
Available online at www.sciencedirect.com

s
c
(
i
i
a
o

s

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 388 (2022) 114230
www.elsevier.com/locate/cma

Learning Quantities of Interest from dynamical systems for
observation-consistent inversion

S.A. Mattisa,∗, K.R. Steffenb, T. Butlerc, C.N. Dawsonb,d, D. Estepe,f

a Department of Statistics, Colorado State University, United States of America
b Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, United States of America

c Department of Mathematical and Statistical Sciences, University of Colorado Denver, United States of America
d Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, United States of America

e Canadian Statistical Sciences Institute, Canada
f Department of Statistics and Actuarial Science, Simon Fraser University, Canada

Received 21 December 2020; received in revised form 5 October 2021; accepted 8 October 2021
Available online 12 November 2021

Abstract

Dynamical systems arise in a wide variety of mathematical models from the physical, engineering, life, and social
ciences. A common challenge is to quantify uncertainties on model inputs (i.e., parameters) that correspond to a quantitative
haracterization of uncertainties on observable Quantities of Interest (QoI). To this end, we consider a stochastic inverse problem
SIP) with a solution described by a pullback probability measure. This is referred to as an observation-consistent solution since
ts subsequent push-forward through the QoI map matches the observed probability distribution on model outputs. A distinction
s made between QoI useful for solving the SIP and arbitrary model output data. In dynamical systems, model output data
re often given as a series of state variable responses recorded over a particular time window. Consequently, the dimension of
utput data can easily exceed O(1E4) or more due to the frequency of observations, and the correct choice or construction of

a QoI from this data is not self-evident. We present a new framework, Learning Uncertain Quantities (LUQ), that facilitates the
tractable solution of SIPs for dynamical systems. Given ensembles of predicted (simulated) time series and (noisy) observed
data, LUQ provides routines for filtering data, learning the underlying dynamics in an unsupervised manner, classifying the
observations, and performing feature extraction to learn the QoI map. Subsequently, time series data are transformed into
samples coming from the underlying predicted and observed distributions associated with the QoI so that solutions to the SIP
are computable. Following the introduction and demonstration of LUQ, numerical results from several SIPs are presented for
a variety of dynamical systems arising in the life and physical sciences. In the interest of scientific reproducibility, we provide
links to our Python implementation of LUQ, as well as all data and scripts required to reproduce the results in this manuscript.
c⃝ 2021 Elsevier B.V. All rights reserved.

Keywords: Stochastic inverse problems; Uncertainty quantification; Quantity of Interest; Observation-consistent; Dynamical systems

1. Introduction

In order for stakeholders to make knowledgeable, data-informed decisions that incorporate computational model
imulations of dynamical systems, it is essential to provide useful quantitative characterizations of uncertainties

∗ Corresponding author.
E-mail address: steve.a.mattis@gmail.com (S.A. Mattis).
https://doi.org/10.1016/j.cma.2021.114230
0045-7825/ c⃝ 2021 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2021.114230
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2021.114230&domain=pdf
mailto:steve.a.mattis@gmail.com
https://doi.org/10.1016/j.cma.2021.114230

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

o
m
y
i
I
p
a
f

m
l
c
c
w
f
L

v
s

s
a
i
u
f
p
c

e
a
e
m
d
v
t

d
f
i
t
d
t

Λ

on the spaces defined by model inputs and outputs. Broadly speaking, a forward uncertainty quantification (UQ)
analysis studies how uncertainty on model inputs propagates to model outputs through a Quantity of Interest
(QoI) map while an inverse UQ analysis studies how uncertainty on model outputs corresponds to uncertainty
on model inputs. The last several decades have seen the UQ community develop many formulations and solution
methodologies for various forms of forward and inverse UQ analyses that are of interest to the broader scientific
community, e.g., see [1–8] and the references therein.

The stochastic inverse problem (SIP) considered in this work involves the computation of pullback measures1

n model inputs associated with a probability measure observed on model outputs. We refer to these pullback
easures as observation-consistent solutions since they induce a push-forward measure through the QoI map that

ields the observed probability measure. The formulation of this SIP and observation-consistent solutions are rooted
n rigorous measure theory that directly handles the set-valued inverses common in QoI maps (e.g., see [9–12]).
n this approach, the QoI map is not regularized, which separates this SIP and its solution from other inverse
roblem formulations and their solutions. For example, in what is commonly referred to in the UQ community
s the “Bayesian inverse problem”, the map is implicitly regularized through the choice of a prior in a Bayesian
ormulation, e.g., see [13–15].

Previous analysis of the SIP and observation-consistent solutions involved an a priori specification of the QoI
ap [9–12]. In [16], an experimental design paradigm for the SIP chooses an optimal QoI map from a specified

ist of QoI for which data may be collected. More recently, in [17], QoI maps are constructed using a principal
omponent analysis of the eigenvectors of the Laplacian operator. However, no previous work has studied the
onstruction of a QoI map directly from temporal data in order to solve the SIP. A major contribution of this
ork is the development of the Learning Uncertain Quantities (LUQ) framework for constructing QoI maps

rom noisy data for a dynamical system. This framework is encoded within an open-source Python package
UQ [18]. We demonstrate this framework and the LUQ software package on several dynamical system models of
arious conceptual and computational complexity, including models with Hopf bifurcations or shocks (discontinuous
olutions) and a quasi-operational model of storm surge (coastal flooding) from hurricanes and cyclones.

We first describe the interplay between the SIP and LUQ framework in the context of a classic mass–spring
ystem with parameters related to physical properties modeled by spring constants (i.e., the “rigidity” of the system)
nd the amount of energy dissipated by the system (i.e., the internal friction of the system). Uncertainty arising from
mperfections in manufacturing and design processes are modeled using probability distributions. The effect of these
ncertainties is observable indirectly through the analysis of system responses to various external stimuli. The LUQ
ramework transforms the data of system responses into QoI samples enabling the construction of an observed
robability distribution on the QoI. Solving the SIP then produces probability distributions on parameters that are
onsistent with this observed distribution on the QoI.

The problem of constructing an observation-consistent distribution is important to the broad scientific and
ngineering community. For instance, in the biological sciences, nonlinear systems of ordinary differential equations
re often used to model many types of phenomena ranging from competition of species (e.g., the Lotka–Volterra
quations), spread of disease (e.g., SIR models), and metabolic processes of living organisms (e.g., the Sel’kov
odel for glycolysis). The coefficients in these models are generally uncertain and modeled using probability

istributions. Likewise, in coastal engineering applications, the modeling of waves or storm surge depends upon a
ariety of uncertain model inputs, such as initial conditions, meteorological forcing, and as coefficients determining
he free surface and bottom stress parameterizations.

All of these problems lead to the same SIP: Determine a distribution on model inputs that yields the observed
istribution on the QoI. However, in determining the QoI for dynamical systems using temporal observations, one
aces several challenges. First, while relatively little data may be collected spatially at each observation time,
ndividual measurement devices can easily produce O(104) (or more) time steps for which data are collected,
hough the dynamical behavior may be characterized in a “low-dimensional” way. The problem is to perform
imension reduction by transforming the data sets into low-dimensional QoI. However, this leads to a second
echnical challenge: A dynamical system may present strikingly different qualitative behaviors as model inputs are

1 Let Q : Λ → D denotes the QoI map between the space of model inputs, denoted by Λ, and the space of model outputs, denoted by
D. If PΛ is a probability measure on Λ, then its push-forward on D, denoted by P Q

D , is defined by P Q
D (A) = PΛ(Q−1(A)) for all events

A ⊂ D. Here, Q−1(A) denotes the pre-image of A under Q. On the other hand, if PD is a probability measure on D, then a pullback on
is any measure P satisfying the property P Q (A) = P (A) for all events A ⊂ D.
Λ D D

2

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

L
p
o
f
r

t
b
d
s

m
a
p

a
r

o

w
d
a
I

p
s
t
p
T
A
d
d

varied (e.g., due to bifurcations) or over different windows of time (e.g., due to transient or equilibrium behavior).
The LUQ framework addresses both of these problems. We utilize unsupervised learning approaches applied to data
that classify the different types of dynamics that occur. This is followed by the training and optimal selection of
classifiers on this labeled data so that observed temporal data are appropriately “binned” by their prevalent dynamics.
To each type of learned dynamical system response, we subsequently construct different forms of the QoI maps
that best describe the low-dimensional nature of the dynamics.

The rest of this manuscript is organized as follows. In Section 2, we introduce the new conceptual framework
earning Uncertain Quantities (LUQ). This is followed in Section 3 by an in-depth overview of the computational
ackage LUQ that is used to generate the results presented in this paper. Section 4 summarizes the application of
utputs of LUQ to construct observation-consistent solutions. Section 5 includes numerical results with applications
rom the life and physical sciences. Finally, in Section 6, concluding remarks along with on-going and future
esearch directions are given. In the interest of scientific reproducibility, the Appendix contains links to the LUQ

repository as well as the data sets and Python scripts used to generate the various figures and table data appearing
in this manuscript.

2. Learning Uncertain Quantities (LUQ): Conceptual framework

To help motivate and illustrate the various steps in this framework, we consider the equation for the amplitude
of displacement, y, in a (damped) harmonic oscillator given by

y′′(t) + 2cy′(t) + ω2
0 y(t) = f (t)

where c is interpreted as a damping constant and ω0 is interpreted as the natural frequency. For simplicity, we assume
hat there is no external forcing (i.e., f (t) = 0). Any observed motion is determined by an initial displacement given
y y(0) = 3 and y′(0) = 0. The dynamics of this system are qualitatively described as under-damped, critically
amped, or over-damped, depending on the relationship between c and ω0. We ignore units except to interpret a
ingle unit of time as a second.

To motivate the associated inverse problem, suppose this model is used to describe the motion of a manufactured
ass–spring-dashpot system. Due to imperfections in the manufacturing process, the parameters c and ω0 possess

leatoric uncertainty (i.e., irreducible variability in their values) across the family of devices. Purely for illustrative
urposes, we assume that physically plausible bounds for the parameters are

0.1 ≤ c ≤ 1 and 0.5 ≤ ω0 ≤ 1,

nd that the data-generating distributions for these parameters are independent Beta(2, 2) distributions over their
espective domains.

Assuming that actual observations are polluted by measurement error given by an additive noise model, the
bserved data, denoted by yobs(t), are written as

yobs(t) = y(t) + η(t)

here at each observed time, the measurement error, denoted by η(t), is assumed independent and identically
istributed (i.i.d.) according to an N (0, σ 2) distribution. Purely for illustrative purposes, we set σ = 0.25 and
ssume that data are collected at a rate of 100 Hz starting at 1 s and ending at 6 s for a total of 501 measurements.
n Section 4.3, we discuss the impact of taking observations in a different window of time.

We simulate 300 i.i.d. experiments involving parameter values drawn from the Beta distributions for each
arameter to generate an associated family of 300 (noisy) observed data vectors, each of length 501. Now, we
uppose that the data-generating distribution is unknown, and we attempt to compute a distribution on the parameters
hat is observation-consistent. We choose an “initial” distribution of independent uniform distributions over each
arameter domain. We simulate observation data using 2000 i.i.d. samples drawn from this initial distribution.
his data is referred to as “predicted” data that comes from the push-forward measure for the initial distribution.
s discussed in Section 4, we can use the subsequent samples of QoI data obtained from noisy and predicted
ata to construct density estimates and perform an analog of “accept–reject” to estimate an “update” to the initial
istribution that is observation-consistent.
3

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

d
2
s
k
t

2

b
d
d

w
a
a
t
u

f
a
k
d
a
t
g

c
s
n

2

c
fi
(

Fig. 1. The small colored dots in each plot represent three different sets of noisy data filtered by a two-step process. Step 1 (left): approximate
ynamics from noisy data using splines with number of knots and knot locations optimized according to Algorithm 1 in Section 3. Step
(right): sample splines to generate filtered data. In the left plot, the dashed lines represent the splines constructed from each noisy time

eries, and the black disks denote the knots of each spline. Observe that splines with the same number of knots may still have different
not locations due to the optimization algorithm. In the right plot, the regularly spaced black squares in each cloud of noisy data represent
he filtered data sampled from the splines shown in the left plot.

.1. Filtering data (approximating dynamics)

In the problems considered in this work, data are observed (or predicted) from a dynamical response of a physics-
ased model at some frequency over finite time intervals. We produce filtered data by sampling, at potentially
ifferent frequencies, approximations to the underlying dynamical response associated with each time series of
ata. Below, we describe the basic procedure and give more specific implementation details in Section 3.

Inspired by the work of [19] for adaptively constructing splines to solve linear inverse problems associated
ith potentially discontinuous functions, we use piecewise linear splines with both adaptive numbers of knots and

daptive knot placement to approximate underlying dynamical responses. As described in [19], it is then possible to
pproximate the underlying dynamical response (assuming a particular regularity or finite number of discontinuities)
o arbitrary pointwise accuracy if both a sufficiently high frequency for collecting data and number of knots are
sed.

In Fig. 1, we illustrate this process of filtering noisy observations from three distinct dynamical system responses
or the harmonic oscillator. The left plot demonstrates the first step of approximating the underlying dynamics with
daptively-generated splines. We observe that the different sets of noisy data require either different numbers of
nots or knot placement in order to capture the underlying variability of the signal responsible for the noisy data. To
emonstrate the different uses and requirements of the “noisy” and “filtered” data in the analysis, the filtered data
re generated at a lower frequency from the splines. This is shown in the right plot. Below, we ultimately observe
hat not as many filtered data are required to generate useful QoI whereas many noisy data may be required to
enerate accurate approximations of the dynamics using splines.

To ensure compatibility between the predicted and observed data sets, we also use predicted (noise-free) data to
onstruct and sample splines to form “filtered” predicted data. This may, in fact, be necessary in some scenarios
uch as when predictions come from controlled experiments containing measurement noise or if the measurement
oise model is utilized when forming predictions.

