
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021

978-1-939133-24-3

Open access to the Proceedings of the

30th USENIX Security Symposium

is sponsored by USENIX.

Jaqen: A High-Performance Switch-Native Approach
for Detecting and Mitigating Volumetric DDoS

Attacks with Programmable Switches
Zaoxing Liu, Boston University; Hun Namkung, Carnegie Mellon University;

Georgios Nikolaidis, Jeongkeun Lee, and Changhoon Kim, Intel, Barefoot Switch

Division; Xin Jin, Peking University; Vladimir Braverman, Johns Hopkins University;

Minlan Yu, Harvard University; Vyas Sekar, Carnegie Mellon University

https://www.usenix.org/conference/usenixsecurity21/presentation/liu-zaoxing

Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating

Volumetric DDoS Attacks with Programmable Switches

Zaoxing Liu⋆ Hun Namkung§ Georgios Nikolaidis† Jeongkeun Lee†

Changhoon Kim† Xin Jin⊳ Vladimir Braverman‡ Minlan Yu⋄ Vyas Sekar§

⋆Boston University †Intel, Barefoot Switch Division ⊳Peking University
‡Johns Hopkins University ⋄Harvard University §Carnegie Mellon University

Abstract

The emergence of programmable switches offers a new oppor-
tunity to revisit ISP-scale defenses for volumetric DDoS at-
tacks. In theory, these can offer better cost vs. performance vs.
flexibility trade-offs relative to proprietary hardware and vir-
tual appliances. However, the ISP setting creates unique chal-
lenges in this regard—we need to run a broad spectrum of de-
tection and mitigation functions natively on the programmable
switch hardware and respond to dynamic adaptive attacks at
scale. Thus, prior efforts in using programmable switches that
assume out-of-band detection and/or use switches merely as
accelerators for specific tasks are no longer sufficient, and
as such, this potential remains unrealized. To tackle these
challenges, we design and implement Jaqen, a switch-native

approach for volumetric DDoS defense that can run detection
and mitigation functions entirely inline on switches, with-
out relying on additional data plane hardware. We design
switch-optimized, resource-efficient detection and mitigation
building blocks. We design a flexible API to construct a wide
spectrum of best-practice (and future) defense strategies that
efficiently use switch capabilities. We build a network-wide
resource manager that quickly adapts to the attack posture
changes. Our experiments show that Jaqen is orders of magni-
tude more performant than existing systems: Jaqen can handle
large-scale hybrid and dynamic attacks within seconds, and
mitigate them effectively at high line-rates (380 Gbps).

1 Introduction

Distributed Denial of Service (DDoS) attacks continue to be
a destructive force in today’s Internet [1]. Despite decades of
work, volumetric attacks continue to be a severe threat, with
growing attack volumes and types. In this respect, Internet
Service Providers (ISPs), as the infrastructure to route Internet
traffic, are at a unique vantage point to combat such volumetric
attacks without interrupting client-side services.

In this context, programmable switching hardware has
emerged as a promising means to enable defenses against
volumetric DDoS attacks [2–7]. In particular, they promise
better cost, performance, and flexibility tradeoffs, compared
to traditional solutions. For instance, proprietary/fixed hard-
ware appliances are expensive, have limited capabilities, and
hard to upgrade in the field (e.g., [8, 9]). On the other hand,

software appliances (e.g., [10]), while dynamic and repro-
grammable, incur large latency, and are not efficient for large
attacks. In addition, both classes of approaches entail high cap-
ital costs [9–11]. In contrast, programmable switches promise
high line-speed guarantees (e.g., 6.5Tbps [12]), sufficient pro-
grammability (e.g., P4 [13]), and lower cost (Table 1).

Realizing this promise, however, is easier said than done,
and the ISP setting creates unique and fundamental challenges
that existing solutions do not address. Given that ISPs are in-

line and on the critical path of large attack traffic volumes, we
need to support a broad spectrum of detection and mitigation

natively on the programmable switches. Unfortunately, exist-
ing programmable switch-based solutions fail on one or more
of these dimensions [3, 4, 6, 7, 14]. Specifically, existing ef-
forts rely on out-of-band detection with the need to reroute
traffic to separate monitoring infrastructure, which entails ad-
ditional latency and cost [15–17]. Furthermore, many of these
support a small number of mitigation functions [4, 6, 7, 14],
or do so in an inefficient manner that exhausts the limited
switch resources and can disrupt legitimate connections [3].

To this end, we present Jaqen, a switch-native detection

and mitigation system that handles a broad spectrum of volu-
metric attacks [18] within ISPs. Unlike prior solutions, Jaqen
completely runs on programmable switches (i.e., switch-
native) and fully leverages their capabilities for accurate de-
tection and fast response as attack postures change. Jaqen is
an agile system that dynamically distributes detection and mit-
igation capabilities in a network-wide setting when available
switch resources, attack types, and traffic volumes change.

Our overarching goal is to design a secure-yet-practical
defense system, working within the limited switch chip re-
sources (e.g., O(10MB) SRAM and limited accesses to the
SRAM [12]). To see why this is challenging, consider two
natural strawman solutions. First, to cover many attacks, we
can consider running all potential detection and mitigation
mechanisms on the switch. Unfortunately, this is infeasible
due to resource constraints. Alternatively, we can run only a
subset of detection and mitigation modules. However, this cre-
ates blind spots, where we do not have visibility into ongoing
attacks, especially when attacks can dynamically change; i.e.,
the detection module checks for SYN floods but the attacker
changes to a DNS amplification that goes undetected.

USENIX Association 30th USENIX Security Symposium 3829

As a practical and robust alternative to these strawman solu-
tions, we argue for a broad-spectrum always-on detection and
on-demand mitigation design approach. That is, the detection
logic must continuously (i.e., always-on) identify all attacks
in our scope to avoid blind spots in face of dynamic attacks.
Rather than enable all mitigation modules, we install them
as needed (i.e., on demand) to optimize hardware resource
usage. Given this high-level design philosophy, we address
key algorithmic and system design challenges in Jaqen.

(1) Designing switch-native detection with high coverage:

We build a switch-native, broad-coverage detector for ISPs
by bridging universal sketch techniques in network mon-
itoring [19, 20] and general DDoS detection. Instead of
crafting multiple custom algorithms to achieve coverage
(e.g., [15, 21–27]), universal sketches make it possible to
track a broad range of current and unforeseen metrics with
a single algorithm. We design the detector with two layers:
Data plane—universal sketches as data plane primitives
that can be pulled by the controller or configured as event
triggers. Control plane—detection API for users to con-
figure the sketches, query relevant metrics, and compute
detection decisions.

