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1. Introduction

We let [n] ={1, ..., n} and use standard asymptotic notation; in particular, given functions f,
g:Z" = R, we write f(n) = Q(g(n)) if there exists ¢ > 0 such that f(n) > cg(n) for all n > 1. We
also write f(n) = O(g(n)) if g(n) = Q(f(n)), and write f(n) = B(g(n)) if both, f(n) = Q(g(n)) and
f(n) = 0(g(n)). We associate a hypergraph H with its edge set and write e(H) for the number of
the edges and v(H) for the number of the vertices in H.

An r-graph is a hypergraph with all edges of size r; it is r-partite if there is a partition of the

vertex set into r parts such that every edge has exactly one vertex in each part. The following
observation is due to Erdds and Kleitman:

Proposition A. (Erdds-Kleitman [6]) Every r-graph contains an r-partite subgraph with at least
rl/r proportion of its edges.

In particular, any extremal problem for r-graphs can be reduced to the corresponding
extremal problem where the underlying r-graph is r-partite with the loss of only a constant
multiplicative factor. In this paper, we consider analogs of this result in the ordered hypergraph
setting and illustrate their use on some ordered extremal hypergraph problems.

An ordered hypergraph is a hypergraph together with a linear ordering of its vertex set.
Extremal problems on ordered hypergraphs arose from several sources, in particular, from
combinatorial geometry, enumeration of permutations with forbidden subpermutations, and the
study of matrices with forbidden submatrices — see for instance Anstee [1,2], Fiiredi and Hajnal
[11], Pach and Tardos [19], Marcus and Tardos [16], Tardos [22], Fox [8].

Let V be a linearly ordered set. An interval in V is a set of consecutive elements in the
ordering. For A, B C V, we write A < B to mean that a < b for every a €A, b € B.

A key definition in our work is the following:

Definition 1. Let k be a positive integer. An ordered r-graph H is interval k-partite if for some

2 k there are intervals /1 < [2 < -+ < [such that every edge of H is contained in /1 U """ U /and has

nonempty intersection with /;for each 1 < j < ¢
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We allow in the definition be larger than k because the more parts we have, the more
structure on H is imposed. In particular, an ordered r-graph H is interval rpartite if there exist
intervals 1 < <+ < I.in V (G) such that every edge of H contains exactly one vertex from each
li. In these terms, the Erdés—Kleitman observation, Proposition A, does not hold for ordered
graphs as witnessed by the following simple example: every interval bipartite subgraph of the
ordered graph with vertex set [2n] and edge set {{2/ - 1, 2/} : 1 <i < n} has at most one edge.
However, Pach and Tardos [19] showed that dense ordered graphs contain relatively dense
interval bipartite graphs using the following result:

Theorem B. (Pach and Tardos [19]) Each ordered n-vertex graph G is the union of edgedisjoint
subgraphs G;for 0 <1< [logsn such that each Giis a union of at most 2/ interval bipartite

graphs with parts of size at most n/2'.

Our first main result is the following ordered hypergraph analog of Theorem B:
Theorem 1.1. Let 2 < k < r < n be integers. Then every ordered n-vertex r-graph H is the union
of edge-disjoint ordered r-graphs H;for 0<i<[logyp such that each H;is a union of

at most ( -0 7= 2672 - 2167 interval k-partite r-graphs with parts of size at most n/2i,

For k=r= 2, Theorem 1.1 corresponds to Theorem B. Note that Theorem B easily implies
the following, which appears implicitly in Pach and Tardos [19]:

Theorem C. For each real a2 1, d >0 and n > 1, if G is an ordered n-vertex graph with e(G) =
dn® then for some m € [n], G contains an interval bipartite subgraph G with parts of size at

most m and

( dm*®
Q__ ifa=1

e(G) = H log2n (1)
|1 La@me  ifast

As observed by Pach and Tardos [19], the logarithmic factor in (1) for @ = 1 is necessary:
for the ordered path P with edges {v, vi+1} : 1 <i<4 such that v2 < v4 <v3 < vi<vs, extremal n-

vertex ordered P-free graphs have n logn +0(n) edges, whereas an extremal n-vertex interval
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bipartite P-free graph has ®@(n) edges (see Fiiredi [10], Bienstock and Gyori [3], and Tardos

[21]).

Our second main result is the following generalization of Theorem C to ordered rgraphs:
Theorem 1.2. Let 2 < k <r be fixed integers and let a be a real number with k-1 < a <

r. Then for every integer n 2 r, every ordered r-graph H with n vertices and dn® edges has an

interval k-partite subgraph Hwith parts of size at most m for some m € [n] and dm*

[ .
Q__ ifa=k 1

e(H)—{ | logn - ?)
1 \a@mey  ifask-1

The case k=r= 2 is Theorem C.
Remarks.

