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Abstract

The emergence of programmable switches offers a new oppor-
tunity to revisit ISP-scale defenses for volumetric DDoS at-
tacks. In theory, these can offer better cost vs. performance vs.
flexibility trade-offs relative to proprietary hardware and vir-
tual appliances. However, the ISP setting creates unique chal-
lenges in this regard—we need to run a broad spectrum of de-
tection and mitigation functions natively on the programmable
switch hardware and respond to dynamic adaptive attacks at
scale. Thus, prior efforts in using programmable switches that
assume out-of-band detection and/or use switches merely as
accelerators for specific tasks are no longer sufficient, and
as such, this potential remains unrealized. To tackle these
challenges, we design and implement Jagen, a switch-native
approach for volumetric DDoS defense that can run detection
and mitigation functions entirely inline on switches, with-
out relying on additional data plane hardware. We design
switch-optimized, resource-efficient detection and mitigation
building blocks. We design a flexible API to construct a wide
spectrum of best-practice (and future) defense strategies that
efficiently use switch capabilities. We build a network-wide
resource manager that quickly adapts to the attack posture
changes. Our experiments show that Jagen is orders of magni-
tude more performant than existing systems: Jagen can handle
large-scale hybrid and dynamic attacks within seconds, and
mitigate them effectively at high line-rates (380 Gbps).

1 Introduction

Distributed Denial of Service (DDoS) attacks continue to be
a destructive force in today’s Internet [1]. Despite decades of
work, volumetric attacks continue to be a severe threat, with
growing attack volumes and types. In this respect, Internet
Service Providers (ISPs), as the infrastructure to route Internet
traffic, are at a unique vantage point to combat such volumetric
attacks without interrupting client-side services.

In this context, programmable switching hardware has
emerged as a promising means to enable defenses against
volumetric DDoS attacks [2—7]. In particular, they promise
better cost, performance, and flexibility tradeoffs, compared
to traditional solutions. For instance, proprietary/fixed hard-
ware appliances are expensive, have limited capabilities, and
hard to upgrade in the field (e.g., [8, 9]). On the other hand,

software appliances (e.g., [10]), while dynamic and repro-
grammable, incur large latency, and are not efficient for large
attacks. In addition, both classes of approaches entail high cap-
ital costs [9-11]. In contrast, programmable switches promise
high line-speed guarantees (e.g., 6.5Tbps [12]), sufficient pro-
grammability (e.g., P4 [13]), and lower cost (Table 1).

Realizing this promise, however, is easier said than done,
and the ISP setting creates unique and fundamental challenges
that existing solutions do not address. Given that ISPs are in-
line and on the critical path of large attack traffic volumes, we
need to support a broad spectrum of detection and mitigation
natively on the programmable switches. Unfortunately, exist-
ing programmable switch-based solutions fail on one or more
of these dimensions [3, 4, 6, 7, 14]. Specifically, existing ef-
forts rely on out-of-band detection with the need to reroute
traffic to separate monitoring infrastructure, which entails ad-
ditional latency and cost [15—17]. Furthermore, many of these
support a small number of mitigation functions [4, 6, 7, 14],
or do so in an inefficient manner that exhausts the limited
switch resources and can disrupt legitimate connections [3].

To this end, we present Jaqen, a switch-native detection
and mitigation system that handles a broad spectrum of volu-
metric attacks [18] within ISPs. Unlike prior solutions, Jagen
completely runs on programmable switches (i.e., switch-
native) and fully leverages their capabilities for accurate de-
tection and fast response as attack postures change. Jagen is
an agile system that dynamically distributes detection and mit-
igation capabilities in a network-wide setting when available
switch resources, attack types, and traffic volumes change.

Our overarching goal is to design a secure-yet-practical
defense system, working within the limited switch chip re-
sources (e.g., O(10MB) SRAM and limited accesses to the
SRAM [12]). To see why this is challenging, consider two
natural strawman solutions. First, to cover many attacks, we
can consider running all potential detection and mitigation
mechanisms on the switch. Unfortunately, this is infeasible
due to resource constraints. Alternatively, we can run only a
subset of detection and mitigation modules. However, this cre-
ates blind spots, where we do not have visibility into ongoing
attacks, especially when attacks can dynamically change; i.e.,
the detection module checks for SYN floods but the attacker
changes to a DNS amplification that goes undetected.
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As a practical and robust alternative to these strawman solu-
tions, we argue for a broad-spectrum always-on detection and
on-demand mitigation design approach. That is, the detection
logic must continuously (i.e., always-on) identify all attacks
in our scope to avoid blind spots in face of dynamic attacks.
Rather than enable all mitigation modules, we install them
as needed (i.e., on demand) to optimize hardware resource
usage. Given this high-level design philosophy, we address
key algorithmic and system design challenges in Jagen.

(1) Designing switch-native detection with high coverage:
We build a switch-native, broad-coverage detector for ISPs
by bridging universal sketch techniques in network mon-
itoring [19, 20] and general DDoS detection. Instead of
crafting multiple custom algorithms to achieve coverage
(e.g., [15, 21-27]), universal sketches make it possible to
track a broad range of current and unforeseen metrics with
a single algorithm. We design the detector with two layers:
Data plane—universal sketches as data plane primitives
that can be pulled by the controller or configured as event
triggers. Control plane—detection API for users to con-
figure the sketches, query relevant metrics, and compute
detection decisions.

(2) Flexible and performant switch-native mitigation: We
identify a unified abstraction to implement mitigation with
three interactive components: (1) filtering to drop, allow,
or rate limit packets, (2) analysis to identify malicious traf-
fic, and (3) update to the filtering when needed. For each
component, we design a library of relevant mitigation func-
tions with API based on best-practice mechanisms (e.g.,
intentional SYN drop [28] and DNS matching [23]) using
switch-optimized logic and probabilistic structures [29-33].
Thus, constructing sophisticated (and possibly new) miti-
gation strategies will be like flexibly combining different
building blocks on hardware using our APL

(3) Network-wide management to handle dynamic attacks:
When attack postures change, Jagen needs to compute a
new resource allocation to redirect traffic to other available
switches with the smallest rerouting cost. We formulate
this as a Mixed-Integer Program (MIP). However, for large
ISPs, a state-of-the-art solver could take a long time (10s of
min) to finish. Thus, we design a responsive near-optimal
heuristic that is 3-4 orders of magnitude faster.