.2. Clustering and classifying data (learning and classifying dynamics)

The goal is to construct low-dimensional QoI that characterize dynamical behaviors to construct observation-
onsistent solutions on parameters. Since different dynamical behaviors may be characterized by different QoI, the
rst goal is to use (filtered) predicted data to determine the equivalent classes of dynamical behavior present in the

filtered) observed data. This requires labeling the dynamics present in the predicted data set. Clustering algorithms

4

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

l
a

a
f

t
S
s
c
a
s
i

Fig. 2. The large blue dots illustrate the cluster in each plot (in time on the left, in the parameter space on the right) using unsupervised
earning in the form of k-means clustering. The smaller gray dots belong to different clusters. From top to bottom, we show clusters 1, 2,
nd 3, respectively.

re a type of unsupervised learning algorithm that label data vectors using a metric to gauge the distance of a vector
rom the proposed “center” of the cluster (see [20] for a comprehensive review of clustering algorithms).

To illustrate a particular clustering algorithm, we apply a k-means algorithm [21] on the predicted data for the
harmonic oscillator. The k-means algorithm is a centroid-based clustering algorithm. Since the LUQ module utilizes
he scikit-learn Python library, other clustering algorithms are readily available within LUQ as discussed in
ection 3. In this case, we have a priori knowledge of three potential types of dynamics in the harmonic oscillator,
o we propose three centroids in the k-means algorithm. A future work will consider approaches for adaptively
hoosing an optimal number of clusters when there is no a priori knowledge of dynamical behaviors present in an
pplication. Fig. 2 illustrates the output of this clustering. The left column of plots shows the clustering has grouped
imilar dynamical responses in time. The right column of plots shows the clustering of samples in parameter space

nferred from the clustering of filtered data.

5

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

(
(

v
b
o
t
t

c
t

v
o
o
d
S

2

n
b
f

Fig. 3. The large red dots illustrate the classified (filtered) observed data associated with a cluster (blue dots) learned from the set of all
filtered) predicted data (small gray dots). From left-to-right illustrates the classification of observed data into clusters 1, 2, and 3, respectively.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A classifier is a type of supervised learning algorithm (see [22,23]) that uses labeled training data to tune the
arious classifier parameters (not to be confused with the model parameters) so that non-labeled observed data can
e properly labeled (i.e., classified). At a high level, classifiers usually partition the training data into two subsets
f data: one used to tune the classifier parameters and the other to test the quality of these tuned parameters by
racking the rate of misclassification. This is referred to as cross-validation and is also useful in avoiding over-fitting
he classifier (i.e., over-tuning the classifier parameters) to the entire set of training data [24,25].

A typical workflow for optimizing a classifier is to randomly split the training data into two subsets, perform
ross-validation, and repeat this process some predetermined number of times to choose the classifier parameters
hat give the lowest misclassification rate [25]. The number of times, k, that the process is repeated is referred to as

performing k-fold cross-validation. It is also sometimes necessary to apply the so-called “kernel trick” to the data
to transform it (often nonlinearly) into a higher-dimensional space where the construction of a classifier is made
simpler [26,27]. In this work, we use the labeled predicted data from the clustering step as the training data and
restrict focus to kernel-based support vector machines (SVMs) [28]. This is summarized in more detail in Section 3.

For the harmonic oscillator, a linear kernel SVM is trained on the labeled predicted data using ten-fold cross-
alidation, leading to a classifier with a misclassification rate of approximately 0.25%. Fig. 3 shows the classification
f observed data using this kernel SVM. The large red dots are the classified observed time series that are plotted
n top of the associated predicted cluster data shown as blue dots. The gray dots show the range of all predicted
ata. That the red dots appear to be contained within the vertical ranges of the blue dots at all times indicates the
VM is properly classifying the dynamics present in the observed data sets.

.3. Feature extraction (learning quantities of interest)

Feature extraction algorithms generally attempt to reduce the dimension of a data space into a relatively small
umber of quantities that explain most of the variation observed in the data [23,29]. In this work, we use kernel-
ased principal component analysis (PCA) [30–33], which is one of the most popular approaches to performing
eature extraction. Kernels are measures of similarity, i.e., s(a, b) > s(a, c) if objects a and b are considered “more

similar” than objects a and c [34]. At a high level, we use a kernel to transform the predicted data of each cluster
into a space where a standard PCA is applied. The percentage of variation explained by the first few dominant
principal components is then computed. This is carried out separately on each cluster, and then the dominant
principal components are subsequently used as the QoI associated with the dynamics present in a particular cluster.

We seek to determine a kernel-based PCA such that nearly all of the variation in the data in a particular cluster
is explained by the first p principal components where p is the dimension of the parameter space. This is due to
the basic fact that the dynamics in each cluster are parameterized by the p parameters, and the goal is to update
the distribution for all of the p parameters. The QoI can be thought of as describing a change of basis from the p
parameters into the space of dynamics described by each cluster. In Section 3, more details are provided about the
various kernels applied to the data within LUQ and the processes available for choosing the best performing kernel
for the PCA.

In Fig. 4, we visualize the results of a linear kernel PCA in terms of the percentage of variation explained by

the first two principal components as well as the magnitude of the “spectral gap” between the second and third

6

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

c

Fig. 4. Performing kernel-based PCA on each cluster of predicted data to learn the QoI. From left to right is the output for clusters 1, 2,
and 3, respectively. The amount of variation in the data summarized by the first two principal components is given above the black (upper)
dashed line. The magnitude of the spectral gap to the third principal component is given above the red (lower) dashed line.

principal components. Here, we truncate the plots of the principal components at the maximum number of knots
allowed in the adaptive splines used to filter the data. Note that more than 98% of the variation in the predicted
time series data in each cluster is explained by just two principal components.

3. Learning Uncertain Quantities: Implementation

The LUQ Python package [18] provides simple implementations of the algorithms for learning uncertain quantities
outlined in Section 2. LUQ utilizes several publicly available Python packages that are commonly used for scientific
omputing (NumPy [35] and SciPy [36]) and machine learning (scikit-learn [37]). The package provides a

simple end-to-end workflow going from raw time series data to QoI which can be used for observation-consistent
inversion. Moreover, LUQ can also handle noisy prediction data (the process does not change) as we show in one
of the numerical examples of Section 5.

The workflow for using LUQ is straightforward. We describe a typical use case. The three initial inputs into the
LUQ algorithm are an array of n times {t j }

n
j=1 (denoted by times), a two-dimensional array of Npred “prediction”

time series {{y pred
i, j }

n
j=1}

Npred
i=1 (denoted by predicted_time_series), where y pred

i, j = y(t j) for prediction case i ,
and a two-dimensional array of Nobs “observed” time series {{yobs

i, j }
n
j=1}

Nobs
i=1 (denoted by observed_time_series),

where yobs
i, j = y(t j) + ηi (t j) for observation case i . ηi (t j) is mean-zero noise, which pollutes the observation data.

These are used to instantiate the LUQ class:

from luq import LUQ # Import LUQ module

learn = LUQ(predicted_time_series, observed_time_series, times)

3.1. Filtering data

Next, the data are filtered following Algorithm 1 for constructing and sampling from a piecewise linear spline
with optimally chosen knots. We first choose a time window over which to filter the data: [t ji , t j f], where
1 ≤ ji < j f ≤ n. Our goal is to take n f ilter uniform (in time) filtered data measurements at times {t̃k}

n f ilter
k=1 ,

with t̃1 = t ji and t̃n f ilter = t j f . Denote the filtered data measurements {ỹk}
n f ilter
k=1 .

For each predicted and observed time series, we find optimal piecewise linear splines fitting the raw (possibly
noisy) data. (Note that higher-order splines could, in principle, be used.) For a spline with m knots, let {t̄k}m

k=1 be
the locations of the knots and f = { fk}

m
k=1 be the values at the knots. Fix two of the knots at the endpoints of the

time window: t̄1 = t̃1 and t̄m = t̃n f ilter . Let t̄ = {t̄k}m−1
k=2 , and let Sm(t̄, f) be the piecewise linear spline defined by

those parameters, i.e.,

Sm(t̄, f) =

m∑
fiℓi (t),
i=1

7

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

t

T
c
s
s

H
n
{

t
o
o
s
a
o
d
t
t

l

Algorithm 1: filtering data.
Data: mmin , mmax , tol
Result: {ỹk}

n f ilter
k=1

1 Let yp =
1

j f − ji

∑ j f
j= ji

|y j |. ;

2 Solve (3.1) with mmin and mmin + 1 to find S∗
mmin

and S∗

mmin+1.;

3 Evaluate splines to get {ymmin
k }

n f ilter
k=1 and {ymmin+1

k }
n f ilter
k=1 . ;

4 Set {yold
k }

n f ilter
k=1 = {ymmin

k }
n f ilter
k=1 and {ỹk}

n f ilter
k=1 = {ymmin+1

k }
n f ilter
k=1 ;

5 Calculate Error =
1
yp

∑n f ilter
k=1

⏐⏐yold
k − ỹk

⏐⏐ .;
6 Set m = mmin + 1. ;
7 while Error > tol and m < mmax do
8 Set m = m + 1 and yold

k = ỹk ;
9 Solve (3.1) with m to find S∗

mmin
. ;

10 Evaluate spline to get {ỹk}
n f ilter
k=1 = {ym

k }
n f ilter
k=1 . ;

11 Calculate Error =
1
yp

∑n f ilter
k=1

⏐⏐yold
k − ỹk

⏐⏐ .;
12 end

where ℓi (x), i = 1, . . . , m comprise the linear spline basis:

ℓi : [t̄1, t̄m] → R, ℓi (t) =

⎧⎪⎨⎪⎩
(t − t̄i−1)/(t̄i − t̄i−1), t ∈ [t̄i−1, t̄i],
(t̄i+1 − t)/(t̄i+1 − t̄i), t ∈ [t̄i , t̄i+1],
0, otherwise.

Given the number of knots m, we find the optimal spline that fits the data in a least squares sense by solving
he optimization problem:

t̄∗, f∗ = arg min
t̄,f

j f∑
j= ji

(
y j − Sm(t̄, f)(t j)

)2
. (3.1)

he corresponding optimal spline is denoted S∗
m := Sm(t̄∗, f∗). To avoid numerical convergence issues, we add a

onstraint within to (3.1) that t̄1 ≤ t̄k ≤ t̄m for 2 ≤ k ≤ m. In LUQ, the constrained optimization problem is
olved with a Trust Region Reflective least-squares curve fitting algorithm [38] (the function curve_fit from the
cipy.optimize library in Python). Let {ym

k }
n f ilter
k=1 be defined by ym

k = S∗
m(t̃k).

In order to keep the filter data model as simple as possible, it is preferable to use as few knots as necessary.
ence, in LUQ an adaptive strategy is used to find a simple, yet accurate approximating spline. Given a minimum
umber of knots mmin , a maximum number of knots mmax , and a tolerance, Algorithm 1 returns the filtered data
ỹk}

n f ilter
k=1 . In Algorithm 1, optimal splines are formed with successive numbers of knots and are evaluated at the filter

imes. When the 1-norm distance between successive iterations of filtered data (normalized by the absolute average
f the raw data in the given time window, which is denoted by yp in Algorithm 1) falls below the specified tolerance
r the maximum number of knots is reached, the algorithm terminates, resulting in filtered data: samples from the
implest spline that meets the convergence criteria. The procedure is performed by iterating over all of the predicted
nd observed time series data, outputting in the two-dimensional arrays {{ỹ pred

i,k }
n f ilter
k=1 }

Npred
i=1 and {{ỹobs

i,k }
n f ilter
k=1 }

Nobs
i=1 . In

ther words, optimal splines with possibly different numbers of knots and knot locations are constructed for each
istinct time series data within the predicted and observed sets of data as illustrated in Fig. 1. Below, we work with
hese data sets in their matrix forms denoted by Y pred and Y obs , respectively. Within LUQ, these matrices along with
he vector containing the array of times of the filtered data become attributes of the LUQ object.

This filtering is done within LUQ by

earn.filter_data(time_start_idx=time_start_idx, time_end_idx=time_end_idx,

num_filter_obs=num_filter_obs, tol=tol, min_knots=min_knots,

max_knots=max_knots)
8

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230
where time_start_idx is the index of the beginning of the time window, time_end_idx is the index of the end of
the time window, num_filter_obs is the number of uniformly spaced filter observations to take, tol, min_knots,
and max_knots are the tolerance, minimum, and maximum number of knots for Algorithm 1.

3.2. Clustering and classifying data

Once the data are filtered, we learn the different types of dynamics present through application of clustering
algorithms on the filtered prediction data Y pred . The scikit-learn package [37] contains several methods for
performing clustering on unlabeled datasets that are utilized in LUQ.

Perhaps the most popular is the k-means algorithm [21] which divides data into k clusters of equal variance in
a way that minimizes the within-cluster variance. It is widely adopted because of its simplicity, robustness, and
scalability. The number of clusters, k, must be manually specified.

Another popular choice is to use a Gaussian mixture model (GMM) [39] where the data are assumed to be
samples from distribution defined by a weighted mixture of k Gaussian distributions. The relevant cluster parameters
are the means and covariances of each Gaussian along with their corresponding weights. As with the k-means
algorithm, the number of clusters must be manually specified.

Spectral clustering [40,41] is at times a useful alternative that uses the spectrum of an affinity matrix between
samples to perform dimension reduction. Following the dimension reduction, a clustering algorithm (e.g., k-means
or GMM) is then used on the low-dimensional space. Spectral clustering can be incredibly fast if the affinity matrix
is sparse. It works well for a small number of clusters, but its performance does not scale well for large numbers
of clusters. Again, the number of clusters must be manually specified.

Clustering methods that do not require the number of clusters to be given as input do exist (e.g., Density-Based
Spatial Clustering of Applications with Noise (DBSCAN algorithm) [42,43]). However, they often require that data
that are deemed “noisy” be removed from the data set prior to any clustering.

LUQ fully supports the k-means, GMM, and spectral clustering routines within scikit-learn. Because of the
different methodologies on which each of these clustering algorithms is based, it is difficult to quantitatively compare
their outputs. Hence in LUQ, while all are available, the user must choose the type of clustering algorithm to use,
along with necessary parameters, e.g., the number of clusters. Once one of the above clustering routines is used to
cluster the filtered prediction data, the data are labeled with an integer designating the cluster to which it belongs.
Within LUQ, the default choice of a clustering algorithm is k-means with three clusters and ten random initializations
for the cluster centers.

