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ABSTRACT

Compound flood hazard assessment (CFHA) and modeling are prone to various sources of uncertainty including
model structure, model parameters, input/forcing data, and those associated with nonlinear interactions among
flood drivers. Data assimilation (DA) is an efficient method that helps quantify and reduce uncertainty in many
hydrological applications and has proven to be effective in water level (WL) predictions and/or flood forecasts.
However, research to date has not yet explored the benefits of DA in coastal to inland transition zones where
pluvial, fluvial, and coastal flood drivers interact. Here, we present a DA scheme consisting of the Ensemble
Kalman Filter technique and hydrodynamic modeling to provide (i) reliable WL predictions and (ii) accurate
(near real-time) flood hazard maps within a 6 h-assimilation cycle. The DA scheme is tested on two well-known
compound flood events and study sites in the United States, namely Hurricane Harvey for Galveston Bay and
Hurricane Sandy for Delaware Bay. WL predictions and compound flood hazard maps are validated against
observational data collected from coastal and inland gauge stations and high-water marks obtained from the U.S.
Geological Survey, respectively. We show that DA is an effective method that accounts for all sources of un-
certainty, reduces errors in peak WL estimates (up to 0.55 m) and mean absolute bias in CFHA (up to 40%). We
conclude that, regardless of the dominant fluvial/pluvial or coastal drivers, DA can improve CFHAs in low-lying

areas including coastal to inland transition zones.

1. Introduction

Compound events result from a combination of multiple drivers and/
or hazards that contributes to societal or environmental risks
(Zscheischler et al., 2020). During these events, spatiotemporal coinci-
dence/succession of multiple (non-) extreme hazards and the associated
nonlinear interactions among physical processes (e.g., oceanic, hydro-
logical, and meteorological) can lead to larger impacts than those from
isolated hazards (AghaKouchak et al., 2018; Leonard et al., 2014). Such
nonlinear interactions along with sea level rise and anthropogenic ac-
tivities (e.g., land cover land use change, water extraction, and climate
change) may escalate flood risk globally and impact ~190 million
people currently living below high tide lines (Kulp and Strauss, 2019).
Over the past years, compound flooding (CF) has been studied with
statistical, physically-based, or combined approaches improving com-
pound flood hazard assessments (CFHAs) at different spatial scales. In
this section, we present an overview of current approaches for CFHA,
identify the associated sources of uncertainty, and describe data

assimilation (DA) techniques used to improve forecasts from hydrolog-
ical, meteorological, and oceanic models. In Section 2, we introduce the
study sites, indicate available (open-source) data, and develop a DA
scheme aimed at improving water level prediction and CFHA in coastal
to inland transition zones. Then, we discuss the results of the proposed
scheme in Section 3 and further provide conclusions and remarks in
Section 4.

1.1. Compound flood hazard assessment

Statistical approaches for CFHA help characterize the joint occur-
rence of extreme events via multivariate analyses (Bensi et al., 2020;
Sadegh et al., 2018; Salvadori et al., 2016), hence allowing researchers
to conduct assessments at different spatial scales (Hendry et al., 2019;
Wahl et al., 2015; Ward et al., 2018). However, these approaches require
observational data from gauge stations having a considerable length of
records to account for uncertainties when characterizing flood hazards
at low frequencies or long return periods (e.g., 25, 50, and 100 years).
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Moreover, even if data are available for several years, these approaches
may not necessarily lead to identical CFHAs as gauge (point-based)
measurements cannot fully capture the spatiotemporal patterns of CF
(Ghanbari et al., 2021; Moftakhari et al., 2017; Nasr et al., 2021). In
contrast, physically-based approaches allow for simulating CF and
generating flood maps over a user-defined model domain for a given
compound event (Valle-Levinson et al., 2020; Ye et al., 2021). Particu-
larly, two-dimensional (2D) hydrodynamic models require a detailed
mesh resolution (or cell size) to ensure a correct representation of
relevant topographic and bathymetric (topobathy) features and accu-
rately simulate water level (WL) dynamics (Bilskie and Hagen, 2013).
Therefore, a series of hydrodynamic models have been developed to
solve the continuity and momentum equations (Equations (1)-(3), in
section 2.3) in 2D depth-average mode (e.g., ADCIRC, Delft3D-FM,
HEC-RAS, ROMS, etc.) and subsequently conduct CFHAs. However,
these approaches are computationally intensive despite the growing
access to powerful and low-cost computational resources.

Linking statistical and physically-based approaches can alleviate
computational burden since hydrodynamic simulations and/or CFHAs
focus on the most likely boundary (forcing) conditions given the cor-
relation structure of hazard drivers and desired return period (Mofta-
khari et al., 2019; Munoz et al., 2020; Serafin et al., 2019). Despite the
advantages and limitations of both statistical and physically-based ap-
proaches, a thorough CFHA should also account for uncertainties
derived from boundary conditions (BCs) and/or validation data, model
parameters, and model structure (Moradkhani et al., 2018; Nearing
et al., 2016; Wu et al., 2020). These sources of uncertainty, when not
accounted for, can significantly affect the accuracy of inundation depth,
flood extent, and velocity maps in hydrological and coastal systems
(Parodi et al., 2020; Saleh et al., 2017; Wechsler, 2007).

1.2. Uncertainty sources

Uncertainty from BCs in compound flood modeling is associated with
the initial state and forcing data of the system. The initial state is
affected by the uncertainty of topobathy data including an inadequate
representation of flood-protection infrastructure in digital elevation
models (DEMs) (e.g., seawalls, levees, and coastal barriers) (Gallien
et al., 2018; Sanders and Schubert, 2019). In coastal systems, wetland
coverage is a well-known source of vertical bias especially in light
detection and ranging-derived DEMs where overestimation of true
topographic elevation can be as high as 0.65 m (Alizad et al., 2018;
Medeiros et al., 2015). Uncertainty of bathymetric data directly affects
velocity and current speed magnitudes, which in turn alters complex
processes such as sedimentation, salinization, and mixing in rivers and
estuaries (Cea and French, 2012). Likewise, forcing data (or BCs) and
observations are other sources of uncertainty that can potentially affect
the accuracy of CFHA. These uncertainties are often estimated a priori
(Moradkhani et al., 2018) or ignored depending on the quality of the
data source. For example, observation errors from WL stations of the
National Oceanic and Atmospheric Administration (NOAA) are in the
order of millimeters (1 mm) (Asher et al., 2019) whereas discharge
measurements from U.S. Geological Survey (USGS) stations can range
from excellent to poor quality, i.e., data within 2% and >8% of actual
flow, respectively (USGS, 2011).