We implement Jagen in Barefoot Tofino switches [12] us-
ing the P4 language [13]. Our evaluation, performed on a set
of one 6.5 Tbps programmable switch and eleven 40 Gbps
servers, shows that Jagen (1) accurately detects the attack type
and estimates the attack volume with 97% accuracy when the
attack traffic is not negligible (>1.5% of tested 380-Gbps
throughput), (2) reacts to hybrid and dynamic DDoS attacks
within 15-sec (including 10-sec detection period), and (3) mit-
igates the attack traffic with low false positives and negatives
(varying from 0.0 to 0.072). Although our testbed only gen-
erates 380 Gbps traffic due to limited equipment, Jagen with

one switch can potentially handle Tbps-level attacks without
interrupting legitimate users.

Contributions and roadmap. In summary, this paper makes
the following contributions:

o Highlighting the requirements for ISP-based defense and
identifying security limitations of existing P4-based de-
fense solutions in the ISP setting. (§2)

e An integrated DDoS detection and mitigation framework
entirely on programmable switches for defending volumet-
ric attacks in ISPs. (§3)

e A broad-spectrum switch-native detector using universal
sketching techniques and a library of highly optimized
mitigation primitives for developers to write state-of-the-
art and possibly new mitigation strategies in P4. (§4,85)

e A network-wide resource manager that optimally deploys
detection and mitigation modules in the network. (§6).

e An end-to-end system realization of Jagen (§7) and demon-
stration of its effectiveness in handling real-world large-
scale dynamic attack. (§8)

2 Background and Motivation

In this section, we begin by highlighting the requirements for
ISP-centric defense and the opportunities that programmable
switches bring. We then discuss existing defense solutions
and highlight their shortcomings.

2.1 Requirements for ISP-centric Defense

ISPs own a large hierarchy of switches and routers to route
user traffic to and from destinations, but usually do not access
application-level user information. Given this nature, defend-
ing volumetric attacks in ISPs is appealing and ISP-based de-
fense systems shall consider the following requirements:

e Impact on benign traffic: For service providers, the over-
arching goal is to improve user experiences for legitimate
users. Thus, ISP-based defenses must not interrupt or drop
legitimate user connections and shall not add large extra la-
tency to benign traffic. Ideally, ISPs should limit the amount
of traffic rerouted to out-of-band detection and scrubbing
centers, and limit the usage of slow packet processing ele-
ments (e.g., servers) on the critical network paths.

Defense performance: As a defense system, we need to
support high packet processing capabilities to handle a
broad range of existing and future attacks.

Cost efficiency: As ISPs need to handle massive amounts of
traffic every day (e.g., 100PB per day at AT&T in 2016 [37],
we want to reduce the capital cost of defense devices and
potentially their operational cost.

Opportunities of Programmable Switches. As observed in
concurrent efforts [3—5, 7], modern programmable switches
are appealing to augment DDoS defense performance. We
envision these switches are promising in fulfilling require-
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DDoS Solutions  Detection = Mitigation Design Performance (per unit) Cost/Power
Bohatei [10] No Server-based Full flexibility 10Gbps (80ms) $5,600/600W
Arbor APS [34] No Cloud-based Full flexibility 20Gbps (80ms) $47,746/400W
ADS-8000 [35] No Hardware Limited, hard to upgrade 40Gbps (<10ms) $102,550/450W
FPGA-based [36] Feasible Hardware Flexible, hard to program 4x25Gbps (<10ms) $7,530/215W
Poseidon [3] No! Switch+Servers  Standard modules based on servers ~ 3.3Tbps (12us-80ms) >$10,500/350W
Jagen In-band Switch (ISP) Switch-optimized logic/structures 3.3/6.5Tbps (12us) $10,500/350W

Table 1: Comparison of DDoS defense solutions. Top three are traditional solutions and the bottom two use programmable switches.

ments for ISP-scale defense: (1) High line-rate guarantee
such as 6.5Tbps for any programs that fit in their hardware re-
sources, which is appealing for combating large-scale attacks;
(2) Flexibility to support evolving attacks while traditional
hardware appliances are either fixed-function or have low
programmability. With new switch architectures, we have the
flexibility for both detection (e.g., capture packet signatures
with the programmable parser) and mitigation (e.g., filter at-
tack traffic with customizable rule tables; (3) Cost-efficient
with cost similar to legacy switches of the same speed while
having significantly lower capital costs than other appliances
(e.g., a 6.5 Tbps switch costs around $12,000 [38, 39] while
Arbor TMS [11]/APS [8] and Cisco Guard [9] cost $128,000
to $220,000 based on public estimates from [10]).

We provide a brief overview of programmable switch archi-
tectures for completeness. As shown in Figure 1, a represen-
tative programmable switch architecture is Protocol Indepen-
dent Switch Architecture (PISA) [40], where the ASIC chip
consists of a programmable parser and a number of recon-
figurable match-action tables. Developers can program the
packet parser to support user-defined packet headers, specify
the matching fields and types (e.g., exact, range, and ternary
matching), and configure supported actions (e.g., CRC hash,
header field modification, register read/write via arithmetic
logic unit (ALU), arithmetic operations using , and metering).
We refer readers to §7 for more details.

2.2 Existing DDoS Defenses and Limitations

Table | highlights the tradeoffs between cost, performance,
and flexibility in today’s DDoS defenses.

Traditional DDoS defense solutions. At a high-level, tradi-
tional defense solutions include: (1) Proprietary hardware
can be employed to differentiate suspicious traffic from legiti-
mate traffic and filter out the attack traffic. However, there are
key drawbacks. First, we need expensive appliances to deal
with large-scale attacks. Second, they have low flexibility as
they are hard to program and upgrade. (2) SDN/NFV-based
defense systems have been proposed to detect and respond to
DDoS attacks [10, 41, 42] that orchestrate available resources
to dynamically allocate mitigation power for attacks. How-
ever, using software-only solutions is not scalable. Even if
the operator has enough servers, benign traffic needs to be

"Poseidon assumes given detection results. Poseidon has a monitor primi-
tive, but its goal is to provide count/aggregation for known attack mitigation.
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Match-Action tables Match-Action tables
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Match logic: SRAM and TCAM
for lookup tables, counters,
meters, and hash functions.