While k-means and GMMs implicitly contain a classifier model that can be applied to other data (e.g., the
observed data), the other methods discussed do not. Support Vector Machines (SVMs) are a robust class of
supervised learning methods that can be used for regression, outlier detection, and most notably classification. SVM
classification is effective in high dimensions, memory efficient, and extremely versatile. A wide range of linear
and nonlinear kernel functions can be specified for the decision function, allowing for a wide range of nonlinear
separation behavior to be able to be captured.

scikit-learn supports a wide variety of SVM classifiers in its sklearn.svm.SVC class, which leverages the
widely used library LIBSVM [44] for SVMs. Within the LUQ framework, an array of dictionaries of arguments
for sklearn.svm.SVC are proposed, each defining a class of SVMs (kernels, coefficients, tolerances). For each
proposal, a series of SVM classifiers are trained using the labeled output from the clustering method in order to
perform a k-fold cross-validation with k series of training and testing sets made from dividing up the samples. For
each proposed SVM class, the k-fold cross-validation results in an average misclassification rate (sometimes called
classification error rate) defined as the average (over k) of the proportion of misclassified test samples. Whichever
proposed SVM class results in the best average misclassification rate is then trained on the entire set of filtered
predicted data. The resulting SVM is subsequently used to label the filtered observed time series data. Denote the
labels as {l pred

i }
Npred
i=1 and {lobs

i }
Nobs
i=1 , where l pred

i and lobs
i are cluster numbers for predictions and observations i ,

respectively. The SVM classifier is easily stored, which makes it available to classify any new data sets as they
become available. Within LUQ the default proposals for SVM classes are those defined using linear, radial basis
function, polynomial, and sigmoid kernels with default coefficients and tolerances and a 10-fold cross-validation;
however, the user can propose any possible SVM class available in sklearn.svm.SVC.
9

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

l

w

T

a

p

f

p

f
d
v

In LUQ the clustering and classification is done by

earn.dynamics(cluster_method=’kmeans’,

kwargs={’n_clusters’: 3, ’n_init’: 10},

proposals = ({’kernel’: ’linear’},

{’kernel’: ’rbf’}, {’kernel’: ’poly’}, {’kernel’: ’sigmoid’}),

k = 10)

here cluster_method defines the type of clustering algorithm to use, kwargs is a dictionary of arguments for
the clustering algorithm, proposals is an array of dictionaries of proposed arguments for sklearn.svm.SVC, and
k is the k for the k-fold cross-validation. The printed output gives information about the selection of SVM:

0.011 misclassification rate for {’kernel’: ’linear’}

0.037 misclassification rate for {’kernel’: ’rbf’}

0.022 misclassification rate for {’kernel’: ’poly’}

0.4170000000000001 misclassification rate for {’kernel’: ’sigmoid’}

Best classifier is {’kernel’: ’linear’}

Misclassification rate is 0.011

3.3. Feature extraction

The final step in the LUQ framework is feature extraction. Feature extraction is performed over each cluster of
dynamics, rather than the entire data set. Let Y pred

l and Y obs
l be submatrices of Y pred and Y obs , respectively, for

samples labeled in cluster l. For simplicity assume that Y pred
l and Y obs

l are non-empty for 1 ≤ l ≤ nclusters . In
order to avoid numerical errors and improve the quality of the feature extraction, the features are standardized by
removing the mean and scaling to unit variance for each Y pred

l , and Y obs
l is transformed accordingly.

The sklearn.decomposition.KernelPCA class within scikit-learn provides support of a wide variety of
kernel PCA methods which are utilized within the LUQ framework. The user specifies an array of proposal arguments
defining kernels, coefficients, tolerances, etc., for types of kernel PCA methods supported within this class. The
user also provides either (a.) the number of desired QoIs or (b.) the minimum proportion of variance that must be
explained by the QoIs. The proportion of variance explained by n QoIs is the ratio of the sum of the eigenvalues
associated with the first n principal components with the total some of the eigenvalues. Each of the proposed kernel
PCAs are performed over each Y pred

l . In method (a.), for each kernel PCA the proportion of variance associated with
the given number of QoIs, n, is calculated. For each cluster l, the kernel PCA transform which explains the greatest
proportion of variance with n components is selected and applied to both Y pred

l and Y obs
l . The first n components

(in each row) of the transformed matrices are the corresponding n QoI. In method (b.), for each kernel PCA, the
minimum number of QoI that have a proportion of variance greater than the prescribed minimum is calculated. The
minimum n across the proposals is selected. If multiple methods result in the same minimum n, then the one that
explains the most variance is selected. For each cluster l, the chosen kernel PCA is applied to both Y pred

l and Y obs
l .

he first n components (in each row) of the transformed matrices are the corresponding n QoI.
Within LUQ, the best kernel PCAs are calculated for each cluster and the transformed predictions and observations

re computed by

redict_map, obs_map = learn.learn_qois_and_transform(num_qoi=1,

proposals=({’kernel’: ’linear’}, {’kernel’: ’rbf’},

{’kernel’: ’sigmoid’}, {’kernel’: ’cosine’}))

or case (a.), or by

redict_map, obs_map = learn.learn_qois_and_transform(variance_rate=0.9,

proposals=({’kernel’: ’linear’}, {’kernel’: ’rbf’},

{’kernel’: ’sigmoid’}, {’kernel’: ’cosine’}))

or case (b.). In the above, num_qoi is the number of QoIs to use for each cluster, proposals is an array of
ictionaries of proposed options for sklearn.decomposition.KernelPCA, and variance_rate is the minimum

ariance rate that the QoIs need to describe. The printed output gives information about the selection of the QoIs:

10

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

i
r

4

4

k

w
d
t

d

2 PCs explain 98.9222% of var. for cluster 1 with {’kernel’: ’linear’}

2 PCs explain 51.2613% of var. for cluster 1 with {’kernel’: ’rbf’}

2 PCs explain 91.4506% of var. for cluster 1 with {’kernel’: ’sigmoid’}

2 PCs explain 71.7679% of var. for cluster 1 with {’kernel’: ’poly’}

2 PCs explain 98.7201% of var. for cluster 1 with {’kernel’: ’cosine’}

Best kPCA for cluster 1 is {’kernel’: ’linear’}

2 PCs explain 98.9222% of variance.

2 PCs explain 99.9406% of var. for cluster 2 with {’kernel’: ’linear’}

2 PCs explain 69.4575% of var. for cluster 2 with {’kernel’: ’rbf’}

2 PCs explain 94.8345% of var. for cluster 2 with {’kernel’: ’sigmoid’}

2 PCs explain 91.5822% of var. for cluster 2 with {’kernel’: ’poly’}

2 PCs explain 99.8379% of var. for cluster 2 with {’kernel’: ’cosine’}

Best kPCA for cluster 2 is {’kernel’: ’linear’}

2 PCs explain 99.9406% of variance.

predict_map and obs_map are arrays containing the transformed prediction and observed data for each cluster,
.e., the “learned” QoIs. More information about the implementation can be found at https://github.com/CU-Denve
-UQ/LUQ and [18].

. Applying learned knowledge for observation-consistent inversion

.1. Observation-consistent inversion

The previous sections describe how the LUQ framework and LUQ package transforms each sample of model
output data, in the form of a time series, into a QoI associated with each type of dynamical system response.
Ultimately, this creates a mapping from samples of time series of data into samples of QoI for each cluster.
Subsequently, using both the predicted and observed QoI samples, density estimates may be formed on each cluster.
We give a high-level summary of how these density estimates are used to construct an observation-consistent solution
to a stochastic inverse problem. For the interested reader, the works of [9–11] contain details on the measure-
theoretic background for observation-consistent inversion. For more details on the density-based representation of
observation-consistent solutions that we expand upon in this work, we direct the interested reader to [12].

Denote by K the number of clusters and Λ the parameter space. As illustrated by the plots in the right column
of Fig. 2, the K clusters in data implicitly define a partition of Λ into K subsets,2 which we denote by Λk for

∈ {1, 2, . . . , K }.
Although it is not technically necessary to explicitly identify Λk for any k, it is computationally trivial to identify

hich initial set of samples belong to each Λk by simply sorting the labels of the associated sample set of prediction
ata. The notation Λk merely provides a formalism that allows us to more easily describe the structure of the solution
o the SIP below.

For each k, let Qk(λ) denote the learned QoI map defined on Λk , and let IΛk denote the indicator function where

IΛk (λ) =

{
1, λ ∈ Λk,

0, λ /∈ Λk .
(4.1)

Then, for each k, let π Qk (init) denote a predicted density associated with an L1-normalization of π initIΛk , where π init

enotes the initial density used to generate an initial set of parameter samples.

2 In general, the K subsets may be both disconnected and non-convex.
11

https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ
https://github.com/CU-Denver-UQ/LUQ

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

t

d

b

w

s
t
0
e
p
w
s
1
s
0
c
l

d
S
R
s
f

Similarly, for each k, let πobs,k denote the observed density associated with the kth cluster of data and wk denote
he observed weights associated with each cluster so that 0 ≤ wk ≤ 1,

∑K
k=1 wk = 1, and

K∑
k=1

wkπ
obs,k(Qk(λ))IΛk (λ) (4.2)

efines the observed density over Λ.
With this notation, we modify the (global) observation-consistent solution described in [12] as the density given

y

πupdate(λ) =

K∑
k=1

wkπ
init(λ)Rk(Qk(λ))IΛk (λ), (4.3)

here, for each k,

Rk(Qk(λ)) :=
πobs,k(Qk(λ))

π Qk (init)(Qk(λ))
. (4.4)

Here, we write the observation-consistent solution as an update to the initial density to make clear the dependence
of this solution on how initial samples are generated. The term Rk(Qk(λ)) is interpreted as the relative-likelihood
that an initial parameter sample λ determines a QoI in the kth cluster. It is useful for performing accept–reject
sampling to generate i.i.d. samples from πupdate. It is also useful for constructing a numerical diagnostic on solutions.
Specifically, π init(λ)Rk(Qk(λ)) defines an update to the initial density that is re-normalized on each cluster k. In
other words, on each cluster k,

1 =

∫
Λ

π init(λ)Rk(Qk(λ)) = Einit(R(Q(λ))). (4.5)

In this work, we approximate π Qk (init) and πobs,k using a standard kernel density estimate (KDE) technique with
well-established rates of convergence [45,46]. Thus, computing the sample averages of Rk(Qk(λ)) and comparing
to 1 provides a numerical diagnostic that these densities are sufficiently accurate on each of the K clusters; see [12]
for more details on this diagnostic.

4.2. The harmonic oscillator

For the harmonic oscillator introduced in Section 2, a standard KDE is used on each cluster to estimate the
predicted and observed densities on the learned QoI. On clusters 1, 2, and 3, the E(Rk(Qk(λ))) estimates to two
ignificant digits are, 0.98, 0.96, and 0.88, respectively. The values for the first two clusters align with what is
ypically observed in practice for verifying that the density approximations are sufficiently accurate. The value of
.88 for the third cluster requires further investigation as it may indicate that either the densities are inaccurately
stimated or the predicted density is unable to predict certain observable data. In this case, the visualizations
rovided by the classification in data space shown in Fig. 3 prove useful. It appears that the observed data are
ithin the range of predictions in the third cluster, so we rule out any issues of predictive capacity. The relatively

mall number of observed samples that are in the cluster suggests that the most likely cause of this deviation from
.00 is the error in the KDE estimate of the observed density. This is verified by increasing the number of observed
amples from 300 to 1000 in which case the estimated values of E(Rk(Qk(λ))) on clusters 1, 2, and 3, become
.95, 1.04, and 1.00, respectively. This simply demonstrates the usefulness of the diagnostic in performing a “sanity
heck” on results and in identifying potential sources of errors. We continue the analysis below with the relatively
ow number of 300 observed samples.

Fig. 5 shows several marginal densities for parameters c and ω0. The solid blue curves are the initial uniform
ensities. The dashed orange curves show weighted KDEs for the updated densities constructed using (4.3).
pecifically, the KDEs are constructed on the initial samples with weights given by estimates of both wk and
k(Qk(λ)) for k ∈ {1, 2, 3}. For each k, the estimates of wk are computed using the ratio of number of observed

amples classified in cluster k to all observed samples, and Rk(Qk(λ)) uses the standard KDE estimates obtained
obs,k Qk (init)
or π and π evaluated at the number of observed Qk values. Finally, the dotted green curves are standard

12

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

r
o
o

b
i
(
g
d
g
t
t

4

e
o
o
p

Fig. 5. Densities for c (left) and ω0 (right). The blue solid lines in each plot are the initial uniform densities. The orange dashed lines
epresent standard weighted kernel density estimates for the updated densities. The green dotted lines are standard kernel density estimates
f the data-generating density computed on the finite samples taken from the actual Beta distributions used to construct the density estimates
n the learned QoI.

Table 1
Total variation (TV) metrics for the damped harmonic oscillator problem presented in Section 2.
In the first (upper) table, from left-to-right, we report the TV distance between the data-generating
marginal density π DG

c and (i) the initial marginal density π ini t
c , (ii) the updated marginal densities

π
update
c , and (iii) the exact marginal distribution π DG,exact

c , respectively. In the second (lower)
table, from left-to-right, we report similar TV distances for the densities associated with the second
parameter, ω0.

∥π ini t
c − π DG

c ∥T V ∥π
update
c − π DG

c ∥T V ∥π DG
c − π DG,exact

c ∥T V

0.359 0.0758 0.0872

∥π ini t
ω0

− π DG
ω0

∥T V ∥π
update
ω0 − π DG

ω0
∥T V ∥π DG

ω0
− π DG,exact

ω0
∥T V

0.372 0.100 0.0809

KDE estimates on the data-generating parameter samples. We show these KDE estimates of the data-generating
distributions to illustrate the impact of finite-sample error in constructing the observed densities.

To better quantify the results, we compute total variation (TV) metrics between densities, i.e., the TV distance
etween the initial or updated density and the estimated data-generating density for each parameter, as summarized
n Table 1. The TV distance of the updated density estimates from the data-generating densities for each parameter
second column) are reduced by more than 73% from the distance of the initial density estimates to the data-
enerating densities (first column). In other words, the updated density estimates are significantly closer to the
ata-generating densities. Moreover, Table 1 also shows the TV distance between KDE approximations of the data-
enerating density obtained on the finite sample set of 300 i.i.d. data-generating samples (third column). Comparing
he TV distances in the second and third columns, we conclude that the updated density estimates are comparable
o a direct KDE estimate of the data-generating distribution.