Another important source of uncertainty is derived from model pa-
rameters including roughness coefficient, wind-drag, eddy viscosity and
diffusivity, and other physically-related coefficients that control the
dynamics of coastal processes. Among those parameters, the Manning’s
roughness coefficient is known to alter WL and/or inundation dynamics
and therefore requires a robust calibration based on land cover and land
use maps. When such maps are not available at the desired resolution,
alternatively, land cover maps derived from remote sensing data can be
used (Munoz et al., 2021a; Potapov et al., 2020). This in turn aims at
improving traditional approaches that rely on a single roughness coef-
ficient for estuarine, riverine and floodplain areas (Liu et al., 2018; Ye
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et al., 2020). Lastly, uncertainty from model structure (or process un-
certainty) refers to limitations and a priori assumptions of underlying
processes simulated in physically-based models (Moradkhani et al.,
2018; Nearing et al., 2016). Models are themselves uncertain as they
discretize oceanic, hydrological, and meteorological processes to make
them suitable for numerical evaluation. Moreover, when using model
coupling frameworks to provide CFHAs, the uncertainty of modeling
processes propagates through the coupled models in series (Hasan
Tanim and Goharian, 2021; Joyce et al., 2018). This in turn requires
advanced statistical methods to account for model’s uncertainty and
reduce systematic errors.

1.3. Accounting for uncertainties using data assimilation

The aforementioned uncertainties can be accounted for with
sequential DA procedures. The purpose of DA is to combine information
from model states with in-situ and/or remotely-sensed observations for a
better forecast of the fields of interest (Moradkhani, 2008). DA has been
widely used to estimate uncertainties and improve forecasts from hy-
drological (Abbaszadeh et al., 2020; Pathiraja et al., 2018), meteoro-
logical (Houtekamer and Zhang, 2016; Navon, 2009) and oceanic
models (Bertino et al., 2003; Ghil and Malanotte-Rizzoli, 1991). In
contrast, relatively few studies have successfully implemented DA
techniques with coastal-ocean models to reduce uncertainties in
storm-surge forecasting and coastal inundation. Heemink (1986) con-
ducted one of the pioneer studies for storm-surge prediction using Kal-
man filtering (Kalman, 1960). Later on, Verlaan and Heemink (1997)
and Canizares et al. (1998) proposed an approximation of the Kalman
Filter algorithm via reduced-rank square-root filter to forecast tidal
flows and initialize storm-surge models, respectively. Madsen and
Canizares (1999) evaluated the performance of extended and Ensemble
Kalman Filter (EnKF) methods for assimilation of WL measurements in
an idealized bay region. They pointed out the ability of both methods to
efficiently correct model states given a suitable number of leading ei-
genvalues and ensemble size, and further recommend EnKF for assimi-
lating coastal WLs due to highly nonlinear dynamics that arise in
flooding and drying of tidal areas.

More recent studies in storm-surge modeling have proposed alter-
natives of the Kalman filter algorithm to better propagate the error
covariance and reduce the computational burden of stochastic re-
alizations of coastal ocean models. Among those studies, Mayo et al.
(2014) used the singular evolutive interpolated Kalman Filter to esti-
mate roughness (Manning’s) coefficients by assimilating water elevation
data of an idealized inlet and a coarser representation of Galveston Bay,
TX. They estimated bed roughness for non-extreme events and/or under
typical weather conditions where astronomical tides are the dominant
forcing condition. Likewise, Asher et al. (2019) developed an optimal
interpolation-based DA scheme to correct WL residuals, i.e., observed
minus simulated WLs, of Hurricane Matthew (Oct/2016) along the
southeast Atlantic coasts of the U.S. Asher et al. (2019) concluded that
WL residuals are associated with ‘unresolved drivers’ resulting from
additional physical processes (e.g., steric variations, baroclinicity, major
ocean currents, etc.) that are not fully resolved by the continuity and
momentum equations, i.e., model structural error.

Although these studies implemented DA to estimate model parame-
ters and correct WLs at the coastal-ocean interface, to the best of our
knowledge, there are no studies that explore the benefits of DA for CFHA
in coastal to inland transition zones where pluvial, fluvial, and coastal
processes are all of paramount importance (Bilskie and Hagen, 2018). To
address this research gap, we integrate hydrodynamic modeling
(Delft3D-FM) with the EnKF technique for correcting peak water surface
elevation and improving the accuracy of compound flood maps for two
well-known extreme events: (i) Hurricane Sandy that affected Delaware
Bay, DE in October 2012, and (ii) Hurricane Harvey that hit twice
Galveston Bay, TX in August 2017. Integration of data assimilation and
hydrodynamic modeling can enhance stakeholder engagement, assist
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disaster coordinators and decision makers in risk-informed planning and
efficient emergency responding (Sanders et al., 2020).

2. Materials and method
2.1. Study area

We select two strategic study sites with unique characteristics and
corresponding compound flood events to evaluate the feasibility of DA
in CFHA. Galveston Bay (G-Bay) is an inlet of the Gulf of Mexico and the
seventh-largest estuary in the United States (Fig. 1a). G-Bay is a rela-
tively shallow water body of 2 m depth, 56 km length and 31 km width
that comprises a total area of 1 600 km? approximately (Huang et al.,
2021; Sebastian et al., 2014, 2019). Freshwater runoff input to the Bay
comes from the Buffalo Bayou River (Houston Ship Channel) including
several streams that join the river in Houston city. The annual average
discharge measured at Buffalo Bayou station (USGS 08074000) is 50
m®/s approximately. The San Jacinto River is another important fresh-
water source that connects Lake Houston to G-Bay. The Lake Houston
dam (and spillway on top) can release a maximum flow of 283 m3/s
through its gates. An important fact of Hurricane Harvey is that the flow
exceeded the dam’s capacity, and as a result, a 3.35 m column of water
was flowing over the 963 m long spillway (https://reduceflooding.co
m/2019/11/13/aerial-photos-of-lake-houston-dam-dramatize-need-fo
r-more-gates/). Tides in G-Bay are mixed based on the form factor (Pugh
and Woodworth, 2014) and so characterized by the lunar diurnal con-
stituent (K;) and principal lunar semidiurnal constituent (M) with tidal
amplitudes of 0.15 m and 0.11 m, respectively. Ten stations from the
NOAA and USGS provide water surface level for model calibration (blue
squares) comprising the Bay and Houston city downtown (orange
polygon). According to official reports of NOAA and the National Hur-
ricane Center, Hurricane Harvey (August 2017) was responsible for one
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of the most catastrophic flooding events in the Unites States. Harvey
made landfall twice in Texas leading to extremely high cumulative
rainfall of more than 1 524 mm over southeastern Texas, and subsequent
pluvial flooding with up to 3 m of water above ground level (Blake and
Zelinsky, 2018).

