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An ordered r-graph is an r-uniform hypergraph whose vertex set is 
linearly ordered. Given 2 

≤k≤r, an ordered r-graph H 
is interval k-partite if there exist at least k disjoint intervals in the 
ordering such that every edge of H has nonempty intersection with 
each of the intervals and is contained in their  
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union. 
Our main result implies that if α > k − 1, then for each d > 0 every n-
vertex ordered r-graph with d nα edges has for some m

 
≤ n an m-

vertex interval k-partite subgraph with Ω(d mα) edges. This is an 
extension to ordered r-graphs of the observation by Erdős and 
Kleitman that every r-graph contains an r-partite subgraph with a 
constant proportion of  
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1. Introduction 

We let [n] = {1, ..., n} and use standard asymptotic notation; in particular, given functions f, 

g : Z+ → R+, we write f(n) = Ω(g(n)) if there exists c > 0 such that f(n) ≥ cg(n) for all n ≥ 1. We 

also write f(n) = O(g(n)) if g(n) = Ω(f(n)), and write f(n) = Θ(g(n)) if both, f(n) = Ω(g(n)) and 

f(n) = O(g(n)). We associate a hypergraph H with its edge set and write e(H) for the number of 

the edges and v(H) for the number of the vertices in H. 

An r-graph is a hypergraph with all edges of size r; it is r-partite if there is a partition of the 
vertex set into r parts such that every edge has exactly one vertex in each part. The following 
observation is due to Erdős and Kleitman: 

Proposition A. (Erdős-Kleitman [6]) Every r-graph contains an r-partite subgraph with at least 
r!/rr proportion of its edges. 

In particular, any extremal problem for r-graphs can be reduced to the corresponding 
extremal problem where the underlying r-graph is r-partite with the loss of only a constant 
multiplicative factor. In this paper, we consider analogs of this result in the ordered hypergraph 
setting and illustrate their use on some ordered extremal hypergraph problems. 

An ordered hypergraph is a hypergraph together with a linear ordering of its vertex set. 
Extremal problems on ordered hypergraphs arose from several sources, in particular, from 
combinatorial geometry, enumeration of permutations with forbidden subpermutations, and the 
study of matrices with forbidden submatrices – see for instance Anstee [1,2], Füredi and Hajnal 
[11], Pach and Tardos [19], Marcus and Tardos [16], Tardos [22], Fox [8]. 

Let V be a linearly ordered set. An interval in V is a set of consecutive elements in the 
ordering. For A, B ⊂ V , we write A < B to mean that a < b for every a ∈ A, b ∈ B.  

A key definition in our work is the following: 

Definition 1. Let k be a positive integer. An ordered r-graph H is interval k-partite if for some  

≥ k there are intervals I1 < I2 < ··· < I such that every edge of H is contained in I1 ∪ ... ∪ I and has 
nonempty intersection with Ij for each . 
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We allow  in the definition be larger than k because the more parts we have, the more 

structure on H is imposed. In particular, an ordered r-graph H is interval rpartite if there exist 
intervals I1 < I2 < ··· < Ir in V (G) such that every edge of H contains exactly one vertex from each 
Ii. In these terms, the Erdős–Kleitman observation, Proposition A, does not hold for ordered 
graphs as witnessed by the following simple example: every interval bipartite subgraph of the 
ordered graph with vertex set [2n] and edge set {{2i − 1, 2i} : 1 ≤ i ≤ n} has at most one edge. 
However, Pach and Tardos [19] showed that dense ordered graphs contain relatively dense 
interval bipartite graphs using the following result: 

Theorem B. (Pach and Tardos [19]) Each ordered n-vertex graph G is the union of edgedisjoint 

subgraphs Gi for  n such that each Gi is a union of at most 2i interval bipartite 
graphs with parts of size at most  n/2i. 

Our first main result is the following ordered hypergraph analog of Theorem B: 

Theorem 1.1. Let 2 ≤ k ≤ r ≤ n be integers. Then every ordered n-vertex r-graph H is the union 

of edge-disjoint ordered r-graphs Hi for  n such that each Hi is a union of 

at most ( k−11)! rj=k 
2k

j
−2 · 2i(k−1) interval k-partite r-graphs with parts of size at most  n/2i. 

For k = r = 2, Theorem 1.1 corresponds to Theorem B. Note that Theorem B easily implies 
the following, which appears implicitly in Pach and Tardos [19]: 

Theorem C. For each real α ≥ 1, d > 0 and n > 1, if G is an ordered n-vertex graph with e(G) = 

dnα, then for some m ∈ [n], G contains an interval bipartite subgraph G with parts of size at 

most m and 

dmα 
Ω  if α = 1 

 e(G) = ⎪⎨ log2 n  (1) 

 ⎪⎪⎩ Ω(dmα) if α > 1 

As observed by Pach and Tardos [19], the logarithmic factor in (1) for α = 1 is necessary: 
for the ordered path P with edges {vi, vi+1} : 1 ≤ i ≤ 4 such that v2 < v4 < v3 < v1 < v5, extremal n-

vertex ordered P-free graphs have n logn +O(n) edges, whereas an extremal n-vertex interval 

⎪ 
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bipartite P-free graph has Θ(n) edges (see Füredi [10], Bienstock and Györi [3], and Tardos 
[21]). 