(2) Flexible and performant switch-native mitigation: We
identify a unified abstraction to implement mitigation with
three interactive components: (1) filtering to drop, allow,
or rate limit packets, (2) analysis to identify malicious traf-
fic, and (3) update to the filtering when needed. For each
component, we design a library of relevant mitigation func-
tions with API based on best-practice mechanisms (e.g.,
intentional SYN drop [28] and DNS matching [23]) using
switch-optimized logic and probabilistic structures [29–33].
Thus, constructing sophisticated (and possibly new) miti-
gation strategies will be like flexibly combining different
building blocks on hardware using our API.

(3) Network-wide management to handle dynamic attacks:

When attack postures change, Jaqen needs to compute a
new resource allocation to redirect traffic to other available
switches with the smallest rerouting cost. We formulate
this as a Mixed-Integer Program (MIP). However, for large
ISPs, a state-of-the-art solver could take a long time (10s of
min) to finish. Thus, we design a responsive near-optimal
heuristic that is 3-4 orders of magnitude faster.

We implement Jaqen in Barefoot Tofino switches [12] us-
ing the P4 language [13]. Our evaluation, performed on a set
of one 6.5 Tbps programmable switch and eleven 40 Gbps
servers, shows that Jaqen (1) accurately detects the attack type
and estimates the attack volume with 97% accuracy when the
attack traffic is not negligible (>1.5% of tested 380-Gbps
throughput), (2) reacts to hybrid and dynamic DDoS attacks
within 15-sec (including 10-sec detection period), and (3) mit-
igates the attack traffic with low false positives and negatives
(varying from 0.0 to 0.072). Although our testbed only gen-
erates 380 Gbps traffic due to limited equipment, Jaqen with

one switch can potentially handle Tbps-level attacks without
interrupting legitimate users.

Contributions and roadmap. In summary, this paper makes
the following contributions:

• Highlighting the requirements for ISP-based defense and
identifying security limitations of existing P4-based de-
fense solutions in the ISP setting. (§2)

• An integrated DDoS detection and mitigation framework
entirely on programmable switches for defending volumet-
ric attacks in ISPs. (§3)

• A broad-spectrum switch-native detector using universal
sketching techniques and a library of highly optimized
mitigation primitives for developers to write state-of-the-
art and possibly new mitigation strategies in P4. (§4,§5)

• A network-wide resource manager that optimally deploys
detection and mitigation modules in the network. (§6).

• An end-to-end system realization of Jaqen (§7) and demon-
stration of its effectiveness in handling real-world large-
scale dynamic attack. (§8)

2 Background and Motivation

In this section, we begin by highlighting the requirements for
ISP-centric defense and the opportunities that programmable
switches bring. We then discuss existing defense solutions
and highlight their shortcomings.

2.1 Requirements for ISP-centric Defense

ISPs own a large hierarchy of switches and routers to route
user traffic to and from destinations, but usually do not access
application-level user information. Given this nature, defend-
ing volumetric attacks in ISPs is appealing and ISP-based de-
fense systems shall consider the following requirements:

• Impact on benign traffic: For service providers, the over-
arching goal is to improve user experiences for legitimate
users. Thus, ISP-based defenses must not interrupt or drop

legitimate user connections and shall not add large extra la-

tency to benign traffic. Ideally, ISPs should limit the amount
of traffic rerouted to out-of-band detection and scrubbing
centers, and limit the usage of slow packet processing ele-
ments (e.g., servers) on the critical network paths.

• Defense performance: As a defense system, we need to
support high packet processing capabilities to handle a
broad range of existing and future attacks.

• Cost efficiency: As ISPs need to handle massive amounts of
traffic every day (e.g., 100PB per day at AT&T in 2016 [37],
we want to reduce the capital cost of defense devices and
potentially their operational cost.

Opportunities of Programmable Switches. As observed in
concurrent efforts [3–5, 7], modern programmable switches
are appealing to augment DDoS defense performance. We
envision these switches are promising in fulfilling require-

3830 30th USENIX Security Symposium USENIX Association

• UDP-based attacks: Amplification attacks using various
UDP-based protocols—DNS, NTP, SNMP, SSDP, Mem-
cached, QUIC, and UDP flood.

• ICMP-based attacks: ICMP flood, Smurf attack, etc.

• Application-layer attacks: simple unencrypted HTTP Get/-
Post flood, SIP Register flood, etc.

Interestingly, we can further extend the coverage to some
non-volumetric attacks by using Jaqen API described in §4,
such as Slowloris, HTTP slow post, ARP cache poisoning,
and DNS spoofing. We describe these extensions in Table 16.

Potential limitations. We analyze the potential system and
security limitations of Jaqen. First, existing programmable
switches used in Jaqen do not implement full packet parsing.
Thus, any attack detection and mitigation requiring payload
information cannot be supported. Second, Jaqen needs a few
seconds to react to the attacks. An advanced attacker who
smartly and frequently changes the attack types (e.g., <5s)
can evade the defense. However, this potential evasion would
require more computation/bandwidth and make it more diffi-
cult for attackers to conceal their identities (e.g., due to fre-
quent traffic pattern changes), leading to alternative defenses
such as IP filtering near the attack source.

3.3 Challenges

Given this workflow, we highlight the key design challenges
that we need to address in the following sections.

Challenge I: Broad detection coverage on current and fu-

ture volumetric attacks (§4). Programmable switches are
constrained in terms of expressiveness compared to general-
purpose servers [50] and also have limited resources. As an
example, Barefoot Tofino switch [12] has O(10)MB SRAM,
O(1) ALUs, and O(10) hash units.3 Such resource constraints
limit the possibility of fitting a large set of (complex) algo-
rithms into switch hardware. Thus, a natural question is, how
do we achieve broad-spectrum detection for many attacks?

Challenge II: Switch-optimized, resource-efficient mitiga-

tion (§5). Programmable switch’s high performance guaran-
tee comes with constrained hardware resources and computa-
tional model. Best practice mitigation mechanisms designed
for servers do not work well for programmable switches (e.g.,
not scalable and dropping legitimate connections) and we
need to carefully craft mitigation functions to deliver envi-
sioned high-performance protection to the users.

Challenge III: Efficient ISP-scale defense for dynamic at-

tacks (§6). In an ISP, attack traffic can enter the network from
arbitrary ingresses. One alternative is to deploy Jaqen modules
only at the ingress switches on the edge. However, given the
limited resources at switches (and other concurrent services
on the switches), this may not be feasible. To this end, we pro-
pose to leverage other switches that have available resources

3The actual numbers are proprietary under switch vendor’s NDA.