Action logic: ALUs for bit
and arithmetic operations,
header mod., hash ops, etc.

Figure 1: Protocol Independent Switch Architecture.

rerouted through a number of mitigation VMs, increasing the
rerouting and processing latency. Moreover, the server foot-
print can be high; e.g., for a 100 Gbps DDoS attack, Bohatei
may need 1000+ well provisioned VMs [10], which is not
economical.

Programmable switch-based defenses. We consider a
threat model (§3.1) where an adversary can launch dynamic
attacks drawn from a set of popular volumetric DDoS attacks.
Thus, ideally we need a defense system that achieves cover-
age over a broad spectrum of attack types and rapid response
as attack situations change. Unfortunately, most existing ef-
forts in switch-based defenses are based on the P4 behavior
software simulator [43] with unrestricted resources and op-
erations, except for recent efforts [3, 14] that have hardware
implementations. These efforts suffer from one or more key
limitations in ISP settings because of the non ISP-centric
design:

e Out-of-band and low-accuracy attack detection: Most
of these solutions, including Poseidon [3], essentially “punt”
on the detection problem similar to the assumption in
Bohatei [10]. Essentially dedicated NetFlow-like moni-
toring infrastructures (e.g., running on legacy routers and
computing statistics with servers offline) are required to
coalesce packet-level data into flow-level records. This
may potentially offset the hardware cost savings that pro-
grammable switches could offer. While this was a rea-
sonable assumption for an NFV-oriented deployment like
Bohatei which envisions augments an existing network
infrastructure, this is a somewhat ironic assumption for
switch-based defenses. Even if we implemented these al-
gorithms natively on the switch, they still incur limitations
as (1) packet sampling approaches cannot provide fine-
grained detection results [15, 44, 45] and (2) it requires
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extra computation resources to conduct offline analysis,
inducing significant detection delay.

e Low-performance, in-effective mitigation: Most exist-
ing efforts [4, 5, 7] build mitigation mechanisms covering
only specific attack types such as SYN flood. While Po-
seidon [3] arguably has coverage on dynamic attacks, it
does so by running backup defense modules on servers and
reroutes all traffic to servers for state migration when at-
tacks change, which is incompatible with the ISP scenario.
More importantly, Poseidon’s contribution is in design-
ing switch-based mitigation for traffic scrubbing centers,
where there might be a limited number of legitimate flows
involved. When considering the ISP scenario with many
legitimate flows, using Poseidon’s switch component may
not be as performant. For example, Poseidon uses a stan-
dard SYN proxy on the switch in a similar way as CPU
by recording 65k legitimate sessions in a hash table. This
default table will not scale to even hundreds of thousands
of connections given the O(MB) on-chip memory con-
straint, and the hash collisions will cause the drop of many
legitimate connections, just as a denial of service. Our ex-
periments in §8.1 report 25% collisions for maintaining
2M legitimate connections (table size 221y,

In summary, we see that while concurrent work has also
argued the promise of programmable switches, ISP-based
defense remains an open challenge: it is difficult to achieve
the performance, flexibility, and cost benefits at the ISP scale.

3 Jagen Overview

In this section, we describe the scope and architecture of
Jagen before we discuss the main technical challenges.

3.1 Problem Scope

Threat model. Our focus is on volumetric DDoS threats that
aim to exhaust the available bandwidth and resources of the
victims [1], such as TCP SYN flood, ICMP flood, Elephant
flows, DNS flood, and other amplification threats including
DNS, NTP, and Memcached. Other attacks such as nonvolu-
metric application-layer attacks or link flooding attacks [46]
are outside the scope of this paper. We consider a hybrid
and dynamic DDoS threat [1] that adversary can dynamically
choose from a set of candidate attacks {A; }y; at different times
to launch a DDoS attack. The adversary has a volume budget
V specifying the maximum rate that can be used to launch the
attack at a given time. That is, }; v, (4;) <V, where v,(4;) is
the volume of attack A; at time ¢. Given such a budget V, the
adversary can control the choice of type and volumes from set
{A;}vi to generate an attack.” We assume that programmable
switches cannot be compromised by the adversary.

ISP deployment. We envision ISPs being early adopters
of such a framework, given they are already adopting pro-

2For instance, v, (SYN)=50%-V and v{(DNS)=50%-V at time 1, and then
v2(SYN)=10%-V and v,(ICMP)=90%-V at time 2.

1. | Broad-spectrum In-band Detection |

2. I | Network-wide Resource Management |

> <

Fast on-demand Mitigation |

Legit traffic

| Performant (Tbps+), Flexible (P4), Minimal reroute (dynamic attacks) |

Figure 2: Overview of Jagen

grammable hardware [47—49]. For instance, ISPs can deploy
Jagen in their network infrastructure to offer defense as a
service to their customers. Our system can also coexist with
other defense solutions (e.g., NFV, dedicated ASICs) at other
locations to augment their capabilities against volumetric at-
tacks; however, exploring this hybrid design is outside the
scope of this paper.

3.2 Jaqen Workflow
Jagen has three logical steps, as presented in Figure 2:

(1) Detection: We do not assume prior knowledge if there
is an ongoing DDoS attack. In this step, Jagen provides
information about whether protected users are under attack,
what types and volumes of the attack are. During this step,
the switch data plane identifies the suspicious traffic to-
wards detected victims and report the estimated volumes
of each attack type. An example output of this step is “vic-
tim=10.0.0.1, srcprefix=11.0.1.%+12.0.3.*, total= 2.5Gbps,
vol=DNS(0.4)+SYN(0.3)+NTP(0.1)”.

(2) Resource management: Once the detection information
about the attacks is available, the resource manager on the
controller makes resource allocation decisions on where to
deploy mitigation based on attack detection results using
minimized hardware resources.

(3) Mitigation: Based on resource management, the controller
deploys mitigation modules onto the switches in the net-
work. These modules effectively and accurately block at-
tack traffic at packet arrival rates. After scrubbing the mali-
cious traffic, the switches forward legitimate traffic without
additional processing and network latency.

