roughness (Manning’s) coefficients by assimilating water elevation 
data of an idealized inlet and a coarser representation of Galveston Bay, 
TX. They estimated bed roughness for non-extreme events and/or under 
typical weather conditions where astronomical tides are the dominant 
forcing condition. Likewise, Asher et al. (2019) developed an optimal 
interpolation-based DA scheme to correct WL residuals, i.e., observed 
minus simulated WLs, of Hurricane Matthew (Oct/2016) along the 
southeast Atlantic coasts of the U.S. Asher et al. (2019) concluded that 
WL residuals are associated with ‘unresolved drivers’ resulting from 
additional physical processes (e.g., steric variations, baroclinicity, major 
ocean currents, etc.) that are not fully resolved by the continuity and 
momentum equations, i.e., model structural error. 

Although these studies implemented DA to estimate model parame
ters and correct WLs at the coastal-ocean interface, to the best of our 
knowledge, there are no studies that explore the benefits of DA for CFHA 
in coastal to inland transition zones where pluvial, fluvial, and coastal 
processes are all of paramount importance (Bilskie and Hagen, 2018). To 
address this research gap, we integrate hydrodynamic modeling 
(Delft3D-FM) with the EnKF technique for correcting peak water surface 
elevation and improving the accuracy of compound flood maps for two 
well-known extreme events: (i) Hurricane Sandy that affected Delaware 
Bay, DE in October 2012, and (ii) Hurricane Harvey that hit twice 
Galveston Bay, TX in August 2017. Integration of data assimilation and 
hydrodynamic modeling can enhance stakeholder engagement, assist 
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disaster coordinators and decision makers in risk-informed planning and 
efficient emergency responding (Sanders et al., 2020). 

2. Materials and method 

2.1. Study area 

We select two strategic study sites with unique characteristics and 
corresponding compound flood events to evaluate the feasibility of DA 
in CFHA. Galveston Bay (G-Bay) is an inlet of the Gulf of Mexico and the 
seventh-largest estuary in the United States (Fig. 1a). G-Bay is a rela
tively shallow water body of 2 m depth, 56 km length and 31 km width 
that comprises a total area of 1 600 km2 approximately (Huang et al., 
2021; Sebastian et al., 2014, 2019). Freshwater runoff input to the Bay 
comes from the Buffalo Bayou River (Houston Ship Channel) including 
several streams that join the river in Houston city. The annual average 
discharge measured at Buffalo Bayou station (USGS 08074000) is 50 
m3/s approximately. The San Jacinto River is another important fresh
water source that connects Lake Houston to G-Bay. The Lake Houston 
dam (and spillway on top) can release a maximum flow of 283 m3/s 
through its gates. An important fact of Hurricane Harvey is that the flow 
exceeded the dam’s capacity, and as a result, a 3.35 m column of water 
was flowing over the 963 m long spillway (https://reduceflooding.co 
m/2019/11/13/aerial-photos-of-lake-houston-dam-dramatize-need-fo 
r-more-gates/). Tides in G-Bay are mixed based on the form factor (Pugh 
and Woodworth, 2014) and so characterized by the lunar diurnal con
stituent (K1) and principal lunar semidiurnal constituent (M2) with tidal 
amplitudes of 0.15 m and 0.11 m, respectively. Ten stations from the 
NOAA and USGS provide water surface level for model calibration (blue 
squares) comprising the Bay and Houston city downtown (orange 
polygon). According to official reports of NOAA and the National Hur
ricane Center, Hurricane Harvey (August 2017) was responsible for one 

of the most catastrophic flooding events in the Unites States. Harvey 
made landfall twice in Texas leading to extremely high cumulative 
rainfall of more than 1 524 mm over southeastern Texas, and subsequent 
pluvial flooding with up to 3 m of water above ground level (Blake and 
Zelinsky, 2018). 

Delaware Bay (D-Bay) is a natural state border of New Jersey and 
Delaware in the east coast of the United States (Fig. 1b). D-Bay is a 
diamond-shape water body of 210 km length and 45 km width (18 km at 
the mouth) that comprises a total area of 2030 km2 approximately 
(Whitney and Garvine, 2006). The Delaware River (USGS 01463500) 
and Schuylkill River (USGS 01474500) are two main freshwater runoff 
inputs to the Bay and have an annual average discharge of 340 m3/s and 
82 m3/s, respectively. D-Bay has an average bathymetry of 7 m 
approximately and counts with a deep channel (>28 m) along its lon
gitudinal axis designed for navigational purposes. Tides in the lower part 
of D-Bay are semidiurnal with M2 tidal amplitudes of 0.75 m. Ten sta
tions from the NOAA and USGS are considered for model calibration 
(blue squares) comprising D-Bay and its lateral floodplains (orange 
polygon). The Atlantic Hurricane season has affected D-Bay since 1749 
with more than hundred tropical cyclones producing extreme storm 
surges, strong winds and heavy rainfall (Salehi, 2018). Among the major 
historical hurricanes that impacted D-Bay (NOAA-NHC, 2020), Hurri
cane Sandy (October 2012) resulted from a combination of extreme 
storm surge and moderate rainfall causing pluvial flooding at the coast 
with 1.50 m of water above ground level in Delaware City (Blake et al., 
2013). 

2.2. Data availability 

We use publicly available data to develop a hydrodynamic model of 
each study site and then validate our results with respect to ground-truth 
and satellite-based data. Topobathy data are obtained from coastal 

Fig. 1. Map of the study sites (orange polygons) including available NOAA and USGS stations (blue squares) for model calibration and compound flood hazard 
assessment with data assimilation. USGS high water marks (yellow circles) provide inundation depths within the mesh extent of (a) Galveston Bay, TX and (b) 
Delaware Bay, DE. Hurricane’s best track of Harvey (green line) and Sandy (purple line) are shown in the top right corners, respectively. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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DEMs of the NOAA’s Data Access Viewer (https://coast.noaa.gov/). The 
data is referenced to the North American Vertical Datum 1988 
(NAVD88) and have a spatial resolution of 1 m. Manning’s roughness 
coefficients for D-Bay and G-Bay are initially derived from the 2011 and 
2016 National Land Cover Database (NLCD) maps, respectively (https: 
//www.mrlc.gov/data). The selected NLCD maps have a 30 m spatial 
resolution with 16 land cover classes representing pre-flood conditions. 
For simplicity, the classes were re-grouped into a more general classi
fication to avoid unnecessary specificity in model calibration (see sec
tion 2.3.2 for details). 