* Theorem 1.2 is sharp in that for 2 < k <r and a = k-1, there exist n-vertex r-graphs H with
e(H) = dn“where every interval k-partite subgraph H with parts of size

mhas e(H') = O(dm®/log, 1), and for a < k - 1, there exist n-vertex r-graphs H with e(H)
= dn®where every interval k-partite subgraph Hhas e(H) = O(dn®°) where a = min{l, k-1
-a} > 0. We will prove this in Section 2 (see Constructions 1 and 2).

* For a > k-1, Theorem 1.2 guarantees that each n-vertex ordered r-graph with ®(n®) edges
has an interval k-partite subgraph with parts of size m and ®(m®) edges for some m € [n].
In sharp contrast with the Erdés—Kleitman Lemma, Proposition A, the value of m may
necessarily be small relative to the number of vertices in the host r-graph: we give a
construction in Section 2 (see Construction 3) where we need m = O(n'""/®) for a > k - 1.

*  We do not optimize the constant ¢ = c(a, k, r) in the bound eH') = cdmafor a>k-1in
Theorem 1.2. The proof of Theorem 1.2 gives

> (k= D)I(1 = 2¢1-9)

o 2k-2
c(a,k,r). 3) =k
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In particular, c(r, r, r) 2 (r - 1)!47, whereas for every r-partite subgraph H of the n-vertex

complete r-graph K,,"with parts of size m, elf’) < m", andso c(r, r, r) <rl.

* For each (unordered) partition 7t of r, one can extend Theorem 1.2 to the setting of interval
nt-partite subgraphs — here mt specifies the number of vertices of an edge in each part — by
replacing the range of a to o 2 (1) where f(rt) is the maximum length of a partition that is
not a refinement of 7. For example, if t=1 +1 +-+1, then f(m)=r-1,if r=2+1+--+
1, then f(m) =r-2and if t=(r-1)+ 1, then f(m) =r/2 . This has other interesting

consequences which we will explore in forthcoming work.

1.1. Applications of Theorem 1.2

We next describe how to apply Theorem 1.2 to a variety of ordered extremal problems and
convex geometric extremal problems for families of r-graphs. This enables us to transfer
classical extremal problems to the ordered setting via Theorem 1.2. The following definition is
needed:

Definition 2. For an r-partite r-graph F, ord(F) denotes the family of interval r-partite r-graphs
isomorphic to F. For a family F of r-partite r-graphs, ord(F) = rer ord(F).

A first and natural example is the case that F consists of the r-graph of two disjoint edges.
The Erdds-Ko-Rado Theorem [7] states that for n 2 2r + 1, the unique extremal n-vertex r-graph
without two disjoint edges consists of all r-element subsets of [n] containing vertex 1, with "1

edges. In [12], the following ordered version of the Erd6s-Ko-Rado Theorem is proved:

Theorem 1.3. ([12]) Let r>3 and n 2 2r+1. Then the maximum number of edges in an ordered

n-vertex r-graph that does not contain two edges of the form {vi, va, ..., v;} and {wi, wy, ...,

wr}such that vi< wi<va<wa< - <V.<W,is exactly ", ",".

For an ordered r-graph F, let ex->(n, F) denote the maximum number of edges in an n-vertex
ordered r-graph that does not contain F. For a family F of ordered r-graphs, let ex-(n, F) denote
the maximum number of edges in an n-vertex ordered r-graph that contains no members of F.

In this language Theorem 1.3 implies that for n > 2r+ 1,
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ex-(n,ord(F)) <r, (n — nr

where F is the r-graph comprising two disjoint edges (in fact, it applies to a

particular member of ord(F)). Results for hypergraph matchings (i.e., for sets of disjoint edges)
by

Klazar™! and), thereby Marcus [ extending15] show the that celebrated for each Marcus-Tardos
[interval r-partite] 6 matching] theorem M for, exmatchings->(n, M) in=

O(n

ordered graphs to ordered r-graphs. We now give some further examples where classical
extremal problems are transferred to the ordered setting via Theorem 1.2.

1.1.1. Simplices
A d-dimensional r-simplex is an r-graph of d + 1 edges such that any d of the edges have

non-empty intersection, but all d + 1 edges have empty intersection. Denote by Sd”the family
of d-dimensional r-simplices. The set Sd¢"is non-empty if r 2 d. The study of these abstract
simplices in the context of extremal hypergraph theory was first initiated by Chvatal who posed

the following conjecture.

Conjecture 1. (Chvatal [4]) Let ">d+123andn> r(d + 1)/d. Then ex(n, Sd") = n-11. -

Frankl and Fiiredi [9] proved Conjecture | for large n (Keller and Lifschitz [14] improved
the bounds on n) and Mubayi and Verstraéte [17] proved it for d = 2, which was a problem of
Erdds. Very recently, Currier [5] proved the conjecture for n 2 2r. We prove the following
theorem.

Theorem 1.4. For all fixed " >d + 123,

ex>(n,ord(Sd")) = O(n™1).