Detection Metric Description Poseidon Jaqen

Count/Aggr. [30] Count/Aggr. over a flow X X

Entropy [51] Identify anomalies/attacks × X

Distinct flows [52] Distinct TCP/UDP flows × X

Traffic change [53] Heavily changed flows × X

Signatures Volumes of special packets × X

New metrics Arbitrary G-sum in [54] × X

Table 2: Poseidon vs. Jaqen in supported detection metrics.

to offer an ISP-scale network-wide defense while minimiz-
ing the total resource usage. When attack posture changes,
we need to quickly react by recomputing a resource alloca-
tion that has minimal changes from the previous allocation.
However, this means that we need fast resource allocation
decisions, especially in large-scale networks, with minimal
disruptions to ongoing traffic.

4 Efficient and General Detection

Programmable switch resources are constrained compared
to x86 servers, which impose restrictions on supporting a
broad spectrum of algorithms as x86. Thus, for ISP-scale
detection running completely in switches, we want our detec-
tion module to be as compact as possible while having good
coverage of attacks. Achieving both requirements is challeng-
ing as fitting many detection algorithms (e.g., [15, 21–27])
for coverage in the switch is infeasible. Instead, we observe
that recent advances in universal sketching [19, 20, 55] for
network monitoring can play a crucial role in designing a
general DDoS detector. Conceptually, universal sketches are
a class of approximation algorithms that can simultaneously
estimate a range of network statistics supported by custom
algorithms, e.g., heavy hitters [20, 27, 53, 56, 57], distinct
flows [20, 58, 59], and entropy [60–62]. More precisely, a uni-
versal sketch is able to estimate any aggregated functions from
a data stream that are asymptotically bounded by the L2 norm
of the data [19], while recent switch-based approaches only
support counting/aggregating flow sizes based on Count-Min
sketch [30]. We summarize the major differences between
Poseidon’s monitor [3] and Jaqen’s detector in Table 2.

To bring universal sketching into ISP-centric detection,
we design an approach that has data plane and control plane
components:
Switch layer: “Future-proof” universal sketches. As
shown in Figure 3, the switch layer contains multiple uni-
versal sketches, complemented by a signature-based detector.
Together, Jaqen has the ability to estimate a variety of current
and possibly unforeseen metrics that are relevant to the attacks
(i.e., future-proof), laying the foundation for accurate attack
detection. For instance, the entropy value changes in terms of
the srcIP and dstIP are a strong indicator of an ongoing attack;
the difference between the numbers of DNS requests and
responses hints a DNS-related attack. It is worth noting that
some attack-related metrics that require cryptography data
(e.g., Malformed SSL Flood) or require complete payload
parsing (e.g., Zorro attack [63]) are outside our scope due to

USENIX Association 30th USENIX Security Symposium 3833

Switch Pipeline

ActionAndTest

HeaderHashAndTest

UnmatchAndAction

BlockList

AllowList

RateLimit

ReportCtr

Recirculate

Filtering Analysis Update

Figure 5: Abstraction of mitigation strategies.

optimized for switch resources based on state-of-the-art ap-
proaches. In total, we provide 11 building blocks to construct
a broad range of mitigation strategies for the switches in ISPs.

1. Filtering: In a mitigation strategy, we first need to pro-
vide functions to block, rate limit, or allow packets that meet
certain rules. For instance, a blocklist can drop packets from
some malicious source IPs while an allowlist can directly pass
the traffic from certain users (e.g., VIPs). In this component,
we provide five functions as the following:

• ExactBlockList/ExactAllowList(identity,size) are two
types of lists to drop or allow packets that exactly match a
flow identify (e.g., srcIP, 5-tuple, or subnet). For example,
blocking any traffic from srcIP 10.0.0.1. We encapsulate
the exact match tables provided by the switch hardware to
construct these two functions. Due to the switch memory
constraint, the size of rules is usually limited to O(10K) per
processing stage in switch pipelines. These exact lists are
particularly useful when a small set of “VIPs” or “malicious
clients” are known.

• ApproxAllowList/ApproxBlockList(identity,config) pro-
vide approximate allow- and blocklists. They offer the same
functionality as ExactAllowList/ExactBlockList(identity,

size) but can scale to O(10M) rules (depends on the config)
if some approximation errors are acceptable. While errors
are unavoidable, our design goal is not to let the errors af-
fect legitimate ISP users. We achieve so by leveraging the
features of the approximate data structures: (1) In the ap-
proximate allowlist, we use blocked bloom filters (w/ one
hash function per block) to save switch resources. Bloom
filers will only create false positives that may allow a small
portion of attack traffic to pass through, while the legiti-
mate connections are always allowed. (2) Similarly for the
approximate blocklist, we design an LRU-alike lossy hash
table in the switch, leading to only false negatives from the
structure. The false negatives in a blocklist mean that some
attack traffic might not be blocked while legitimate traffic
(not on the list) remains unaffected.

Hardware constraints: To implement the above struc-
tures, we need to store flow identities in register arrays us-
ing switch SRAM. The size of a register is upper bounded
by a certain limit (e.g., 64-bit). To store flow identities
that are larger than this limit (e.g., 5-tuple), we need to use
multiple register arrays to store them, or replace the actual
identities with hash values. While using hashed flow in-

dices is a common practice, it may bring additional errors.

• RateLimit(identity,rate) maintains a rate limiter table
with flow identities and user-defined rates. We use the built-
in meter primitive in P4 to mark the flows with different col-
ors and perform different rate controls based on the colors;
e.g., green→no action, yellow→user rate, and red→drop.

2. Analysis: In the filtering step, some traffic has been marked
as “allowed” or “blocked” and will bypass other functions
in the switch for forwarding or dropping. For the unmarked
traffic, we need to analyze whether the traffic is benign or not
using designed four analysis functions.

• ActionAndTest(action,List(predicate)) is a method to
perform an action on a packet and analyze if succeeding
packets match a list of pre-defined predicates. The sup-
ported actions here are switch embedded actions such as
drop and forward. For instance, we use this API call to im-
plement a best-practice mitigation function of intentional
SYN drop (DropFirstSYN) [28]. This function is to filter
out the malicious SYN traffic and prevent the switch being
directly exploited as a reflector/amplifier using spoofed sr-
cIPs. Specifically, for every SYN packet, the switch checks
if it is a first-time SYN or a retransmitted SYN within 5
seconds (predicates). If the SYN is a first-timer, a drop ac-
tion will be performed; the packet will be allowed to pass
otherwise.

• HeaderHashAndTest(identity,action) defines a method to
compute hashing on the flow identify (e.g., 5-tuple) of a
packet and perform a test action with the hash. For example,
the switch can produce a “cookie or nonce” by hashing the
5-tuple header fields and constructing a reply packet with
the nonce. As a case study, we will use this primitive to
design two types of switch-optimized SYN proxy/cookie
mechanisms in the later “Case study” section.