Time-series of observed hourly WL are obtained from NOAA’s Tide & 
Currents portal (https://tidesandcurrents.noaa.gov/) and are used as 
downstream BCs at selected stations as well as calibration data for the 
hydrodynamic models. In addition, we use time-series of hourly river 
discharge from the USGS portal (https://maps.waterdata.usgs.gov/ma 
pper/) as upstream BCs at selected stations. Some USGS stations with 
available WL records are also considered for model calibration (Fig. 1). 
Likewise, post-flood high-water marks (HWMs) from the USGS indi
cating inundation depth at several locations of G-Bay and D-Bay are 
available in the Flood Event Viewer website (https://stn.wim.usgs. 
gov/fev/). Local wind (10 m height), sea level pressure and rainfall 
data are obtained from the ERA5 reanalysis dataset (https://www.ecmw 
f.int/en/forecasts/datasets/reanalysis-datasets/era5). The dataset con
sists of gridded hourly data with a spatial resolution of 30 km. 

2.3. Model configuration 

Hydrodynamic models of G-Bay and D-Bay are developed with the 
2021 Delft3D-FM suite package in 2D (depth-averaged) mode (Roelvink 
and Van Banning, 1995). The models use an unstructured finite volume 
grid to solve the depth-averaged continuity and momentum equations 
(Equations (1)–(3)) under the assumption that vertical length scales are 
significantly smaller than the horizontal ones (Lesser et al., 2004). 
Delft3D-FM can simulate complex riverine, estuarine and intertidal flat 
hydrodynamics and account for nonlinear interactions of river flow, 
rainfall, storm-surge, wind, etc. (Deltares, 2021). Moreover, the model 

package has been used in several CF studies at local and regional scale 
with satisfactory results (Bevacqua et al., 2019; Muis et al., 2019; Salehi, 
2018). 
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where ζ is water surface elevation (above still water), t is time, h is water 
depth (below horizontal datum or still water), and u and v are the 2D 
depth-averaged velocities in x and y directions, respectively. f is the 
Coriolis parameter, τb is bottom friction, τw is wind friction acting at the 
free surface, ρ0 is the constant water density, p is the atmospheric (sea 
level) pressure, g is the acceleration of gravity, vV is the vertical eddy 
viscosity coefficient, and Mx and My represent the contributions due to 
external sources or sinks of momentum (e.g., discharge or withdrawal of 
water). 

2.3.1. Model setup 
The G-Bay model has a varying cell-size spatial resolution ranging 

from 20 m in Houston city and the navigational channel up to 2 km in 
the Gulf of Mexico. The unstructured mesh comprises key features of the 
system such as the Houston Ship Channel, lateral floodplains, wetlands, 
and natural parks located downstream the Lake Houston Dam (Fig. 2a). 
The mesh at Houston city is limited by several discharge BCs including 
Whiteoak Bayou (USGS 08074500), Buffalo Bayou (USGS 08073700), 
Brays Bayous (USGS 08075000), and Sims Bayou (USGS 08075500). The 
Lake Houston Dam limits the mesh at the northern side where the sum of 
all upstream freshwater input is used as BC. Clear Creek (USGS 
08077600) and the Trinity River (USGS 08067252) limit the mesh at the 
western and eastern side, respectively. For simplicity, three downstream 
BCs at the ocean boundary namely San Luis Pass (NOAA 8771972), 

Fig. 2. Model domain, USGS/NOAA boundary conditions, and topobathy data (NAVD88 datum) interpolated over the unstructured mesh of (a) Galveston Bay, TX, 
and (b) Delaware Bay, DE. 
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Galveston Bay Entrance (NOAA 8771341), and Rollover Pass (NOAA 
8770971) provide coastal WLs at the outlet of the Bay. 

The D-Bay model has a cell-size spatial resolution of 20 m in urban 
areas and around the navigational channel that connects the Bay with 
the Delaware River (Fig. 2b). A coarser resolution up to 1.4 km is used in 
the Atlantic Ocean and in some parts of the Bay with relatively large 
water depths. The unstructured mesh cover wetland regions, small 
streams and lateral floodplains in Delaware and New Jersey (Fig. 2b). 
Discharge BCs in the upstream part of the Bay include the Delaware 
River (USGS 01463500), Schuylkill River (USGS 01474500), Brandy
wine Creek (USGS 01481500), Silver Lake tributary (USGS 01483155) 
and Blackbird Creek (USGS 01483200). The mesh is also limited at the 
western and eastern side by the Murderkill River (USGS 01484080) and 
Maurice River (USGS 0 1411900), respectively. In absence of a repre
sentative gauge station at the bay-ocean boundary, coastal WLs are 
derived from model simulations of the Advanced Circulation (ADCIRC) 
model. These time-series data were used in a similar flood study 
involving the Delaware Bay basin and Hurricane Sandy (Bakhtyar et al., 
2020). 

We use local wind, sea level pressure, and precipitation data ob
tained from the ERA5 reanalysis dataset as additional forcing into the 
model. Likewise, we correct vertical bias in wetland areas of G-Bay and 
D-Bay prior interpolation over the unstructured mesh. For this, we use a 
previously developed ‘DEM-correction’ tool that adjust surface elevation 
in coastal wetlands based on ‘emergent herbaceous’ wetland coverage of 
the NLCD (Muñoz et al., 2019). The tool modifies an existing DEM 
through linear elevation adjustment and site-specific parameters (Alizad 
et al., 2018), and helps reduce uncertainty in compound flood and ve
locity maps derived from hydrodynamic simulations (Muñoz et al., 
2020). 