Attack coverage. Jagen’s primary focus is to enable defenses
against a broad spectrum of volumetric attacks. Our definition
of a volumetric attack is that the attacker sends a high amount
of traffic or request packets to exhaust the bandwidth or re-
sources of the victim. Our current Jagen prototype handles 16
common volumetric attacks as described in Table 16:

e TCP-based attacks: SYN flood, ACK flood, RST/FIN flood,
DNS flood (over TCP), TCP elephant flows, etc.
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e UDP-based attacks: Amplification attacks using various
UDP-based protocols—DNS, NTP, SNMP, SSDP, Mem-
cached, QUIC, and UDP flood.

o /ICMP-based attacks: ICMP flood, Smurf attack, etc.

e Application-layer attacks: simple unencrypted HTTP Get/-
Post flood, SIP Register flood, etc.

Interestingly, we can further extend the coverage to some
non-volumetric attacks by using Jagen API described in §4,
such as Slowloris, HTTP slow post, ARP cache poisoning,
and DNS spoofing. We describe these extensions in Table 16.

Potential limitations. We analyze the potential system and
security limitations of Jagen. First, existing programmable
switches used in Jagen do not implement full packet parsing.
Thus, any attack detection and mitigation requiring payload
information cannot be supported. Second, Jagen needs a few
seconds to react to the attacks. An advanced attacker who
smartly and frequently changes the attack types (e.g., <5s)
can evade the defense. However, this potential evasion would
require more computation/bandwidth and make it more diffi-
cult for attackers to conceal their identities (e.g., due to fre-
quent traffic pattern changes), leading to alternative defenses
such as IP filtering near the attack source.

3.3 Challenges

Given this workflow, we highlight the key design challenges
that we need to address in the following sections.

Challenge I: Broad detection coverage on current and fu-
ture volumetric attacks (§4). Programmable switches are
constrained in terms of expressiveness compared to general-
purpose servers [50] and also have limited resources. As an
example, Barefoot Tofino switch [12] has O(10)MB SRAM,
O(1) ALUs, and O(10) hash units.” Such resource constraints
limit the possibility of fitting a large set of (complex) algo-
rithms into switch hardware. Thus, a natural question is, how
do we achieve broad-spectrum detection for many attacks?

Challenge II: Switch-optimized, resource-efficient mitiga-
tion (§5). Programmable switch’s high performance guaran-
tee comes with constrained hardware resources and computa-
tional model. Best practice mitigation mechanisms designed
for servers do not work well for programmable switches (e.g.,
not scalable and dropping legitimate connections) and we
need to carefully craft mitigation functions to deliver envi-
sioned high-performance protection to the users.

Challenge III: Efficient ISP-scale defense for dynamic at-
tacks (§6). In an ISP, attack traffic can enter the network from
arbitrary ingresses. One alternative is to deploy Jagen modules
only at the ingress switches on the edge. However, given the
limited resources at switches (and other concurrent services
on the switches), this may not be feasible. To this end, we pro-
pose to leverage other switches that have available resources

3The actual numbers are proprietary under switch vendor’s NDA.

Detection Metric Description Poseidon  Jagen
Count/Aggr. [30] Count/Aggr. over a flow v v
Entropy [51] Identify anomalies/attacks X v
Distinct flows [52] Distinct TCP/UDP flows X v
Traffic change [53] Heavily changed flows X v
Signatures Volumes of special packets X v
New metrics Arbitrary G-sum in [54] X v

Table 2: Poseidon vs. Jagen in supported detection metrics.

to offer an ISP-scale network-wide defense while minimiz-
ing the total resource usage. When attack posture changes,
we need to quickly react by recomputing a resource alloca-
tion that has minimal changes from the previous allocation.
However, this means that we need fast resource allocation
decisions, especially in large-scale networks, with minimal
disruptions to ongoing traffic.

4 Efficient and General Detection

Programmable switch resources are constrained compared
to x86 servers, which impose restrictions on supporting a
broad spectrum of algorithms as x86. Thus, for ISP-scale
detection running completely in switches, we want our detec-
tion module to be as compact as possible while having good
coverage of attacks. Achieving both requirements is challeng-
ing as fitting many detection algorithms (e.g., [15, 21-27])
for coverage in the switch is infeasible. Instead, we observe
that recent advances in universal sketching [19, 20, 55] for
network monitoring can play a crucial role in designing a
general DDoS detector. Conceptually, universal sketches are
a class of approximation algorithms that can simultaneously
estimate a range of network statistics supported by custom
algorithms, e.g., heavy hitters [20, 27, 53, 56, 57], distinct
flows [20, 58, 59], and entropy [60-62]. More precisely, a uni-
versal sketch is able to estimate any aggregated functions from
a data stream that are asymptotically bounded by the L2 norm
of the data [19], while recent switch-based approaches only
support counting/aggregating flow sizes based on Count-Min
sketch [30]. We summarize the major differences between
Poseidon’s monitor [3] and Jagen’s detector in Table 2.

To bring universal sketching into ISP-centric detection,
we design an approach that has data plane and control plane
components:

Switch layer: ‘“Future-proof” universal sketches. As
shown in Figure 3, the switch layer contains multiple uni-
versal sketches, complemented by a signature-based detector.
Together, Jagen has the ability to estimate a variety of current
and possibly unforeseen metrics that are relevant to the attacks
(i.e., future-proof), laying the foundation for accurate attack
detection. For instance, the entropy value changes in terms of
the srcIP and dstIP are a strong indicator of an ongoing attack;
the difference between the numbers of DNS requests and
responses hints a DNS-related attack. It is worth noting that
some attack-related metrics that require cryptography data
(e.g., Malformed SSL Flood) or require complete payload
parsing (e.g., Zorro attack [63]) are outside our scope due to
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| Mitigation API | Description | Switch Design
RateLimit(identity,rate) Rate limiter for flows that match certain rules SRAM + meters
ExactBlockList(identity,size) Blocklist to drop packets that match certain rules SRAM + TCAM
ExactAllowList(identity,size) Allowlist to allow packets that match certain rules | SRAM + TCAM
ApproxBlockList(identity,config) Approximate block list to drop packets LRU lossy hash table
ApproxAllowList(identity,config) Approximate allow list to pass packets Blocked Bloom filters

ActionAndTest(action,List(predicate))

Perform a packet action and test later w/ predicates

BF + action/control

HeaderHashAndTest(identity,action)

Perform header field hash and test w/ action

Cookie + action/control

UnmatchAndAction(action,List(predicate))

Find unmatched predicates and perform an action

CBF + action/control

KVStore(key,value,size)

A high-performance small key-value store

Hash-based KV store

ReportCtr(identity, type)

Update a filtering list via controller

Mirror to CPU

Recirculate(identity, type)

Update a filtering list via packet recirculation

Mirror and recirculate

Table 3: Jagen’s Mitigation APL.