.3. Impact of different observation times

The long-term behaviors of all dynamical responses for the harmonic oscillator involve a steady decay towards
quilibrium (i.e., “eventually” y(t) ≈ 0 for sufficiently large t). It is then rather self-evident that the sensitivity
f data to parameters decreases over time across all the dynamics. This is not particularly unique to the harmonic
scillator problem. It is expected in many dynamical systems that exhibit asymptotic behavior involving equilibrium
oints or limit cycles. If data are collected at a time where the dynamics are either no longer sensitive to particular
13

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

a
q
c
e
o

5

o
m
o

parameter values or only to parameters belonging to certain sets, we do not expect that the QoI extracted from the
dynamics can recover the so-called data-generating distributions.

We assume that a particular useful window of time series data is prescribed, and we focus on the end-to-end
nalysis of transforming time series data to QoI that provide significant updates of parameter distributions. The
uestion of when and where to take measurements in space and time in order to extract useful QoI for observation-
onsistent inversion is one of optimal experimental design (OED), which is the topic of a future work. However, in
ach of the main numerical examples presented in Section 5, we summarize the impact of using different windows
f time data on parameter distribution updates.

. Numerical examples

To demonstrate the LUQ framework for solving SIPs arising from dynamical systems, we present three examples
f increasing conceptual and computational complexity below. First, we consider a generalization of the Sel’kov
odel for glycolysis, a nonlinear system of ordinary differential equations (ODEs), which has a Hopf bifurcation

ver the parameter domain. We show the few lines of code required to apply the LUQ package, and we also provide
the outputs from this package that are reported to the user. For brevity, we omit the code and output in the second
and third examples, but the interested reader may reproduce all of these numerical results using our provided data
and Python scripts; see the Appendix for details, including links to our publicly available GitHub and Archive.org
repositories.

Next, we turn to the well-known Burgers’ equation, a nonlinear partial differential equation (PDE) arising in the
study of fluid dynamics, which can produce discontinuities (shock waves) from generic initial conditions. In this
example, uncertainty is assumed in a parameter describing the initial configuration of the wave that subsequently
determines how quickly a shock is formed, and results are reported based on temporal measurements taken at
different locations in space. This also demonstrates the overall robustness of the adaptive splines utilized for filtering
the data described in Algorithm 1. Specifically, we observe that optimizing the location of an adaptively refined
number of knots produces reasonable approximations to discontinuities in time series data.

Finally, we focus on the shallow water equations, a system of nonlinear PDEs arising in the study of coastal
circulation and storm surge (coastal flooding). Here, we consider a physical domain modeling the Shinnecock Inlet
located in the Outer Barrier of Long Island, NY, USA. Both tidal data and a scaling of atmospheric conditions
taken from late 2017 through early 2018 are used to simulate an extreme weather event. The uncertain model
inputs describe the parameterization of wind drag, i.e., the parameterization of momentum flux from winds to the
water column. We demonstrate that tidal gauge data measuring water surface elevation can be used to recover key
characteristics about the distributions of the uncertain wind drag parameters.

Within these examples, we also summarize results that motivate on-going and future work involving the proper
formulation of “optimal experimental design” and “data assimilation” problems within this framework.

5.1. A Hopf bifurcation

In the theory of ODEs, “Hopf [bifurcations] occur where a periodic orbit is created as the stability of the
equilibrium point [changes]” [47, pp. 315]. Learning the Quantities of Interest for an ODE with Hopf bifurcations,
with its variable dynamics, therefore, is a good demonstration for our proposed framework.

One such class of ODEs arises in the study of biological and biochemical oscillators [48], such as the study of the
cell cycle [49] and the study of glycolysis [50] (the process by which living cells breakdown sugar to obtain energy).
For the purposes of this numerical example, we focus on the following model, which follows from Strogatz [51,
Example 7.3.2] upon performing a change of variables [52]:

x ′
= −(x + b) + a

(
y +

b
a + b2

)
+ (x + b)2

(
y +

b
a + b2

)
, (5.1)

y′
= b − a

(
y +

b
a + b2

)
− (x + b)2

(
y +

b
a + b2

)
. (5.2)

This model can be framed, for example, as a generalization of the classical Sel’kov model of glycolysis [50], where

x and y represent concentrations of ADP (adenosine diphosphate) and F6P (fructose 6-phosphate), respectively, and

14

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

a

fi

l

l

c

l

O

0

0

0

0

B

M

a
a
c
p
s
a

p

p

O

2

2

2

2

2

-

B

2

-

2

, b > 0 are kinetic parameters. The Hopf bifurcation locus, as a function of a, is defined by

b1(a) =

√
(1 −

√
1 − 8a − 2a)/2 and b2(a) =

√
(1 +

√
1 − 8a − 2a)/2. (5.3)

The dynamics of (5.1)–(5.2) are classified as follows: If b < b1(a) or b > b2(a), then the origin is a stable focus.
If b1(a) < b < b2(a), however, then there is a stable periodic orbit.

We are interested in the dynamics of x , the concentration of ADP. The system is solved numerically using the
RK45 method [53], with initial conditions x(0) = 1 and y(0) = 1.

For this numerical example, we define data-generating distributions for a and b using two, independent Beta(2, 2)
distributions over [0.01, 0.124] and [0.05, 1.5], respectively to generate a set of 500 samples of time series data from
t = 0 to t = 6.5 with a measurement rate of 100 Hz. At each observed time, we add a measurement error modeled
by an independent and identically distributed N (0, σ 2) distribution with σ = 0.0125. To formulate the predictions
at the same measurement frequency, we use independent initial uniform distributions over the parameter intervals.
We construct 3000 predicted samples using this initial distribution and do not add measurement noise.

We instantiate a LUQ object, denoted by LUQ, and filter the data over a time window of [2.5, 6.55], taking 20
ltered measurements of predicted and observed data using between three and twelve knots:

earn = LUQ(predicted_time_series, observed_time_series, times)

earn.filter_data(time_start_idx=time_start_idx, time_end_idx=time_end_idx,

num_filter_obs=20, tol=5.0e-2, min_knots=3, max_knots=12)

Next, we learn and classify the dynamics using k-means clustering with three clusters and the default SVM
lassifiers:

earn.dynamics(cluster_method=’kmeans’, kwargs={’n_clusters’: 3, ’n_init’: 10})

UTPUT:

.003333333333333333 misclassification rate for {’kernel’: ’linear’}

.009 misclassification rate for {’kernel’: ’rbf’}

.5083333333333334 misclassification rate for {’kernel’: ’poly’}

.010666666666666666 misclassification rate for {’kernel’: ’sigmoid’}

est classifier is {’kernel’: ’linear’}

isclassification rate is 0.003333333333333333

The resulting SVM has a small average misclassification rate which should result in good accuracy. The clusters
re presented graphically in parameter and data space in Fig. 6. Observe that three distinct types of dynamics
re obtained from the clustering algorithm. It is obvious that the observed time series (red) are properly being
lassified by the SVM to match clusters of the predicted time series (blue). The figures on the right show the
redicted samples in parameter space, with the blue dots being the samples in the respective cluster. The red curves
ignify the analytically known locations of the Hopf bifurcations. It is evident that the clustering and classification
lgorithms are determining regions of parameter space that are predominantly aligned with the known dynamics.

Next, the QoI are learned by choosing kernel PCAs for each cluster of dynamics. Because there are two uncertain
arameters a and b, we choose to learn two QoIs.

redict_map, obs_map = learn.learn_qois_and_transform(num_qoi=2)

UTPUT:

PCs explain 98.9921% of var. for cluster 1 with {’kernel’: ’linear’}

PCs explain 53.4257% of var. for cluster 1 with {’kernel’: ’rbf’}

PCs explain 93.9109% of var. for cluster 1 with {’kernel’: ’sigmoid’}

PCs explain 78.9174% of var. for cluster 1 with {’kernel’: ’poly’}

PCs explain 97.7487% of var. for cluster 1 with {’kernel’: ’cosine’}

--

est kPCA for cluster 1 is {’kernel’: ’linear’}

PCs explain 98.9921% of variance.

--
PCs explain 95.1797% of var. for cluster 2 with {’kernel’: ’linear’}

15

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230
Fig. 6. Clustering and classification for the Hopf bifurcation problem, Section 5.1. The large blue dots illustrate the (filtered) predicted data
(in time on the left, in the parameter space on the right) using unsupervised learning in the form of k-means clustering; from top to bottom,
we show clusters 1, 2, and 3, respectively. The large red dots (left column) illustrate classified (filtered) observed data. The smaller gray dots
belong to different clusters. Additionally, the red curves (right column) demonstrate the Hopf bifurcations locus (5.3). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

2 PCs explain 63.3258% of var. for cluster 2 with {’kernel’: ’rbf’}

2 PCs explain 95.7184% of var. for cluster 2 with {’kernel’: ’sigmoid’}

2 PCs explain 82.1687% of var. for cluster 2 with {’kernel’: ’poly’}

2 PCs explain 91.3099% of var. for cluster 2 with {’kernel’: ’cosine’}

Best kPCA for cluster 2 is {’kernel’: ’sigmoid’}

2 PCs explain 95.7184% of variance.

2 PCs explain 99.7161% of var. for cluster 3 with {’kernel’: ’linear’}

2 PCs explain 57.9535% of var. for cluster 3 with {’kernel’: ’rbf’}

2 PCs explain 93.0670% of var. for cluster 3 with {’kernel’: ’sigmoid’}

2 PCs explain 77.6821% of var. for cluster 3 with {’kernel’: ’poly’}
16

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

r
o
o

2

-

B

2

-

t
H
K
p
s

d
S
R
s
f
K
d

i
T
c
d
r
d
c

m
u

Fig. 7. Densities for a (left) and b (right). The blue solid lines in each plot are the initial uniform densities. The orange dashed lines
epresent standard weighted kernel density estimates for the updated densities. The green dotted lines are standard kernel density estimates
f the data-generating density computed on the finite samples taken from the actual Beta distributions used to construct the density estimates
n the learned QoI.

PCs explain 99.3870% of var. for cluster 3 with {’kernel’: ’cosine’}

--

est kPCA for cluster 3 is {’kernel’: ’linear’}

PCs explain 99.7161% of variance.

--

We see that linear kernels are chosen for clusters 1 and 3 and a sigmoid kernel is chosen for cluster 2. Moreover,
he learned QoI in each cluster all explain a very high proportion of the variance (more than 95% in each case).
aving learned the QoI for each cluster and transformed the prediction and observed data, we can form weighted
DEs and perform observation-consistent inversion. A standard KDE is used on each cluster to estimate the
redicted and observed densities on the learned QoI. On clusters 1, 2, and 3, the E(Rk(Qk(λ))) estimates to two
ignificant digits are, 0.99, 0.95, and 1.02, respectively.

Fig. 7 shows several marginal densities for parameters a and b. The solid blue curves are the initial uniform
ensities. The dashed orange curves show weighted KDEs for the updated densities constructed using (4.3).
pecifically, the KDEs are constructed on the initial samples with weights given by estimates of both wk and
k(Qk(λ)) for k ∈ {1, 2, 3}. For each k, the estimates of wk are computed using the ratio of number of observed

amples classified in cluster k to all observed samples and Rk(Qk(λ)) uses the standard KDE estimates obtained
or πobs,k and π Qk (init) evaluated at the number of observed Qk values. Finally, the dotted green curves are standard
DE estimates on the data-generating parameter samples. We show these KDE estimates of the data-generating
istributions to illustrate the impact of finite-sample error in constructing the observed densities.

To better quantify the results, we compute the TV metrics between densities, i.e., the TV distance between the
nitial or updated density and the estimated data-generating density for each parameter, as summarized in Table 2.
he TV distance of the updated density estimates from the data-generating densities for each parameter (second
olumn) are reduced by more than 58% from the distance of the initial density estimates to the data-generating
ensities (first column). Moreover, Table 2 also shows the error in the KDE estimates of the data-generating density
esulting from the use of finite-sampling. We see that the absolute distances between the updated and data-generating
ensity KDEs (second column) are similar to the magnitude of error that arises from using finite-sampling in
onstructing KDEs (third column).

We provide some final remarks regarding the time window, [2.5, 6.55], used in generating the above results. One
otivation for using data taken from such an early window of time in the simulation is understood in the context of
sing this model for predicting spikes in insulin as a response to rising glucose levels and any subsequent medical

17

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

a
c
f
r
o

5

O

T

w
w
w

s
m
d

Table 2
Total variation (TV) metrics for the Hopf bifurcation problem, Section 5.1. In the first (upper) table,
from left-to-right, we report the TV distance between the data-generating marginal density π DG

a

and (i) the initial marginal density π ini t
a , (ii) the updated marginal densities π

update
a , and (iii) the

exact marginal distribution π DG,exact
a , respectively. In the second (lower) table, from left-to-right,

we report similar TV distances for the densities associated with the second parameter, b.

∥π ini t
a − π DG

a ∥T V ∥π
update
a − π DG

a ∥T V ∥π DG
a − π DG,exact

a ∥T V

0.408 0.171 0.075

∥π ini t
b − π DG

b ∥T V ∥π
update
b − π DG

b ∥T V ∥π DG
b − π

DG,exact
b ∥T V

0.322 0.077 0.060

interventions this may entail. From that perspective, it is better to obtain information that is useful for informing
parameter values with data taken as early in time as possible. Moreover, as time increases, the dynamics of the
system tend to either equilibrium or exhibit large spikes depending on the parameters that then appear to return
to equilibrium before producing additional spikes. Data taken from time windows where all the dynamics produce
similar “leveled” responses are not as useful for generating QoI sensitive to both parameters. For instance, we found
that using data from time windows where t > 20 that are long enough to contain some predicted spikes in glucose
levels will produce QoI that are far more sensitive to b than to a. The impact is that updated b parameter distributions
re fairly close to the data-generating distribution, but the update to the a parameter distribution is fairly minor by
omparison. Naturally, this provides motivation to see whether we can reformulate our newly proposed framework
or the purposes of “optimal experimental design”, which will be the topic of future work. However, the interested
eader may use our provided data and scripts (see the Appendix) as a starting point to either simulate other data
r explore other time windows of data for use in this problem.