2.3.2. Model calibration 
We calibrate roughness values based on the 2011 and 2016 NLCD 

maps of D-Bay and G-Bay, respectively, as they contain land cover dis
tributions prior to any effects of hurricane-induced flooding such as 
wetland loss, shoreline erosion, and sediment deposition (Morton and 
Barras, 2011). It is important to note that here the goal of model cali
bration is to estimate the best possible model parameters and provide 

reasonable initial state estimates of the system (e.g., surface WL and flow 
velocities) used for further ensemble-based model simulations (see 
section 2.4.3 for details). For this, we regrouped and refined the original 
NLCD classes into five main categories as follows: open water, riverine 
water, navigational (or dredged) areas, coastal wetlands, and urban 
areas (Fig. 3). The remaining land cover classes of the NLCD map (e.g., 
crops, pasture, forest, etc.) are left with recommended roughness values 
due to their negligible effect on flood dynamics (dry areas). 

A common approach for hydrodynamic model calibration consists of 
multiple runs with randomly sampled Manning’s roughness values (e.g., 
Monte Carlo approach) with the objective of: (i) minimizing the root 
mean square error (RMSE) between observed and simulated WLs, and 
(ii) maximizing their correlation. However, those ‘calibrated’ values 
may not be the optimal ones due to Monte Carlo the sampling procedure. 
Another alternative for calibration is the Latin Hypercube Sampling 
(LHS) technique that has been used for uncertainty propagation in 
complex systems and models (Cea and French, 2012; Iman et al., 1981). 
LHS results in a denser stratification over the range of each sampled 
parameter as compared to random sampling. Furthermore, the advan
tage of LHS over Monte Carlo is that the former technique leads to more 
stable results, i.e., close to the true probability density function of the 
parameter, and facilitates the identification of interactions among 
multiple parameters (Helton and Davis, 2003). 

We therefore sample roughness values with the LHS technique and 
use pre-defined lower and upper limits for each land cover category 
(Table 1). The range of Manning’s roughness values is derived from 

Fig. 3. Land cover categories used for model calibration via the Latin Hypercube Sampling (LHS) technique in (a) Galveston Bay, TX and (b) Delaware Bay, DE.  

Table 1 
Range of Manning’s roughness values used for calibration of Delaware Bay and 
Galveston Bay models.  

Land cover category Lower limit Upper limit G-Baya D-Baya 

Open water 0.005 0.035 0.015 0.021 
Riverine water 0.010 0.150 0.037 0.028 
Navigation areas 0.010 0.200 0.011 0.012 
Coastal wetlands 0.025 0.200 0.051 0.159 
Urban areas 0.020 0.070 0.030 0.021  

a Optimal (calibrated) roughness values. 
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pertinent literature including hydrodynamic and open channel flow 
studies (Arcement and Schneider, 1989; Chow, 1959; Liu et al., 2018). 
Model runs start on August 5, 2017 and October 11, 2012 for G-Bay and 
D-Bay, respectively, and ensure WL variability during high and low tides 
in the system, i.e., spring-neap tidal cycle (Pugh and Woodworth, 2014). 
We intentionally consider extreme WLs of Hurricane Harvey and Sandy 
in the calibration process to prove the benefits of DA in CFHA even with 
a rigorously calibrated model. 

2.3.3. Evaluation metrics 
We compare observed and simulated WLs using the Taylor diagram 

(Taylor, 2001) as proposed in hydrological and coastal studies (Abbas
zadeh et al., 2018; DeChant and Moradkhani, 2012; Muñoz et al., 2020). 
The diagram combines three performance measures to evaluate the 
goodness of fit between two time series: i) the Pearson’s correlation 
coefficient (R2) that measures the strength (and direction) of a linear 
relationship between the time series, ranging from 0 (poor) to 1 (perfect 
match), ii) the normalized root mean square difference (RMSD) that 
quantifies the similarity between the time series and ranges from 
0 (perfect analogy) to ∞ (total dissimilarity), and iii) the standard de
viation ratio (or ratio of variances) that quantifies the relative amplitude 
of variation between the time series; where the smaller the variation the 
closer SDR to 1. Likewise, we use additional deterministic and proba
bilistic metrics to provide a robust analysis of model calibration and the 
assimilation process. Those metrics are the Nash-Sutcliffe efficiency 
(NSE) ranging from 0 to 1 (Nash and Sutcliffe, 1970), the Kling-Gupta 
efficiency (KGE) with values between -∞ and 1 where efficiency of 1 
indicates a perfect match (Gupta et al., 2009), and the mean absolute 
bias (MAB) that quantifies the bias of the simulated variable with respect 
to the observation data. In MAB, a value of 0 suggests an absence of bias 
in model simulations. Lastly, reliability (RL) is a probabilistic metric that 
quantifies the statistical consistency between a time-varying variable 
and the corresponding distribution (Renard et al., 2010). RL ranges from 
0 (poor) to 1 (perfect match) between the predictive Q-Q plot and the 
theoretical quantile of uniform distribution (U [0,1]). For the readers’ 
convenience, all pertinent equations are included in the appendix 
(Table A1). 

2.4. Data assimilation 

DA consists of the application of Bayes’ theorem to probabilistically 
condition model states on observations; and ultimately forecast the state 
of a system based on the knowledge of the initial state (Moradkhani 
et al., 2018). We define WL in coastal to inland transition zones as the 
model state (Equation (4)) and condition simulated WLs from hydro
dynamic modeling to the corresponding observation at the USGS and 
NOAA stations (Equation (5)). Hereinafter, we follow the nomenclature 
proposed in Moradkhani et al. (2005) to define all pertinent variables. 

xt+1 = f (xt, ut, θ) + ωt; ωt ∼ Ṅ
(
0, Σx

t

)
(4)  

ŷt+1 = h(xt+1, θ) + νt+1; νt+1 ∼ Ṅ(0, Σy
t+1) (5)  

where xt, ŷt, and ut are model state, model prediction, and forcing data 
vectors at the current time-step t, respectively. f(.) is the generalized 
nonlinear state-transfer function (or forward operator) whereas h(.) is 
the observation operator that translates model states into observation 
space. ωt+1 and νt+1 are additive noise terms (e.g., stochastic or random 
error) representing uncertainties from model structure and observation 
data, respectively. Both uncertainties are assumed to be independent of 
each other and derived from a normal (Ṅ) or Gaussian distribution with 
zero mean and covariances Ʃ xt and Ʃ yt+1 (Moradkhani et al., 2005). θ is 
a time-invariant parameter vector that represents (calibrated) spatially 
varying Manning’s roughness values (Table 1). 