I Detection Logic and Metric Estimation
(entropy, HH, count, distinct, etc. )

Control Layer

Packet counters | Sketch counters

Resource: 1KB metadata

A8

Special counters
— —

<4MB registers (SRAM)

nzo
oz

DstlIP Sketch

- . SrcPort Sketch
Vglum_e DstPort Sketch
estimation
Signature Universal Sketch
Detector Sketch Instances

@ Switch Layer

Figure 3: Switch detection design w/ universal sketches.

hardware limitations and the ISP-centric view.

While a canonical implementation of universal sketch is al-
ready more resource-efficient than a combination of multiple
custom algorithms [20], we further reduce the resource foot-
print when there are multiple instances of universal sketches.
In particular, our implementation follows the same trajectory
of parallel efforts in optimizing universal sketching for other
hardware domains [27, 64—66]. The full discussion is outside
the scope of this paper; but at a high-level, we include the fol-
lowing three optimizations: (1) Reducing hash computations
by consolidating short hashes into long hashes and reusing
hashes across universal sketch instances [65]. (2) Reducing
memory accesses by updating only one instance of Count
Sketch (CS) [31] in universal sketch [64]. We reduce these
hashes and memory accesses by updating only one CS per
packet. (3) Reducing flow key storage space by using a two-
way hash table as a cache, similarly as [66]. The flow keys
are used to identify elephant flows or heavily changed flows.

By applying these optimizations, the resource usage of the
universal sketching component has been significantly reduced
by more than 50% as shown in the evaluation Table 5.

Control layer: Detection API and logic. Now we have the
ability to obtain attack-related sketch counters from the switch

def Query ( proto, func, mode, freq): def UDPFlood (threshold):
try: try:
received = conn_mgr.init () while 1:
sleep (freq) hhs = Query (udp, src_hh, 0, 5)
if mode == 0: for srclP in hhs:
p =read_registers (proto) if srclP >= threshold:
metric = offline (p, func) report_to_ctr ()

elif received == 1:
r = buffer_triggers (proto) def DNSFlood (threshold):
metric = offline( p, func ) try:

reset () while 1:

return metric
except Error:
print ( “Switch access failed!”)

diff = Query (udp, dns, 0,5)
if diff >= threshold:
report_to_ctr ()

Figure 4: Simplified detection API and logic examples.

layer. These counters are reported to the control layer for
offline metric estimation and running detection logic, as de-
picted in Figure 3. In the control layer, we need to figure
out how to use these metrics for detection, e.g., what is the
reporting mode (controller pulling or self reporting), what are
the needed metrics, and how to realize a detection logic with
supplied metrics.

To that end, we design an API with Query(proto, func,mode
,freq) to precisely obtain the metrics for detection, where
proto defines the queried protocol, func defines the func-
tion of the metric, mode defines the reporting mode (e.g.,
self-triggering with a threshold), and freq is the reporting fre-
quency. For example, we can query the UDP srcIP heavy flows
above a 0.5% threshold every 5 seconds in a self-reporting
mode. After configuring the way to obtain metrics, we need
to implement a detection logic to make detection decisions,
such as detection for UDP flood and DNS flood (Figure 4).

S Performant and Flexible Mitigation

We demonstrate the flexibility of Jagen by providing a flexible
P4-based mitigation API to construct switch-native mitiga-
tion strategies. In particular, in an ISP-scale, directly adopting
standard server-based mitigation methods will not work. In-
stead, we need to convert a mitigation strategy into a switch-
optimized one. To achieve this, we observe that mitigation
strategies can be abstracted with three components that are
interacting with each other, as shown in Figure 5. For each
component, we design a set of mitigation functions that are
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Figure 5: Abstraction of mitigation strategies.

optimized for switch resources based on state-of-the-art ap-
proaches. In total, we provide 11 building blocks to construct
a broad range of mitigation strategies for the switches in ISPs.

1. Filtering: In a mitigation strategy, we first need to pro-
vide functions to block, rate limit, or allow packets that meet
certain rules. For instance, a blocklist can drop packets from
some malicious source IPs while an allowlist can directly pass
the traffic from certain users (e.g., VIPs). In this component,
we provide five functions as the following:

® ExactBlockList/ExactAllowList(identity,size) are two
types of lists to drop or allow packets that exactly match a
flow identify (e.g., srcIP, 5-tuple, or subnet). For example,
blocking any traffic from srcIP 10.0.0.1. We encapsulate
the exact match tables provided by the switch hardware to
construct these two functions. Due to the switch memory
constraint, the size of rules is usually limited to O(10K) per
processing stage in switch pipelines. These exact lists are
particularly useful when a small set of “VIPs” or “malicious
clients” are known.

® ApproxAllowList/ApproxBlockList(identity,config) pro-
vide approximate allow- and blocklists. They offer the same
functionality as ExactAllowList/ExactBlockList(identity,
size) but can scale to O(10M) rules (depends on the config)
if some approximation errors are acceptable. While errors
are unavoidable, our design goal is not to let the errors af-
fect legitimate ISP users. We achieve so by leveraging the
features of the approximate data structures: (1) In the ap-
proximate allowlist, we use blocked bloom filters (w/ one
hash function per block) to save switch resources. Bloom
filers will only create false positives that may allow a small
portion of attack traffic to pass through, while the legiti-
mate connections are always allowed. (2) Similarly for the
approximate blocklist, we design an LRU-alike lossy hash
table in the switch, leading to only false negatives from the
structure. The false negatives in a blocklist mean that some
attack traffic might not be blocked while legitimate traffic
(not on the list) remains unaffected.