1.1.2. Expansions

Our next example is more general. If F is a family of (r—1)-graphs, let F* denote the family
of r-graphs F' obtained from each F € F by adding a vertex ve.to edge e € F such that all the
vertices Ve : e € F are distinct from each other and from the vertices of F. A study of extremal
problems for families F"is given in [18], where F'is referred to as an expansion of F. Such

families lend themselves naturally to an application of Theorem 1.2:

Theoremr- 1.5. Let r 23 and F be a family of (r - 1)-graphs with exs(n, ord(F)) = O(n 2). Then
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ex=(n,ord(F")) = O(n™).

The proof of Theorem 1.5 implies that

ex->(n,ord(T,)) = O(n"Y),

where T.= {e, f, g} is the loose r-uniform triangle, i.c., |e nf| =|fng|=|gne|l=1anden

fng=2:

Theorem 1.6. Forr>3,

ex-(n,ord(T,)) = O(n™).

1.1.3. Hypergraph forests
Our next application concerns hypergraph forests. The shadow J0H of an r-graph H is the

collection of (r-1)-sets contained in some edge of H. We follow Frankl and Fiiredi [9] for an
inductive definition of trees in hypergraphs: a single edge is a tree, and given any tree T with
edges ey, e, ..., en, a tree with h + 1 edges is obtained by selecting f € dT and a vertex x not in
T, and adding the edge f U {x}. A forest is a subgraph of a tree. By definition, each 2-uniform
tree (respectively, 2-uniform forest) is a tree (respectively, forest) in the usual sense. Using

Theorem 1.2, we prove the following:

Theorem 1.7. Fix r 22 and let F be an r-uniform forest. Then ex-(n, ord(F)) = O(n~1).

Remarks.

* A conjecture of Pach and Tardos [19] would imply ex-(n, T) = n'*") for every 2-interval-
partite tree T with at least two edges. Theorems 1.5 and 1.7 suggest that perhaps for every

interval r-partite r-uniform tree T, ex-(n, T) < n~1*e®),

+ It remains an intriguing open problem to determine for which r-graph families F
ex(n,F)=0(n"") == ex>(n,ord(F)) = O(n™). 4
According to Theorem 1.7, this is true for r = 2. Since for every r-uniform forest F, ex(n,

F) = O(n™"), Theorem 1.7 yields that the above implication is also true if F contains an r-

uniform forest. We do not know any explicit example for r > 3 for which (4) fails, although
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we believe that many such examples exist. As pointed out by a referee, Theorem 1.2 implies

that for each o > r-1 and all r-graph families F,
ex(n,F) = 0(n%) == ex->(n,ord(F)) = O(n%). )

* In[13], we heavily used the k = r-1 case of Theorem 1.2 to prove that the extremal function

of so called crossing paths in convex geometric hypergraphs has order n"! or n""!logn.

1.1.4. Ordered Ruzsa-Szemerédi Theorem
We consider the ordered version of the famous Ruzsa-Szemerédi (6, 3)-Theorem [20] which
states that the maximum number of edges in an n-vertex 3-graph with no 6 vertices spanning 3

edges is o(n?). This is equivalent to the statement ex(n, Frs) = o(n?) where Frs {l, Ts}and his
the 3-graph comprising two edges sharing exactly two points.

Theorem 1.8. Let Frs= {l, T3}. Then ex>(n, ord(Frs)) = o(n?).

1.1.5. Forbidden ordered intersections
Our final example addresses an r-graph problem whose answer has order of magnitude n®

where o =r-1. Let /'() denote the r-graph consisting of two edges sharing exactly vertices. The

study of ex(n, I'()) was initiated by Erdds. Frankl and Fiiredi [9] proved that

ex(n, 1)) = O(Nmaxir--1) for0< ¢ <r—1, (6)
We are able to prove an ordered version of this result using Theorem 1.2:

Theorem 1.9. For r>2and 1 <{ <7 —1 and a=max{ r- (+1)/2}

Q(na) = ex->(n,ord(I())) = 00((nn“a)logn) ifif is evenis odd .

Note that the = 0 case is covered by Theorem 1.3 which gives ex-(n, ord(//(0))) = ®@(nr-1).
A construction of a dense ord(/-())-free ordered r-graph is given in Construction 4. We believe

the logn factor when is even can be removed, so that ex-(n, ord(/())) = @(n%).

We present four constructions in Section 2 and prove Theorem 1.2 in Section 3. Theorems
1.4-1.9 are proved in Section 4.

2. Constructions

Our first construction requires the following lemma.
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Lemma 2.1. Let Hni 02 be the ordered bipartite graph with vertex set [n1+n2] and parts A = [ni1]

and B={n1+ 1, ..., n1+ n2} such that for i < j, the pair ij is an edge in H(ni, n2) iff 1 <i<nm<j
<m+mandj-iis a power of 2. Then for each AC A and B S B, the number of edges in H,
12 [A"U Blis at most |AU B'].

Proof. Suppose for some AS A and BCS B, graph H := Hpy o [ A UB/] has more than

|A] + |B| edges. Let us assume A= {a1, a, ..., a;} and B={by, by, ..., bm} where
g1< < <a<bi<by<- <bp.