For simplicity, we assume that a robust calibration of spatially 
varying θ-values in coastal to inland transition zones (see section 2.3.2) 

in addition to accurate topobathy data (see section 2.2) can lead to 
reasonable WL estimates without requiring a sequential update or 
adjustment through time. Moreover, compound effects of flood drivers 
have a relatively short duration (e.g., lag times up to 7 days) that might 
not significantly alter the previously calibrated roughness values (Klerk 
et al., 2015; Ward et al., 2018). 

2.4.1. Ensemble Kalman Filter technique 
The EnKF uses a recursive algorithm that process a pre-defined set of 

ensemble model states (Equation (6)) and allows for constructing time- 
evolving probability density functions with the associated error 
covariance matrix (Moradkhani et al., 2005). Those functions are 
sequentially adjusted in the algorithm to match observations, which 
must be treated as a random variable (Burgers et al., 1998). This in turn 
prevents that the updated ensemble results in unrealistic (too low) 
variances (Equation (7)). Similarly, uncertainty from forcing data is 
often derived from stochastic perturbations with a Gaussian error 
(Equation (8)). However, in low-lying areas, CF is dominated by extreme 
coastal WLs (e.g., storm surge) that are better characterized by the 
General Extreme Value (GEV) distribution (Muis et al., 2019; Wahl et al., 
2017). 

xi−
t+1 = f

(
xi+

t , ui
t, θ

)
+ ωi

t; ωi
t ∼ Ṅ

(
0, Σx

t

)
(6)  

yi
t+1 = yt+1 + νi

t+1; νi
t+1 ∼ Ṅ(0, Σy

t+1) (7)  

ui
t = ut + ζi

t; ζi
t ∼ Ṅ

(
0, Σu

t

)
(8)  

where i = 1, 2, 3 … n-ensemble members. xi-
t+1 and xi +

t+1 are the ith 
forecast (prior) ensemble member at time t+1 and the ith updated 
(posterior) ensemble member at time t, respectively. yi

t+1 is the ith 
observation replicate whose mean value is the actual observation and 
noise term derived from a Ṅ distribution. Similarly, ui

t is the ith forcing 
replicate with Gaussian noise (ζ i

t) of zero mean and covariance Ʃ u
t 

(Moradkhani et al., 2005). 
We perturb forcing data using the GEV distribution for downstream 

BCs (coastal WL) and the Ṅ distribution for upstream BCs (river 
discharge) accordingly. Regarding the GEV distribution, we conve
niently select NOAA stations having long records to ensure a proper 
characterization of extremes. Those stations are Galveston Pier 21, TX 
(NOAA – 8771450) and Lewes, NJ (NOAA – 8557380) as they have been 
collecting hourly WL data since 1904 and 1919, respectively. The error 
covariance matrix associated with the state forecast estimate (Equation 
(9)) and observation forecast (Equation (10)) is calculated after each 
round of ensemble model simulations. Subsequently, the Kalman gain 
(Equation (11)) is estimated with the forecast cross-covariance matrix of 
the state variables (Equation (12)) and the forecast error covariance 
matrix of the observation forecast (Equation (13)). 

E
[
xi−

t+1

]
=

1
N

∑N

i=1
xi−

t+1 (9)  

E
[
ŷi

t+1

]
=

1
N

∑N

i=1
ŷi

t+1 (10)  

Kt+1 = Σxy−

t+1 (Σyy−

t+1 + Σy
t+1)

−1 (11)  

Σxy−

t+1 = E
[(

xi−
t+1 − E

[
xi−

t+1

])(
ŷi

t+1 − E
[
ŷi

t+1

])T
]

= …  

…
1
N

∑N

i=1

{(
xi−

t+1 − E
[
xi−

t+1

])(
ŷi

t+1 − E
[
ŷi

t+1

])T
}

(12)  

Σyy−

t+1 = E
[(

ŷi
t+1 − E

[
ŷi

t+1

])(
ŷi

t+1 − E
[
ŷi

t+1

])T
]

= …  
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…
1
N

∑N

i=1

{(
ŷi

t+1 − E
[
ŷi

t+1

])(
ŷi

t+1 − E
[
ŷi

t+1

])T
}

(13) 

Equations (9)–(13) follow the standard Kalman Filter formulation 
except that the model covariances are directly estimated with the 
ensemble members. In addition, these set of equations simplify the 
updating process as there is no need of linearization of the model 
(Moradkhani et al., 2018). Lastly, the ensemble members are updated as 
follows: 

xi+
t+1 = xi−

t+1 + Kt+1
(
yi

t+1 − ŷi
t+1

)
(14)  

2.4.2. Mass and force balance closure 
A well-known limitation of the EnKF is that this technique alters the 

mass water balance (or continuity equation) when adding or subtracting 
water into/from the system to update model states (Abbaszadeh et al., 
2019; DeChant and Moradkhani, 2012; Matgen et al., 2010). Likewise, 
such an update (or correction) of surface WL will not last enough in 
coastal systems due to a rapid barotropic adjustment in the velocity field 
(Asher et al., 2019; Valle-Levinson, 2010). A possible solution that might 
help achieve an adequate mass and force balance closure of the system 
consists in a simultaneous update of forcing data and model states in the 
continuity (Eq. (1)) and momentum equations (Eqs. (2) and (3)), 
respectively. Following the approach of Asher et al. (2019), we intro
duce a fictitious force term in the momentum equation to match the WL 
correction accordingly. This force is derived from the inverse barometer 
relationship (Equation (15)) that relates any changes in atmospheric 
pressure (Δp) to the corresponding changes in surface WL (Δζ). 

p = pa + Δp = pa − p0 g Δζ (15)  

where pa is the actual pressure and Δp is referred as the pseudo atmo
spheric pressure. 