Our second main result is the following generalization of Theorem C to ordered rgraphs: 

Theorem 1.2. Let 2 ≤ k ≤ r be fixed integers and let α be a real number with k−1 ≤ α ≤ 

r. Then for every integer n ≥ r, every ordered r-graph H with n vertices and dnα edges has an 

interval k-partite subgraph H with parts of size at most m for some m ∈ [n] and dmα 

Ω  if α = k 1 

 e(H) = ⎨⎪ log2 n  − (2) 

 ⎪⎪⎩ Ω(dmα) if α > k − 1 

The case k = r = 2 is Theorem C. 

Remarks. 

• Theorem 1.2 is sharp in that for 2 ≤ k < r and α = k−1, there exist n-vertex r-graphs H with 

e(H) = dnα where every interval k-partite subgraph H with parts of size  

m has e ), and for α < k − 1, there exist n-vertex r-graphs H with e(H) 

= dnα where every interval k-partite subgraph H has e(H) = O(dnα−a) where a = min{1, k − 1 

− α} > 0. We will prove this in Section 2 (see Constructions 1 and 2). 

• For α > k−1, Theorem 1.2 guarantees that each n-vertex ordered r-graph with Θ(nα) edges 

has an interval k-partite subgraph with parts of size m and Θ(mα) edges for some m ∈ [n]. 

In sharp contrast with the Erdős–Kleitman Lemma, Proposition A, the value of m may 

necessarily be small relative to the number of vertices in the host r-graph: we give a 

construction in Section 2 (see Construction 3) where we need m = O(n1−1/α) for α > k − 1. 

• We do not optimize the constant c = c(α, k, r) in the bound e  cdmα for α > k − 1 in 
Theorem 1.2. The proof of Theorem 1.2 gives 

≥ (k − 1)!(1 − 2k−1−α) 

c(α,k,r). (3)    

⎪ 
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In particular, c(r, r, r) ≥ (r − 1)!4−r, whereas for every r-partite subgraph H of the n-vertex 

complete r-graph Kn
r with parts of size m, e  mr, and so c(r, r, r) ≤ r!. 

• For each (unordered) partition π of r, one can extend Theorem 1.2 to the setting of interval 

π-partite subgraphs – here π specifies the number of vertices of an edge in each part – by 

replacing the range of α to α ≥ f(π) where f(π) is the maximum length of a partition that is 

not a refinement of π. For example, if π = 1 +1 +···+1, then f(π) = r − 1, if π = 2 + 1 + ··· + 

1, then f(π) = r − 2 and if π = (r − 1) + 1, then f(π) = r/2 . This has other interesting 

consequences which we will explore in forthcoming work. 

1.1. Applications of Theorem 1.2 

We next describe how to apply Theorem 1.2 to a variety of ordered extremal problems and 
convex geometric extremal problems for families of r-graphs. This enables us to transfer 
classical extremal problems to the ordered setting via Theorem 1.2. The following definition is 
needed: 

Definition 2. For an r-partite r-graph F, ord(F) denotes the family of interval r-partite r-graphs 
isomorphic to F. For a family F of r-partite r-graphs, ord(F) = F∈F ord(F). 

A first and natural example is the case that F consists of the r-graph of two disjoint edges. 

The Erdős-Ko-Rado Theorem [7] states that for n ≥ 2r + 1, the unique extremal n-vertex r-graph 

without two disjoint edges consists of all r-element subsets of [n] containing vertex 1, with nr−
−11 

edges. In [12], the following ordered version of the Erdős-Ko-Rado Theorem is proved: 

Theorem 1.3. ([12]) Let r ≥ 3 and n ≥ 2r+1. Then the maximum number of edges in an ordered 

n-vertex r-graph that does not contain two edges of the form {v1, v2, ..., vr} and {w1, w2, ..., 

wr} such that v1 < w1 < v2 < w2 < ··· < vr < wr is exactly n
r 
− n−

r 
r. 

For an ordered r-graph F, let ex→(n, F) denote the maximum number of edges in an n-vertex 

ordered r-graph that does not contain F. For a family F of ordered r-graphs, let ex→(n, F) denote 

the maximum number of edges in an n-vertex ordered r-graph that contains no members of F. 

In this language Theorem 1.3 implies that for n ≥ 2r + 1, 
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ex→(n,ord(F)) ≤r  , nr 

where F is the r-graph comprising two disjoint edges (in fact, it applies to a 
particular member of ord(F)). Results for hypergraph matchings (i.e., for sets of disjoint edges) 
by  

Klazarr−1 and), thereby Marcus [ extending15] show the that celebrated for each  Marcus-Tardos 
[interval r-partite16 matching] theorem M for,  exmatchings→(n, M)  in=  
O(n 
ordered graphs to ordered r-graphs. We now give some further examples where classical 
extremal problems are transferred to the ordered setting via Theorem 1.2. 

1.1.1. Simplices 
A d-dimensional r-simplex is an r-graph of d + 1 edges such that any d of the edges have 

non-empty intersection, but all d + 1 edges have empty intersection. Denote by Sdr the family 

of d-dimensional r-simplices. The set Sdr is non-empty if r ≥ d. The study of these abstract 

simplices in the context of extremal hypergraph theory was first initiated by Chvátal who posed 

the following conjecture. 