.2. A shock

Dynamic partial differential equations (PDEs) are dynamical systems that are often used to model physical laws.
ne such model is the 1D Burgers’ equation, a nonlinear PDE arising in the study of fluid dynamics:

qt +
1
2

(q2)x = 0.

he spatial domain is the interval [0, 10]. We impose an initial condition of the form

q(x, 0) =

⎧⎪⎨⎪⎩
fl , 0 ≤ x ≤ 3.25 − a,
1
2 ((fl + fr) − (fl − fr) (x−3.25)

a), 3.25 − a < x ≤ 3.25 + a,

fr , 3.25 + a < x ≤ 10,

here a ∈ [0.75, 3] is an uncertain parameter and fl and fr are positive constants with fl > fr . In this example,
e take fl = 1.5 and fr = 1; see, for example, Fig. 8. We assume non-reflecting boundary conditions, allowing
aves to pass out of the boundaries without reflection.
This system often can develop discontinuous solutions (shock waves), which complicates calculating a numerical

olution. We use PyClaw [54,55] to calculate weak solutions to the system using a Godunov-type finite volume
ethod with an appropriate limiter and Riemann solver. We use a uniform mesh with 500 elements. The system

escribed above forms a shock at t =
2a

fl− fr
. The shock speed is 1

2 (fl + fr). We calculate the time series solution at

x = 6.5, i.e., q(7, t) and x = 9.5 at 1000 evenly spaced time steps between t = 0 and t = 10. We assume a data-
generating distribution of a defined by a Beta(2, 2) distribution over [0.75, 3] to generate a set of 500 samples of time
series data from t = 0 to t = 10 with a measurement rate of 100 Hz. At each observed time, we add measurement
error that is independent and identically distributed according to an N (0, σ 2) distribution with σ = 0.025. An initial
uniform distribution is assumed over the same interval and with the same measurement frequency. We take 1000
predicted samples from this distribution for which we also add the same amount of measurement noise as assumed
in the predictions.
18

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

fi

fi
b
h

a

Fig. 8. Three possible initial conditions q(x, 0) for the shock problem, given three choices for the parameter a. Additionally, the measurement
locations for the two sets of results are shown in cyan (x = 6.5) and green (x = 9.5). (For interpretation of the references to color in this

gure legend, the reader is referred to the web version of this article.)

First, we analyze the data associate with measurements taken at x = 6.5. We instantiate a LUQ object LUQ and
lter the data over a time window of [0, 5], taking 500 filtered measurements of predicted and observed data using
etween three and ten knots. We expect two main types of dynamics, corresponding to whether or not the wave
as transformed into a shock wave by the time it reaches x = 6.5. Therefore, we learn and classify the dynamics

using k-means clustering with two clusters and the default SVM classifiers. LUQ chooses a linear kernel SVM which
causes a misclassification rate of .011. Fig. 9 (left column) shows the two classification clusters. Cluster 1 shows
dynamics that are far away from forming shocks, and cluster 2 shows dynamics of waves that are almost shocks.
In fact, at x = 6.5, none of the initial waves defined by the range of a values used here actually form shocks by
the time the wave passes this location.

Fig. 10 (left column) shows the predicted samples in parameter space. We see, as expected, smaller values of
in one cluster (cluster 2) and larger values in the other (cluster 1): this matches what one might assume from

the physics. Next, the QoI are learned by choosing kernel PCAs for each cluster of dynamics. Because there is
only one parameter, a, we choose to learn one QoI. LUQ chooses a sigmoid kernel for cluster 1, which explains
67.5589% of the variance and a linear kernel for cluster 2, which explains 29.2163% of the variance. A standard
KDE is used to estimate the predicted and observed densities on the learned QoI for each cluster. On clusters 1 and
2, the E(Rk(Qk(λ))) estimates to two significant digits are, 1.0 and 0.99, respectively.

The plots of Fig. 11 (left) show several probability densities over a. In the left plot (for data obtained at
x = 6.5), the updated density matches very well with the data-generating density. We further analyze the accuracy
by looking at the total variation in Table 3. We see an 87% reduction in the total variation distance of the updated
to data-generating densities (second column) compared to the distance of the initial to data-generating densities
(first column). Moreover, the total variation distance of the updated density to the data-generating density (second
column) is at the same level as a distance of the direct KDE approximation of the data-generating density (fourth
column). Hence, the updated density is almost as accurate as is possible.

We again emphasize that the results discussed above are for the data collected at measurement location x = 6.5,
where none of the samples from the initial density have actually formed shocks. To understand the impact of shocks
on the data and subsequently on the updated density for a, we instead look at measurements taken at x = 9.5. At
this location, many of the samples from the initial density have formed shocks. Once a shock has formed, since the
shock speeds are identical for each sample, it is impossible to identify the precise value for the parameter a other
than it belonging to a particular set of plausible values. In other words, any value of a that has caused a shock
wave to form produces an identical (up to noise) time series. The impact of this is analyzed below.

We instantiate a LUQ object LUQ and filter the data over a time window of [2.5, 7.5], taking 500 filtered
measurements of predicted and observed data using between three and ten knots. We learn and classify the dynamics
using k-means clustering with two clusters and the default SVM classifiers. LUQ chooses a linear kernel SVM which
causes a misclassification rate of .001. Fig. 9 (right column) shows the two classification clusters. Cluster 1 shows
dynamics that are far away from forming shocks, and cluster 2 shows dynamics of waves that are either shocks
or almost shocks. Fig. 10 (right column) shows the predicted samples in parameter space. We see, as expected, in
19

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

l

a
o
f
o
l

u
g
w
(
a
c
t
c
a

5

Fig. 9. Clustering and classification for the shock problem, Section 5.2: First column shows results for the first experiment with measurement
ocation x = 6.5, while for the second column x = 9.5. The large blue dots (largely obscured by red) illustrate the clustered (filtered) predicted

data; from top to bottom, we show clusters 1 and 2, respectively. Moreover, the large red dots illustrate the classified (filtered) observed
data, while the smaller gray dots belong to the other cluster. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

cluster 1 the values of a are generally above the threshold of forming shocks (a = 1.25), and in cluster 2 the values
re below or only slightly above the threshold. Next, the QoI are learned by choosing kernel PCAs for each cluster
f dynamics. Because there is only one parameter, we again choose to learn one QoI. LUQ chooses a sigmoid kernel
or cluster 1, which explains 51.0022% of the variance and a linear kernel for cluster 2, which explains 28.3004%
f the variance. A standard KDE is used on each cluster to estimate the predicted and observed densities on the
earned QoI. On clusters 1 and 2, the E(Rk(Qk(λ))) estimates to two significant digits are 1.0 and 0.98, respectively.

The right plot in Fig. 11 shows several probability densities over a based on measurements at x = 9.5. The
pdated density matches very well with the data-generating density for the region where shocks have not formed
iven by a > 1.25. However, for a ≤ 1.25, it does not match well for the reasons discussed above. In Table 3,
e observe the total variation distance of the subsequent updated distribution to the data-generating distribution

third column) is more than when using data from x = 6.5 (second column), which is consistent with the above
nalysis of the results. However, the probability with respect to the updated distribution of the event encompassing
luster 2 is 0.446 and the probability of the data-generating distribution is 0.448, and error of less than 1%. Hence,
he probability of the shock and near-shock event has been computed very accurately. In other words, while we
annot expect the updated density to accurately describe differences in relative likelihoods in the event defined by
≤ 1.25, it can still be used to accurately compute the probability of this event.

.3. Wind drag

In coastal circulation and flooding modeling, a common fluid dynamics approximation is the shallow water
approximation. If the horizontal length scale of motion (e.g., wavelength) is much greater than the height of the
water column, then, as first studied by A.J.C. Barré de Saint-Venant in a 1D setting [56], one can derive a system

of partial differential equations for the evolution of water surface elevation and depth-averaged momentum (in

20

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

c

d
a
u

c
S

Fig. 10. Histograms of the parameter a inferred from the clustering of predicted (filtered) data for measurements taken at x = 6.5 (left
olumn) versus x = 9.5 (right column). The red line denotes that values to the left have formed a shock.

Fig. 11. Densities for a with data collected at x = 6.5 (left) and x = 9.5 (right). The blue solid lines in each plot are the initial uniform
ensities. The orange dashed lines represent standard weighted kernel density estimates for the updated densities. The green dotted lines
re standard kernel density estimates of the data-generating density computed on the finite samples taken from the actual Beta distributions
sed to construct the density estimates on the learned QoI.

ontrast with velocity and pressure as in the Navier–Stokes equations), called the Shallow Water Equations (SWE).
ee [57–59] for a selection of derivations.

With meteorological forcing (wind speed and air pressure), the SWE can be written as

∂ζ
+ ∇ · (UH) = 0, (5.4)
∂t
21

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

v
d

C

“

a

t

O
e

O
a
t
u
f
m
(
o

B
d
s
σ

t

Table 3
Total variation (TV) metrics for the shock problem, Section 5.2. From left-to-right, we report the TV distance between the
data-generating density π DG and (i) the initial density π ini t , (ii) the updated density πupdate,6.5 for the first experiment with
data collected at x = 6.5, (iii) the updated density πupdate,9.5 for the second experiment (x = 9.5), and (iv) the exact marginal
distribution π DG,exact , respectively.

∥π ini t
− π DG

∥T V ∥πupdate,6.5
− π DG

∥T V ∥πupdate,9.5
− π DG

∥T V ∥π DG
− π DG,exact

∥T V

0.430 0.054 0.192 0.059

∂U
∂t

+ U · ∇U + f k × U = −∇

(
ps

ρ0
+ gζ

)
+

τ s − τ b

ρ0 H
, (5.5)

for the unknown free surface elevation ζ = ζ (x, y, t) ∈ R (alt., water elevation or sea level) and depth-averaged
elocity vector U = U(x, y, t) ∈ R2. In (5.4)–(5.5), H = h + ζ is the total water depth, where h is the still water
epth; f = 2Ω sin φ is the Coriolis parameter, where Ω is the angular speed of the Earth and φ is latitude; ps is

the atmospheric pressure at the free surface and ρ0 the reference density of water; g is acceleration due to gravity;
τ s = ρaCdu∥u∥ and τ b are the free surface and seabed stresses, respectively; Cd is the wind drag; and u is the
wind speed at 10-m. (In this work, a hybrid friction law is used for the seabed stress, see [60].)

The ADvanced CIRCulation (ADCIRC) coastal ocean model is a continuous-Galerkin, finite-element model of
the SWE [61,62], in which the Generalized Wave Continuity Equation [63] (an equivalent formulation of the SWE) is
discretized in space using piecewise-linear elements on unstructured (triangular) grids. It is used quasi-operationally
for coastal engineering applications such as hurricane storm surge hindcasting [64–66] and forecasting [67] and
uncertainty quantification [68–70], and can run in both single core and distributed computing environments [71,72].

Significant uncertainty in these applications exists within the meteorological components, such as the forecasted
wind and pressure fields, and the wind drag. A common formulation of wind drag in storm surge applications is

d = min[10−3(0.75 + .067∥u∥), .0025], where the exact numerical coefficients may vary between applications.
Briefly, this formulation for Cd models the observed linear increase with low wind speeds and the “cut-off” or
saturation” for high wind speeds, see [73,74].

As a numerical experiment for LUQ and observation-consistent inversion, we propose a generalization of the
bove equation, namely,

Cd = min[10−3(0.75 + λ1∥u∥), λ2].

We suppose, for the purposes of the experiment, that the uncertain parameters (λ1, λ2) might lie within ±50% of
he aforementioned coefficients .067 and .0025, respectively:

λ1 ∈ Λ1 := [.0335, .1005], λ2 ∈ Λ2 := [.00125, .00375]. (5.6)

ur goal will be to recover an approximation of the distribution on (λ1, λ2) from time series of water surface
levation ζ (x0, y0, t) at a given, fixed location (x0, y0).

We configure an ADCIRC model using the well-tested Shinnecock Inlet mesh [75] (modeling an inlet in the
uter Barrier of Long Island, NY, USA), with external forcing given by tides, winds, and constant air pressure for
period of 34 days (29 December 2017–31 January 2018). The relatively small mesh (approx. 3.1k nodes and 5.8k

riangles) is shown in Fig. 12. The tidal forcing is reconstructed from the TPXO9.1 harmonic tidal constituents [76]
sing OceanMesh2D [77], the air pressure is assumed spatially and temporally constant (1013 millibars), and the
ree surface stress from winds is computed from 0.25◦ hourly CFSv2 10-m wind fields [78] interpolated onto the
esh. The winds are modified for the purposes of our numerical experiment. First, to simulate a more extreme event

winds up to Category 4), they are artificially scaled by a factor of three. Second, to reduce spurious, non-physical
scillations near the outer boundary, they are smoothly reduced to zero near the outer boundary.

For the numerical experiment, we use two, independent data-generating distributions, λ1 ∼ Beta(5, 2) and λ2 ∼

eta(1.5, 7) (translated and scaled to the intervals Λ1 and Λ2, respectively), to generate 100 samples of time series
ata (water surface elevation) measured every minute for the month of January 2018 at (x0, y0) = (−72.45◦, 40.87◦),
ee Fig. 12. To each observation, we add independent, normally distributed measurement error N (0, σ 2) with

= .005. We additionally use uniform distributions on identical intervals, λ1 ∼ unif(Λ1) and λ2 ∼ unif(Λ2),
o generate 1000 predicted (noise-free) time series.
22

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

(
a
t

w
w
i
T

u
w

u
F

l
u
d
t

Fig. 12. Mesh for the Shinnecock Inlet, with tidal forcing boundary (blue), no-flow boundary (red), and the time series measurement location
x0, y0) (see inset, red “×”). The map tiles, by Stamen Design, are licensed under CC BY 3.0. Map data, c⃝ OpenStreetMap contributors,
re licensed under ODbL. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)

Table 4
Total variation (TV) metrics for the first numerical experiment presented in Section 5.3, using the
time window T1. From left-to-right, in each of the two tables, we report the TV distances between
the data-generating marginal densities π DG

λi
(i = 1 in the first table and i = 2 in the second) and

(i) the initial marginal densities π ini t
λi

, (ii) the updated marginal densities π
update
λi

, and (iii) the

exact marginal distribution π
DG,exact
λi

, respectively.