Substituting this expression into the momentum equations (Eqs. (2) 
and (3)), the so-called pseudo atmospheric pressure allows the WL 
correction to propagate over the other equation terms (Equations (16) 

and (17)). 

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

− fv = −
1
ρ0

∂pa

∂x
− g

∂(ζ − Δζ)

∂x
+ vV

⃒
⃒
⃒
⃒
∂2u
∂x2 +

∂2u
∂y2

⃒
⃒
⃒
⃒ +

τb + τw

ρ0

+ Mx

(16)  

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ fu = −
1
ρ0

∂pa

∂y
− g

∂(ζ − Δζ)

∂y
+ vV

⃒
⃒
⃒
⃒
∂2v
∂x2 +

∂2v
∂y2

⃒
⃒
⃒
⃒ +

τb + τw

ρ0

+ My

(17)  

2.4.3. Data assimilation scheme for compound flood hazard assessment 
An important aspect of the DA cycle (Fig. 4) is that the variances of 

input (e.g., initial condition, observation, and BCs) and output data 
(model states) are assumed to be heteroscedastic, i.e., the variances are 
proportional to their corresponding magnitudes (Eqs. (6)–(8)). This 
assumption, in addition to a sufficient ensemble size (N), ensures that 
the ensemble spread can effectively characterize the uncertainty asso
ciated with input and output data; hence improving the efficiency of the 
EnKF technique (Burgers et al., 1998; Moradkhani et al., 2005). In that 
regard, we tune a set of proportionality factors (F) and N based on 
trial-and-error experiments conducted with a high-performance 
computing system. F ranges from 5% to 25% with a 5% increment 
whereas N is set to 25, 50, 100, and 200 members. Based on those ex
periments, we found that model simulations with 100 ensemble mem
bers and factors of initial state and observational data (10%), forcing 
data (20%), and model states (15%) are suitable for characterizing the 
associated errors. In addition, we noticed that using a larger N (e.g., 
more than 100 ensemble members) in the DA scheme did not improve 
the model performance with respect to open-loop (OL) simulations, i.e., 
simulations where both initial state and forcing data are perturbed 
without any assimilation cycles. Moreover, we noticed that a larger N 
increased the computational burden and simulation time even with 
parallel simulations conducted with a high-performance computing 

Fig. 4. Schematic of the data assimilation (DA) process with the Ensemble Kalman Filter (EnKF) technique for compound flood hazard assessment (CFHA). Dark-blue 
boxes are updated sequentially within the DA process. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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system. 
The initial state of the system for every node of the unstructured 

mesh (Fig. 2) is derived from a 15-day model run prior to the assimi
lation starting point, which begins on August 20, 2017 and October 26, 
2012 for G-Bay and D-Bay, respectively. Likewise, the assimilation cycle 
is set to 6 h (e.g., WL update every 6h) in accordance to hurricane ad
visories of the National Hurricane Center. Although daily assimilation 
cycles are common in hydrological modeling, this would not be useful 

from a storm surge forecast perspective. The assimilation window en
compasses a total time (T) of 7 days for D-Bay and 13 days for G-Bay due 
to a relatively long flood recession period (Fig. S2, supplementary 
material). 

Another key aspect of the DA scheme is the generation of flood 
hazard maps for CFHA over the study sites. We propose a simple yet 
practical approach to estimate flood extent and maximum floodwater 
height (MFH) in absence of readily available satellite imagery for 

Fig. 5. Taylor diagrams summarizing the goodness of fit between observed and simulated WLs. The statistical metrics evaluate 200 combinations of Manning’s 
roughness values generated using the LHS technique. Selected NOAA and USGS stations represent coastal (a, b), transition (c, d), and upstream areas (e, f) in 
Galveston Bay (left panel) and Delaware Bay (right panel). 

D.F. Muñoz et al.                                                                                                                                                                                                                               



Coastal Engineering 171 (2022) 104057

9

assimilation purposes. The approach consists of identifying ensemble 
members and their corresponding flood maps that match the WL update 
at any observation station for a given time step. We argue that these 
maps preserve the underlying physics controlling compound flood dy
namics even though they have not been corrected due to limited 
observation data in the entire model domain. As part of the identifica
tion and/or selection process, we use a threshold value consisting of the 
desired WL update ±1 cm. The flood maps whose WLs (at the observa
tion stations) fall within the threshold value are then spatially overlayed 
to compute a single MFH composite for the entire model domain. Note 
that larger threshold values would eventually identify most of the 
ensemble members; and consequently, the MFH composite might over
estimate floodwater heights instead. The MFH composite is recomputed 
every 6 h along with WL updates in near real-time, which in turn can 
assist in flood control management and prompt emergency responses. 
The proposed approach is further validated with respect to USGS – high 
water marks collected after Hurricane Harvey and Sandy (Fig. 1). 

3. Results and discussion 

3.1. Model calibration 

We use Taylor diagrams to compare observed and simulated WLs at 
ten selected NOAA and USGS stations in G-Bay and D-Bay (Fig. 5, and 
Fig. S1 – supplementary material). Time series used in the diagrams are 
selected around the peak WL to highlight the models’ performance for 
CF. The pink circles displayed in the Taylor diagrams represent the 
evaluation metrics obtained from a given combination of Manning’s 
roughness values with respect to observational data (black circle). 
Among 200 combinations of roughness values, the best combination 
(red circle) is associated with the calibrated roughness values for all 
selected stations (Table 1). The statistical metrics of the Taylor diagram 
suggest that stations located close to the ocean (Fig. 5, top panel) are less 
sensitive to changes of roughness values as compared to the ones located 
in transition zones (middle panel) and upstream areas (bottom panel). 
Consequently, models’ performance varies from relatively high accu
racies in coastal areas (e.g., RMSD <0.4, SDR close to 1, and R2 > 0.9) to 
moderate accuracies in upstream areas (e.g., RMSD <0.6, SDR close to 1 
and R2 > 0.8). 