Hardware constraints: To implement the above struc-
tures, we need to store flow identities in register arrays us-
ing switch SRAM. The size of a register is upper bounded
by a certain limit (e.g., 64-bit). To store flow identities
that are larger than this limit (e.g., 5-tuple), we need to use
multiple register arrays to store them, or replace the actual
identities with hash values. While using hashed flow in-

dices is a common practice, it may bring additional errors.

e RateLimit(identity,rate) maintains a rate limiter table
with flow identities and user-defined rates. We use the built-
in meter primitive in P4 to mark the flows with different col-
ors and perform different rate controls based on the colors;
e.g., green—no action, yellow—user rate, and red—drop.

2. Analysis: In the filtering step, some traffic has been marked
as “allowed” or “blocked” and will bypass other functions
in the switch for forwarding or dropping. For the unmarked
traffic, we need to analyze whether the traffic is benign or not
using designed four analysis functions.

® ActionAndTest(action,List(predicate)) is a method to
perform an action on a packet and analyze if succeeding
packets match a list of pre-defined predicates. The sup-
ported actions here are switch embedded actions such as
drop and forward. For instance, we use this API call to im-
plement a best-practice mitigation function of intentional
SYN drop (DropFirstSYN) [28]. This function is to filter
out the malicious SYN traffic and prevent the switch being
directly exploited as a reflector/amplifier using spoofed sr-
cIPs. Specifically, for every SYN packet, the switch checks
if it is a first-time SYN or a retransmitted SYN within 5
seconds (predicates). If the SYN is a first-timer, a drop ac-
tion will be performed; the packet will be allowed to pass
otherwise.

o HeaderHashAndTest(identity,action) defines a method to
compute hashing on the flow identify (e.g., 5-tuple) of a
packet and perform a test action with the hash. For example,
the switch can produce a “cookie or nonce” by hashing the
5-tuple header fields and constructing a reply packet with
the nonce. As a case study, we will use this primitive to
design two types of switch-optimized SYN proxy/cookie
mechanisms in the later “Case study” section.

UnmatchAndAction(List(predicate),action) implements a
function to test if a list of predicates are matched and
then perform a packet action based on the matching
result. Besides drop and forward, two additional ac-
tions are supported: insert to/delete from a probabilis-
tic structure—counting bloom filter (CBF) [32]. In par-
ticular, we can use this function to realize an effec-
tive mechanism [23] to mitigate amplification attacks
following specific protocols (e.g., DNS, NTP, SNMP).
When some predicates are matched — protocol matches
<UDP,src=10.0.0.%*,port=53>, packet type matches
<0R=0>, error field matches <RCODE ! =0>, the packet iden-
tity will be inserted to the CBF as a valid DNS request. If
a DNS reply matches <UDP,dst=10.0.0.*,port=53>
and <OR=1> in the CBF, the packet identity will be deleted
from the CBF. Any succeeding unmatched DNS replies
(above a threshold) will perform action drop.

® KVStore(key,value,size) provides a small efficient key-
value store using hash-based exact-match tables [67, 68].
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Figure 6: On-switch SYN Proxy workflows.

We can treat it as a high-performance, trustworthy registry
service for certain protocols. For instance, we can leverage
this function to build a high-performance DNS cache.

3. Update: After the analysis step, the (suspicious) traffic has
been marked with a label (e.g., benign). As the final step of
the mitigation, we may want to update an allow/blocklist or
rate limiter to allow/block or rate limit the succeeding traffic
from that flow. Since the filtering functions are placed ahead
of the analysis components in the switch pipeline, we need
either the switch controller or packet recirculation to update a
list, as the following two API calls.

® ReportCtr(identity,type) requests to update one fype of
the filtering lists (i.e., blocklist, allowlist, and rate limiter)
via switch controller. Specifically, the packet will be mir-
rored to the controller CPU via a dedicated PCle lane and
write information (identity) back to the switch data plane
via the control APL

® Recirculate(identity,type) implements a similar update
functionality without going through the switch controller.
Specifically, this API function modifies a mirrored packet
and recirculates it to the ingress port to update a filtering
list with the required flow identity.

Hardware constraints: When using these two update func-
tions, we as developers need to pay close attention to the
hardware constraints: (1) The PCle lane between the switch
data plane and the control CPU has limited bandwidth (e.g.,
100Gbps). It is impossible to process every packet on the
controller, especially when the throughput is at a Tbps level.
Thus, as shown in our mitigation examples later, we update
the allow/block/rate-limit lists only when necessary. Take
SYN flood mitigation as an example; we do not perform an
update for every attack flow but update the allowlist only
when legitimate clients pass DropFirstSYN and SYN Proxy
tests successfully. (2) Packet recirculation affects the switch
processing capability. For example, recirculating every packet
will halve the total capability. We can perform recirculations
without performance degradation when the effective through-
put is lower than the switch limit. But as a general rule, any
mitigation strategy should control the expected number of
recirculated packets.

Case study: Design switch-native SYN proxy using the
API. SYN Proxy/Cookie is a best-practice method to miti-
gate SYN flood attack using a server as a proxy for shielding
malicious SYN traffic. The typical workflow of a SYN proxy
can be described as: (1) When a SYN is received, the proxy
server generates a unique cookie [69] with 5-tuple and adds
it to the sequence number (seq. no.) header field of the
corresponding SYN-ACK reply. (2) When a legitimate client
receives the SYN-ACK it will acknowledge back an ACK
packet with cookie+1 in its seq. no.; Otherwise, an attacker
would not send the cookie back. (3) Once the proxy verifies
the correctness of the cookie, it will record session informa-
tion (e.g., seq. no. difference) and construct a new SYN to
the designated destination to establish the connection. The
succeeding packets will go through the proxy to translate the
seq. no. in order to continue the original TCP handshake.