Conjecture 1. (Chvátal [4]) Let r ≥ d + 1 ≥ 3 and n ≥ r(d + 1)/d. Then ex(n, Sdr) = n−11 . r−  

Frankl and Füredi [9] proved Conjecture 1 for large n (Keller and Lifschitz [14] improved 
the bounds on n) and Mubayi and Verstraëte [17] proved it for d = 2, which was a problem of 
Erdős. Very recently, Currier [5] proved the conjecture for n ≥ 2r. We prove the following 
theorem. 

Theorem 1.4. For all fixed r ≥ d + 1 ≥ 3, 

ex→(n,ord(Sdr)) = Θ(nr−1). 

1.1.2. Expansions 
Our next example is more general. If F is a family of (r−1)-graphs, let F+ denote the family 

of r-graphs F+ obtained from each F ∈ F by adding a vertex ve to edge e ∈ F such that all the 

vertices ve : e ∈ F are distinct from each other and from the vertices of F. A study of extremal 

problems for families F+ is given in [18], where F+ is referred to as an expansion of F. Such 

families lend themselves naturally to an application of Theorem 1.2: 

Theoremr− 1.5. Let r ≥ 3 and F be a family of (r − 1)-graphs with ex→(n, ord(F)) = O(n 2). Then 
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ex→(n,ord(F+)) = O(nr−1). 

The proof of Theorem 1.5 implies that 

ex→(n,ord(Tr)) = O(nr−1), 

where Tr = {e, f, g} is the loose r-uniform triangle, i.e., |e ∩ f| = |f ∩ g| = |g ∩ e| = 1 and e ∩ 
f ∩ g = ∅: 

Theorem 1.6. For r ≥ 3, 

ex→(n,ord(Tr)) = Θ(nr−1). 

1.1.3. Hypergraph forests 
Our next application concerns hypergraph forests. The shadow ∂H of an r-graph H is the 

collection of (r−1)-sets contained in some edge of H. We follow Frankl and Füredi [9] for an 

inductive definition of trees in hypergraphs: a single edge is a tree, and given any tree T with 

edges e1, e2, ..., eh, a tree with h + 1 edges is obtained by selecting f ∈ ∂T and a vertex x not in 

T, and adding the edge f ∪ {x}. A forest is a subgraph of a tree. By definition, each 2-uniform 

tree (respectively, 2-uniform forest) is a tree (respectively, forest) in the usual sense. Using 

Theorem 1.2, we prove the following: 

Theorem 1.7. Fix r ≥ 2 and let F be an r-uniform forest. Then ex→(n, ord(F)) = O(nr−1). 
Remarks. 

• A conjecture of Pach and Tardos [19] would imply ex→(n, T) = n1+o(1) for every 2-interval-

partite tree T with at least two edges. Theorems 1.5 and 1.7 suggest that perhaps for every 

interval r-partite r-uniform tree T, ex→(n, T) ≤ nr−1+o(1). 

• It remains an intriguing open problem to determine for which r-graph families F 

 ex(n,F) = O(nr−1) =⇒ ex→(n,ord(F)) = O(nr−1). (4) 

According to Theorem 1.7, this is true for r = 2. Since for every r-uniform forest F, ex(n, 

F) = O(nr−1), Theorem 1.7 yields that the above implication is also true if F contains an r-

uniform forest. We do not know any explicit example for r ≥ 3 for which (4) fails, although 
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we believe that many such examples exist. As pointed out by a referee, Theorem 1.2 implies 
that for each α > r−1 and all r-graph families F, 

 ex(n,F) = O(nα) =⇒ ex→(n,ord(F)) = O(nα). (5) 

• In [13], we heavily used the k = r−1 case of Theorem 1.2 to prove that the extremal function 

of so called crossing paths in convex geometric hypergraphs has order nr−1 or nr−1 logn. 

1.1.4. Ordered Ruzsa-Szemerédi Theorem 
We consider the ordered version of the famous Ruzsa-Szemerédi (6, 3)-Theorem [20] which 

states that the maximum number of edges in an n-vertex 3-graph with no 6 vertices spanning 3 

edges is o(n2). This is equivalent to the statement ex(n, FRS) = o(n2) where FRS 
= {I2, T3} and I2 is 

the 3-graph comprising two edges sharing exactly two points. 

Theorem 1.8. Let FRS = {I2, T3}. Then ex→(n, ord(FRS)) = o(n2). 

1.1.5. Forbidden ordered intersections 
Our final example addresses an r-graph problem whose answer has order of magnitude nα 

where α = r−1. Let Ir() denote the r-graph consisting of two edges sharing exactly  vertices. The 

study of ex(n, Ir()) was initiated by Erdős. Frankl and Füredi [9] proved that 

 ex(n,Ir()) = Θ(nmax{,r−−1}) for 0 . (6) 

We are able to prove an ordered version of this result using Theorem 1.2: 

Theorem 1.9. For r ≥ 2 and , and α = max{, r −  ( + 1)/2} 

 Ω(nα) = ex→(n,ord(Ir())) =  OO((nnαα)logn) ifif  is evenis odd . 

Note that the  = 0 case is covered by Theorem 1.3 which gives ex→(n, ord(Ir(0))) = Θ(nr−1). 

A construction of a dense ord(Ir())-free ordered r-graph is given in Construction 4. We believe 

the logn factor when  is even can be removed, so that ex→(n, ord(Ir())) = Θ(nα). 