Moreover, the relative influence of either coastal or inland flood 
drivers on CF may have affected model’s performance at the selected 
stations despite a robust model calibration with the LHS technique 
(Fig. S1). CF in G-Bay was characterized by extreme rainfall (7.6 × 10 
m3) and river-discharge pulses from the Buffalo Bayou River and the San 
Jacinto River that together produced an excessive freshwater runoff of 
1.4 × 10 m3 (Huang et al., 2021; Valle-Levinson et al., 2020). The 
dominance of fluvial flooding over storm surge during Hurricane Harvey 
probably caused the permanent damage of Lynchburg Landing station 
(NOAA – 8770733) located at the confluence of those rivers (Valle-Le
vinson et al., 2020). In contrast, CF in D-Bay was mainly driven by 
extreme coastal WLs with storm tides of ~1.25 m above mean-higher 
high water at the Lewes station (Blake et al., 2013). Similarly, the 
dominance of storm surge over fluvial flooding during Hurricane Sandy 
may have interrupted the well-functioning of Brandywine Shoal Light 
station (NOAA - 8555889) located in the lower part of D-Bay (Fanelli 
et al., 2013). 

The evaluation metrics displayed in Fig. S2 (supplementary material) 
are also calculated around the peak WL. As mentioned before, the 
models perform satisfactorily at stations located in coastal areas where 
RMSE is below 0.25 m. Likewise, a relatively high RMSE is observed in 
transition zones where coastal and inland flood drivers interact. For 
example, Manchester (Figs. S2–i) and San Jacinto River stations 
(Figure S2-s) show the strong effect of pluvial and fluvial forcing on G- 
Bay. Although model simulations match the observed tidal magnitude 
and phase accurately (NSE >0.87), the model fails in capturing the peak 
WL attributed to excessive freshwater runoff. G-Bay model 

overestimates the peak WL by 0.30 m at Manchester station (KGE =

0.85) whereas the peak at San Jacinto River is underestimated by 1.80 m 
(KGE = 0.68). Similarly, Burlington (Figs. S1–j) and Christina River 
stations (Fig. S1-t) show the effect of ocean forcing on D-Bay especially 
at the peak storm surge where the model fails in capturing the peak 
magnitude even though the tidal phase is correctly represented (NSE 
>0.74). D-Bay model underestimates the peak WL in both stations with 
0.35 m (KGE = 0.69) and 0.40 m (KGE = 0.61), respectively. 

This preliminary analysis suggests that hydrodynamic modeling can 
benefit from DA especially in transition and upstream areas where over- 
and underestimation of WL are evident regardless of the dominant flood 
driver (e.g., freshwater runoff or storm surge). Moreover, we argue that 
a well-calibrated hydrodynamic model may not require correcting time- 
varying roughness values, unlike hydrological models where model 
parameters are most often preferred to be corrected in conjunction with 
model state variables during the assimilation period (Abbaszadeh et al., 
2020; Meng et al., 2017; Ziliani et al., 2019). In particular, improve
ments in hydrodynamic modeling including the underlying physics, 
mesh decimation, and reliable topobathy data in coastal areas have 
resulted in a better model skill for storm surge forecasts and CF (Bilskie 
et al., 2020; Mandli and Dawson, 2014; Santiago-Collazo et al., 2019). 

3.2. Data assimilation with the EnKF 

The deterministic metrics namely RMSE, NSE, and KGE evaluate the 
performance of DA (blue text) and OL simulations (red text) at ten NOAA 
and USGS stations of G-Bay and D-Bay (Fig. 6, and Fig. S3 – supple
mentary material). In general, the EnKF technique helps reduce both 
over- and underestimation in WL predictions as compared to the OL 
simulations; especially in transition and upstream areas where inland 
and coastal flood drivers interact. In coastal areas (Fig. 6, top panel), 
such an improvement is noticeable in Galveston Pier 21 station where 
freshwater runoff attenuates the incoming tide propagating from the 
Gulf of Mexico. Model simulations after DA can satisfactorily predict WL 
variability during the CF event since RMSE is reduced by 35% with 
respect to the OL simulation whereas both NSE and KGE increase up to 
0.88. In contrast, the OL simulation overestimates the peak WL 
including the flood recession limb on August 30. Lewes station in D-Bay 
shows that WL estimates with DA and OL simulations are almost iden
tical, and tides propagate from the Atlantic Ocean without any notice
able influence of freshwater runoff. Nevertheless, the deterministic 
metrics reflect a slight improvement in WL prediction with DA since 
RMSE is reduced by 14% whereas NSE and KGE increase up to 0.96 and 
0.95, respectively. Likewise, RL ≥ 0.85 in both stations suggests that the 
ensemble spread is appropriate for generating reliable WL predictions. 

In transition zones (middle panel), Morgans Point shows a moderate 
improvement in WL prediction. RMSE is reduced by 11% with respect to 
the OL simulation whereas NSE and KGE increase up to 0.84 and 0.77, 
respectively. However, after the peak WL on August 27, there is an 
evident overestimation of WL that propagates over the recession limb. 
This is likely associated with a high uncertainty in river discharge esti
mates from the San Jacinto River located at the northeastern side of 
Houston City (Fig. 1). In fact, detailed analyses of forcing conditions 
during Hurricane Harvey suggest that the observed WLs at Morgans 
Point are primarily attributed to the San Jacinto River’s flooding with a 
limited contribution of the Buffalo Bayou River (Valle-Levinson et al., 
2020). Similarly, Ship John Shoal station located in the transition zone 
of D-Bay shows a considerable improvement in WL prediction. The EnKF 
technique corrects a clear overestimation of high and low WLs on 
October 30 which in turn helps reduce RMSE by 35% and increase NSE 
and KGE up to 0.94 and 0.86, respectively. The ensemble spread in both 
stations can produce reliable WL predictions since RL ≥ 0.90. 