For each vertex a € A, remove from H the edge {a, b} where i is the minimum index for which
such an edge exists. After that, for each vertex b € B, remove from H the edge {a; b} where jis
the maximum index for which such an edge exists. Since H has more than |A| + | B| edges, and
we removed at most |A| + |B| edges, the remaining graph Hhas an edge {a, b} witha €A, b
€ B’. Now there exist vertices aand bsuch that {a, b} and {g, b}are edgesanda < ¢’ < ¥ < b

. However, it is not possible for b - a, b- a and b - aall to be powers of 2.

In all our constructions, the extra parameter d does not need to be a constant, it may depend
on other parameters. Our first construction shows that the logarithmic factor in the first bound
in Theorem 1.2 is necessary.

Construction 1. An n-vertex ordered r-graph H«{(n) with dn*! edges such that for every

ms<n

dmk-1
logn

e(H)=0(7)

for every interval k-partite HC H{n) with parts of size m.

The vertex set of H{n) is [n] ordered as 1 <2 <--- <n. The edges of H(n) are the sets {vi, vz,
..., Vi} with vi < vz < -+ < v, such that the difference vi+1 -v;is a power of 2 fori=1, ..., r—k+ 1.

Then e(HA(n)) = O(n*"!(logn)*1) = @(dn*') where d = (logn)"**!. Let Hbe any interval k-partite
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subgraph of H/(n), with ordered parts /1 < 2 <... < Ixeach of size m, and G be the bipartite graph

whose edges are pairs {v, w} C e ={vi, v, ..., v/} € Hwhere v is the largest vertex in /1 and w is
the smallest vertex in /2. Note, crucially, that w — v must be a power of 2, since otherwise the
r-k+2 smallest vertices of e lie in /1, which means that some /;is empty.

Lemma 2.1 now yields that e(G') < v(G') < 2m Byt then eH') = O(m"~*(log ”)T_k), so e
(H') = O(dm*~*/logn).

Our next construction shows that the bound a > k - 1 in Theorem 1.2 cannot be improved.

Construction 2. An rn-vertex r-graph H,'(k) with dn®edges such that for 1 <a<k-1<r-1
anda=min{l, k-1 -a}>0,

e(H) = 0(dm%/n%) ®)
for every interval k-partite HC H, (k) with parts of size m.
Fork<rand 1 <j<n,let i={(r-k+2)j-(r-k+1), (r-k+2)j-(r-k+
H+1,.., (r -k+ 2)j}, so that |/j| = " k+ 2, and let H,"(k) be the ordered r-graph with vertex
set [rn] and edge set
{l;U{arki3,arkia,...,ar}: 1 <j<n and (-Dn<as<nforrk+3 <<}
By definition, e(H}, (k) = 7" = gnewwhere d = 1% On the other hand, let Hbe an interval

k-partite subgraph of H,'(k) with parts of size m. Then there exists j such that every edge of H
contains /. In particular,

k—2) —

Odm® - mnikk—12--aa . e(H)=0(m

If a < k - 2, then m*2%/n*"1"¢= O(1/n). If a > k - 2, then mk2-¢/n*"1-¢= O(n***!). This implies

)

The next construction shows that the interval k-partite subgraph guaranteed by Theorem 1.2
may have few vertices.
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Construction 3. Let r be fixed and let k-1 < a < r. We give an ordered n-vertex r-graph H(n, r)

with dn*edges such that for every interval k-partite subgraph Hof H(n, r) with
parts of size m and e(H') = Q(dma)/
m = 0O(ni-1/a).
Consider the ordered r-graph H = H(n, r) with vertex set [n] and edge set {{i, i + 1, ..., i +r-

1}:1<i<n-r+1}. Then
e(Hy=n-r+1=dn*

where d = ®(n'"®). On the other hand, if His an interval k-partite subgraph with parts of size m,
then H cannot contain two disjoint edges, so e(H") <7 g0 if e(H) = Q(dm*%), then dm*= O(r)
so m*= 0(1/d) = O(n*™).

Our final construction provides a lower bound on ex-(n, ord(/"()) for Theorem 1.9:

Construction 4. For 0 < £ <r- —1 and o = max{¢,r ({+1)/2}, we give an ordered

X
3n-vertex r-graph H(n, r, ) with Q(n ) edges not containing an interval r-partite r-graph
consisting of two edges with intersection size .

Consider first the case cv = £. An easy application of the probabilistic method implies that
there exists a 3n-vertex r-graph G(n, r, ) with Q(”e) edges in which every vertices lie in at most
one edge. Let H(n, r, ) be such G(n, r, ) with any ordering of the vertices.

Since G(n, r, ) is I'()-free, H(n, r, ) is ord(/'())-free.
Ifa=r- ({+1)/2> , define H(n, r, ) as follows. The vertex set of H(n, r, ) is [3n]. Let M

be the set of pairs {2i - 1, 2’} for 1 <j < n The edges of H(n, r, ) consist of (f+1)/2 pairs from

Mand r-2 (¢+1)/2 vertices from {2n + 1, 2n +2, ..., 3n}.