• UnmatchAndAction(List(predicate),action) implements a
function to test if a list of predicates are matched and
then perform a packet action based on the matching
result. Besides drop and forward, two additional ac-
tions are supported: insert to/delete from a probabilis-
tic structure—counting bloom filter (CBF) [32]. In par-
ticular, we can use this function to realize an effec-
tive mechanism [23] to mitigate amplification attacks
following specific protocols (e.g., DNS, NTP, SNMP).
When some predicates are matched — protocol matches
<UDP,src=10.0.0.*,port=53>, packet type matches
<OR=0>, error field matches <RCODE!=0>, the packet iden-
tity will be inserted to the CBF as a valid DNS request. If
a DNS reply matches <UDP,dst=10.0.0.*,port=53>
and <OR=1> in the CBF, the packet identity will be deleted
from the CBF. Any succeeding unmatched DNS replies
(above a threshold) will perform action drop.

• KVStore(key,value,size) provides a small efficient key-
value store using hash-based exact-match tables [67, 68].

USENIX Association 30th USENIX Security Symposium 3835

Client Switch Server

SYN

Error SYN-ACK

w/ cookie

RST w/

cookie

SYN-ACK

SYN

ACK

Cookie

Verify cookie

+allowlist

(a) SYN proxy mode 1.

Client Switch Server

SYN

SYN-ACK

w/ cookie

ACK w/

cookie+1

Verify cookie

+allowlist

(b) SYN proxy mode 2.

RST

SYN-ACK

SYN

ACK

Figure 6: On-switch SYN Proxy workflows.

We can treat it as a high-performance, trustworthy registry
service for certain protocols. For instance, we can leverage
this function to build a high-performance DNS cache.

3. Update: After the analysis step, the (suspicious) traffic has
been marked with a label (e.g., benign). As the final step of
the mitigation, we may want to update an allow/blocklist or
rate limiter to allow/block or rate limit the succeeding traffic
from that flow. Since the filtering functions are placed ahead
of the analysis components in the switch pipeline, we need
either the switch controller or packet recirculation to update a
list, as the following two API calls.

• ReportCtr(identity,type) requests to update one type of
the filtering lists (i.e., blocklist, allowlist, and rate limiter)
via switch controller. Specifically, the packet will be mir-
rored to the controller CPU via a dedicated PCIe lane and
write information (identity) back to the switch data plane
via the control API.

• Recirculate(identity,type) implements a similar update
functionality without going through the switch controller.
Specifically, this API function modifies a mirrored packet
and recirculates it to the ingress port to update a filtering
list with the required flow identity.

Hardware constraints: When using these two update func-
tions, we as developers need to pay close attention to the
hardware constraints: (1) The PCIe lane between the switch
data plane and the control CPU has limited bandwidth (e.g.,
100Gbps). It is impossible to process every packet on the
controller, especially when the throughput is at a Tbps level.
Thus, as shown in our mitigation examples later, we update
the allow/block/rate-limit lists only when necessary. Take
SYN flood mitigation as an example; we do not perform an
update for every attack flow but update the allowlist only
when legitimate clients pass DropFirstSYN and SYN Proxy
tests successfully. (2) Packet recirculation affects the switch
processing capability. For example, recirculating every packet
will halve the total capability. We can perform recirculations
without performance degradation when the effective through-
put is lower than the switch limit. But as a general rule, any
mitigation strategy should control the expected number of
recirculated packets.

Case study: Design switch-native SYN proxy using the

API. SYN Proxy/Cookie is a best-practice method to miti-
gate SYN flood attack using a server as a proxy for shielding
malicious SYN traffic. The typical workflow of a SYN proxy
can be described as: (1) When a SYN is received, the proxy
server generates a unique cookie [69] with 5-tuple and adds
it to the sequence number (seq. no.) header field of the
corresponding SYN-ACK reply. (2) When a legitimate client
receives the SYN-ACK it will acknowledge back an ACK
packet with cookie+1 in its seq. no.; Otherwise, an attacker
would not send the cookie back. (3) Once the proxy verifies
the correctness of the cookie, it will record session informa-
tion (e.g., seq. no. difference) and construct a new SYN to
the designated destination to establish the connection. The
succeeding packets will go through the proxy to translate the
seq. no. in order to continue the original TCP handshake.

Unfortunately, the current switch-based SYN proxy that
directly implements the above server-based design (e.g., Po-
seidon [3]) has scalability issues when there is a large number
of legitimate connections. They maintain seq. no. transla-
tion data for each legitimate connection using a single hash
table (e.g., size 65536). Inevitably, using a single hash ta-
ble for per-connection state storage would break the cor-
rectness of many legitimate connections due to hash colli-
sions. For instance, keeping 65536 legitimate connections on
a hash table of size 65536 has expected 24109 collisions.4

To address this issue, we design two SYN proxy modes with
HeaderHashAndTest(identity,action) to perform a “cookie”
operation on designated header fields with hashing and send
back a response packet (e.g., SYN-ACK) to “test” if the
client is legitimate. Note that in our design, one can use
ApproxAllowList(identity,config) to record a large number
of legitimate identities that have passed the tests. The approx-
imation errors will not affect legitimate traffic since Bloom
filters do not create false negatives.

• SYNProxyMode1 as depicted in Figure 6(a): (a) When the
switch receives a SYN, it will generate a cookie to be added
in the seq. no. header field while modifying the acknowl-
edgment number field to a large out-of-window number
(e.g., +218). (b) When the client receives such a SYN-ACK
with a wrong ack. no., it realizes issues in the current TCP
handshake and generates an RST with the received seq. no.
(cookie), according to standard TCP specs [70]. (c) When
the RST packet is received by the switch and the cookie
is verified, the connection identity (e.g., 5-tuple) will be
added to an allowlist. Then the client will retry to estab-
lish a connection. Note that this proxy can also be used as
mitigation for DNS traffic carried over TCP.

Extra connection setup time: This mode requires the
client to retry a SYN to establish the connection. As we
show in Table 4, most legitimate clients should retry the

4The expected collisions for a sequence of n values and a hash function
of m values, can be calculated using birthday paradox as n−m+m(m−1

m
)n.

3836 30th USENIX Security Symposium USENIX Association

Minimize: TotalRes, subject to

TotalRes = ∑
i

∑
j

Alloci, j (1)

∀i : ∑
j

Alloci, j ≤ AvailResi (2)

TotalAvailRes = ∑
i

AvailResi (3)

∀i, j : Alloci, j ∈ {0,1, . . . ,TotalAvailRes} (4)

∀d,e,k : Nd,e,k ⊆ {1 . . . i} (5)

∀d,e,k : ∑
i

∑
j

Alloci∈Nd,e,k , j ∗MCapi, j,k ≥ AttackVold,e,k (6)

∀e,d,k : ∑
i

∑
j

Alloci∈Nd,e,k , j ∗BCapi, j,k ≥ ResVole,d,k (7)

∀i : ∑
j
∑
k

Alloci, j ∗ (MCapi, j,k +BCapi, j,k)≤ Bandi (8)

Figure 9: MIP to compute optimal resource allocation

hardware type of the programmable switch. Further, the
mitigation capability of module j on switch i for attack
k is given as MCapi, j,k and the processing capability for
reverse traffic is BCapi, j,k.