Delaware Bay (D-Bay) is a natural state border of New Jersey and
Delaware in the east coast of the United States (Fig. 1b). D-Bay is a
diamond-shape water body of 210 km length and 45 km width (18 km at
the mouth) that comprises a total area of 2030 km? approximately
(Whitney and Garvine, 2006). The Delaware River (USGS 01463500)
and Schuylkill River (USGS 01474500) are two main freshwater runoff
inputs to the Bay and have an annual average discharge of 340 m>/s and
82 m3/s, respectively. D-Bay has an average bathymetry of 7 m
approximately and counts with a deep channel (>28 m) along its lon-
gitudinal axis designed for navigational purposes. Tides in the lower part
of D-Bay are semidiurnal with M tidal amplitudes of 0.75 m. Ten sta-
tions from the NOAA and USGS are considered for model calibration
(blue squares) comprising D-Bay and its lateral floodplains (orange
polygon). The Atlantic Hurricane season has affected D-Bay since 1749
with more than hundred tropical cyclones producing extreme storm
surges, strong winds and heavy rainfall (Salehi, 2018). Among the major
historical hurricanes that impacted D-Bay (NOAA-NHC, 2020), Hurri-
cane Sandy (October 2012) resulted from a combination of extreme
storm surge and moderate rainfall causing pluvial flooding at the coast
with 1.50 m of water above ground level in Delaware City (Blake et al.,
2013).

2.2. Data availability

We use publicly available data to develop a hydrodynamic model of
each study site and then validate our results with respect to ground-truth
and satellite-based data. Topobathy data are obtained from coastal
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Fig. 1. Map of the study sites (orange polygons) including available NOAA and USGS stations (blue squares) for model calibration and compound flood hazard
assessment with data assimilation. USGS high water marks (yellow circles) provide inundation depths within the mesh extent of (a) Galveston Bay, TX and (b)
Delaware Bay, DE. Hurricane’s best track of Harvey (green line) and Sandy (purple line) are shown in the top right corners, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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DEMs of the NOAA’s Data Access Viewer (https://coast.noaa.gov/). The
data is referenced to the North American Vertical Datum 1988
(NAVDS88) and have a spatial resolution of 1 m. Manning’s roughness
coefficients for D-Bay and G-Bay are initially derived from the 2011 and
2016 National Land Cover Database (NLCD) maps, respectively (https:
//www.mrlc.gov/data). The selected NLCD maps have a 30 m spatial
resolution with 16 land cover classes representing pre-flood conditions.
For simplicity, the classes were re-grouped into a more general classi-
fication to avoid unnecessary specificity in model calibration (see sec-
tion 2.3.2 for details).

Time-series of observed hourly WL are obtained from NOAA’s Tide &
Currents portal (https://tidesandcurrents.noaa.gov/) and are used as
downstream BCs at selected stations as well as calibration data for the
hydrodynamic models. In addition, we use time-series of hourly river
discharge from the USGS portal (https://maps.waterdata.usgs.gov/ma
pper/) as upstream BCs at selected stations. Some USGS stations with
available WL records are also considered for model calibration (Fig. 1).
Likewise, post-flood high-water marks (HWMs) from the USGS indi-
cating inundation depth at several locations of G-Bay and D-Bay are
available in the Flood Event Viewer website (https://stn.wim.usgs.
gov/fev/). Local wind (10 m height), sea level pressure and rainfall
data are obtained from the ERAS reanalysis dataset (https://www.ecmw
f.int/en/forecasts/datasets/reanalysis-datasets/era5). The dataset con-
sists of gridded hourly data with a spatial resolution of 30 km.

2.3. Model configuration

Hydrodynamic models of G-Bay and D-Bay are developed with the
2021 Delft3D-FM suite package in 2D (depth-averaged) mode (Roelvink
and Van Banning, 1995). The models use an unstructured finite volume
grid to solve the depth-averaged continuity and momentum equations
(Equations (1)-(3)) under the assumption that vertical length scales are
significantly smaller than the horizontal ones (Lesser et al., 2004).
Delft3D-FM can simulate complex riverine, estuarine and intertidal flat
hydrodynamics and account for nonlinear interactions of river flow,
rainfall, storm-surge, wind, etc. (Deltares, 2021). Moreover, the model
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package has been used in several CF studies at local and regional scale
with satisfactory results (Bevacqua et al., 2019; Muis et al., 2019; Salehi,
2018).
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where ¢ is water surface elevation (above still water), t is time, h is water
depth (below horizontal datum or still water), and u and v are the 2D
depth-averaged velocities in x and y directions, respectively. f is the
Coriolis parameter, 73 is bottom friction, z,, is wind friction acting at the
free surface, py is the constant water density, p is the atmospheric (sea
level) pressure, g is the acceleration of gravity, vy is the vertical eddy
viscosity coefficient, and M, and M, represent the contributions due to
external sources or sinks of momentum (e.g., discharge or withdrawal of
water).

2.3.1. Model setup

The G-Bay model has a varying cell-size spatial resolution ranging
from 20 m in Houston city and the navigational channel up to 2 km in
the Gulf of Mexico. The unstructured mesh comprises key features of the
system such as the Houston Ship Channel, lateral floodplains, wetlands,
and natural parks located downstream the Lake Houston Dam (Fig. 2a).
The mesh at Houston city is limited by several discharge BCs including
Whiteoak Bayou (USGS 08074500), Buffalo Bayou (USGS 08073700),
Brays Bayous (USGS 08075000), and Sims Bayou (USGS 08075500). The
Lake Houston Dam limits the mesh at the northern side where the sum of
all upstream freshwater input is used as BC. Clear Creek (USGS
08077600) and the Trinity River (USGS 08067252) limit the mesh at the
western and eastern side, respectively. For simplicity, three downstream
BCs at the ocean boundary namely San Luis Pass (NOAA 8771972),
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Fig. 2. Model domain, USGS/NOAA boundary conditions, and topobathy data (NAVD88 datum) interpolated over the unstructured mesh of (a) Galveston Bay, TX,

and (b) Delaware Bay, DE.
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Galveston Bay Entrance (NOAA 8771341), and Rollover Pass (NOAA
8770971) provide coastal WLs at the outlet of the Bay.

The D-Bay model has a cell-size spatial resolution of 20 m in urban
areas and around the navigational channel that connects the Bay with
the Delaware River (Fig. 2b). A coarser resolution up to 1.4 km is used in
the Atlantic Ocean and in some parts of the Bay with relatively large
water depths. The unstructured mesh cover wetland regions, small
streams and lateral floodplains in Delaware and New Jersey (Fig. 2b).
Discharge BCs in the upstream part of the Bay include the Delaware
River (USGS 01463500), Schuylkill River (USGS 01474500), Brandy-
wine Creek (USGS 01481500), Silver Lake tributary (USGS 01483155)
and Blackbird Creek (USGS 01483200). The mesh is also limited at the
western and eastern side by the Murderkill River (USGS 01484080) and
Maurice River (USGS 0 1411900), respectively. In absence of a repre-
sentative gauge station at the bay-ocean boundary, coastal WLs are
derived from model simulations of the Advanced Circulation (ADCIRC)
model. These time-series data were used in a similar flood study
involving the Delaware Bay basin and Hurricane Sandy (Bakhtyar et al.,
2020).