Then

e(H(n,r,))= L+ 1)/2 ro2 (04+1)/2] - [ =09

Suppose H(n, 7, é) contains an interval r-partite 2-edge r-graph G(r, é) with edge set {e, f, }and

leNf ={| . Let (W1, ..., W,) be an interval r-partition of e U f. Let e = (ay, ..., a;) and f=
(by, ..., by) be such that {a; bj} € W;forj=1, ..., r. By the definition of M, (a1, a2) = (2i - 1, 2i)
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for some 1 </ <n. In order to have G (7> ©interval r-partite, a1 is the rightmost vertex in W1 and

a2 is the leftmost vertex in Wa. Similarly, a3 is the rightmost vertex in W5 and a4is the leftmost
vertex in Wa, and so on. But for the same reasons the same must hold for f. Thus, e N [2n] =f
N [2n]. But

|eﬂ[2n}:2(€+1)/2 >4 | +1

contradicting the condition | f =1 |

3. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let g =logz2n , so that 29< n < 29", For 0 <i < g, let libe the
partition of V (H) into intervals of length 297 plus one interval of length at most 297 containing
the vertex n. Note that lg is the partition into singletons, so for each e € H, there exists a
minimum i(e) such that e intersects at least k intervals in li).

For0<i<g, let
Hi={e€eH:ile)=1i}

SO H=1l that 90 H;— the H;are edge-disjoint. Since each part in every lihas size at

most 297 < [12/2 Theorem 1.1 follows from the following,  claim:

r 2k—2 9ilk—

For 0 <i < g, Hiis a union of t,s =k ¢ (k—1)' - interval k-partite hypergraphs Hj:
1 <j < tywith parts from |..

The claim is trivial for i = 0, since Hois empty unless k =2 and n > 29, in which case Hois k-
partite and to= 1. To see the claim for j > 1, note that for e € H;, there are s < k - 1 intervals /;,

b, ..., Is€ lii1 such that e = i—i(enle) C *-11, by the definition of i(e) = .

If [li-1] 2 k-1, then let /s+1, ..., Ik-1 € li-1be k — s — 1 new intervals chosen arbitrarily, so that
< P gitk—1) k-1
-1, ..., It-1 € li-1. There are at most "!|= ~ (k=D = (-1} —2
choices for these k 1 intervals, and then at most _x **choices for the intervals
) U edin ,_o Iy and intersecting s
from i then s < |T,_4| < - contained =142 g

e.

If |li-1] <k 2, k 2 and we add |li-1| - s new intervals from
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Al o« 2k— ) D mostli-1 arbitrarilyr2|ii to 11, 12, ..., Is,
- j=k . ..
¢ Since e the.reby4 ch(?lces obtaining for the
gilk—1) > & = (e — allintervals intervalsl from of
- - lI<ii-containedi. There< arein [atn]
=kand intersecting . intersects at least k intervals in i), k 2s 2i1

and

1)!; so the claim holds again.

Proof of Theorem 1.2. We derive Theorem 1.2 from Theorem 1.1, using the notation of

its proof. Let H be an n-vertex ordered r-graph with dn®edges. Let C= =
and m;= 29", We prove that some Hjhas

1 dm®

> (11 |{5' T+logyn  ifg—k-1

e(Hy) I

I;}_kdm[_' ifa>k-1

Note that Hjis k-partite and the parts of H;have size at most mj, so the above statements imply
Theorem 1.2. Suppose, for a contradiction, that no Hjsatisfies the above bounds.

Case 1. @ =k - 1. Then recalling 29< n and t;< C - 21D,

g g t; g t; a
1 dm,-
e(H)= e(Hy) < e(H)) < E .
=0 =0 j=1 =0 j=1 1 +logan
9ud - 2(k-1)(g-i)

i=0 j=1 (1 + logz n)

_ ————— t..
c(l +logan) , "

2(k-1)(g-i)
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g

< dnk-1 _ —_— 1
—(g+1) o ! Flogn 1 +log, d-

Nk-1.

Since g <logzn, e(H) <d - n*!, a contradiction.

Case 2. a> k- 1. Let ¢ = (1 - 2¥!"%)/C. Then using t;< C- 2D,

(H) <> >
e i=0 j=le(Hy)

g
< Z Zc .
i=0 j=1  dMai
< Z(j.gi(kf—l) e
g i=0

dza(g—i)

g
< dn® - (1 _ 2]6717(1) X 221'(/«71704)
i=0 .

Since a > k - 1, the geometric series sum is less than 1/(1 - 2¢'°%), and e(H) < dn®.

This contradiction completes the proof.