We present four constructions in Section 2 and prove Theorem 1.2 in Section 3. Theorems 
1.4–1.9 are proved in Section 4. 

2. Constructions 

Our first construction requires the following lemma. 
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Lemma 2.1. Let Hn1,n2 be the ordered bipartite graph with vertex set [n1 +n2] and parts A = [n1] 

and B = {n1 + 1, ..., n1 + n2} such that for i < j, the pair ij is an edge in H(n1, n2) iff 1 ≤ i ≤ n1 < j 

≤ n1 + n2 and j − i is a power of 2. Then for each A ⊆ A and B ⊆ B, the number of edges in Hn

 is at most |A |. 

Proof. Suppose for some A ⊆ A and B ⊆ B, graph H := ] has more than  

|A| + |B| edges. Let us assume A = {a1, a2, ..., al} and B = {b1, b2, ..., bm} where 

a1 < a2 < ··· < al < b1 < b2 < ··· < bm. 

For each vertex a ∈ A, remove from H the edge {a, bi} where i is the minimum index for which 

such an edge exists. After that, for each vertex b ∈ B, remove from H the edge {aj, b} where j is 

the maximum index for which such an edge exists. Since H has more than |A| + |B| edges, and 

we removed at most |A| + |B| edges, the remaining graph H has an edge {a, b} with a ∈ A, b 

. Now there exist vertices a and b such that {a, b} and {a, b} are edges and a 

. However, it is not possible for b − a, b − a and b − a all to be powers of 2.  

In all our constructions, the extra parameter d does not need to be a constant, it may depend 
on other parameters. Our first construction shows that the logarithmic factor in the first bound 
in Theorem 1.2 is necessary. 

Construction 1. An n-vertex ordered r-graph Hr(n) with dnk−1 edges such that for every  
m ≤ n 

dmk−1 

logn   

e(H) = O(7) 

for every interval k-partite H ⊂ Hr(n) with parts of size m. 

The vertex set of Hr(n) is [n] ordered as 1 < 2 < ··· < n. The edges of Hr(n) are the sets {v1, v2, 

..., vr} with v1 < v2 < ··· < vr such that the difference vi+1 −vi is a power of 2 for i = 1, ..., r − k + 1. 

Then e(Hr(n)) = Θ(nk−1(logn)r−k+1) = Θ(dnk−1) where d = (logn)r−k+1. Let H be any interval k-partite 
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subgraph of Hr(n), with ordered parts I1 < I2 < ... < Ik each of size m, and G be the bipartite graph 

whose edges are pairs {v, w} ⊂ e = {v1, v2, ..., vr} ∈ H where v is the largest vertex in I1 and w is 

the smallest vertex in I2. Note, crucially, that w − v must be a power of 2, since otherwise the 

r−k+2 smallest vertices of e lie in I1, which means that some Ij is empty.  

Lemma 2.1 now yields that e . But then e ), so e
 

Our next construction shows that the bound α ≥ k − 1 in Theorem 1.2 cannot be improved. 

Construction 2. An rn-vertex r-graph Hn
r(k) with dnα edges such that for 1 ≤ α < k − 1 ≤ r − 1 

and a = min{1, k − 1 − α} > 0, 

 e(H) = O(dmα/na) (8) 

for every interval k-partite H ⊂ Hn
r(k) with parts of size m. 

For k ≤ r and 1 ≤ j ≤ n, let Ij = {(r − k + 2)j − (r − k + 1), (r − k + 2)j − (r − k + 

1) + 1, ..., (r − k + 2)j}, so that |Ij| = r − k + 2, and let Hn
r(k) be the ordered r-graph with vertex 

set [rn] and edge set 

{Ij ∪{ar−k+3,ar−k+4,...,ar} : 1 ≤ j ≤ n, and (−1)n < a ≤ n for r . 

By definition, e  dnα where d = nk−1−α. On the other hand, let H be an interval 
k-partite subgraph of Hn

r(k) with parts of size m. Then there exists j such that every edge of H 

contains Ij. In particular, 

k−2) = 

Odmα · mnkk−−12−−αα  . e(H) = O(m 

If α ≤ k − 2, then mk−2−α/nk−1−α = O(1/n). If α > k − 2, then mk−2−α/nk−1−α = O(nα−k+1). This implies 

(8). 

The next construction shows that the interval k-partite subgraph guaranteed by Theorem 1.2 
may have few vertices. 
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Construction 3. Let r be fixed and let k−1 < α ≤ r. We give an ordered n-vertex r-graph H(n, r) 

with dnα edges such that for every interval k-partite subgraph H of H(n, r) with  

parts of size m and e , 

m = O(n1−1/α). 
Consider the ordered r-graph H = H(n, r) with vertex set [n] and edge set {{i, i + 1, ..., i + r − 

1} : 1 ≤ i ≤ n − r + 1}. Then 

e(H) = n − r + 1 = dnα 

where d = Θ(n1−α). On the other hand, if H is an interval k-partite subgraph with parts of size m, 
then H cannot contain two disjoint edges, so e . So if e(H) = Ω(dmα), then dmα = O(r) 
so mα = O(1/d) = O(nα−1). 