We use local wind, sea level pressure, and precipitation data ob-
tained from the ERAS reanalysis dataset as additional forcing into the
model. Likewise, we correct vertical bias in wetland areas of G-Bay and
D-Bay prior interpolation over the unstructured mesh. For this, we use a
previously developed ‘DEM-correction’ tool that adjust surface elevation
in coastal wetlands based on ‘emergent herbaceous’ wetland coverage of
the NLCD (Munoz et al., 2019). The tool modifies an existing DEM
through linear elevation adjustment and site-specific parameters (Alizad
et al., 2018), and helps reduce uncertainty in compound flood and ve-
locity maps derived from hydrodynamic simulations (Munoz et al.,
2020).

2.3.2. Model calibration

We calibrate roughness values based on the 2011 and 2016 NLCD
maps of D-Bay and G-Bay, respectively, as they contain land cover dis-
tributions prior to any effects of hurricane-induced flooding such as
wetland loss, shoreline erosion, and sediment deposition (Morton and
Barras, 2011). It is important to note that here the goal of model cali-
bration is to estimate the best possible model parameters and provide
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reasonable initial state estimates of the system (e.g., surface WL and flow
velocities) used for further ensemble-based model simulations (see
section 2.4.3 for details). For this, we regrouped and refined the original
NLCD classes into five main categories as follows: open water, riverine
water, navigational (or dredged) areas, coastal wetlands, and urban
areas (Fig. 3). The remaining land cover classes of the NLCD map (e.g.,
crops, pasture, forest, etc.) are left with recommended roughness values
due to their negligible effect on flood dynamics (dry areas).

A common approach for hydrodynamic model calibration consists of
multiple runs with randomly sampled Manning’s roughness values (e.g.,
Monte Carlo approach) with the objective of: (i) minimizing the root
mean square error (RMSE) between observed and simulated WLs, and
(ii) maximizing their correlation. However, those ‘calibrated’ values
may not be the optimal ones due to Monte Carlo the sampling procedure.
Another alternative for calibration is the Latin Hypercube Sampling
(LHS) technique that has been used for uncertainty propagation in
complex systems and models (Cea and French, 2012; Iman et al., 1981).
LHS results in a denser stratification over the range of each sampled
parameter as compared to random sampling. Furthermore, the advan-
tage of LHS over Monte Carlo is that the former technique leads to more
stable results, i.e., close to the true probability density function of the
parameter, and facilitates the identification of interactions among
multiple parameters (Helton and Davis, 2003).

We therefore sample roughness values with the LHS technique and
use pre-defined lower and upper limits for each land cover category
(Table 1). The range of Manning’s roughness values is derived from

Table 1
Range of Manning’s roughness values used for calibration of Delaware Bay and
Galveston Bay models.

Land cover category Lower limit Upper limit G-Bay” D-Bay"
Open water 0.005 0.035 0.015 0.021
Riverine water 0.010 0.150 0.037 0.028
Navigation areas 0.010 0.200 0.011 0.012
Coastal wetlands 0.025 0.200 0.051 0.159
Urban areas 0.020 0.070 0.030 0.021

@ Optimal (calibrated) roughness values.
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Fig. 3. Land cover categories used for model calibration via the Latin Hypercube Sampling (LHS) technique in (a) Galveston Bay, TX and (b) Delaware Bay, DE.
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pertinent literature including hydrodynamic and open channel flow
studies (Arcement and Schneider, 1989; Chow, 1959; Liu et al., 2018).
Model runs start on August 5, 2017 and October 11, 2012 for G-Bay and
D-Bay, respectively, and ensure WL variability during high and low tides
in the system, i.e., spring-neap tidal cycle (Pugh and Woodworth, 2014).
We intentionally consider extreme WLs of Hurricane Harvey and Sandy
in the calibration process to prove the benefits of DA in CFHA even with
a rigorously calibrated model.

2.3.3. Evaluation metrics

We compare observed and simulated WLs using the Taylor diagram
(Taylor, 2001) as proposed in hydrological and coastal studies (Abbas-
zadeh et al., 2018; DeChant and Moradkhani, 2012; Munoz et al., 2020).
The diagram combines three performance measures to evaluate the
goodness of fit between two time series: i) the Pearson’s correlation
coefficient (R2) that measures the strength (and direction) of a linear
relationship between the time series, ranging from 0 (poor) to 1 (perfect
match), ii) the normalized root mean square difference (RMSD) that
quantifies the similarity between the time series and ranges from
0 (perfect analogy) to oo (total dissimilarity), and iii) the standard de-
viation ratio (or ratio of variances) that quantifies the relative amplitude
of variation between the time series; where the smaller the variation the
closer SDR to 1. Likewise, we use additional deterministic and proba-
bilistic metrics to provide a robust analysis of model calibration and the
assimilation process. Those metrics are the Nash-Sutcliffe efficiency
(NSE) ranging from 0 to 1 (Nash and Sutcliffe, 1970), the Kling-Gupta
efficiency (KGE) with values between -co and 1 where efficiency of 1
indicates a perfect match (Gupta et al., 2009), and the mean absolute
bias (MAB) that quantifies the bias of the simulated variable with respect
to the observation data. In MAB, a value of 0 suggests an absence of bias
in model simulations. Lastly, reliability (RL) is a probabilistic metric that
quantifies the statistical consistency between a time-varying variable
and the corresponding distribution (Renard et al., 2010). RL ranges from
0 (poor) to 1 (perfect match) between the predictive Q-Q plot and the
theoretical quantile of uniform distribution (U [0,1]). For the readers’
convenience, all pertinent equations are included in the appendix
(Table A1).

2.4. Data assimilation

DA consists of the application of Bayes’ theorem to probabilistically
condition model states on observations; and ultimately forecast the state
of a system based on the knowledge of the initial state (Moradkhani
et al., 2018). We define WL in coastal to inland transition zones as the
model state (Equation (4)) and condition simulated WLs from hydro-
dynamic modeling to the corresponding observation at the USGS and
NOAA stations (Equation (5)). Hereinafter, we follow the nomenclature
proposed in Moradkhani et al. (2005) to define all pertinent variables.