The benefit of the EnKF technique for WL prediction is also evident in 
upstream areas of G-Bay and D-Bay (bottom panel). Buffalo Bayou is 
among the stations in Houston City that reported historic WLs (>3.5 m) 
associated with the compound effect of inland and ocean flood drivers. 
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Although both OL and DA simulations match the peak WL, the assimi
lated one can reproduce WL variability with a higher accuracy especially 
before August 27. Note that underestimation of WL during the rising 
limb is compensated by an overestimation around the peak WL on 
August 28. The latter is reflected in both NSE and KGE as they achieve 
very high values ranging from 0.93 to 0.97 regardless of the EnKF 
implementation. Nonetheless, RMSE is reduced by 19% with respect to 
the OL simulation. Christina River station in D-Bay shows that the OL 
simulation cannot reproduce WL variability around the peak and beyond 
August 30. The DA simulation helps reduce both over- and underesti
mation of WL within the assimilation window, and as a result, RMSE is 
reduced by 33% with respect to the OL simulation. Likewise, NSE in
creases up to 0.89 even though KGE shows a slight decrease (0.83) in the 
DA simulation. RL ≥ 0.89 suggests that the ensemble spread is appro
priate and can produce reliable WL predictions. 

In addition to time series analyses, we compare the prior (forecast) 
and posterior (update) distributions of WL simulations at NOAA and 
USGS stations of G-Bay and D-Bay (Fig. 7, and Fig. S4 – supplementary 
material). In general, the expected value of the posterior distributions is 
closer to the observed peaks (black circle) than that of the prior distri
bution in all stations, suggesting that the assimilation process could 
result in more reliable and accurate WL predictions. In coastal areas 
(Fig. 7, top panel), such an improvement is more discernible at Gal
veston Pier 21 station where the EnKF technique helps correct over
estimation of WL even at the start of the assimilation process (t = 0). This 

was also observed at the peak WL (t = tp) and the end of the simulation 
period (t = T). The improvement of WL prediction is less evident for the 
Lewes station at the three instances since the calibrated model (OL 
simulation) can represent storm surge accurately (Fig. 6b). Nevertheless, 
uncertainty bounds around the observed WL are considerably reduced 
with the posterior distribution at t = T. In transition zones (middle 
panel), Morgans Point and Ship Jhon Shoal show a similar pattern as the 
posterior distribution is centered around the observation data and un
certainty is reduced at the three instances. The improvement in WL 
prediction is also reflected in upstream areas of the study sites (bottom 
panel). The expected value of prior distributions overestimates the 
observed WL at Buffalo Bayou station (up to 0.30 m at t = T) and un
derestimates the peak WL at the Christina River station (0.55 m at t =
tp). Furthermore, note that the prior distribution (WLs before correction 
or update) tends to overestimate the actual observation in all stations of 
G-Bay whereas the opposite is observed in D-Bay. 

3.3. Compound flood hazard assessment with DA 

Another key aspect of the DA scheme is the generation of flood 
hazard maps in the absence of observational data in space (e.g., wet
lands, floodplains, etc.) as opposed to gauge (point-based) data. Here
inafer, we compare flood hazard maps obtained from the two well- 
calibrated models (Fig. S2) with respect to MFH composites derived 
from the proposed DA scheme (see section 2.4.3). For this, we leverage 

Fig. 6. Predicted and observed WLs using the (EnKF) technique in Galveston Bay (left panel) and Delaware Bay (right panel) for Hurricane Harvey and Hurricane 
Sandy, respectively. Open-loop (OL) simulations (red dashed lines) and data assimilation (DA) results (blue solid line) are compared to observation data (black dots) 
in terms of RMSE, NSE, and KGE. The ensemble spread of posterior simulation (light blue) is evaluated with the reliability metric (RL). Selected NOAA and USGS 
stations represent coastal (a, b), transition (c, d), and upstream areas (e, f). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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the assimilation process (Fig. 4) and identify flood maps that match the 
WL update at selected NOAA and USGS stations. These maps are over
layed to compute MFH composites covering the entire model domain. To 
validate this approach, we compare the resulting composites (and 
associated point data) with respect to USGS – high water marks collected 
after Hurricane Harvey and Hurricane Sandy (Fig. 8, top panel). The 1:1 
fit line represents a perfect match between simulated and observed 
maximum WLs in the study sites. In general, the MFH composites are 
more accurate than flood hazard maps of the well-calibrated models 
since the mean absolute bias (MAB) is reduced by 25% in G-Bay and by 
43% in D-Bay. In both study sites, the calibrated models tend to un
derestimate the observed high water marks as most of the data is below 
the 1:1 fit line. In contrast, the MFH composites (or point data) are well 
aligned with the 1:1 fit line especially in G-Bay that has about 240 
verified marks in the model domain (Fig. 1a). Although the MFH com
posite of D-Bay is validated with only 13 available marks in the model 
domain (Fig. 1b), the advantage of the DA process is evident as well. 

To further examine the benefits of the assimilation process for CFHA, 
we compare the flood hazard maps andthe MFH composites in terms of 
WL residuals (Fig. 8, bottom panel). Based on the previous validation 
process, we consider the MFH composite as a reference and identify 
zones where flood hazard is overestimated (positive residuals) and 
underestimated (negative residual). The largest negative residuals are 
observed along the Buffalo Bayou River (Houston Ship Channel), the San 
Jacinto River, Cedar Bayou, and surrounding areas where the underes
timation of MFH is above 0.7 m. Likewise, MFH is underestimated in the 
middle of G-Bay (0.6 m) and overestimated in upstream areas beyond 
the flood risk zone (0.10 m). In contrast, the largest negative residuals in 
D-Bay are rather scattered around Lewes, Cape May, the Delaware Na
tional Estuarine Reserve, and Trenton where the underestimation of 

MFH is above 1 m. The residual is almost negligible beyond wetland 
regions (at the edges of the Bay) and in upstream areas of D-Bay. 

Overall, the DA process via the EnKF technique allows for reducing 
uncertainty in CFHA as compared to a rigorously calibrated model. 
Although assimilation of flood extent from satellite-based imagery (or 
radar data) is desirable (Annis et al., 2021), this is not always possible 
from a CFHA perspective. Satellite’s revisit frequency is usually in the 
order of days, and so hinders sequential assimilation of spatial data 
and/or near real-time flood detection and mapping (Anusha and Bhar
athi, 2020; Kabir et al., 2020; Muñoz et al., 2021b; Uddin et al., 2019). 
Moreover, even with available cloud-free imagery and/or radar data, the 
acquisition date may not coincide with that of the maximum flood extent 
and so hinder any efforts in CFHA with DA. Our approach attempts to 
overcome this issue by generating near real-time MFH composites 
within the DA cycle (6 h-update). 