∥π ini t
λ1

− π DG
λ1

∥T V ∥π
update
λ1

− π DG
λ1

∥T V ∥π DG
λ1

− π
DG,exact
λ1

∥T V

0.744 0.165 0.093

∥π ini t
λ2

− π DG
λ2

∥T V ∥π
update
λ2

− π DG
λ2

∥T V ∥π DG
λ2

− π
DG,exact
λ2

∥T V

1.061 0.276 0.160

First, we instantiate a LUQ object LUQ and filter the data over a time window of [03 Jan 2018 18:41:00 GMT,
03 Jan 2018 22:00:00 GMT], represented in the data using Unix time (seconds since 1 January 1970 0:00)
T1 = [1515004860, 1515016800]. We take ten filtered measurements of predicted and observed data using between
five and ten knots. We do not expect significantly different dynamics based on the choice of parameters (λ1, λ2), so

e do not perform clustering, do not construct an SVM classifier, etc. Because there are two uncertain parameters,
e choose to learn two QoI. LUQ chooses a linear kernel PCA, which explains approximately 89% of the variance

n the filtered data. A standard KDE is used to estimate the predicated and observed densities on the learned QoI.
he E(R(Q(λ))) estimate to two significant digits is 0.83.

Fig. 13 shows marginal probability densities over λ1 (left) and λ2 (right). The solid blue curves are the initial
niform densities. The dashed orange curves show weighted KDEs for the updated densities with K = 1 and
k = 1. Specifically, the KDEs are constructed on the initial samples with weights given by estimates of R(Q(λ)),
sing the standard KDE estimates obtained for πobs and π Q(init) evaluated at the number of observed Q values.
inally, the dotted green curves are standard KDE estimates on the data-generating parameter samples.

The updated densities match very well with the data-generating densities. We further analyze the accuracy by
ooking at the total variation in Table 4. We see a reduction of more than 73% in the total variation distance of the
pdated to data-generating densities (second column) compared with the distance of the initial to data-generating
ensities (first column) for each parameter. Moreover, the total variation distances of the updated marginal densities
o the data-generating marginal densities (second column) are similar to the distances obtained from a direct KDE
23

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

a
0
w
c

t
w
d

i
g

i
i
t
1
f
e

a
t
i
t
d
c
t

t
“
o
i

6

t
o
m
f

Table 5
Total variation metrics for the second numerical experiment presented in Section 5.3, using the
time window T2. See the caption of Table 4 for interpretation of the data.

∥π ini t
λ1

− π DG
λ1

∥T V ∥π
update
λ1

− π DG
λ1

∥T V ∥π DG
λ1

− π
DG,exact
λ1

∥T V

0.744 0.632 0.093

∥π ini t
λ2

− π DG
λ2

∥T V ∥π
update
λ2

− π DG
λ2

∥T V ∥π DG
λ2

− π
DG,exact
λ2

∥T V

1.061 0.086 0.160

approximation of the data-generating marginal densities (third column). Taking into account the aforementioned
E(R(Q(λ))) estimate together with the measured TV reduction, we can confidently say that the stochastic inverse
problem (SIP) has been solved accurately for both (λ1, λ2).

To show the impact of experimental design, we conduct a second numerical experiment with the same data set but
new time window. We instantiate a LUQ object and filter data over a time window [02 Jan 2018 00:00:00 GMT,

2 Jan 2018 23:59:00 GMT], represented in the data using Unix time T2 = [1514851200, 1514937540]. In this time
indow, the Shinnecock Inlet is subject to the highest wind speed over the course of the simulation. One might

hoose this a priori, as we did in our preliminary numerical experiments.
We take 25 filtered observations of predicted and observed data using between seven and twelve knots. Because

here are two uncertain parameters (λ1, λ2), we again choose to learn two QoIs. LUQ chooses a sigmoid kernel,
hich explains approximately 89% of the variance. A standard KDE is used to estimate the predicted and observed
ensities on the learned QoI. The E(R(Q(λ))) estimate, to two significant digits, is 1.13.

Fig. 14 shows several probability densities over λ1 (left) and λ2 (right). As before, the solid blue curves are the
nitial uniform densities, the dashed orange curves show weighted KDEs for the updated densities, while the dotted
reen curves are standard KDE estimates on the data-generating parameter samples.

The updated density for λ2 in Fig. 14 matches very well with the data-generating density. In fact, it is an
mprovement over the previous results where both the mode and tail of the density are better approximated. This
s further quantified in Table 5 where we observe a more significant decrease in the total variation distance from
he updated marginal density and data-generating marginal density for λ2 than in the previous case: dropping from
.061 to 0.086 (second row, Table 5) versus 1.061 to 0.276 (second row, Table 4). However, the updated density
or λ1 in Fig. 14 is not significantly different from a KDE estimate of a uniform density and is not a very good
stimate of the data-generating density associated with this parameter.

In summary, using the new time window T2 results in no significant update in the density for λ1 versus excellent
greement for the update in the density for λ2. This, however, is not a failing of the proposed framework for solving
he SIP. Rather, it is a failing in either the choice of experimental design and/or choice of hyperparameters. The
nterested reader can readily modify the second half of the provided Python script, publicly available on Archive.org,
o use one rather than two QoI; see the Appendix for more details. Then, the E(R(Q(λ))) estimate improves
ramatically while the plots of density and summary of TV distances (cf., Fig. 14 and Table 5) are not significantly
hanged. One can therefore conclude, with this modification, that the variations in QoI constructed for the SIP over
his time window are primarily sensitive to λ2.

A careful physical reasoning provides useful insight into these results as well. When the wind speeds are higher,
he wind drag coefficient Cd is truncated at the value of λ2. This becomes, in essence, the only parameter value
seen” by the system over the period of time when the wind speeds are high. It is therefore not surprising that data
btained when wind speeds are high exhibit very little sensitivity to the values of λ1 and are therefore inadequate
n constructing a QoI that updates the initial density on λ1 in a meaningful way.

. Conclusions

In this work, we introduce a new conceptual and computational framework, Learning Uncertain Quantities (LUQ),
o transform time series data into Quantities of Interest (QoI) that are useful for the observation-consistent solution
f stochastic inverse problems arising in the study of dynamical systems. This provides a rigorous and practical
ethod for uncertainty quantification of dynamical systems using raw streams of time series data. Key ideas in this

ramework include data filtering (enabling the analysis of raw, possibly noisy time series), unsupervised learning
24

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

i

(
Q
w
f

i
a
e
r
o
h

n
q
(

Fig. 13. Densities for λ1 (left) and λ2 (right) for the first numerical experiment presented in Section 5.3. The blue solid lines in each plot
are the initial uniform densities. The orange dashed lines represent standard weighted kernel density estimates for the updated densities. The
green dotted lines are standard kernel density estimates of the data-generating density computed on the finite samples taken from the actual
Beta distributions used to construct the density estimates on the learned QoI.

Fig. 14. Densities for λ1 (left) and λ2 (right) for the second numerical experiment presented in Section 5.3. See the caption of Fig. 13 for
nterpretation of the plots.

to learn dynamics from predicted model output and to classify observations), and feature extraction to determine
oI maps (reducing the dimension of a given time series data set via a clipped kernel PCA). This extends recent
ork [9–12], in which the QoI map is assumed a priori, to the present setting where instead it must be learned

rom data.
Numerical results show the efficacy of the proposed framework in solving stochastic inverse problems arising

n applications from the life and physical sciences, including the damped harmonic oscillator in Sections 2–4,
nd a generalization of the Sel’kov model of glycolysis, Burgers’ equation, and the depth-averaged shallow water
quations (using the ADCIRC coastal ocean model) in Sections 5.1–5.3, respectively. In the interest of scientific
eproducibility, we also describe our implementation of this new framework, which we have made publicly available
n GitHub, as well as provide public access to the data sets and Python scripts for all numerical results presented
erein; see the Appendix for details.

Throughout the exposition of the numerical results, we have alluded to an important future direction of research,
amely, optimal experimental design. The LUQ framework permits learning QoI from time series data, but the
uality of our results still rely on the sensitivity of the model outputs (time series data) on the model inputs

parameters). The sensitivity – or lack thereof – of the time series data on parameters will in general vary between

25

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230

e
t
o
c

D

h

A

R
E
s
1
S
F
T
w

A

(

S
s
fi
f
t

each parameter, as the parameters change (e.g., due to bifurcations), over different time windows (e.g., due to
preasymptotic versus asymptotic regimes in the time series), if time series are extracted from different parts of the
domain (e.g., in coastal circulation simulations such as Section 5.3), etc. Therefore, an interesting and important
direction for future research surrounds how we might “learn” an optimal experimental design for a given dynamical
system.

Additionally, in the numerical results presented in this work we have used only one time window (TW) per
xperiment, i.e., one TW for each solution of a stochastic inverse problem. In contrast, it would be interesting
o “continually learn” from a time series, for example, by using a sequence of disjoint TWs to solve a sequence
f stochastic inverse problems. We plan to pursue further research in this direction, e.g., establishing under what
onditions we might expect to “converge” in some sense to a “steady-state distribution” on the parameters.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

cknowledgments

Troy Butler is supported by the National Science Foundation, USA (DMS-1818847). Clint Dawson’s and Kyle
obert Steffen’s work is supported in part by the National Science Foundation, USA (DMS-1818941). Donald
step’s work is undertaken, in part, thanks to funding from the Canada Research Chairs Program, and is partially
upported by the National Science Foundation, USA under grants DMS-1821210, DMS-1818777, and DMS-
720473, by Riverside Research under contract RADIAEM.IDIQ.05 PO#00133, and by grants from the Natural
ciences and Engineering Research Council of Canada. Steven Mattis’s work is supported by the National Science
oundation, USA (DMS-1818777). The authors acknowledge the Texas Advanced Computing Center (TACC) at
he University of Texas at Austin for providing HPC resources that have contributed to the research results reported
ithin this paper.

ppendix. Obtaining software, data, and scripts

LUQ utilizes several publicly available Python packages that are commonly used for scientific computing
NumPy [35] and SciPy [36]) and machine learning (scikit-learn [37]). We suggest using a newer version of

Python 3 (Python 3.6 or newer). Version 1.1 of LUQ [18] was used in this work. This version and its required
dependencies can be installed using the Python Package Installer (pip) by

pip install git+https://github.com/CU-Denver-UQ/LUQ@v1.1

The most up-to-date version of LUQ can be installed by

pip install git+https://github.com/CU-Denver-UQ/LUQ

This repository also contains the scripts that reproduce the figures and table data for the numerical results
presented in Sections 2–4, 5.1, and 5.2. For the harmonic oscillator problem in Sections 2–4 (Figs. 1–5,
Table 1), see https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic oscillator.
py. For the Hopf bifurcation problem in Section 5.1 (Figs. 6–7, Table 2), see https://github.com/CU-Denver-UQ/L
UQ/blob/v1.1/examples/selkov/selkov.py. Lastly, for the shock problem in Section 5.2 (Figs. 8–11, Table 3), see h
ttps://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers shock.py.

Due to GitHub’s file size limitations, the data and scripts for the Shinnecock Inlet problem, presented in
ection 5.3, can be found online at Archive.org (https://archive.org/details/troy-butler-shinnecock-inlet-initial-data);
ee [79] for further information. Available at the above URL are three data files, one Python file, and several metadata
les; the latter are extraneous for the purposes of this discussion. All three data files are in the MATLAB “.mat” file
ormat, which is readily (and automatically) accessible in the provided Python script using a subroutine provided by
he aforementioned SciPy software package. The Python script, “Troy Butler - Shinnecock Inlet.py”, utilizes

the three data files, together with the LUQ package and its dependencies, to reproduce Figs. 12–14 and Tables 4–5.
26

https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/harmonic-oscillator/harmonic_oscillator.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/selkov/selkov.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://github.com/CU-Denver-UQ/LUQ/blob/v1.1/examples/shock/burgers_shock.py
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data
https://archive.org/details/troy-butler-shinnecock-inlet-initial-data

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230
References

[1] J.O. Berger, E. Moreno, L.R. Pericchi, M.J. Bayarri, J.M. Bernardo, J.A. Cano, J. De la Horra, J. Martín, D. Ríos-Insúa, B.
Betrò, A. Dasgupta, P. Gustafson, L. Wasserman, J.B. Kadane, C. Srinivasan, M. Lavine, A. O’Hagan, W. Polasek, C.P. Robert,
C. Goutis, F. Ruggeri, G. Salinetti, S. Sivaganesan, An overview of robust Bayesian analysis, Test 3 (1) (1994) 5–124, http:
//dx.doi.org/10.1007/BF02562676.

[2] C.K. Wikle, L.M. Berliner, N. Cressie, Hierarchical Bayesian space-time models, Environ. Ecol. Stat. 5 (2) (1998) 117–154,
http://dx.doi.org/10.1023/A:1009662704779.

[3] M.C. Kennedy, A. O’Hagan, Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (3) (2001) 425–464,
http://dx.doi.org/10.1111/1467-9868.00294.

[4] A.M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer. 19 (2010) 451–559, http://dx.doi.org/10.1017/S0962492910000061.
[5] K. Sargsyan, H.N. Najm, R. Ghanem, On the statistical calibration of physical models, Int. J. Chem. Kinet. 47 (4) (2015) 246–276,

http://dx.doi.org/10.1002/kin.20906.
[6] T. Hasselman, G. Lloyd, A top-down approach to calibration, validation, uncertainty quantification and predictive accuracy assessment,

Comput. Methods Appl. Mech. Engrg. 197 (29) (2008) 2596–2606, http://dx.doi.org/10.1016/j.cma.2007.07.031, Validation Challenge
Workshop. URL http://www.sciencedirect.com/science/article/pii/S0045782507005026.