X1 =f (%, 1, 0) + @ @ ~ N(0,ZF) 4)

§r+] :h(x,ﬂ,()) +Vip1s Vigr ™~ N(O:Z}vﬂ) 5)
where X, ¥, and u; are model state, model prediction, and forcing data
vectors at the current time-step t, respectively. f(.) is the generalized
nonlinear state-transfer function (or forward operator) whereas h(.) is
the observation operator that translates model states into observation
space. w1 and v, 1 are additive noise terms (e.g., stochastic or random
error) representing uncertainties from model structure and observation
data, respectively. Both uncertainties are assumed to be independent of
each other and derived from a normal (N) or Gaussian distribution with
zero mean and covariances £ *;and 27, ; (Moradkhani et al., 2005). 6 is
a time-invariant parameter vector that represents (calibrated) spatially
varying Manning’s roughness values (Table 1).

For simplicity, we assume that a robust calibration of spatially
varying 6-values in coastal to inland transition zones (see section 2.3.2)
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in addition to accurate topobathy data (see section 2.2) can lead to
reasonable WL estimates without requiring a sequential update or
adjustment through time. Moreover, compound effects of flood drivers
have a relatively short duration (e.g., lag times up to 7 days) that might
not significantly alter the previously calibrated roughness values (Klerk
et al., 2015; Ward et al., 2018).

2.4.1. Ensemble Kalman Filter technique

The EnKF uses a recursive algorithm that process a pre-defined set of
ensemble model states (Equation (6)) and allows for constructing time-
evolving probability density functions with the associated error
covariance matrix (Moradkhani et al.,, 2005). Those functions are
sequentially adjusted in the algorithm to match observations, which
must be treated as a random variable (Burgers et al., 1998). This in turn
prevents that the updated ensemble results in unrealistic (too low)
variances (Equation (7)). Similarly, uncertainty from forcing data is
often derived from stochastic perturbations with a Gaussian error
(Equation (8)). However, in low-lying areas, CF is dominated by extreme
coastal WLs (e.g., storm surge) that are better characterized by the
General Extreme Value (GEV) distribution (Muis et al., 2019; Wahl et al.,
2017).

X =f(0u,0) + ol w ~ N(0,%) ©)
yi+1 = Vr+1 +”;+1; Vﬁ+1 ~ N(Ov Z’;.‘Fl) (7)
ui:M,+C£; Ci ~ N(O,Z?) 8)

where i = 1, 2, 3 ... n-ensemble members. xi'tH and X' *iy1 are the ith
forecast (prior) ensemble member at time t+1 and the ith updated
(posterior) ensemble member at time t, respectively. y'.; is the ith
observation replicate whose mean value is the actual observation and
noise term derived from a N distribution. Similarly, u is the ith forcing
replicate with Gaussian noise (¢ it) of zero mean and covariance S %
(Moradkhani et al., 2005).

We perturb forcing data using the GEV distribution for downstream
BCs (coastal WL) and the N distribution for upstream BCs (river
discharge) accordingly. Regarding the GEV distribution, we conve-
niently select NOAA stations having long records to ensure a proper
characterization of extremes. Those stations are Galveston Pier 21, TX
(NOAA - 8771450) and Lewes, NJ (NOAA —8557380) as they have been
collecting hourly WL data since 1904 and 1919, respectively. The error
covariance matrix associated with the state forecast estimate (Equation
(9)) and observation forecast (Equation (10)) is calculated after each
round of ensemble model simulations. Subsequently, the Kalman gain
(Equation (11)) is estimated with the forecast cross-covariance matrix of
the state variables (Equation (12)) and the forecast error covariance
matrix of the observation forecast (Equation (13)).

i 1 i—
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Equations (9)-(13) follow the standard Kalman Filter formulation

(13)
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except that the model covariances are directly estimated with the
ensemble members. In addition, these set of equations simplify the
updating process as there is no need of linearization of the model
(Moradkhani et al., 2018). Lastly, the ensemble members are updated as
follows:

X =xm + K (0 = Vi) a4
2.4.2. Mass and force balance closure

A well-known limitation of the EnKF is that this technique alters the
mass water balance (or continuity equation) when adding or subtracting
water into/from the system to update model states (Abbaszadeh et al.,
2019; DeChant and Moradkhani, 2012; Matgen et al., 2010). Likewise,
such an update (or correction) of surface WL will not last enough in
coastal systems due to a rapid barotropic adjustment in the velocity field
(Asher et al., 2019; Valle-Levinson, 2010). A possible solution that might
help achieve an adequate mass and force balance closure of the system
consists in a simultaneous update of forcing data and model states in the
continuity (Eq. (1)) and momentum equations (Egs. (2) and (3)),
respectively. Following the approach of Asher et al. (2019), we intro-
duce a fictitious force term in the momentum equation to match the WL
correction accordingly. This force is derived from the inverse barometer
relationship (Equation (15)) that relates any changes in atmospheric
pressure (Ap) to the corresponding changes in surface WL (A{).

P=pPa+4p= pa—po 8 AL (15)
where p, is the actual pressure and Ap is referred as the pseudo atmo-
spheric pressure.

Substituting this expression into the momentum equations (Egs. (2)
and (3)), the so-called pseudo atmospheric pressure allows the WL
correction to propagate over the other equation terms (Equations (16)

Initialization

(Set N, 1, and F)

!

1. Generate ensemble of
model states (prior or
forecast)

(Equation 6)

and (17)).
ou ou ou ,  1dp, O —AC) Fu Ful T+,
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a T T Ty ot
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aa7)

2.4.3. Data assimilation scheme for compound flood hazard assessment
An important aspect of the DA cycle (Fig. 4) is that the variances of
input (e.g., initial condition, observation, and BCs) and output data
(model states) are assumed to be heteroscedastic, i.e., the variances are
proportional to their corresponding magnitudes (Egs. (6)-(8)). This
assumption, in addition to a sufficient ensemble size (N), ensures that
the ensemble spread can effectively characterize the uncertainty asso-
ciated with input and output data; hence improving the efficiency of the
EnKF technique (Burgers et al., 1998; Moradkhani et al., 2005). In that
regard, we tune a set of proportionality factors (F) and N based on
trial-and-error experiments conducted with a high-performance
computing system. F ranges from 5% to 25% with a 5% increment
whereas N is set to 25, 50, 100, and 200 members. Based on those ex-
periments, we found that model simulations with 100 ensemble mem-
bers and factors of initial state and observational data (10%), forcing
data (20%), and model states (15%) are suitable for characterizing the
associated errors. In addition, we noticed that using a larger N (e.g.,
more than 100 ensemble members) in the DA scheme did not improve
the model performance with respect to open-loop (OL) simulations, i.e.,
simulations where both initial state and forcing data are perturbed
without any assimilation cycles. Moreover, we noticed that a larger N
increased the computational burden and simulation time even with
parallel simulations conducted with a high-performance computing

Generate ensemble
of forcing data

-

(Equation 8)

S. Overlay flood maps
from selected forecast
ensemble members (step 4)
and compute maximum
floodwater height (MFH)

2. Update the ensemble

(posterior or update)

Generate ensemble
of observations

of model states

=

(Equation 7)

(Equation 14)

\ \

4. Identify forecast ensemble
members (step 1) whose model
states at gauge locations are
close to those of the update
ensemble members (step 2)

3. Mass and force
balance closure

(Equation 15)

Fig. 4. Schematic of the data assimilation (DA) process with the Ensemble Kalman Filter (EnKF) technique for compound flood hazard assessment (CFHA). Dark-blue
boxes are updated sequentially within the DA process. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of

this article.)
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system.