• ISP routing and Traffic Engineering information: We as-
sume the ISP has a controller that maintains and imple-
ments the routing and traffic engineering decision for all
the network traffic that passes through the ISP. For instance,
in a software-defined network (SDN), the (virtually) cen-
tralized controller maintains the routing decisions for each
network flow on each switch. In our network-wide set-
ting, we have the aggregated traffic distribution informa-
tion at the controller level, which is defined as Bandi,k for
switch i, traffic type k , e.g., Bandi,DNS =< DNS = 0.3 >

and Bandi,SYN =< SY N = 0.2 >.

Problem statement. Given the problem inputs from the ISP,
we define our network-wide resource allocation problem. In-
tuitively, based on the existing traffic distribution, we want to
minimize the usage of hardware resources while still cover
all attack traffic from all ingresses. We define a MIP formula
in Figure 9 with constraints and definitions described below:

• Eq. (1) defines the total allocated resource as TotalRes,
which is the aggregation of the resource allocated for each
switchi and module j.

• Eq. (2) ensures that the module resource allocation on any
switch will not go over the available resource budget.

• Eq. (3) defines the total available resource as the sum of
the available resources on all switches.

• Eq. (4) defines the number of allocated module j as an
integer from total available resource.

• Eq. (5) defines the switch set that route the traffic of Attack
k from Ingress d to Egress e. This information is given from

Algorithm 1 Greedy Algorithm for Resource Allocation
1: Inputs:
2: Topology graph G = (V,E) with IN as the ingress set and EG

as the egress set
3: Routing info Routei for each switch
4: Ingress d ∈ IN, egress e ∈ EG, and attacks k ∈ K

5: ∀d,e,k: Nd,e,k

6: ∀i ∈ |V |: AvailResi

7: ∀d,e,k: AttackVold,e,k and initialize AttackVold,e,k,i
8: ∀d,e,k: ResVole,d,k and initialize ResVole,d,ki

9: ∀k, i, j: MCapi, j,k and BCapi, j,k

10: procedure GREEDYHEURISTIC(D(m,n))
11: for d in IN do

12: for e in EG do

13: BFS with AttackVold,e,k and Routei

14: → update AttackVold,e,k,i
15: BFS with ResVole,d,k and Routei

16: → update ResVold,e,k,i

17: Sort the (d,e) paths P by total volume of the attacks.
18: for p in P do

19: Sort Nd,e,k by AttackVold,e,k,i∈Nd,e,k

20: for d in IN do

21: for e in EG do

22: Update Alloci, j with MCapi, j,k and BCapi, j,k

23: Output: ∀i, j: Alloci, j

routing decisions and detection results on the controller.

• Eq. (6) captures all the allocated mitigation modules on the
ingress-egress path (d,e) and ensures the attack traffic on
the path has been taken care of.

• Similarity, eq. (7) captures all the allocated modules on the
egress-ingress path to make sure the response traffic has
been handled. Eq. (8) confirms the capacity of allocated
modules does not exceed the processing bandwidth.

Fast mitigation module allocation. We design a greedy
heuristic to achieve real-time mitigation module allocation.
We present the pseudocode of the heuristic in Algorithm 1.
The high-level intuition is the following: For each pair of
ingress and egress that has potential attack traffic, we use
Breadth First Search (BFS) with the given routing decisions
to find the attack volume distribution on each of the switches.
We then sort the switches along the path by their hybrid at-
tack volume and allocate the mitigation modules to cover the
largest volumes first in a greedy manner.

Updating mitigation modules for dynamic attacks. When
mitigation modules need to change due to dynamic attacks,
Jaqen follows a three-step procedure to update a switch: (1)
Rerouting: the controller disables the filtering components on
all activated switches and then computes and distributes new
forwarding rules with the current switch excluded, in order to
reroute the legitimate traffic on this switch. (2) Replication:

Once the new rules have been applied, replicate the switch
states about the legitimate connections (if not expired) in the

3838 30th USENIX Security Symposium USENIX Association

Packet Packet type?
Not TCP

Verify cookie

RSTSYN

Matched
cookie?

New out-of-window
SYN-ACK

No

To update
AllowList

Update

Yes

Add cookie and
reply back

table compute_syn_cookie {
actions { compute_cookie; } }

action compute_cookie () {

modify_field_with_hash_based_offset (

cookie, 0, syn_cookie_hash, 0x80000000); }

field_list_calculation syn_cookie_hash {
input { syn_cookie_seed; }

algorithm : crc32;

output_width : 32; }

field_list syn_cookie_seed {
ipv4.srcAddr;

ipv4.dstAddr;

tcp.srcPort;
tcp.dstPort;

metadata.nonce1; }

#define SYNProxyMode1
apply (check_packet_type);

apply (nonce1);
apply (nonce2);

if (pkt_type == RST) {

apply (compute_syn_cookie);
apply (verify_syn_cookie);

if (metadata.cookie_diff == 0) {
apply (cookie_match); }

}

if (pkt_type == SYN or
(pkt_type == RST and cookie_match)) {

apply (check_or_update_allowlist);
}

if (pkt_type == SYN and allowlist_match) {

apply (syn_ack_generate); }
apply (forward);

}

Figure 10: L to R: (1) SYN proxy mode 1 workflow (2) Abstract P4 code (3) SYN cookie example.

Impl. Match Units Hash Bits SRAM Action Slots

Original [20] 245 322 50 133
Our impl. 60 151 46 41

Table 5: Resource utilization of a universal sketch.

controller. (3) Swapping: reprogram the switch with the new
set of modules and required states. Report to the controller to
include this switch into the forwarding rules.

7 Jaqen Implementation

We have implemented a Jaqen prototype based on Barefoot
Tofino using P4-14 for switch modules and using Python for
switch controller. For P4 code compilation, we use Barefoot
P4 Studio SDE [72]. In this section, we briefly describe how
we implement the detection and mitigation API and demon-
strate the convenience for developers to build new defenses.
We open-source the prototype of Jaqen in [73].

Detection API and logic. To implement Query(proto,func

,mode,freq), we need multiple universal sketches [20] and
signature-based counters in the switch data plane. We imple-
ment a universal sketch using a smaller number of ALUs than
its original model implementation. As presented in Table 5,
we achieve better resource efficiency by combining redundant
sketch constructions and merge multiple hash computations
and register operations into a single ALU operation. These
optimizations are chosen depending on the specific resource
numbers from Barefoot Tofino switch [12] and the accuracy
guarantees we want to achieve. Thus these configurations are
subject to change for other types of programmable switches.