[7] D. Wu, Z. Lu, Y. Wang, L. Cheng, Model validation and calibration based on component functions of model output, Reliab.
Eng. Syst. Saf. 140 (2015) 59–70, http://dx.doi.org/10.1016/j.ress.2015.03.024, URL http://www.sciencedirect.com/science/article/pii/
S0951832015000903.

[8] C.J. Roy, W.L. Oberkampf, A comprehensive framework for verification, validation, and uncertainty quantification in scientific
computing, Comput. Methods Appl. Mech. Engrg. 200 (25) (2011) 2131–2144, http://dx.doi.org/10.1016/j.cma.2011.03.016, URL
http://www.sciencedirect.com/science/article/pii/S0045782511001290.

[9] J. Breidt, T. Butler, D. Estep, A measure-theoretic computational method for inverse sensitivity problems I: Method and analysis, SIAM
J. Numer. Anal. 49 (5) (2011) 1836–1859, http://dx.doi.org/10.1137/100785946.

[10] T. Butler, D. Estep, J. Sandelin, A computational measure theoretic approach to inverse sensitivity problems II: A posteriori error
analysis, SIAM J. Numer. Anal. 50 (1) (2012) 22–45, http://dx.doi.org/10.1137/100785958.

[11] T. Butler, D. Estep, S. Tavener, C. Dawson, J. Westerink, A measure-theoretic computational method for inverse sensitivity problems
III: Multiple quantities of interest, SIAM/ASA J. Uncertain. Quant. 2 (1) (2014) 174–202, http://dx.doi.org/10.1137/130930406,
arXiv:http://dx.doi.org/10.1137/130930406.

[12] T. Butler, J. Jakeman, T. Wildey, Combining push-forward measures and Bayes’ rule to construct consistent solutions to stochastic
inverse problems, SIAM J. Sci. Comput. 40 (2) (2018) A984–A1011, http://dx.doi.org/10.1137/16M1087229, arXiv:https://doi.org/10.
1137/16M1087229.

[13] E. Haber, L. Horesh, L. Tenorio, Numerical methods for experimental design of large-scale linear ill-posed inverse problems,
Inverse Problems 24 (5) (2008) 055012, http://dx.doi.org/10.1088/0266-5611/24/5/055012, URL http://stacks.iop.org/0266-5611/24/i=
5/a=055012.

[14] E. Haber, L. Horesh, L. Tenorio, Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems,
Inverse Problems 26 (2) (2010) 025002, http://dx.doi.org/10.1088/0266-5611/26/2/025002, URL http://stacks.iop.org/0266-5611/26/i=2/
a=025002.

[15] A. Alexanderian, N. Petra, G. Stadler, O. Ghattas, A-optimal design of experiments for infinite-dimensional Bayesian linear inverse
problems with regularized ℓ0-sparsification, SIAM J. Sci. Comput. 36 (5) (2014) A2122–A2148, http://dx.doi.org/10.1137/130933381.

[16] S. Walsh, T. Wildey, J. Jakeman, Optimal experimental design using a consistent Bayesian approach, ASCE-ASME J. Risk Uncertain.
Eng. Syst. Part B: Mech. Eng. 4 (1) (2017) 1–19, http://dx.doi.org/10.1115/1.4037457.

[17] T. Butler, H. Hakula, What do we hear from a drum? A data-consistent approach to quantifying irreducible uncertainty on model
inputs by extracting information from correlated model output data, Comput. Methods Appl. Mech. Engrg. 370 (2020) 113228,
http://dx.doi.org/10.1016/j.cma.2020.113228, URL http://www.sciencedirect.com/science/article/pii/S0045782520304138.

[18] S. Mattis, T. Butler, CU-denver-UQ/LUQ: v1.0, 2020, http://dx.doi.org/10.5281/zenodo.3889065.
[19] M. Unser, J. Fageot, J.P. Ward, Splines are universal solutions of linear inverse problems with generalized TV regularization, SIAM

Rev. 59 (4) (2017) 769–793, http://dx.doi.org/10.1137/16M1061199, arXiv:https://doi.org/10.1137/16M1061199.
[20] D. Xu, Y. Tian, A comprehensive survey of clustering algorithms, Ann. Data Sci. 2 (2) (2015) 165–193, http://dx.doi.org/10.1007/s40745-

015-0040-1.
[21] D. Arthur, S. Vassilvitskii, K-means++: The advantages of careful seeding, in: Proceedings of the Eighteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, in: SODA ’07, Society for Industrial and Applied Mathematics, New Orleans, LA, USA, 2007,
pp. 1027–1035, URL https://dl.acm.org/doi/10.5555/1283383.1283494.

[22] S.B. Kotsiantis, Supervised machine learning: A review of classification techniques, in: Proceedings of the 2007 Conference on Emerging
Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in EHealth, HCI, Information
Retrieval and Pervasive Technologies, IOS Press, NLD, 2007, pp. 3–24, URL https://dl.acm.org/doi/10.5555/1566770.1566773.

[23] E. Alpaydin, Introduction to Machine Learning, third ed., MIT Press, 2014, ISBN-13: 978-0-262-028189, URL https://mitpress.mit.
edu/books/introduction-machine-learning-third-edition.

[24] J.-H. Kim, Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap, Comput. Statist. Data Anal.
53 (11) (2009) 3735–3745, http://dx.doi.org/10.1016/j.csda.2009.04.009.

[25] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, second ed., Springer

Science & Business Media, 2009, http://dx.doi.org/10.1007/978-0-387-84858-7.

27

http://dx.doi.org/10.1007/BF02562676
http://dx.doi.org/10.1007/BF02562676
http://dx.doi.org/10.1007/BF02562676
http://dx.doi.org/10.1023/A:1009662704779
http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1017/S0962492910000061
http://dx.doi.org/10.1002/kin.20906
http://dx.doi.org/10.1016/j.cma.2007.07.031
http://www.sciencedirect.com/science/article/pii/S0045782507005026
http://dx.doi.org/10.1016/j.ress.2015.03.024
http://www.sciencedirect.com/science/article/pii/S0951832015000903
http://www.sciencedirect.com/science/article/pii/S0951832015000903
http://www.sciencedirect.com/science/article/pii/S0951832015000903
http://dx.doi.org/10.1016/j.cma.2011.03.016
http://www.sciencedirect.com/science/article/pii/S0045782511001290
http://dx.doi.org/10.1137/100785946
http://dx.doi.org/10.1137/100785958
http://dx.doi.org/10.1137/130930406
http://dx.doi.org/10.1137/130930406
http://dx.doi.org/10.1137/16M1087229
https://doi.org/10.1137/16M1087229
https://doi.org/10.1137/16M1087229
https://doi.org/10.1137/16M1087229
http://dx.doi.org/10.1088/0266-5611/24/5/055012
http://stacks.iop.org/0266-5611/24/i=5/a=055012
http://stacks.iop.org/0266-5611/24/i=5/a=055012
http://stacks.iop.org/0266-5611/24/i=5/a=055012
http://dx.doi.org/10.1088/0266-5611/26/2/025002
http://stacks.iop.org/0266-5611/26/i=2/a=025002
http://stacks.iop.org/0266-5611/26/i=2/a=025002
http://stacks.iop.org/0266-5611/26/i=2/a=025002
http://dx.doi.org/10.1137/130933381
http://dx.doi.org/10.1115/1.4037457
http://dx.doi.org/10.1016/j.cma.2020.113228
http://www.sciencedirect.com/science/article/pii/S0045782520304138
http://dx.doi.org/10.5281/zenodo.3889065
http://dx.doi.org/10.1137/16M1061199
https://doi.org/10.1137/16M1061199
http://dx.doi.org/10.1007/s40745-015-0040-1
http://dx.doi.org/10.1007/s40745-015-0040-1
http://dx.doi.org/10.1007/s40745-015-0040-1
https://dl.acm.org/doi/10.5555/1283383.1283494
https://dl.acm.org/doi/10.5555/1566770.1566773
https://mitpress.mit.edu/books/introduction-machine-learning-third-edition
https://mitpress.mit.edu/books/introduction-machine-learning-third-edition
https://mitpress.mit.edu/books/introduction-machine-learning-third-edition
http://dx.doi.org/10.1016/j.csda.2009.04.009
http://dx.doi.org/10.1007/978-0-387-84858-7

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230
[26] B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, in: COLT ’92, Association for Computing Machinery, New York, NY, USA, 1992, pp. 144–152,
http://dx.doi.org/10.1145/130385.130401.

[27] B. Schölkopf, The kernel trick for distances, in: T.K. Leen, T.G. Dietterich, V. Tresp (Eds.), Advances in Neural Information Processing
Systems 13, MIT Press, 2001, pp. 301–307, URL http://papers.nips.cc/paper/1862-the-kernel-trick-for-distances.

[28] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273–297, http://dx.doi.org/10.1007/BF00994018.
[29] I. Guyon, S. Gunn, M. Nikravesh, L.A. Zadeh, Feature Extraction: Foundations and Applications, Vol. 207, Springer-Verlag Berlin

Heidelberg, 2006, p. 778, http://dx.doi.org/10.1007/978-3-540-35488-8.
[30] K. Pearson, LIII. On lines and planes of closest fit to systems of points in space, London, Edinburgh, Dublin Phil. Mag. J. Sci. 2

(11) (1901) 559–572, http://dx.doi.org/10.1080/14786440109462720.
[31] B. Schölkopf, A. Smola, K.-R. Müller, Kernel principal component analysis, in: W. Gerstner, A. Germond, M. Hasler, J.-D. Nicoud

(Eds.), Artificial Neural Networks — ICANN’97, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN: 978-3-540-69620-9, 1997, pp.
583–588, http://dx.doi.org/10.1007/BFb0020217.

[32] S. Mika, B. Schölkopf, A.J. Smola, K.-R. Müller, M. Scholz, G. Rätsch, Kernel PCA and de-noising in feature spaces, in: M.J.
Kearns, S.A. Solla, D.A. Cohn (Eds.), Advances in Neural Information Processing Systems 11, MIT Press, 1999, pp. 536–542, URL
https://papers.nips.cc/paper/1491-kernel-pca-and-de-noising-in-feature-spaces.

[33] H. Abdi, L.J. Williams, Principal component analysis, Wiley Interdiscip. Rev. Comput. Stat. 2 (4) (2010) 433–459, http://dx.doi.org/10.
1002/wics.101, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.101, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.
101.

[34] J. Zhang, M. Marszałek, S. Lazebnik, C. Schmid, Local features and kernels for classification of texture and object categories: A
comprehensive study, Int. J. Comput. Vis. 73 (2) (2007) 213–238, http://dx.doi.org/10.1007/s11263-006-9794-4.

[35] T.E. Oliphant, A Guide to NumPy, Vol. 1, Trelgol Publishing USA, 2006, URL https://web.mit.edu/dvp/Public/numpybook.pdf.
[36] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,

S.J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, I.
Polat, Y. Feng, E.W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M.
Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, S... Contributors, SciPy 1.0: Fundamental algorithms for scientific computing
in python, Nature Methods (2020) http://dx.doi.org/10.1038/s41592-019-0686-2.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in python, J. Mach. Learn.
Res. 12 (2011) 2825–2830, URL http://www.jmlr.org/papers/v12/pedregosa11a.html.

[38] M.A. Branch, T.F. Coleman, Y. Li, A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization
problems, SIAM J. Sci. Comput. 21 (1) (1999) 1–23, http://dx.doi.org/10.1137/S1064827595289108.

[39] G.J. McLachlan, K.E. Basford, Mixture Models: Inference and Applications to Clustering, in: Statistics: Textbooks and Monographs,
vol. 84, M. Dekker, New York, NY, USA; Basel, Switzerland, 1988, p. xii + 254, ISBN-13: 978-0-8247-7691-6.

[40] A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: T.G. Dietterich, S. Becker, Z. Ghahramani
(Eds.), Advances in Neural Information Processing Systems 14, MIT Press, 2002, pp. 849–856, URL https://papers.nips.cc/paper/2092-
on-spectral-clustering-analysis-and-an-algorithm.

[41] U. von Luxburg, A tutorial on spectral clustering, Stat. Comput. 17 (4) (2007) 395–416, http://dx.doi.org/10.1007/s11222-007-9033-z.
[42] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based algorithm for discovering clusters in large spatial databases with

noise, in: Kdd, Vol. 96, (34) 1996, pp. 226–231, URL https://dl.acm.org/doi/10.5555/3001460.3001507.
[43] E. Schubert, J. Sander, M. Ester, H.P. Kriegel, X. Xu, DBSCAN revisited, revisited: why and how you should (still) use DBSCAN,

ACM Trans. Database Syst. 42 (3) (2017) 1–21, http://dx.doi.org/10.1145/3068335.
[44] C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (3) (2011) http:

//dx.doi.org/10.1145/1961189.1961199.
[45] G.R. Terrell, D.W. Scott, Variable kernel density estimation, Ann. Statist. 20 (3) (1992) 1236–1265, http://dx.doi.org/10.1214/aos/

1176348768, URL http://www.jstor.org/stable/2242011.
[46] L. Devroye, L. Györfi, Nonparametric Density Estimation: The L1 View, in: Wiley Series in Probability and Mathematical Statistics,

978-0-471-81646-1, Wiley, New York, 1985, ISBN-13.
[47] L. Perko, Differential Equations and Dynamical Systems, in: Texts in Applied Mathematics, vol. 7, Springer, New York, 1991, p. xii

+ 403, http://dx.doi.org/10.1007/978-1-4613-0003-8.
[48] H.G. Othmer, J.A. Aldridge, The effects of cell density and metabolite flux on cellular dynamics, J. Math. Biol. 5 (1977) 169–200,

http://dx.doi.org/10.1007/BF00275897.
[49] J. Tyson, S. Kauffman, Control of mitosis by a continuous biochemical oscillation: Synchronization; spatially inhomogeneous

oscillations, J. Math. Biol. 1 (1975) 289–310, http://dx.doi.org/10.1007/BF00279848.
[50] E.E. Sel’kov, Self-oscillations in glycolysis: 1. A simple kinetic model, Eur. J. Biochem. 4 (1) (1968) 79–86, http://dx.doi.org/10.1111/

j.1432-1033.1968.tb00175.x.
[51] S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, second ed., Westview

Press, 2014, http://dx.doi.org/10.1201/9780429492563.
[52] R. Muñoz-Alicea, Introduction to bifurcations and the Hopf bifurcation theorem for planar systems, Dyn. Horsetooth 3B (2011) URL

https://www.math.colostate.edu/~shipman/Journals.html.
[53] J. Dormand, P. Prince, A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math. 6 (1) (1980) 19–26, http://dx.doi.org/
10.1016/0771-050X(80)90013-3, URL http://www.sciencedirect.com/science/article/pii/0771050X80900133.