The initial state of the system for every node of the unstructured
mesh (Fig. 2) is derived from a 15-day model run prior to the assimi-
lation starting point, which begins on August 20, 2017 and October 26,
2012 for G-Bay and D-Bay, respectively. Likewise, the assimilation cycle
is set to 6 h (e.g., WL update every 6h) in accordance to hurricane ad-
visories of the National Hurricane Center. Although daily assimilation
cycles are common in hydrological modeling, this would not be useful

(a) Galveston Pier 21, TX (NOAA - 8771450)
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from a storm surge forecast perspective. The assimilation window en-
compasses a total time (T) of 7 days for D-Bay and 13 days for G-Bay due
to a relatively long flood recession period (Fig. S2, supplementary
material).

Another key aspect of the DA scheme is the generation of flood
hazard maps for CFHA over the study sites. We propose a simple yet
practical approach to estimate flood extent and maximum floodwater
height (MFH) in absence of readily available satellite imagery for

(b) Lewes, DE (NOAA - 8557380)
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Fig. 5. Taylor diagrams summarizing the goodness of fit between observed and simulated WLs. The statistical metrics evaluate 200 combinations of Manning’s
roughness values generated using the LHS technique. Selected NOAA and USGS stations represent coastal (a, b), transition (c, d), and upstream areas (e, f) in

Galveston Bay (left panel) and Delaware Bay (right panel).
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assimilation purposes. The approach consists of identifying ensemble
members and their corresponding flood maps that match the WL update
at any observation station for a given time step. We argue that these
maps preserve the underlying physics controlling compound flood dy-
namics even though they have not been corrected due to limited
observation data in the entire model domain. As part of the identifica-
tion and/or selection process, we use a threshold value consisting of the
desired WL update +1 cm. The flood maps whose WLs (at the observa-
tion stations) fall within the threshold value are then spatially overlayed
to compute a single MFH composite for the entire model domain. Note
that larger threshold values would eventually identify most of the
ensemble members; and consequently, the MFH composite might over-
estimate floodwater heights instead. The MFH composite is recomputed
every 6 h along with WL updates in near real-time, which in turn can
assist in flood control management and prompt emergency responses.
The proposed approach is further validated with respect to USGS — high
water marks collected after Hurricane Harvey and Sandy (Fig. 1).

3. Results and discussion
3.1. Model calibration

We use Taylor diagrams to compare observed and simulated WLs at
ten selected NOAA and USGS stations in G-Bay and D-Bay (Fig. 5, and
Fig. S1 — supplementary material). Time series used in the diagrams are
selected around the peak WL to highlight the models’ performance for
CF. The pink circles displayed in the Taylor diagrams represent the
evaluation metrics obtained from a given combination of Manning’s
roughness values with respect to observational data (black circle).
Among 200 combinations of roughness values, the best combination
(red circle) is associated with the calibrated roughness values for all
selected stations (Table 1). The statistical metrics of the Taylor diagram
suggest that stations located close to the ocean (Fig. 5, top panel) are less
sensitive to changes of roughness values as compared to the ones located
in transition zones (middle panel) and upstream areas (bottom panel).
Consequently, models’ performance varies from relatively high accu-
racies in coastal areas (e.g., RMSD <0.4, SDR close to 1, and R%>0.9) to
moderate accuracies in upstream areas (e.g., RMSD <0.6, SDR close to 1
and R* > 0.8).

Moreover, the relative influence of either coastal or inland flood
drivers on CF may have affected model’s performance at the selected
stations despite a robust model calibration with the LHS technique
(Fig. S1). CF in G-Bay was characterized by extreme rainfall (7.6 x 10
m®) and river-discharge pulses from the Buffalo Bayou River and the San
Jacinto River that together produced an excessive freshwater runoff of
1.4 x 10 m® (Huang et al., 2021; Valle-Levinson et al., 2020). The
dominance of fluvial flooding over storm surge during Hurricane Harvey
probably caused the permanent damage of Lynchburg Landing station
(NOAA - 8770733) located at the confluence of those rivers (Valle-Le-
vinson et al., 2020). In contrast, CF in D-Bay was mainly driven by
extreme coastal WLs with storm tides of ~1.25 m above mean-higher
high water at the Lewes station (Blake et al., 2013). Similarly, the
dominance of storm surge over fluvial flooding during Hurricane Sandy
may have interrupted the well-functioning of Brandywine Shoal Light
station (NOAA - 8555889) located in the lower part of D-Bay (Fanelli
et al., 2013).

The evaluation metrics displayed in Fig. S2 (supplementary material)
are also calculated around the peak WL. As mentioned before, the
models perform satisfactorily at stations located in coastal areas where
RMSE is below 0.25 m. Likewise, a relatively high RMSE is observed in
transition zones where coastal and inland flood drivers interact. For
example, Manchester (Figs. S2-i) and San Jacinto River stations
(Figure S2-s) show the strong effect of pluvial and fluvial forcing on G-
Bay. Although model simulations match the observed tidal magnitude
and phase accurately (NSE >0.87), the model fails in capturing the peak
WL attributed to excessive freshwater runoff. G-Bay model
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overestimates the peak WL by 0.30 m at Manchester station (KGE =
0.85) whereas the peak at San Jacinto River is underestimated by 1.80 m
(KGE = 0.68). Similarly, Burlington (Figs. S1-j) and Christina River
stations (Fig. S1-t) show the effect of ocean forcing on D-Bay especially
at the peak storm surge where the model fails in capturing the peak
magnitude even though the tidal phase is correctly represented (NSE
>0.74). D-Bay model underestimates the peak WL in both stations with
0.35 m (KGE = 0.69) and 0.40 m (KGE = 0.61), respectively.