When implementing signature-based counters, we write
custom packet parsers to count some particular packets (e.g.,
TCP SYN, ICMP, and UDP DNS requests). Based on the
configured mode and freq, the counters in the switch will
either be self-reported or pulled by the switch controller. We
will use these counters to compute attack-specific signatures
(e.g., the number of unacked/terminated SYN requests) based
on detection logic.

Mitigation API. We implement mitigation API using P4 and

macro functions with several underlying structures described
below. We also give an example workflow of Jaqen’s SYN
proxy and its abstract code in Figure 10. We refer reads to the
project repository for more examples.

1. Blocked Bloom filters: We split Bloom filter’s single array
into multiple registers as a blocked Bloom filter. This split
will maintain asymptotically the same error bounds [29].
We implement the blocked filter with one CRC32 hash per
block of 1-bit registers. In each switch pipeline stage, we
parallelize multiple blocks of filters for resource efficiency.

2. Counting Bloom filters: The goal of CBF is to record the
inserted flow identities while supporting deletions from
the filter. We implement CBF using an efficient two-part
structure, where the controller maintains a complete CBF
with 8-bit counters and the switch data plane stores an
equivalent bloom filter with 1-bit registers.

3. LRU cache: We implement a lossy hash table with multi-
layer of Least Recently Used (LRU) caches (r register ar-
rays of d entries). When insertion, we hash the item to
select one of d columns to conduct a rolling replacement
of the r entries in the column by replacing the first one
with the new entry, the second with the first, the third with
the second, etc. When query, we check if the current item
appears in one of the corresponding r entries in one of the
d columns based on the hash.

4. Key-value store: We implement a key-value store based
on the P4 logic of [68]. We offer a store that stores up to
64K entries with 16-byte keys (up to 64-byte) and 128-byte
values. This store can be used for DNS or ARP caches in
the local network for high-performance lookups.

5. Switch-embedded structures: We leverage the embedded
exact, range, or ternary5 match-action tables (using
SRAM and TCAM) where we specify a set of flow identi-
ties to match and define the action as allow, drop, rate_limit.

5The term “ternary” refers to the memory’s ability to store and query data
using three different inputs: 0, 1, and wildcard.

USENIX Association 30th USENIX Security Symposium 3839

References

[1] “Q1 2018 DDoS Trends Report.” https://bit.ly/2JDR1D9.

[2] “Transmission Control Protocol, DARPA Internet Program Pro-
tocol Specification.” https://www.barefootnetworks.com/

use-cases/in-nw-DDoS-detection/, Barefoot, 2019.

[3] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks
with programmable switches,” in Proc. of IEEE NDSS, 2020.

[4] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing with
SDN data plane,” in Proc. of IEEE Infocom, 2017.

[5] J. Bai, J. Bi, M. Zhang, and G. Li, “Filtering spoofed ip traffic using
switching asics,” in Proc. of ACM SIGCOMM Posters and Demos,
2018.

[6] G. Grigoryan and Y. Liu, “Lamp: Prompt layer 7 attack mitigation
with programmable data planes,” in Proc. of ANCS, 2018.

[7] A. C. Lapolli, J. A. Marques, and L. P. Gaspary, “Offloading real-
time ddos attack detection toprogrammable data planes,” in Proc.

IFIP/IEEE IM, 2019.

[8] “Arbor Networks APS Series.” https://www.arbornetworks.

com/ddos-protection-products/arbor-aps.

[9] “Cisco Guard XT 5650 Series.” https://goo.gl/DoFRBk.

[10] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and elastic ddos defense,” in USENIX Security, 2015.

[11] “Arbor Networks TMS Series.” https://www.arbornetworks.

com/ddos-protection-products/arbor-tms.

[12] “Barefoot Tofino.” https://barefootnetworks.com/

products/brief-tofino/.

[13] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIG-

COMM Comput. Commun. Rev., 2014.

[14] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, and H. Duan,
“Nethcf: Enabling line-rate and adaptive spoofed ip traffic filtering,”
in Proc. of IEEE ICNP, 2019.

[15] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting,” in Proc. of ACM SIGCOMM, 2002.

[16] “Cisco ios netflow.” https://www.cisco.com/c/en/us/

products/ios-nx-os-software/ios-netflow/index.

html.

[17] M. Wang, B. Li, and Z. Li, “sflow: Towards resource-efficient and
agile service federation in service overlay networks.,” in ICDCS,
pp. 628–635, IEEE Computer Society, 2004.

[18] “DDoS Breach Costs Rise to over $2M for Enterprises.” https:

//goo.gl/o13QxD, Kaspersky Lab, 2018.

[19] V. Braverman and R. Ostrovsky, “Zero-one frequency laws,” in Proc.

of STOC, 2010.

[20] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proc. of ACM SIGCOMM, 2016.

[21] C. Fachkha, E. Bou-Harb, and M. Debbabi, “Fingerprinting internet
dns amplification ddos activities.,” CoRR, vol. abs/1310.4216, 2013.

[22] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and
denial of service attacks: Characterization and implications for cdns
and web sites,” in Proc. of WWW, 2002.

[23] G. Kambourakis, T. Moschos, D. Geneiatakis, and S. Gritzalis, “A fair
solution to dns amplification attacks,” in Proc. WDFIA, 2007.

[24] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic
feature distributions,” in In Proc. of ACM SIGCOMM, 2005.

[25] W. Lee and D. Xiang, “Information-theoretic measures for anomaly
detection,” in Proc. of IEEE S&P, 2001.

[26] H. Wang, D. Zhang, and K. G. Shin, “Detecting syn flooding attacks,”
in In Proc. of INFOCOM, 2002.

[27] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proc. of USENIX NSDI, 2013.

[28] “Intentional SYN Drop for mitigation against SYN flooding attacks.”
https://bit.ly/33S5eGf, 2018.

[29] A. Broder, M. Mitzenmacher, and A. B. I. M. Mitzenmacher, “Net-
work applications of bloom filters: A survey,” in Internet Mathematics,
2002.

[30] G. Cormode and S. Muthukrishnan, “An Improved Data Stream Sum-
mary: The Count-min Sketch and Its Applications,” J. Algorithms,
2005.

[31] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” ICALP, 2002.

[32] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting bloom filters,” in European

Symposium on Algorithms, pp. 684–695, Springer, 2006.

[33] M. Tirmazi, R. Ben Basat, J. Gao, and M. Yu, “Cheetah: Accelerating
database queries with switch pruning,” in Proc. of ACM SIGMOD,
2020.