28

http://dx.doi.org/10.1145/130385.130401
http://papers.nips.cc/paper/1862-the-kernel-trick-for-distances
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/978-3-540-35488-8
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1007/BFb0020217
https://papers.nips.cc/paper/1491-kernel-pca-and-de-noising-in-feature-spaces
http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.1002/wics.101
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
http://dx.doi.org/10.1007/s11263-006-9794-4
https://web.mit.edu/dvp/Public/numpybook.pdf
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.jmlr.org/papers/v12/pedregosa11a.html
http://dx.doi.org/10.1137/S1064827595289108
http://refhub.elsevier.com/S0045-7825(21)00558-2/sb39
http://refhub.elsevier.com/S0045-7825(21)00558-2/sb39
http://refhub.elsevier.com/S0045-7825(21)00558-2/sb39
https://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm
https://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm
https://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm
http://dx.doi.org/10.1007/s11222-007-9033-z
https://dl.acm.org/doi/10.5555/3001460.3001507
http://dx.doi.org/10.1145/3068335
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1214/aos/1176348768
http://dx.doi.org/10.1214/aos/1176348768
http://dx.doi.org/10.1214/aos/1176348768
http://www.jstor.org/stable/2242011
http://refhub.elsevier.com/S0045-7825(21)00558-2/sb46
http://refhub.elsevier.com/S0045-7825(21)00558-2/sb46
http://refhub.elsevier.com/S0045-7825(21)00558-2/sb46
http://dx.doi.org/10.1007/978-1-4613-0003-8
http://dx.doi.org/10.1007/BF00275897
http://dx.doi.org/10.1007/BF00279848
http://dx.doi.org/10.1111/j.1432-1033.1968.tb00175.x
http://dx.doi.org/10.1111/j.1432-1033.1968.tb00175.x
http://dx.doi.org/10.1111/j.1432-1033.1968.tb00175.x
http://dx.doi.org/10.1201/9780429492563
https://www.math.colostate.edu/~shipman/Journals.html
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://www.sciencedirect.com/science/article/pii/0771050X80900133

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230
[54] R.J. LeVeque, Wave propagation algorithms for multidimensional hyperbolic systems, J. Comput. Phys. 131 (2) (1997) 327–353,
http://dx.doi.org/10.1006/jcph.1996.5603.

[55] D.I. Ketcheson, K. Mandli, A.J. Ahmadia, A. Alghamdi, M.Q. de Luna, M. Parsani, M.G. Knepley, M. Emmett, PyClaw: Accessible,
extensible, scalable tools for wave propagation problems, SIAM J. Sci. Comput. 34 (4) (2012) C210–C231, http://dx.doi.org/10.1137/
110856976.

[56] A.J.C.B. de Saint-Venant, Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l’introduction
des marées dans leurs lits [Theory of the nonpermanent movement of waters, with application to the floods of rivers and to the
introduction of the tides within their beds], Compt. R. L’Acad. Sci. 73 (1871) 147–154, 237–240.

[57] J.J. Stoker, Water Waves, the Mathematical Theory with Applications, reprinted 1992, in: Wiley Classics Library, John Wiley & Sons,
New York, NY, USA, 1957, http://dx.doi.org/10.1002/9781118033159, ISBN-13: 978-0-471-57034-9.

[58] C. Vreugdenhil, Numerical Methods for Shallow-Water Flow, Vol. 13, first ed., Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1994, http://dx.doi.org/10.1007/978-94-015-8354-1.

[59] R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, in: Cambridge Texts in Applied Mathematics, Cambridge University
Press, Cambridge, UK, 2002, p. xix + 558, http://dx.doi.org/10.1017/CBO9780511791253, ISBN-13: 978-0-521-00924-9, URL https:
//lccn.loc.gov/2001052642.

[60] R. Luettich Jr., J. Westerink, Users’ manual - v53 - ADCIRC, 2018, v53, URL https://adcirc.org/home/documentation/users-manual-v53/.
[61] R.A. Luettich, J.J. Westerink, N.W. Scheffner, ADCIRC: An advanced three-dimensional circulation model for shelves, coasts and

estuaries, Report 1: Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL, Tech. Rep. DRP-92-6, U.S. Army Engineers
Waterways Experiment Station, Vicksburg, MS, 1992, URL https://adcirc.org/files/2018/11/1992_Luettich02.pdf.

[62] J.J. Westerink, R.A. Luettich, A.M. Baptists, N.W. Scheffner, P. Farrar, Tide and storm surge predictions using finite element model,
J. Hydraul. Eng. 118 (10) (1992) 1373–1390, http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:10(1373).

[63] D.R. Lynch, W.G. Gray, A wave equation model for finite element tidal computations, Comput. & Fluids 7 (3) (1979) 207–228,
http://dx.doi.org/10.1016/0045-7930(79)90037-9.

[64] S. Bunya, J.C. Dietrich, J.J. Westerink, B.A. Ebersole, J.M. Smith, J.H. Atkinson, R. Jensen, D.T. Resio, R.A. Luettich, C. Dawson,
V.J. Cardone, A.T. Cox, M.D. Powell, H.J. Westerink, H.J. Roberts, A high-resolution coupled riverine flow, tide, wind, wind wave,
and storm surge model for southern Louisiana and Mississippi. part I: Model development and validation, Mon. Weather Rev. 138 (2)
(2010) 345–377, http://dx.doi.org/10.1175/2009MWR2906.1.

[65] J.C. Dietrich, S. Bunya, J.J. Westerink, B.A. Ebersole, J.M. Smith, J.H. Atkinson, R. Jensen, D.T. Resio, R.A. Luettich, C. Dawson,
V.J. Cardone, A.T. Cox, M.D. Powell, H.J. Westerink, H.J. Roberts, A high-resolution coupled riverine flow, tide, wind, wind wave,
and storm surge model for Southern Louisiana and Mississippi. part II: Synoptic description and analysis of Hurricanes Katrina and
Rita, Mon. Weather Rev. 138 (2) (2010) 378–404, http://dx.doi.org/10.1175/2009MWR2907.1.

[66] J.C. Dietrich, J.J. Westerink, A.B. Kennedy, J.M. Smith, R.E. Jensen, M. Zijlema, L.H. Holthuijsen, C. Dawson, R.A. Luettich, M.D.
Powell, V.J. Cardone, A.T. Cox, G.W. Stone, H. Pourtaheri, M.E. Hope, S. Tanaka, L.G. Westerink, H.J. Westerink, Z. Cobell, Hurricane
Gustav (2008) waves and storm surge: Hindcast, synoptic analysis, and validation in southern Louisiana, Mon. Weather Rev. 139 (8)
(2011) 2488–2522, http://dx.doi.org/10.1175/2011MWR3611.1.

[67] J.C. Dietrich, C.N. Dawson, J.M. Proft, M.T. Howard, G. Wells, J.G. Fleming, R.A. Luettich, J.J. Westerink, Z. Cobell, M. Vitse, H.
Lander, B.O. Blanton, C.M. Szpilka, J.H. Atkinson, Real-time forecasting and visualization of hurricane waves and storm surge using
SWAN+ADCIRC and FigureGen, in: C. Dawson, M. Gerritsen (Eds.), Computational Challenges in the Geosciences, Springer New
York, New York, NY, ISBN: 978-1-4614-7434-0, 2013, pp. 49–70, http://dx.doi.org/10.1007/978-1-4614-7434-0_3.

[68] T. Butler, L. Graham, D. Estep, C. Dawson, J. Westerink, Definition and solution of a stochastic inverse problem for the manning’s
n parameter field in hydrodynamic models, Adv. Water Resour. 78 (2015) 60–79, http://dx.doi.org/10.1016/j.advwatres.2015.01.011.

[69] L.C. Graham, Adaptive Measure Theoretic Parameter Estimation for Coastal Ocean Modeling (Ph.D. thesis), University of Texas at
Austin, Austin, TX, USA, 2015, http://dx.doi.org/10.15781/T2S621.

[70] L. Graham, T. Butler, S. Walsh, C. Dawson, J.J. Westerink, A measure-theoretic algorithm for estimating bottom friction in
a coastal inlet: Case study of Bay St. Louis during Hurricane Gustav (2008), Mon. Weather Rev. 145 (3) (2017) 929–954,
http://dx.doi.org/10.1175/MWR-D-16-0149.1.

[71] S. Tanaka, S. Bunya, J.J. Westerink, C.N. Dawson, R.A. Luettich, Scalability of an unstructured grid continuous Galerkin based
hurricane storm surge model, J. Sci. Comput. 46 (2011) 329–358, http://dx.doi.org/10.1007/s10915-010-9402-1.

[72] J.C. Dietrich, S. Tanaka, J.J. Westerink, C.N. Dawson, R.A. Luettich, M. Zijlema, L.H. Holthuijsen, J.M. Smith, L.G. Westerink, H.J.
Westerink, Performance of the unstructured-mesh, SWAN+ADCIRC model in computing hurricane waves and surge, J. Sci. Comput.
52 (2012) 468–497, http://dx.doi.org/10.1007/s10915-011-9555-6.

[73] J.R. Garratt, Review of drag coefficients over oceans and continents, Mon. Weather Rev. 105 (7) (1977) 915–929, http://dx.doi.org/10.
1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2.

[74] C.W. Letchford, B.C. Zachry, On wind, waves, and surface drag, in: C. Borri (Ed.), 5th European and African Conference on
Wind Engineering, International Association for Wind Engineering (IAWE), Firenze University Press, Florence, Italy, 2009, URL
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.174&rep=rep1&type=pdf.

[75] Shinnecock inlet, NY with tidal forcing example - ADCIRC, 2018, Accessed: 2020-03-18, https://adcirc.org/home/documentation/
example-problems/shinnecock-inlet-ny-with-tidal-forcing-example/.

[76] G.D. Egbert, S.Y. Erofeeva, Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Technol. 19 (2) (2002) 183–204,
http://dx.doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

[77] K.J. Roberts, W.J. Pringle, J.J. Westerink, OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh

generation in coastal ocean modeling, Geosci. Model Dev. 12 (5) (2019) 1847–1868, http://dx.doi.org/10.5194/gmd-12-1847-2019.

29

http://dx.doi.org/10.1006/jcph.1996.5603
http://dx.doi.org/10.1137/110856976
http://dx.doi.org/10.1137/110856976
http://dx.doi.org/10.1137/110856976
http://refhub.elsevier.com/S0045-7825(21)00558-2/sb56
http://refhub.elsevier.com/S0045-7825(21)00558-2/sb56
http://refhub.elsevier.com/S0045-7825(21)00558-2/sb56
http://refhub.elsevier.com/S0045-7825(21)00558-2/sb56
http://refhub.elsevier.com/S0045-7825(21)00558-2/sb56
http://dx.doi.org/10.1002/9781118033159
http://dx.doi.org/10.1007/978-94-015-8354-1
http://dx.doi.org/10.1017/CBO9780511791253
https://lccn.loc.gov/2001052642
https://lccn.loc.gov/2001052642
https://lccn.loc.gov/2001052642
https://adcirc.org/home/documentation/users-manual-v53/
https://adcirc.org/files/2018/11/1992_Luettich02.pdf
http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:10(1373)
http://dx.doi.org/10.1016/0045-7930(79)90037-9
http://dx.doi.org/10.1175/2009MWR2906.1
http://dx.doi.org/10.1175/2009MWR2907.1
http://dx.doi.org/10.1175/2011MWR3611.1
http://dx.doi.org/10.1007/978-1-4614-7434-0_3
http://dx.doi.org/10.1016/j.advwatres.2015.01.011
http://dx.doi.org/10.15781/T2S621
http://dx.doi.org/10.1175/MWR-D-16-0149.1
http://dx.doi.org/10.1007/s10915-010-9402-1
http://dx.doi.org/10.1007/s10915-011-9555-6
http://dx.doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.174&rep=rep1&type=pdf
https://adcirc.org/home/documentation/example-problems/shinnecock-inlet-ny-with-tidal-forcing-example/
https://adcirc.org/home/documentation/example-problems/shinnecock-inlet-ny-with-tidal-forcing-example/
https://adcirc.org/home/documentation/example-problems/shinnecock-inlet-ny-with-tidal-forcing-example/
http://dx.doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
http://dx.doi.org/10.5194/gmd-12-1847-2019

S.A. Mattis, K.R. Steffen, T. Butler et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230
[78] S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y.-T. Hou, H.-y. Chuang, M. Iredell, M. Ek, J. Meng, R.
Yang, M.P. Mendez, H. van den Dool, Q. Zhang, W. Wang, M. Chen, E. Becker, The NCEP climate forecast system version 2, J.
Clim. 27 (6) (2014) 2185–2208, http://dx.doi.org/10.1175/JCLI-D-12-00823.1.

[79] T. Butler, S. Mattis, K. Steffen, Scripts and data for estimating distributions of wind drag coefficients in the Shinnecock Inlet, 2020,
http://dx.doi.org/10.25261/IR00000196.
30

http://dx.doi.org/10.1175/JCLI-D-12-00823.1
http://dx.doi.org/10.25261/IR00000196

	Learning Quantities of Interest from dynamical systems for observation-consistent inversion
	Introduction
	Learning Uncertain Quantities (LUQ): Conceptual framework
	Filtering data (approximating dynamics)
	Clustering and classifying data (learning and classifying dynamics)
	Feature extraction (learning quantities of interest)

	Learning Uncertain Quantities: Implementation
	Filtering data
	Clustering and classifying data
	Feature extraction

	Applying learned knowledge for observation-consistent inversion
	Observation-consistent inversion
	The harmonic oscillator
	Impact of different observation times

	Numerical examples
	A Hopf bifurcation
	A shock
	Wind drag

	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix. Obtaining software, data, and scripts
	References