4. Conclusions 

Compound flood hazard assessment (CFHA) is a challenging yet 
crucial task that can benefit from data assimilation (DA) techniques. 
Although coastal hydrodynamic models are well-suited to predict storm 
surge and associated WL variability, complex and nonlinear interactions 
emerging from inland and coastal flood drivers increase the uncertainty 
in WL prediction and compound flood modeling especially in coastal to 
inland transition zones. In this study, we first developed a pair of high- 
resolution hydrodynamic models in Delft3D-FM, corrected wetland 
elevation bias in topographic data, and conducted a robust model cali
bration with the Latin hypercube sampling (LHS) technique in order to 
reduce any potential source of error in WL and compound flood simu
lations. We then used a DA scheme based on the Ensemble Kalman Filter 

Fig. 7. Forecast (prior) and update (posterior) distributions of WL simulation at the start (t = 0), peak WL (t = tp), and end of the simulation period (t = T) for 
Galveston Bay (a, c, e) and Delaware Bay (b, d, f). Selected NOAA and USGS stations represent coastal (a, b), transition (c, d), and upstream areas (e, f). 
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(EnKF) technique and hydrodynamic modeling to provide reliable WL 
predictions and accurate near real-time flood hazard maps (e.g., 6 h- 
sequential update). We selected the EnKF technique to correct model 
states (WL estimates) in coastal to inland transition zones since the 
ensemble-based formulation is suitable for systems with strongly 
nonlinear dynamics (Evensen, 2002); especially those emerging from 
complex interactions of pluvial, fluvial, and ocean drivers. In addition, 
we attempted to close the mass and force balance of the system by 
adjusting both continuity and momentum equations and so forced the 
system to the desired surface WL. The proposed DA scheme was tested 
on two well-known compound flood events and study sites in the United 
States, namely Hurricane Harvey for Galveston Bay (G-Bay) and Hurri
cane Sandy for Delaware Bay (D-Bay), and further validated with veri
fied high water marks of the U.S. Geological Survey. 

Compound flooding (CF) in G-Bay was primarily attributed to 
extreme freshwater runoff from the San Jacinto River and the Buffalo 
Bayou River that jointly elevated WLs in both inland and coastal gauge 
stations. For this event, the proposed DA scheme corrected over
estimation in WL predictions (up to 0.25 m) with respect to open-loop 
simulations and reduced mean absolute bias (MAB) by 25% with 

respect to the calibrated model. Unlike the G-Bay, CF in D-Bay was 
driven by extreme coastal WLs (storm surge) that propagated from the 
ocean boundary to inland stations distributed along the Delaware River. 
Here, the DA scheme corrected underestimation in the predictions (up to 
0.55 m) and reduced MAB by 43%. From a CFHA perspective, the 
assimilation process helped generate maximum floodwater height 
(MFH) composites as a proxy for updated WLs over the entire model 
domain (e.g., flood hazard maps). The composites preserved the un
derlying physics of CF and were additionally conditioned to match WL 
updates at available gauge stations. The near real-time MFH composites 
allowed the identification of over- and underestimation zones when 
conducting CFHA with/out assimilation of WL. We conclude that even a 
rigorously calibrated model can benefit from DA regardless of the 
dominant flood driver in CF. Future research is advisable towards more 
advanced DA techniques, mainly the Particle Filtering (Abbaszadeh 
et al., 2018, 2019; Moradkhani et al., 2018), for CFHA to overcome 
inherent limitations of the EnKF technique such as linear updating rule, 
Gaussian assumption of errors in observations, and mass and force 
balance closure. The DA scheme proposed here can help generate 
actionable flood risk information on a near-real time basis and so assist 

Fig. 8. Compound flood hazard assessment (CFHA) for Hurricane Harvey in Galveston Bay (left panel) and Hurricane Sandy in Delaware Bay (right panel). (a, b) 
Validation of maximum floodwater height composites (MFH) with respect to high water marks of the U.S. Geological Survey (USGS). (c, d) WL residuals between 
flood hazard maps of well-calibrated models (based on LHS) and MFH composites (based on DA) show zones of overestimation (positive) and underestimation 
(negative) when conducting CFHA. 
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decision makers and emergency responders in case of compound coastal 
flooding (i.e. hurricanes). 
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Appendix  

Table A.1 
Summary of evaluation metrics used for compound flood hazard assessment with data assimilation.  

Evaluation metrics Equation 

Pearson’s correlation 
R2 =

1
T − 1

∑T

t=1

(
ot − uo

σo

)(
st − us

σs

)

=
cov(ot , st)

σoσs  

Centered root mean square difference 
RMSD =

{
1
T

∑T

t=1
[(st − us) − (ot − uo)]

2

}1/2  

Standard deviation ratio SDR =
σs

σo  
Nash-Sutcliffe efficiency 

NSE = 1 −

∑T
t=1(st − ot)

2

∑T
t=1(ot − uo)

2  

Kling-Gupta efficiency 
KGE = 1 −

{[
cov(ot , st)

σoσs
− 1

]2
+

[(
σs

σo

)

− 1
]2

+

[(
us

uo

)

− 1
]2

}1/2  

Mean absolute bias 
MAB =

1
T

∑T

t=1
|st − ot |

Reliability 
RL = 1 − 2

∑N

i=1

⃒
⃒
⃒px(i) − p(th)

x(i)

⃒
⃒
⃒

Where t: time step, T: total time steps, ot: observation data, st: model simulation, uo: mean of observation data, us: mean 
of model simulations, σo: standard deviation of observation data, σu: standard deviation of model simulations, cov: 
covariance, N: ensemble size, x: ensemble member, px(i): ith observed p-value, and px(i)

(th): theoretical p-value of x at t. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.coastaleng.2021.104057. 
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