Unfortunately, the current switch-based SYN proxy that
directly implements the above server-based design (e.g., Po-
seidon [3]) has scalability issues when there is a large number
of legitimate connections. They maintain seq. no. transla-
tion data for each legitimate connection using a single hash
table (e.g., size 65536). Inevitably, using a single hash ta-
ble for per-connection state storage would break the cor-
rectness of many legitimate connections due to hash colli-
sions. For instance, keeping 65536 legitimate connections on
a hash table of size 65536 has expected 24109 collisions.*
To address this issue, we design two SYN proxy modes with
HeaderHashAndTest(identity,action) to perform a “cookie”
operation on designated header fields with hashing and send
back a response packet (e.g., SYN-ACK) to “test” if the
client is legitimate. Note that in our design, one can use
ApproxAllowList(identity,config) to record a large number
of legitimate identities that have passed the tests. The approx-
imation errors will not affect legitimate traffic since Bloom
filters do not create false negatives.

e SYNProxyModel as depicted in Figure 6(a): (a) When the
switch receives a SYN, it will generate a cookie to be added
in the seq. no. header field while modifying the acknowl-
edgment number field to a large out-of-window number
(e.g., +2'%). (b) When the client receives such a SYN-ACK
with a wrong ack. no., it realizes issues in the current TCP
handshake and generates an RST with the received seq. no.
(cookie), according to standard TCP specs [70]. (c) When
the RST packet is received by the switch and the cookie
is verified, the connection identity (e.g., 5-tuple) will be
added to an allowlist. Then the client will retry to estab-
lish a connection. Note that this proxy can also be used as
mitigation for DNS traffic carried over TCP.

Extra connection setup time: This mode requires the
client to retry a SYN to establish the connection. As we
show in Table 4, most legitimate clients should retry the

4The expected collisions for a sequence of 7 values and a hash function

: : —1
of m values, can be calculated using birthday paradox as n —m +m(".=)".
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Client Retried Conn. Setup Time

Weget (Ubuntu) v 2.1s (Local Testbed)
Curl (Ubuntu) v 2.1s (Local Testbed)
Chrome (Ubuntu) v 1.5s (Local Testbed)
Chrome (Android) v 1.8s (Campus VPN)
Safari (i0S) v 1.3s (Campus VPN)
Firefox (Windows) v 1.9s (Campus VPN)

Table 4: Connection setup time in SYN Proxy Mode 1.
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Figure 7: Mitigation strategy examples.

connection. In fact, a retried SYN is a best-practice indica-
tor to flag legitimate connections ([28]).

e SYNProxyMode?2 is an alternative SYN proxy design on
switches. In SYNProxyModel, there can be a wait time
between the RST (w/ cookie) is sent from the client and
the client starts to retry the connection with a new SYN.
This wait time is usually not long (within a few seconds)
depends on the client implementation. To reduce this wait,
we also consider an alternative design that asks the client to
resend the SYN immediately, as shown in Figure 6(b). This
mode uses the same logic as original SYN proxy but will
reply an RST to the client once the cookie is verified. In
the midst of an unsuccessful connection initialization, the
client usually resends a SYN to reestablish the connection
once an RST is received.

Mitigation strategy examples. Using our mitigation API,
Jagen supports sophisticated and best practice mitigation
strategies for volumetric attacks. We briefly summarize a
broad range of volumetric attacks and Jagen’s mitigation in
Table 16. To illustrate the use of the API, we describe two rep-
resentative examples on mitigating SYN flood and DNS am-
plification with sophisticated defense strategies, as depicted
in Figure 7. In addition to DNS amplification, Figure 7(b)’s
workflow can be applied to other amplification attacks. Both
examples fit in a single switch pipeline.

In SYN flood, the suspicious traffic will first go through
a BlockList and an AllowList. If the packet passes the lists
and is a first-time SYN, we drop it via ActionAndTest(drop,
firstsyn) (DropFirstSYN) to reduce the traffic for SYN proxy
analysis. If this SYN is not a first-timer, we analyze if it is

Egress

é Switch w/ detection

a Switch w/ mitigation

~® Other switch

Avail. Res.: 1
[0.1 DNS]

[0.2

Avail. Res.: 2
[0.2 SYN,
02DNg]  [02SYN] Egress
[0.1DNS] \EZD
s Avail. Res.: 2 Na—
Ingress [0.1SYN, [0.2NTP]
Detection 0.2NTP]
[0.3 SYN, 0.2 DNS,
0.2 NTP]
[0.1 SYN] [0.2 NTP]
Avail. Res.: 1 Avail. Res.: 3

Figure 8: Example network-wide resource management on a
simplified Claranet topology [71].

from a legitimate client via HeaderHashAndTest (conn, synack)
(SYNProxy). If this client passes the SYN cookie analysis, we
will update the allowlist accordingly using Recirculate. The
succeeding traffic from this legitimate client will be allowed
without going through the analysis modules.

In DNS amplification, DNS traffic will go through a rate
limiter to control the per-source rates using RateLimit. If a
DNS reply has not been requested from a valid client be-
fore, we mark this packet as “unmatched” and drop it via
UnmatchAndAction(drop,dns); Otherwise, we will forward this
reply to the destination. Once the unmatched DNS replies
from certain sources exceed a threshold (using detection),
we will update the rate limiter to control the rate from these
sources via ReportCtr.

6 Network-wide Resource Manager

In an ISP, Jagen needs to deploy mitigation modules as they
are needed in the network, with minimized possible switch
hardware resources. This minimization is to help preserve
resources for other ISP services and to reduce the number of
deployed modules for faster reaction. We describe a resource
allocation problem that Jagen needs to solve as a mixed in-
teger program (MIP) and present a heuristic algorithm that
returns a near-optimal allocation. As an example, Figure 8
shows the mitigation resource allocation on a simple topol-
ogy. Compared to the solver-based allocation, our algorithm
achieves better responsiveness given the scale of an ISP.