This preliminary analysis suggests that hydrodynamic modeling can
benefit from DA especially in transition and upstream areas where over-
and underestimation of WL are evident regardless of the dominant flood
driver (e.g., freshwater runoff or storm surge). Moreover, we argue that
a well-calibrated hydrodynamic model may not require correcting time-
varying roughness values, unlike hydrological models where model
parameters are most often preferred to be corrected in conjunction with
model state variables during the assimilation period (Abbaszadeh et al.,
2020; Meng et al., 2017; Ziliani et al., 2019). In particular, improve-
ments in hydrodynamic modeling including the underlying physics,
mesh decimation, and reliable topobathy data in coastal areas have
resulted in a better model skill for storm surge forecasts and CF (Bilskie
et al., 2020; Mandli and Dawson, 2014; Santiago-Collazo et al., 2019).

3.2. Data assimilation with the EnKF

The deterministic metrics namely RMSE, NSE, and KGE evaluate the
performance of DA (blue text) and OL simulations (red text) at ten NOAA
and USGS stations of G-Bay and D-Bay (Fig. 6, and Fig. S3 — supple-
mentary material). In general, the EnKF technique helps reduce both
over- and underestimation in WL predictions as compared to the OL
simulations; especially in transition and upstream areas where inland
and coastal flood drivers interact. In coastal areas (Fig. 6, top panel),
such an improvement is noticeable in Galveston Pier 21 station where
freshwater runoff attenuates the incoming tide propagating from the
Gulf of Mexico. Model simulations after DA can satisfactorily predict WL
variability during the CF event since RMSE is reduced by 35% with
respect to the OL simulation whereas both NSE and KGE increase up to
0.88. In contrast, the OL simulation overestimates the peak WL
including the flood recession limb on August 30. Lewes station in D-Bay
shows that WL estimates with DA and OL simulations are almost iden-
tical, and tides propagate from the Atlantic Ocean without any notice-
able influence of freshwater runoff. Nevertheless, the deterministic
metrics reflect a slight improvement in WL prediction with DA since
RMSE is reduced by 14% whereas NSE and KGE increase up to 0.96 and
0.95, respectively. Likewise, RL > 0.85 in both stations suggests that the
ensemble spread is appropriate for generating reliable WL predictions.

In transition zones (middle panel), Morgans Point shows a moderate
improvement in WL prediction. RMSE is reduced by 11% with respect to
the OL simulation whereas NSE and KGE increase up to 0.84 and 0.77,
respectively. However, after the peak WL on August 27, there is an
evident overestimation of WL that propagates over the recession limb.
This is likely associated with a high uncertainty in river discharge esti-
mates from the San Jacinto River located at the northeastern side of
Houston City (Fig. 1). In fact, detailed analyses of forcing conditions
during Hurricane Harvey suggest that the observed WLs at Morgans
Point are primarily attributed to the San Jacinto River’s flooding with a
limited contribution of the Buffalo Bayou River (Valle-Levinson et al.,
2020). Similarly, Ship John Shoal station located in the transition zone
of D-Bay shows a considerable improvement in WL prediction. The EnKF
technique corrects a clear overestimation of high and low WLs on
October 30 which in turn helps reduce RMSE by 35% and increase NSE
and KGE up to 0.94 and 0.86, respectively. The ensemble spread in both
stations can produce reliable WL predictions since RL > 0.90.

The benefit of the EnKF technique for WL prediction is also evident in
upstream areas of G-Bay and D-Bay (bottom panel). Buffalo Bayou is
among the stations in Houston City that reported historic WLs (>3.5 m)
associated with the compound effect of inland and ocean flood drivers.
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Fig. 6. Predicted and observed WLs using the (EnKF) technique in Galveston Bay (left panel) and Delaware Bay (right panel) for Hurricane Harvey and Hurricane
Sandy, respectively. Open-loop (OL) simulations (red dashed lines) and data assimilation (DA) results (blue solid line) are compared to observation data (black dots)
in terms of RMSE, NSE, and KGE. The ensemble spread of posterior simulation (light blue) is evaluated with the reliability metric (RL). Selected NOAA and USGS
stations represent coastal (a, b), transition (c, d), and upstream areas (e, f). (For interpretation of the references to colour in this figure legend, the reader is referred to

the Web version of this article.)

Although both OL and DA simulations match the peak WL, the assimi-
lated one can reproduce WL variability with a higher accuracy especially
before August 27. Note that underestimation of WL during the rising
limb is compensated by an overestimation around the peak WL on
August 28. The latter is reflected in both NSE and KGE as they achieve
very high values ranging from 0.93 to 0.97 regardless of the EnKF
implementation. Nonetheless, RMSE is reduced by 19% with respect to
the OL simulation. Christina River station in D-Bay shows that the OL
simulation cannot reproduce WL variability around the peak and beyond
August 30. The DA simulation helps reduce both over- and underesti-
mation of WL within the assimilation window, and as a result, RMSE is
reduced by 33% with respect to the OL simulation. Likewise, NSE in-
creases up to 0.89 even though KGE shows a slight decrease (0.83) in the
DA simulation. RL > 0.89 suggests that the ensemble spread is appro-
priate and can produce reliable WL predictions.

In addition to time series analyses, we compare the prior (forecast)
and posterior (update) distributions of WL simulations at NOAA and
USGS stations of G-Bay and D-Bay (Fig. 7, and Fig. S4 — supplementary
material). In general, the expected value of the posterior distributions is
closer to the observed peaks (black circle) than that of the prior distri-
bution in all stations, suggesting that the assimilation process could
result in more reliable and accurate WL predictions. In coastal areas
(Fig. 7, top panel), such an improvement is more discernible at Gal-
veston Pier 21 station where the EnKF technique helps correct over-
estimation of WL even at the start of the assimilation process (t = 0). This

10

was also observed at the peak WL (t = tp) and the end of the simulation
period (t = T). The improvement of WL prediction is less evident for the
Lewes station at the three instances since the calibrated model (OL
simulation) can represent storm surge accurately (Fig. 6b). Nevertheless,
uncertainty bounds around the observed WL are considerably reduced
with the posterior distribution at ¢ = T. In transition zones (middle
panel), Morgans Point and Ship Jhon Shoal show a similar pattern as the
posterior distribution is centered around the observation data and un-
certainty is reduced at the three instances. The improvement in WL
prediction is also reflected in upstream areas of the study sites (bottom
panel). The expected value of prior distributions overestimates the
observed WL at Buffalo Bayou station (up to 0.30 m at t = T) and un-
derestimates the peak WL at the Christina River station (0.55 m at t =
tp). Furthermore, note that the prior distribution (WLs before correction
or update) tends to overestimate the actual observation in all stations of
G-Bay whereas the opposite is observed in D-Bay.