4. Proofs of Theorems 1.4 — 1.9

Let P, denote the r-uniform tight path, which has vertex set V = {vy, ..., vk+~2} and edge set
{{vi, vi+1, ..., vier1} 1 0 i < k=1}. Then ord(P(") contains the ordered r-graph ZP" with edges {v;
Vi+, ..., Virr—1} for O i < k with a partition of V into r intervals Xo < Xi < --- < X1 such that vertices
Vi< Vier< Vis2r < ... are in X;if i is even and v;> Vi, > Vi, > ... in X;if i is odd. Extremal problems for
ZP/ are studied in [13], where the following theorem is (implicitly) proved: Theorem 4.1. For

k r=2,

<(k-1 ( "
exe(n,ZPk’) r—= 1.
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In particular, this theorem gives the same upper bounds for the extremal function for ord(Py"),

because ZP" € ord(P«"). In [13,12] we also obtain ordered versions of the Erdés-Ko-Rado

Theorem by taking every rth edge of P".

Definition 3. An ordered r-graph H with vertex set Vis a (1, r — 1)-graph if there exist intervals
X <Yor X>Yin Vsuch that every edge of H has exactly one vertex in X and r - 1 vertices in Y.

Note that an interval (r - 1)-partite r-graph contains a (1, r - 1)-graph with at least half the
edges: if i< Sa< I-1 are intervals intersecting every edge in the r-graph, then some X € {/;,

I~1} contains exactly one vertex from at least half of the edges of the r-graph.

Proof of Theorem 1.4. A strong d-dimensional r-simplex S”4 is an r-graph consisting of d + 2
edges such that we may order the edges so that the first d + 1 edges form a ddimensional
simplex (see the definition in Section 1.1.1), and the last edge contains at least one vertex from
the intersection of every d-tuple of the edges of the d-dimensional simplex. For example, a
strong 1-dimensional simplex comprises three edges e, f, g such that e N f= @ (so e and f form
a 1-dimensional simplex), and both e N g and f N g are nonempty. It is convenient to assume
such an ordering of the edges of a strong simplex is given. We introduce strong simplices for
the purpose of doing a simple induction on d: we show that

ex->(n,ord(S"ar)) < rioarnr-1.

The base case d = 1 follows easily from Theorem 4.1: if H is an ordered r-graph with more
than r'%" edges, then ZP/+1 C H, and any three edges of ZP,"+ that include the first and last
edge form a strong 1-dimensional simplex. Now suppose we have proved the theorem for strong

(d - 1)-dimensional simplices for some d 2 2, and let H be an n-vertex ordered r-graph with

10dr,

more than r'%n"!edges. Applying Theorem 1.2 with k= o = "1 and the bound on c(r— 1 = 1,
r) in (3), we find an interval (r—l)-partite subgraph G of H with parts of size at most m and

e(G)2c(r-1,r-1,r) - r'%m!

for some m >0 with intervals X and Y=V (G) - X as the parts of G. By (3), it is straightforward

to check that c(r— 1, r- 1, r) > r*, and therefore

e(G) > r-arriodrmr-1> 2r10(d-1rmr-1. )
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We remove from G each edge containing an (r-1)-set in Y which is contained in at most m!,

and hence the remaining (1, r - 1)-subgraph G of G has at> least r'%*"m™! two edges of G.

m

This way, we delete at most 2,5 edges. Since r 3, this is less than edges. By averaging, some

vertex x € X is contained in at least

F1+10(d-1)rMr-2 = r10(d-1)(r-1)Mr-2

edges of G. By induction, {e\{x}' € € G} _ the link hypergraph of x in G— contains a strong (d
- 1)-dimensional (r - 1)-simplex F, say with edges e, ey, ..., eq, f, with ey, e, ..., esforming a
(d - 1)-dimensional simplex. Since fis contained in at least 3 edges of G, there exists y € X\{x}
such that fU{y} € G. Then e1U{x}, e2U{x}, ..., eqU {x}, f U{y} is a d-dimensional simplex in H, and

together with f U{x}, we have a strong simplex in H. This proves the theorem.

Proof of Theorem 1.5. Let M denote the largest number of edges in an r-graph in F" and suppose
ex=>(n, ord(F)) < cn™? for all n > 1. We will prove that ex>(n, ord(F")) < cn™! where ¢
= 5(M +o)r'® Suppose that H is an ordered nvertex r-graph with more than cn™! edges.
Applying Theorem 1.2 with k=a =r -1, we find an m-vertex (1, r-1)-subgraph G of H with at

least rr*em™ > 2¢r10r

m™!edges as in (9), with parts X and Y, such that every edge has one
vertex in X. For each (r - 1)-set in Y contained in at most M - 1 edges of G, remove all edges of
G containing that (r - 1)-set. The number of edges that we removed is at most Mm'™!, so the

remaining r-graph G C G has more than

(217 = M)ym"™t = e,y

edges. By averaging, there exists a vertex x € X whose link hypergraph G= {e\{x} : e € G} has
more than cm"™2 edges. Then G contains a member F of ord(F). Since every edge of F is contained
in at least M edges of G, we can expand the edges of F to distinct vertices of X to obtain a copy

of F'in H.