[34] “Arbor Networks APS Datasheet.” https://www.netscout.com/
sites/default/files/2018-04/DS_APS_EN.pdf, 2018.

[35] “NSFOCUS Anti-DDoS System Datasheet.” https:

//nsfocusglobal.com/wp-content/uploads/2018/05/

Anti-DDoS-Solution.pdf, 2018.

[36] “Stop DDoS Attacks before They Disrupt the Customer Experience.”
https://intel.ly/2N9hexa, 2020.

[37] “Where at&t keeps an all-seeing eye on its ginormous data-
shuttling network.” https://fortune.com/2016/04/30/

att-gnoc-global-data-network-operations-center/,
AT&T, 2016.

[38] “Edge-Core Networks - WEDGE100BF-65X-O-AC-F-US QSFP
100g.” https://bit.ly/2HiZFW0.

[39] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proc. of ACM SIGCOMM, 2017.

[40] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in Proc.

of ACM SIGCOMM, 2013.

[41] J. M. Smith and M. Schuchard, “Routing around congestion: Defeat-
ing ddos attacks and adverse network conditions via reactive BGP
routing,” in Proc. of IEEE Symposium on Security and Privacy, 2018.

[42] S. Ramanathan, J. Mirkovic, M. Yu, and Y. Zhang, “Senss against
volumetric ddos attacks,” in Proc. of ACSAC, 2018.

[43] “P4 Behavior Model version 2.” https://github.com/p4lang/
behavioral-model, 2018.

[44] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina,
“Impact of packet sampling on anomaly detection metrics,” in Proc. of

ACM IMC, 2006.

[45] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani,
“Fast monitoring of traffic subpopulations,” in Proc. of IMC, 2008.

[46] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in
Proc. pf IEEE symposium on security and privacy, 2013.

[47] “Multi-function Platform for Cloud Networking.” https://bit.

ly/2JhJQB6, Arista, 2018.

[48] “EX9200-Flexibility and scalability for business agility and growth.”
https://juni.pr/2JnC1tY, Juniper, 2018.

[49] “Google Cloud using P4Runtime to build smart networks.” https:
//bit.ly/2Q7zG6B, Google, 2018.

[50] G. Antichi, T. Benson, N. Foster, F. M. V. Ramos, and J. Sherry,
“Programmable Network Data Planes (Dagstuhl Seminar 19141),”
Dagstuhl Reports, 2019.

[51] G. Nychis, V. Sekar, D. G. Andersen, H. Kim, and H. Zhang, “An
empirical evaluation of entropy-based traffic anomaly detection,” in

3844 30th USENIX Security Symposium USENIX Association

Proc. of ACM IMC, 2008.

[52] P. Flajolet, ric Fusy, O. Gandouet, and et al., “Hyperloglog: The analy-
sis of a near-optimal cardinality estimation algorithm,” in Proc. AOFA,
2007.

[53] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based
change detection: Methods, evaluation, and applications,” in Proc. of

ACM IMC, 2003.

[54] V. Braverman, R. Krauthgamer, and L. F. Yang, “Universal streaming
of subset norms,” CoRR, vol. abs/1812.00241, 2018.

[55] V. Braverman, R. Ostrovsky, and A. Roytman, “Zero-one laws for slid-
ing windows and universal sketches,” in Proc. of APPROX/RANDOM,
2015.

[56] R. Schweller, A. Gupta, E. Parsons, and Y. Chen, “Reversible sketches
for efficient and accurate change detection over network data streams,”
in Proc. of ACM ICM, 2004.

[57] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.

ACM SOSR, 2017.

[58] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan,
“Counting distinct elements in a data stream,” in Proc. of RANDOM,
2002.

[59] P. Flajolet, É. Fusy, O. Gandouet, and et al., “Hyperloglog: The analy-
sis of a near-optimal cardinality estimation algorithm,” in In Proc. of

AOFA, 2007.

[60] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang, “Data streaming
algorithms for estimating entropy of network traffic,” in Proc. of

SIGMETRICS/PERFORMANCE, 2006.

[61] A. Chakrabarti, G. Cormode, and A. Mcgregor, “A near-optimal algo-
rithm for estimating the entropy of a stream,” ACM Trans. Algorithms,
2010.

[62] P. Clifford and I. Cosma, “A simple sketching algorithm for entropy
estimation over streaming data,” in Proc. of AISTATS, 2013.

[63] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “Iotpot: Analysing the rise of iot compromises,” in Proc.

of USENIX WOOT, 2015.

[64] M. Yang, J. Zhang, A. Gadre, Z. Liu, S. Kumar, and V. Sekar, “Joltik:
enabling energy-efficient" future-proof" analytics on low-power wide-
area networks,” in Proc. of ACM MobiCom, 2020.

[65] Q. Xiao, Z. Tang, and S. Chen, “Universal online sketch for tracking
heavy hitters and estimating moments of data streams,” in Proc. of

IEEE INFOCOM, 2020.

[66] Z. Liu, S. Zhou, O. Rottenstreich, V. Braverman, and J. Rex-
ford, “Memory-efficient performance monitoring on programmable
switches with lean algorithms,” in Proc. of SIAM APoCS, 2020.

[67] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in Proc. ACM SOSP, 2017.

[68] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and
I. Stoica, “Distcache: Provable load balancing for large-scale storage
systems with distributed caching,” in Proc. of USENIX FAST, 2019.

[69] A. Zuquete, “Improving the functionality of syn cookies,” in Proc.

IFIP TC6/TC11, 2002.

[70] “Transmission Control Protocol, DARPA Internet Program Pro-
tocol Specification.” https://tools.ietf.org/html/rfc793,
DARPA, 1981.

[71] “The internet topology zoo.” http://www.topology-zoo.org/.

[72] “Barefoot P4 Studio.” https://www.barefootnetworks.com/

products/brief-p4-studio/.

[73] “Jaqen Prototype Repo.” https://github.com/Froot-NetSys/
Jaqen, 2021.

[74] “Apache Thrift.” https://thrift.apache.org/.

[75] “Data plane developer kit (dpdk).” https://software.intel.

com/en-us/networking/dpdk.

[76] “The CAIDA UCSD Anonymized Internet Traces 2018.”
http://www.caida.org/data/passive/passive_2018_

dataset.xml.

[77] “Capture Traces from Mid-Atlantic CCDC 2012.” http://www.

netresec.com/?page=MACCDC.

[78] “DARPA Scalable Network Monitoring (SNM) Program Traf-
fic, Traces taken 2009-11-05 to 2009-11-05.” https://www.

impactcybertrust.org/dataset_view?idDataset=742.

[79] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proc. of IMC,
2015.

[80] “Google Public DNS.” https://developers.google.com/

speed/public-dns/.