Our final construction provides a lower bound on ex→(n, ord(Ir()) for Theorem 1.9: 

}, we give an ordered  Construction 4. For  r −  

3n-vertex r-graph H(n, r, ) with Ω(n ) edges not containing an interval r-partite r-graph 
consisting of two edges with intersection size . 

Consider first the case . An easy application of the probabilistic method implies that 
there exists a 3n-vertex r-graph G(n, r, ) with ) edges in which every  vertices lie in at most 
one edge. Let H(n, r, ) be such G(n, r, ) with any ordering of the vertices.  
Since G(n, r, ) is Ir()-free, H(n, r, ) is ord(Ir())-free. 

If α = r −    > , define H(n, r, ) as follows. The vertex set of H(n, r, ) is [3n]. Let M 

be the set of pairs {2i − 1, 2i} for 1 ≤ i ≤ n The edges of H(n, r, ) consist of   pairs from 

M and r −    vertices from {2n + 1, 2n + 2, ..., 3n}.  

Then 

 e(H(n,r,)) =    = Θ(nα). 

Suppose H ) contains an interval r-partite 2-edge r-graph G ) with edge set {e, f} and 

|e | . Let (W1, ..., Wr) be an interval r-partition of e ∪ f. Let e = (a1, ..., ar) and f = 

(b1, ..., br) be such that {aj, bj} ⊆ Wj for j = 1, ..., r. By the definition of M, (a1, a2) = (2i − 1, 2i) 
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for some 1 ≤ i ≤ n. In order to have G interval r-partite, a1 is the rightmost vertex in W1 and 

a2 is the leftmost vertex in W2. Similarly, a3 is the rightmost vertex in W3 and a4 is the leftmost 
vertex in W4, and so on. But for the same reasons the same must hold for f. Thus, e ∩ [2n] = f 

∩ [2n]. But  

|e  |    + 1, 
contradicting the condition |e  | . 

3. Proof of Theorems 1.1 and 1.2 

Proof of Theorem 1.1. Let g = log2 n , so that 2g ≤ n < 2g+1. For 0 ≤ i ≤ g, let Ii be the 

partition of V (H) into intervals of length 2g−i plus one interval of length at most 2g−i containing 

the vertex n. Note that Ig is the partition into singletons, so for each e ∈ H, there exists a 

minimum i(e) such that e intersects at least k intervals in Ii(e).  

For 0 ≤ i ≤ g, let 
Hi = {e ∈ H : i(e) = i} 

that g
i=0 Hi – the Hi are edge-disjoint. Since each part in every Ii has size at so 

most 2g−i i, Theorem 1.1 follows from the following1)  claim: 

For 0 ≤ i ≤ g, Hi is a union of ti   · interval k-partite hypergraphs Hij : 

1 ≤ j ≤ ti with parts from Ii. 

The claim is trivial for i = 0, since H0 is empty unless k = 2 and n > 2g, in which case H0 is k-

partite and t0 = 1. To see the claim for i ≥ 1, note that for e ∈ Hi, there are s ≤ k − 1 intervals I1, 

I2, ..., Is ∈ Ii−1 such that e  s=1 I, by the definition of i(e) = i. 

If |Ii−1| ≥ k − 1, then let Is+1, ..., Ik−1 ∈ Ii−1 be k − s − 1 new intervals chosen arbitrarily, so that 

−I1, ..., Ik−1 ∈ Ii−1. There are at most |Ii−1|  

choices for these k 1 intervals, and then at most  r=k 
2kchoices for the intervals 

contained  sfrom Ii 

 e. 

 If |Ii−1| ≤ k 2, k 2 and we add |Ii−1| − s new intervals from  
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1  2 
 

 

 
  

  
  

 
  

  
  

 
   

 

mostIi−1 arbitrarilyrj 2|Iji to I1, I2, ..., Is, 
thereby4 choices obtaining for the  
allintervals intervalsI from of  

II≤ii−contained1. There≤   arein  [atn]  

=k and intersecting . intersects at least k intervals in i(e), k 2s  2i+1, 
and  

1 

   1)!; so the claim holds again.  

Proof of Theorem 1.2. We derive Theorem 1.2 from Theorem 1.1, using the notation of  
its proof. Let H be an n-vertex ordered r-graph with dnα edges. Let C = r

j=k 
2k

j
−2 

and mi = 2g−i. We prove that some Hij has    

 1 dmα 

 ≥ ⎧⎪⎪⎪⎨  if α = k − 1 

e(Hij) 
 k−1−α α 

 ⎪⎩dmi if α > k − 1 

Note that Hij is k-partite and the parts of Hij have size at most mi, so the above statements imply 
Theorem 1.2. Suppose, for a contradiction, that no Hij satisfies the above bounds. 

Case 1. α = k − 1. Then recalling 2g ≤ n and ti ≤ C · 2i(k−1), 

 g g ti g ti α 
 1 dmi 
 e(H) = e(H ) ≤ e(H ) < 

1 + log2 n 

 g ti d · 2(k−1)(g−i) 

 C(1 + log2 n) 
g 

 d 2(k−1)(g−i) 
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g 

 ≤ dnk−1  1
 = (g + 1)  d · 
nk−1 . 

n 

Since g ≤ log2 n, e(H) < d · nk−1, a contradiction. 

Case 2. α > k − 1. Let c = (1 − 2k−1−α)/C. Then using ti ≤ C · 2i(k−1), 

 g ti 

e e(Hij) 
 g ti 

 dmαi 

g  
d2α(g−i) 

g 

. 