Proof of Theorem 1.6. The proof of Theorem 1.5 gives a statement which is slightly stronger

than the statement of Theorem 1.5: if F is a family of (r —1)-graphs such that ex-(ord(F) < cn"2,
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then for any M > 1 in any n-vertex ordered r-graph H with more than 2 (M +c)rn edges,

we find intervals /1 < l2< --- < /-1 and an interval

X< lior X > I~-1 with the following structure:

(i) acopy Foc Hof Fhas intervals /1< < </-1,
(i) for some v € X, Fois contained in {e\{v} : e € H},

(iii) for every e € Fo, there exist M vertices x € X such that e U {x} € H.

Now we prove ex->(n, ord(T;)) = @(n™") for, r 2 3. First note that any ordered r-graph ex-(n,

ord(T,)) = Q(n™"). For an upper bound on ex>(n, ord(T)), fix r > 3, and let H on n vertices with

—1
transversal number 1 has 1 and no subgraph in ord(T;). Therefore

10r

be an ordered n-vertex r-graph with more than 2r'%n"! edges. Let F denote the (r-1)graph

consisting of three edges e = {vi, v, ..., v-1}, f={v1, v,, ..., v2-3}, g = {v2r-3, vor2, ..., V3-5} —
this is the /oose path with three edges. Then F is contained in the hypergraph P consisting of all

edges {v; Vi1, ..., vi2} for 1 <i<2r-3.

r—1
Since ZP2r—3 Sord(P), Theorem 4.1 gives:

< (2r— 4)( ) <22
ex-(n,ord(F)) < ex->(n,ord(P)) r—2 )

Taking ¢ = M = 2, since e(H) > 2001 = 5 (M + C>T10T”T*1, we find the structure
prescribed by (i) — (iii) in H. Now since e, g € Fo, by (iii) there exists a vertex v € X such that e
U {v}, g U {v} € H. Since M = 2, there exists x € X\{v} such that f U {x} € H. The three edges e
U{v}, f U{x}, g U{v} form an r-graph in ord(T;) contained in H. We conclude ex->(n, ord(T,)) <

201 g

Proof of Theorem 1.7. We first present an easy proof for r = 2, and then a significantly more
involved general proof.

Case 1: r=2. Suppose that F is a forest with k edges. By adding edges, we may assume that
Fis a tree. We prove by induction on k that ex->(n, ord(F)) < 2k?n. Let H be an ordered n-vertex
graph with more than 2k?n edges and let Fbe a tree obtained from F by deleting a leaf y. Let x
eV(F /) be the neighbor of y. For each vertex v of H, mark the edges from v to the k smallest
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neighbors of v and the edges to the k largest neighbors of v. Note that if v has fewer than k
smaller neighbors then we marked all edges between v and those neighbors, and similarly for
larger neighbors. We marked at most 2kn edges so the resulting unmarked graph H © H has
more than 2k*n —2kn > 2(k-1)?n edges. By induction, H contains an interval 2-partite subgraph
Kisomorphic to F, with parts A < B. Suppose that v is the vertex of K'that plays the role x in F,

and assume first that ” € A. Then there is a vertex " € B with {v, W} € K, so by construction of

H, there is another vertex w> w such that {v, w} € H and wi V(K'). Adding edge
{v, w}to Kgives a copy K of the 2-interval-partite graph F (wplays the role of y).

The same argument applies if vé B. O

Case 2: r23. By Theorem 1.2 with = r-1 =k, it is enough to prove Theorem 1.7 for interval

(r =1)-partite r-graphs. Let H be an interval (r —1)-partite r-graph with n vertices and a partition
of V (H) into intervals X1 < X2 < < X~1where for some i, and every e EH, |e N X;| =2 and |e

N X;| =1 for j=. It is easy to check that every forest F is contained in a tight tree T with the
same set of vertices. We show by induction on t = v(T) 2 r that if e(H) > 23", then H contains
a member of ord(T). If t =r, then T has one edge and clearly e(H) = 0 if H is ord(T)-free. Suppose
the statement is true for all tight trees with fewer than t vertices, and let T be a tight tree with t

vertices. Let H be an n-vertex interval (r-1)-partite r-graph with more than

2t%" edges. For €each f € dH, let S(fU {) and} LE(f) denote the set of the t smallestU { and} ¢
largest vertices x V (H) such that f x H. Then we remove all edges f x from H such that x € S(f)
U L(f). We obtain a new ordered interval (r - 1)-partite r-graph H with parts X1 < X2 < -+ < X-1.

Fix a leaf y of T. Let e be the edge of T containing y, T=T-{y}and g=e - {y}.

By induction, H contains a member of ord(T), since

e(H)>22-" —2t-" sot-12-" ririrl

Let this member of ord(T) be denoted by S, and have parts Ao < A: <. <Ar1, where A1, A€ X;

and A; € X;for j=1i. Let gbe the image of g in S. Since f< 95 C OH', fNA; = Dgyy some j<r.