[81] “Memcached.” https://memcached.org.

[82] “Ping flood (icmp flood).” https://www.imperva.com/learn/

application-security/ping-icmp-flood/.

[83] “BIND 9 Open Source DNS Server.” https://www.isc.org/

downloads/bind/.

[84] “Intel vtune amplifier.” https://software.intel.com/en-us/
intel-vtune-amplifier-xe.

[85] “Quagga routing suite.” https://www.quagga.net/.

[86] “Mininet.” http://mininet.org/.

[87] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos
defense mechanisms,” SIGCOMM Comput. Commun. Rev., 2004.

[88] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mecha-
nisms: Classification and state-of-the-art,” Comput. Netw., 2004.

[89] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms
against distributed denial of service (ddos) flooding attacks.,” IEEE

Communications Surveys and Tutorials, 2013.

[90] “Fighting DDoS with Distributed Defense.” https://bit.ly/

2JGIkYG, 2016.

[91] C. Pham-Quoc, B. Nguyen, and T. N. Thinh, “Fpga-based multicore
architecture for integrating multiple ddos defense mechanisms,” ACM

SIGARCH Computer Architecture News, 2017.

[92] N. Hoque, H. Kashyap, and D. Bhattacharyya, “Real-time ddos attack
detection using fpga,” Comput. Commun., 2017.

[93] Y. Chen and K. Hwang, “Collaborative detection and filtering of shrew
ddos attacks using spectral analysis,” J. Parallel Distrib. Comput.,
2006.

[94] H. Chen, Y. Chen, and D. H. Summerville, “A survey on the applica-
tion of fpgas for network infrastructure security,” IEEE Communica-

tions Surveys and Tutorials, 2010.

[95] R. K. Thomas, B. L. Mark, T. Johnson, and J. Croall, “Netbouncer:
Client-legitimacy-based high-performance ddos filtering,” in Proc. of

DARPA DISCEX-III, 2003.

[96] “Device, system and method for analysis of fragments in
a fragment train.” https://patents.google.com/patent/

US20080127342, US Patent, 2007.

[97] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-wide heavy
hitter detection with commodity switches,” in Proc. of SOSR, 2018.

[98] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in Deme

session of ACM SIGCOMM, 2015.

[99] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in Proc. of ACM SIGCOMM, 2017.

[100] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in Proc. of ACM SIGCOMM, 2019.

[101] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
Proc. of ACM SIGCOMM, 2018.

USENIX Association 30th USENIX Security Symposium 3845

Protocol Attack Description Jaqen Mitigation Functions

SYN flood
Attackers send a large volume of fabricated SYN packets to

exhuast victim servers' connection pools

Block/AllowList(),

ActionAndTest(drop,syn)

HeaderHashAndTest(synproxy)

ACK flood
Attackers send forged ACK packets from diverse sources to the

victim servers

BlockList(),

UnmatchAndAction(syn-ack,drop)

Elephant flows
Attackers send large TCP flows to exhaust victim's network

bandwith
Block/AllowList()

RST/FIN Flood
Attackers send fake RST or FIN packets to flood the victims and

interrupt legitimate connections

RateLimit()/BlockList()

UnmatchAndAction(rst,drop)

DNS flood (TCP)
Attackers generate a high rate of DNS requests from different

sources to exhaust DNS service.

RateLimit()

UnmatchAndAction(dns,drop)

DNS

amplification

Attackers launch forged DNS requests (with victim srcIPs) to

public DNS resolvers; the replied traffic of an amplified volume

will be directed to the victim

RateLimit()/BlockList()

UnmatchAndAction(dns,drop)

UDP flood
Attackers send a large volume of UDP packets from diverse

sources to exhuast victim's bandwidth
RateLimit()/BlockList()

NTP amplifaction

Attackers launch forged NTP requests (with victim srcIPs) to

public NTP servers; the replied traffic of an amplified volume will

be directed to the victim

RateLimit()/BlockList()

UnmatchAndAction(ntp,drop)

SNMP

amplifcation

Attackers launch forged SNMP requests (with victim srcIPs) to

SNMP servers; the replied traffic of an amplified volume will be

directed to the victim

RateLimit()/BlockList()

UnmatchAndAction(snmp,drop)

SSDP

amplifaction

Attackers forge the discovery requests with victim srcIPs to plug-

and-play devices; the replied traffic of an amplified volume will be

directed to the victim

RateLimit()/BlockList()

UnmatchAndAction(ssdp,drop)

Memcached

amplification

Attackers discover open Memcached servers and send spoofed

cache requests (with victim srcIPs) to flood the victim

RateLimit()/BlockList()

UnmatchAndAction(memcached,drop)

QUIC

amplifaction

Attackers send spoofed "hello" messages to QUIC servers; the

replied traffic of large volumes will be directed to the victim

Block/AllowList()

UnmatchAndAction(quic,drop)

DNS spoofing
Attackers send corrupt DNS records to volunerable DNS resolvers

and poision the DNS cache
KVStore(ip,record,65k)

ICMP flood
Attackers send a large volume of fabricated ICP echo requests

from diverse sources
RateLimit()/BlockList()

Smurf attack

A large number of spoofed ICMP echo requests with the intended

victim srcIPs are broadcast to the network using an IP broadcast

address

Block/AllowList()

RateLimit()

ARP ARP poisoning
Attackers send corrupt ARP mappings to a (local) network to

cause denial of service or MITM
KVStore(ip,mac,10k)

HTTP Get/Post

flood

Attackers send a large volume of HTTP Get and Post requests to

flood a target HTTP server
BlockList()/RateLimit()

SIP register flood
Attackers try to send a high volume of SIP REGISTER or

INVITE packets to SIP servers
BlockList()/RateLimit()

Slowloris
Attackers launch a large number of small volume connections to

exhaust victim server's connection pool

Block/AllowList()

RateLimit()

HTTP slow post
Attackers send many HTTP Post requests with message body in a

slow rate to let the victim server time-out

Block/AllowList()

RateLimit()

TCP

UDP

ICMP

Application

layer

Figure 16: State-of-the-art volumetric attacks and their mitigation strategies in Jaqen.

3846 30th USENIX Security Symposium USENIX Association

	Introduction
	Background and Motivation
	Requirements for ISP-centric Defense
	Existing DDoS Defenses and Limitations

	Jaqen Overview
	Problem Scope
	Jaqen Workflow
	Challenges

	Efficient and General Detection
	Performant and Flexible Mitigation
	Network-wide Resource Manager
	Jaqen Implementation
	Evaluation
	Comparison with Existing Solutions
	Single Static Attack Evaluation
	Microbenchmarks
	Large Hybrid and Dynamic Attacks

	Other Related Work
	Conclusions
	Acknowledgements