3.3. Compound flood hazard assessment with DA

Another key aspect of the DA scheme is the generation of flood
hazard maps in the absence of observational data in space (e.g., wet-
lands, floodplains, etc.) as opposed to gauge (point-based) data. Here-
inafer, we compare flood hazard maps obtained from the two well-
calibrated models (Fig. S2) with respect to MFH composites derived
from the proposed DA scheme (see section 2.4.3). For this, we leverage
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the assimilation process (Fig. 4) and identify flood maps that match the
WL update at selected NOAA and USGS stations. These maps are over-
layed to compute MFH composites covering the entire model domain. To
validate this approach, we compare the resulting composites (and
associated point data) with respect to USGS — high water marks collected
after Hurricane Harvey and Hurricane Sandy (Fig. 8, top panel). The 1:1
fit line represents a perfect match between simulated and observed
maximum WLs in the study sites. In general, the MFH composites are
more accurate than flood hazard maps of the well-calibrated models
since the mean absolute bias (MAB) is reduced by 25% in G-Bay and by
43% in D-Bay. In both study sites, the calibrated models tend to un-
derestimate the observed high water marks as most of the data is below
the 1:1 fit line. In contrast, the MFH composites (or point data) are well
aligned with the 1:1 fit line especially in G-Bay that has about 240
verified marks in the model domain (Fig. 1a). Although the MFH com-
posite of D-Bay is validated with only 13 available marks in the model
domain (Fig. 1b), the advantage of the DA process is evident as well.
To further examine the benefits of the assimilation process for CFHA,
we compare the flood hazard maps andthe MFH composites in terms of
WL residuals (Fig. 8, bottom panel). Based on the previous validation
process, we consider the MFH composite as a reference and identify
zones where flood hazard is overestimated (positive residuals) and
underestimated (negative residual). The largest negative residuals are
observed along the Buffalo Bayou River (Houston Ship Channel), the San
Jacinto River, Cedar Bayou, and surrounding areas where the underes-
timation of MFH is above 0.7 m. Likewise, MFH is underestimated in the
middle of G-Bay (0.6 m) and overestimated in upstream areas beyond
the flood risk zone (0.10 m). In contrast, the largest negative residuals in
D-Bay are rather scattered around Lewes, Cape May, the Delaware Na-
tional Estuarine Reserve, and Trenton where the underestimation of
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MFH is above 1 m. The residual is almost negligible beyond wetland
regions (at the edges of the Bay) and in upstream areas of D-Bay.

Overall, the DA process via the EnKF technique allows for reducing
uncertainty in CFHA as compared to a rigorously calibrated model.
Although assimilation of flood extent from satellite-based imagery (or
radar data) is desirable (Annis et al., 2021), this is not always possible
from a CFHA perspective. Satellite’s revisit frequency is usually in the
order of days, and so hinders sequential assimilation of spatial data
and/or near real-time flood detection and mapping (Anusha and Bhar-
athi, 2020; Kabir et al., 2020; Munoz et al., 2021b; Uddin et al., 2019).
Moreover, even with available cloud-free imagery and/or radar data, the
acquisition date may not coincide with that of the maximum flood extent
and so hinder any efforts in CFHA with DA. Our approach attempts to
overcome this issue by generating near real-time MFH composites
within the DA cycle (6 h-update).

4. Conclusions

Compound flood hazard assessment (CFHA) is a challenging yet
crucial task that can benefit from data assimilation (DA) techniques.
Although coastal hydrodynamic models are well-suited to predict storm
surge and associated WL variability, complex and nonlinear interactions
emerging from inland and coastal flood drivers increase the uncertainty
in WL prediction and compound flood modeling especially in coastal to
inland transition zones. In this study, we first developed a pair of high-
resolution hydrodynamic models in Delft3D-FM, corrected wetland
elevation bias in topographic data, and conducted a robust model cali-
bration with the Latin hypercube sampling (LHS) technique in order to
reduce any potential source of error in WL and compound flood simu-
lations. We then used a DA scheme based on the Ensemble Kalman Filter
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(EnKF) technique and hydrodynamic modeling to provide reliable WL
predictions and accurate near real-time flood hazard maps (e.g., 6 h-
sequential update). We selected the EnKF technique to correct model
states (WL estimates) in coastal to inland transition zones since the
ensemble-based formulation is suitable for systems with strongly
nonlinear dynamics (Evensen, 2002); especially those emerging from
complex interactions of pluvial, fluvial, and ocean drivers. In addition,
we attempted to close the mass and force balance of the system by
adjusting both continuity and momentum equations and so forced the
system to the desired surface WL. The proposed DA scheme was tested
on two well-known compound flood events and study sites in the United
States, namely Hurricane Harvey for Galveston Bay (G-Bay) and Hurri-
cane Sandy for Delaware Bay (D-Bay), and further validated with veri-
fied high water marks of the U.S. Geological Survey.

Compound flooding (CF) in G-Bay was primarily attributed to
extreme freshwater runoff from the San Jacinto River and the Buffalo
Bayou River that jointly elevated WLs in both inland and coastal gauge
stations. For this event, the proposed DA scheme corrected over-
estimation in WL predictions (up to 0.25 m) with respect to open-loop
simulations and reduced mean absolute bias (MAB) by 25% with
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respect to the calibrated model. Unlike the G-Bay, CF in D-Bay was
driven by extreme coastal WLs (storm surge) that propagated from the
ocean boundary to inland stations distributed along the Delaware River.
Here, the DA scheme corrected underestimation in the predictions (up to
0.55 m) and reduced MAB by 43%. From a CFHA perspective, the
assimilation process helped generate maximum floodwater height
(MFH) composites as a proxy for updated WLs over the entire model
domain (e.g., flood hazard maps). The composites preserved the un-
derlying physics of CF and were additionally conditioned to match WL
updates at available gauge stations. The near real-time MFH composites
allowed the identification of over- and underestimation zones when
conducting CFHA with/out assimilation of WL. We conclude that even a
rigorously calibrated model can benefit from DA regardless of the
dominant flood driver in CF. Future research is advisable towards more
advanced DA techniques, mainly the Particle Filtering (Abbaszadeh
et al., 2018, 2019; Moradkhani et al., 2018), for CFHA to overcome
inherent limitations of the EnKF technique such as linear updating rule,
Gaussian assumption of errors in observations, and mass and force
balance closure. The DA scheme proposed here can help generate
actionable flood risk information on a near-real time basis and so assist
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decision makers and emergency responders in case of compound coastal
flooding (i.e. hurricanes).
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Summary of evaluation metrics used for compound flood hazard assessment with data assimilation.

Evaluation metrics Equation
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Where t: time step, T: total time steps, o, observation data, s;: model simulation, u,: mean of observation data, us: mean
of model simulations, ¢,: standard deviation of observation data, o,: standard deviation of model simulations, cov:

(th).

covariance, N: ensemble size, x: ensemble member, pyi: ith observed p-value, and py;)*"": theoretical p-value of x at t.
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