Since α > k − 1, the geometric series sum is less than 1/(1 − 2k−1−α), and e(H) < dnα.  

This contradiction completes the proof.  

4. Proofs of Theorems 1.4 – 1.9 

Let Pk
r denote the r-uniform tight path, which has vertex set V = {v0, ..., vk+r−2} and edge set 

{{vi, vi+1, ..., vi+r−1} : 0 ≤ i ≤ k−1}. Then ord(Pk
r) contains the ordered r-graph ZPk

r with edges {vi, 

vi+1, ..., vi+r−1} for 0 ≤ i < k with a partition of V into r intervals X0 < X1 < ··· < Xr−1 such that vertices 

vi < vi+r < vi+2r < ... are in Xi if i is even and vi > vi+r > vi+2r > ... in Xi if i is odd. Extremal problems for 

ZPk
r are studied in [13], where the following theorem is (implicitly) proved: Theorem 4.1. For 

k, r ≥ 2, 

ex→(n,ZPk
r)  . 
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In particular, this theorem gives the same upper bounds for the extremal function for ord(Pk

r), 

because ZPk
r ∈ ord(Pk

r). In [13,12] we also obtain ordered versions of the Erdős-Ko-Rado 

Theorem by taking every rth edge of Pk
r. 

Definition 3. An ordered r-graph H with vertex set V is a (1, r − 1)-graph if there exist intervals 

X < Y or X > Y in V such that every edge of H has exactly one vertex in X and r − 1 vertices in Y . 

Note that an interval (r − 1)-partite r-graph contains a (1, r − 1)-graph with at least half the 

edges: if I1 < I2 
< ··· < Ir−1 are intervals intersecting every edge in the r-graph, then some X ∈ {I1, 

Ir−1} contains exactly one vertex from at least half of the edges of the r-graph. 

Proof of Theorem 1.4. A strong d-dimensional r-simplex Sˆd
r is an r-graph consisting of d + 2 

edges such that we may order the edges so that the first d + 1 edges form a ddimensional 
simplex (see the definition in Section 1.1.1), and the last edge contains at least one vertex from 
the intersection of every d-tuple of the edges of the d-dimensional simplex. For example, a 
strong 1-dimensional simplex comprises three edges e, f, g such that e ∩ f = ∅ (so e and f form 
a 1-dimensional simplex), and both e ∩ g and f ∩ g are nonempty. It is convenient to assume 
such an ordering of the edges of a strong simplex is given. We introduce strong simplices for 
the purpose of doing a simple induction on d: we show that 

ex→(n,ord(Sˆdr)) ≤ r10drnr−1. 

The base case d = 1 follows easily from Theorem 4.1: if H is an ordered r-graph with more 

than r10rr−n1 edges, then ZPr
r+1 ⊂ H, and any three edges of ZPr

r+1 that include the first and last 

edge form a strong 1-dimensional simplex. Now suppose we have proved the theorem for strong 

(d − 1)-dimensional simplices for some d ≥ 2, and let H be an n-vertex ordered r-graph with 

more than r10drnr−1 edges. Applying Theorem 1.2 with k = α = r−1 and the bound on c(r−1, r−1, 

r) in (3), we find an interval (r−1)-partite subgraph G of H with parts of size at most m and 

e(G) ≥ c(r − 1,r − 1,r) · r10drmr−1 

for some m > 0 with intervals X and Y = V (G) − X as the parts of G. By (3), it is straightforward 

to check that c(r − 1, r − 1, r) > r−4r, and therefore 

 e(G) > r−4rr10drmr−1 > 2r10(d−1)rmr−1. (9) 
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We remove from G each edge containing an (r−1)-set in Y which is contained in at most mr−1, 

and hence the remaining (1, r − 1)-subgraph  G of G has at≥ least r10(d−1)rmr−1 two edges of G. 

This way, we delete at most  edges. Since r 3, this is less than edges. By averaging, some 

vertex x ∈ X is contained in at least 

r1+10(d−1)rmr−2 ≥ r10(d−1)(r−1)mr−2 

edges of G. By induction, {e\{x}  – the link hypergraph of x in G – contains a strong (d 

− 1)-dimensional (r − 1)-simplex F, say with edges e1, e2, ..., ed, f, with e1, e2, ..., ed forming a 

(d − 1)-dimensional simplex. Since f is contained in at least 3 edges of G, there exists y ∈ X\{x} 

such that f∪{y} ∈ G. Then e1∪{x}, e2∪{x}, ..., ed∪ {x}, f ∪{y} is a d-dimensional simplex in H, and 

together with f ∪{x}, we have a strong simplex in H. This proves the theorem.  

Proof of Theorem 1.5. Let M denote the largest number of edges in an r-graph in F+ and suppose 

ex→(n, ord(F)) ≤ cnr−2 for all n > 1. We will prove that ex→(n, ord(F+)) ≤ cnr−1 where c 

r. Suppose that H is an ordered nvertex r-graph with more than cnr−1 edges. 