If j /€ {i, i -1}, then S(f) UL(f) C X;, and since
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[S(f) UL()| >tand |V (T) nX;| <t, there exists x € X\V (T) such that f U{x} € H together with S

forms a copy of Tin H, with interval coloring A0 < A1 < +++ < AL_iwhere Ay= A, for h =}
and Aj= A;U{x}. If j=, then f U{z} € S for some z € A;. For every x € L(f), we have x >z and x
€ X. Since |L(f)| =t, there exists x € L(f) such that x >z and x €/ V (S). Nowa{X} € H together

with S is a copy of an element of ord(T) in H, with interval r-coloring An <A< <AL

where Ay= Apfor h =iand A;= A;U {x}. Finally, if j=i - 1, then fU {z} € S for some z € Ao. For
every x € 5(f), we have x <z and x € Xj-1. Since |S(f)| = t, there exists x € S(f) such that x < z

and x €/ V (S). Nowf U{X} € H together with S is a copy of an element of ord(T)

in H, with interval r-coloring A0 < 41 < -+ < AL_1 where Ay=Apfor h = i-1and
Ai-1=Ai-1U {x}. This completesthe proof. O

Proof of Theorem 1.8. By Theorem 1.2 with k= a = 2, it is enough to prove Theorem 1.8 for
interval 2-partite 3-graphs. Suppose that > 0 and nois sufficiently large. Let H be an n-vertex
ordered interval 2-partite 3-graph with at least n* edges (n > no) containing no member of ord(/2)
and A < B be intervals where every edge of H has exactly one vertex in A. Let G be the graph
with vertex set B and edge set

{yz : 3x € A, xyz € H}. Since H contains no member of ord(lz),e(G) =e(H) > en?

By Theorem C, there is an interval 2-partite subgraph G C G with at least 6n” edges, for some &
depending only on . Consequently, there is an interval 3-partite subgraph H c H with 6n* edges
and we apply the Ruzsa-Szemerédi Theorem to Hto obtain a copy of some member of ord(T

3) O

Proof of Theorem 1.9. We use the result of Frankl and Fiiredi [9] stating that for 0 < < "~ 1land

some constant C(r, ) >0,

ex(n,I)) < C(r,) - Nmax{,r—1}. (10)

Construction 4 gives a lower bound of order n® for ex-(n, ord(/'())), so it remains to prove the

upper bound in Theorem 1.9. We first prove the upper bound when is odd.

Recall @ = max{f,r — ({ + 1)/2}, andletk= o, ' = _r+ kz 0. Let H be an ordered n-

vertex r-graph with C (k, ) (kn) “/c edges, where c is the implicit constant in the second
inequality of Theorem 1.2, namely (3). We aim to show that H contains a member of ord(/"()).
By Theorem 1.2 with k= a, there is for some m € [n] an interval k-partite subgraph Hof H with
e(H') =z C(k,0")(km)* and parts of size at most m.

For each edge e € H,
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i=1(lenlj| -1)=r-k.
Let f(e) be the set of the first |e n /;| = 1 elements of e N [;for 1 <j<k, so that |f(e)| =r - k.

By the pigeonhole principle, there exists a set S of size r - k such that f(e) = S for at least |H|/m"
> Ck, ) (km)* " Ykedges e € H'. Let H” ={e\S:

S Cc e € H}, so His an ordered k-uniform k-partite hypergraph with N = v(H") <km and e
(H") > C(k, )N Gince 200 = max{26,2r —£ —1} > 2r — £ —|
max{k — ¢ — 1,0} =max{r — € — 1,0 —r+ k}

=max{2r —f — 1 -k, 0} —r+

<max{2a—k L} —r+k=max{o l} —r+k=0a—r+g
It follows from (10) that e(H") = C(k, ()N ok > ex(N, IM¢'))- Therefore there exist f, g
€ Hwith |[fN 9 = | . Since His k-partite, {f, g} € ord(*(¢)) and now {fU S, g U S} € ord("
(£))- We conclude

rodk,t) a ex

(n,0rd(1 ())) < ——(kn) .
c(a,k,r)

This completes the proof of Theorem 1.9 when is odd.

When 22 is even, & — max{l,r — (£ +2)/2} Letk=a+1, ¢ = {—r+kz0, and let
H be an ordered n-vertex r-graph with clk, €)(kn)*(1 + log, n)/c edges where
c is the implicit constant in the first inequality of Theorem 1.2. Then for some m € [n]

there is an interval k-partite subgraph H of H with elf’) = C(k, ') (km)* and parts of size at
most m. Define the interval k-partite k-graph H & H as above. Since is even,
20 = max{20,2r — € -2} > 2r —{ —2, and therefore
max{k — ¢ — 1,0} =max{r — € — 1,0 —r + k}
=max{2r —f —1 -k} —r+
<max{2a —k+ 1} —r+k=max{a, {} —r+k=a—r+ )

In the last line we used k= a + 1. It follows from (10) that H contains a member of /() and then

H contains a member of /(). This completes the proof of Theorem 1.9 when is even.
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