Applying Theorem 1.2 with k = α = r −1, we find an m-vertex (1, r−1)-subgraph G of H with at 

least r−4rcmr−1 > 2cr−10rmr−1 edges as in (9), with parts X and Y , such that every edge has one 

vertex in X. For each (r − 1)-set in Y contained in at most M − 1 edges of G, remove all edges of 

G containing that (r − 1)-set. The number of edges that we removed is at most Mmr−1, so the 

remaining r-graph G ⊂ G has more than 

 cmr−1 

edges. By averaging, there exists a vertex x ∈ X whose link hypergraph G = {e\{x} : e ∈ G} has 

more than cmr−2 edges. Then G contains a member F of ord(F). Since every edge of F is contained 

in at least M edges of G, we can expand the edges of F to distinct vertices of X to obtain a copy 

of F+ in H.  

Proof of Theorem 1.6. The proof of Theorem 1.5 gives a statement which is slightly stronger 
than the statement of Theorem 1.5: if F is a family of (r −1)-graphs such that ex→(ord(F) ≤ cnr−2, 
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then for any M ≥ 1 in any n-vertex ordered r-graph H with more than  edges, 
we find intervals I1 < I2 < ··· < Ir−1 and an interval  

X < I1 or X > Ir−1 with the following structure: 

(i) a copy F0 ⊂ H of F has intervals I1 < I2 < ··· < Ir−1, 

(ii) for some v ∈ X, F0 is contained in {e\{v} : e ∈ H}, 

(iii) for every e ∈ F0, there exist M vertices x ∈ X such that e ∪ {x} ∈ H. 

Now we prove ex→(n, ord(Tr)) = Θ(nr−1) forn r ≥ 3. First note that any ordered r-graph ex→(n, 

ord(Tr)) = Ω(nr−1). For an upper bound on ex→(n, ord(Tr)), fix r ≥ 3, and let H on n vertices with 

transversal number 1 has r  and no subgraph in ord(Tr). Therefore  

be an ordered n-vertex r-graph with more than 2r10rnr−1 edges. Let F denote the (r−1)graph 

consisting of three edges e = {v1, v2, ..., vr−1}, f = {vr−1, vr, ..., v2r−3}, g = {v2r−3, v2r−2, ..., v3r−5} – 

this is the loose path with three edges. Then F is contained in the hypergraph P consisting of all 

edges {vi, vi+1, ..., vi+r−2} for 1 ≤ i ≤ 2r − 3.  

Since ZP ord(P), Theorem 4.1 gives: 

ex→(n,ord(F)) ≤ ex→(n,ord(P)) . 

Taking c = M = 2, since e , we find the structure 

prescribed by (i) – (iii) in H. Now since e, g ∈ F0, by (iii) there exists a vertex v ∈ X such that e 

∪ {v}, g ∪ {v} ∈ H. Since M = 2, there exists x ∈ X\{v} such that f ∪ {x} ∈ H. The three edges e 

∪{v}, f ∪{x}, g ∪{v} form an r-graph in ord(Tr) contained in H. We conclude ex→(n, ord(Tr)) ≤ 

2r10rnr  

Proof of Theorem 1.7. We first present an easy proof for r = 2, and then a significantly more 
involved general proof. 

Case 1: r = 2. Suppose that F is a forest with k edges. By adding edges, we may assume that 
F is a tree. We prove by induction on k that ex→(n, ord(F)) ≤ 2k2n. Let H be an ordered n-vertex 
graph with more than 2k2n edges and let F be a tree obtained from F by deleting a leaf y. Let x 

) be the neighbor of y. For each vertex v of H, mark the edges from v to the k smallest 
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neighbors of v and the edges to the k largest neighbors of v. Note that if v has fewer than k 
smaller neighbors then we marked all edges between v and those neighbors, and similarly for 
larger neighbors. We marked at most 2kn edges so the resulting unmarked graph H ⊂ H has 
more than 2k2n −2kn ≥ 2(k−1)2n edges. By induction, H contains an interval 2-partite subgraph 
K isomorphic to F, with parts A < B. Suppose that v is the vertex of K that plays the role x in F, 

and assume first that v ∈ A. Then there is a vertex w ∈ B with {v, w} ∈ K, so by construction of 
H, there is another vertex w > w such that {v, w} ∈ H and w  Adding edge  

{v, w} to K gives a copy K of the 2-interval-partite graph F (w plays the role of y).  

The same argument applies if v  

Case 2: r ≥ 3. By Theorem 1.2 with α = r−1 = k, it is enough to prove Theorem 1.7 for interval 

(r −1)-partite r-graphs. Let H be an interval (r −1)-partite r-graph with n vertices and a partition 

of V (H) into intervals X1 < X2 
< ··· < Xr−1 where for some i, and every e ∈ H, |e ∩ Xi| = 2 and |e 

∩ Xj| = 1 for j = i. It is easy to check that every forest F is contained in a tight tree T with the 

same set of vertices. We show by induction on t = v(T) ≥ r that if e(H) > 2t2r−n1, then H contains 

a member of ord(T). If t = r, then T has one edge and clearly e(H) = 0 if H is ord(T)-free. Suppose 

the statement is true for all tight trees with fewer than t vertices, and let T be a tight tree with t 

vertices. Let H be an n-vertex interval (r−1)-partite r-graph with more than  

2t2r−
n1 edges. For ∈each f ∈ ∂H, let S(f∪ {) and} L∈(f) denote the set of the t smallest∪ { and} t 

largest vertices x V (H) such that f x H. Then we remove all edges f x from H such that x ∈ S(f) 

∪ L(f). We obtain a new ordered interval (r − 1)-partite r-graph H with parts X1 < X2 < ··· < Xr−1. 

Fix a leaf y of T. Let e be the edge of T containing y, T = T − {y} and g = e − {y}.  

By induction, H contains a member of ord(T), since 

e(H) > 2t2 −n   − 2t −n   > 2(t − 1)2 −n  . r 1 r 1 r 1 

Let this member of ord(T) be denoted by S, and have parts A0 < A1 
< ··· < Ar−1, where Ai−1, Ai ⊆ Xi 

and Aj ⊆ Xj for j = i. Let g be the image of g in S. Since f for some j ≤ r. 

If j /∈ {i, i −1}, then S(f) ∪L(f) ⊂ Xj, and since  
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|S(f) ∪L(f)| > t and |V (T) ∩Xj| < t, there exists x ∈ Xj\V (T) such that f ∪{x} ∈ H together with S 
forms a copy of T in H, with interval coloring A where Ah = Ah for h = j 
and Aj = Aj ∪{x}. If j = i, then f ∪{z} ∈ S for some z ∈ Ai. For every x ∈ L(f), we have x > z and x 

∈ Xi. Since |L(f)| = t, there exists x ∈ L(f) such that x > z and x ∈/ V (S). Now f ∪{x} ∈ H together 
with S is a copy of an element of ord(T) in H, with interval r-coloring A  
where Ah = Ah for h = i and Ai = Ai ∪ {x}. Finally, if j = i − 1, then f ∪ {z} ∈ S for some z ∈ A0. For 
every x ∈ S(f), we have x < z and x ∈ Xi−1. Since |S(f)| = t, there exists x ∈ S(f) such that x < z 

and x ∈/ V (S). Now f ∪{x} ∈ H together with S is a copy of an element of ord(T) 

in H, with interval r-coloring A  where Ah = Ah for h = i − 1 and  
Ai−1 = Ai−1 ∪ {x}. This completes  

Proof of Theorem 1.8. By Theorem 1.2 with k = α = 2, it is enough to prove Theorem 1.8 for 
interval 2-partite 3-graphs. Suppose that  > 0 and n0 is sufficiently large. Let H be an n-vertex 
ordered interval 2-partite 3-graph with at least n2 edges (n > n0) containing no member of ord(I2) 
and A < B be intervals where every edge of H has exactly one vertex in A. Let G be the graph 
with vertex set B and edge set  
{yz : ∃x ∈ A, xyz ∈ H}. Since H contains no member of ord(I2), .  

By Theorem C, there is an interval 2-partite subgraph G ⊂ G with at least δn2 edges, for some δ 

depending only on . Consequently, there is an interval 3-partite subgraph H ⊂ H with δn2 edges 

and we apply the Ruzsa-Szemerédi Theorem to H to obtain a copy of some member of ord(T

 

Proof of Theorem 1.9. We use the result of Frankl and Füredi [9] stating that for 0 ≤  ≤ r − 1 and 
some constant C(r, ) > 0, 

 ex(n,Ir()) < C(r,) · nmax{,r−−1}. (10) 

Construction 4 gives a lower bound of order nα for ex→(n, ord(Ir())), so it remains to prove the 

upper bound in Theorem 1.9. We first prove the upper bound when  is odd. 

Recall , and let k   − r + k ≥ 0. Let H be an ordered n-

vertex r-graph with C /c edges, where c is the implicit constant in the second 
inequality of Theorem 1.2, namely (3). We aim to show that H contains a member of ord(Ir()). 
By Theorem 1.2 with k = α, there is for some m ∈ [n] an interval k-partite subgraph H of H with 
e  and parts of size at most m.  
For each edge e ∈ H, 

k 



20 Z. Füredi et al. / Journal of Combinatorial Theory, Series A 177 (2021) 105300 

(|e ∩ Ij| − 1) = r − k. 
Let f(e) be the set of the first |e ∩ Ij| − 1 elements of e ∩ Ij for 1 ≤ j ≤ k, so that |f(e)| = r − k. 

By the pigeonhole principle, there exists a set S of size r − k such that f(e) = S for at least |H|/mr

k edges e . Let  {e\S : 

S ⊂ e ∈ H}, so H is an ordered k-uniform k-partite hypergraph with N km and e

. Since  1, 

 k 
 k. 

It follows from (10) that e  ex(N, Ik  Therefore there exist f, g 
∈ H with |f | . Since H is k-partite, {f, g} ∈ ord(Ik )) and now {f ∪ S, g ∪ S} ∈ ord(Ir

 We conclude 

r C  α ex
 (n,ord(I ())) < (kn) . 

 → c(α,k,r) 

This completes the proof of Theorem 1.9 when  is odd. 

When  ≥ 2 is even, . Let k  r + k ≥ 0, and let 
H be an ordered n-vertex r-graph with C /c edges where  
c is the implicit constant in the first inequality of Theorem 1.2. Then for some m ∈ [n] 

there is an interval k-partite subgraph H of H with e  and parts of size at 

most m. Define the interval k-partite k-graph H ⊆ H as above. Since  is even, 

2, and therefore 

 k 
 k. 

In the last line we used k = α + 1. It follows from (10) that H contains a member of Ik() and then 
H contains a member of Ir(). This completes the proof of Theorem 1.9 when  is even.  
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