Problem inputs. Our basic assumption in the network-wide
setting is that the ISP has available hardware resources on
the path for potential DDoS attacks; we cannot mitigate the
attacks otherwise.

e Network topology and mitigation modules: We define the
ISP network topology as an undirected graph G = (V, E),
where V is the set of all switch nodes that carry network
traffic and have enabled programmability and E is the
set of interconnected links. We define V = {vy,v,...,v,}
where each v; is a vector of available information about
Switch i. For instance, v; =< AvailRes;, Band;, Type; >
where AvailRes; is the number of available programmable
pipelines, Band, is the allowed bandwidth, and Type; is the
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Minimize: TotalRes, subject to

TotalRes = ZZ Alloc; (1)

— &
Vi ZAzloc,-, j ngvailResi )
TotalA]vailRes = ZAvailResi 3)
Vi, j : Alloc; j € {0, 1,...1,T0talAvailRes} “)
Vd,e,k:Nger C{1...i} (5)

Vd,e.k:Y Y Allocicy,,,.j*MCap j i > AttackVolg . x (6)
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i

Vi: Z Alloc; j* (MCap; j i +BCapj jx) < Band;  (8)
Jj k

Figure 9: MIP to compute optimal resource allocation

hardware type of the programmable switch. Further, the
mitigation capability of module j on switch i for attack
k is given as MCap; ;. and the processing capability for
reverse traffic is BCap; j 1.

e ISP routing and Traffic Engineering information: We as-
sume the ISP has a controller that maintains and imple-
ments the routing and traffic engineering decision for all
the network traffic that passes through the ISP. For instance,
in a software-defined network (SDN), the (virtually) cen-
tralized controller maintains the routing decisions for each
network flow on each switch. In our network-wide set-
ting, we have the aggregated traffic distribution informa-
tion at the controller level, which is defined as Band,  for
switch i, traffic type k , e.g., Band; pns =< DNS = 0.3 >
and BandiSYN =< SYN=0.2>.

Problem statement. Given the problem inputs from the ISP,
we define our network-wide resource allocation problem. In-
tuitively, based on the existing traffic distribution, we want to
minimize the usage of hardware resources while still cover
all attack traffic from all ingresses. We define a MIP formula
in Figure 9 with constraints and definitions described below:

e Eq. (1) defines the total allocated resource as TotalRes,
which is the aggregation of the resource allocated for each
switch; and module;.

e Eq. (2) ensures that the module resource allocation on any
switch will not go over the available resource budget.

e Eq. (3) defines the total available resource as the sum of
the available resources on all switches.

e Eq. (4) defines the number of allocated module; as an
integer from total available resource.

e Eq. (5) defines the switch set that route the traffic of Attack
k from Ingress d to Egress e. This information is given from

Algorithm 1 Greedy Algorithm for Resource Allocation

1: Inputs:

2: Topology graph G = (V,E) with IN as the ingress set and EG
as the egress set

3: Routing info Route; for each switch

4: Ingress d € IN, egress e € EG, and attacks k € K

5: Vd, e, k: Nyex

6: Vi € |V|: AvailRes;

7: Vd,e,k: AttackVol, ., and initialize AttackVoly . i ;

8: Vd,e,k: ResVol, 4 and initialize ResVol, 4 1,

9: Vk,i, J: MCap; j i and BCap; j i

10: procedure GREEDYHEURISTIC(D(m,n))

11: for d in IN do

12: for ¢ in EG do

13: BFS with AttackVol, . . and Route;
14: — update AttackVoly . i i

15: BFS with ResVol, 4 and Route;
16: — update ResVolg ¢k ;

17: Sort the (d, e) paths P by total volume of the attacks.
18: for p in P do

19: Sort Nd,en,k by AttaCkVOld,ek,ieNd.&k

20: for d in IN do

21: for ¢ in EG do

22: Update Alloc; j with MCap; jx and BCap; j x

23: Output: Vi, j: Alloc; j

routing decisions and detection results on the controller.

e Eq. (6) captures all the allocated mitigation modules on the
ingress-egress path (d,e) and ensures the attack traffic on
the path has been taken care of.

e Similarity, eq. (7) captures all the allocated modules on the
egress-ingress path to make sure the response traffic has
been handled. Eq. (8) confirms the capacity of allocated
modules does not exceed the processing bandwidth.

Fast mitigation module allocation. We design a greedy
heuristic to achieve real-time mitigation module allocation.
We present the pseudocode of the heuristic in Algorithm 1.
The high-level intuition is the following: For each pair of
ingress and egress that has potential attack traffic, we use
Breadth First Search (BFS) with the given routing decisions
to find the attack volume distribution on each of the switches.
We then sort the switches along the path by their hybrid at-
tack volume and allocate the mitigation modules to cover the
largest volumes first in a greedy manner.

Updating mitigation modules for dynamic attacks. When
mitigation modules need to change due to dynamic attacks,
Jagen follows a three-step procedure to update a switch: (1)
Rerouting: the controller disables the filtering components on
all activated switches and then computes and distributes new
forwarding rules with the current switch excluded, in order to
reroute the legitimate traffic on this switch. (2) Replication:
Once the new rules have been applied, replicate the switch
states about the legitimate connections (if not expired) in the
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#define

apply (noncel);
apply ( nonce2);

New out-of-window
SYN-ACK

{ Verify cookie ]

)

apply ( forward );

}

apply ( check_packet_type);

if (pkt_type ==RST) {
apply ( compute_syn_cookie );
apply ( verify_syn_cookie );

if (metadata.cookie_diff==0) {
apply ( cookie_match); }

if ( pkt_type == SYN or
( pkt_type == RST and cookie_match)) {
apply ( check_or_update_allowlist);

if ( pkt_type == SYN and allowlist_match) {
apply ( syn_ack_generate); }

| table compute_syn_cookie {
actions { compute_cookie; } }

action compute_cookie () {
modify_field_with_hash_based_offset (
cookie, 0, syn_cookie_hash, 0x80000000 ); }

field_list_calculation syn_cookie_hash {
input { syn_cookie_seed; }
algorithm : crc32;
output_width: 32; }

field_list syn_cookie_seed {
ipv4.srcAddr;
ipv4.dstAddr;
tcp.srcPort;
tcp.dstPort;
metadata.noncet; }

Figure 10: L to R: (1) SYN proxy mode 1 workflow (2) Abstract P4 code (3) SYN cookie example.

Impl. Match Units  Hash Bits SRAM  Action Slots
Original [20] 245 322 50 133
Our impl. 60 151 46 41

Table 5: Resource utilization of a universal sketch.

controller. (3) Swapping: reprogram the switch with the new
set of modules and required states. Report to the controller to
include this switch into the forwarding rules.

7 Jaqen Implementation

‘We have implemented a Jagen prototype based on Barefoot
Tofino using P4-14 for switch modules and using Python for
switch controller. For P4 code compilation, we use Barefoot
P4 Studio SDE [72]. In this section, we briefly describe how
we implement the detection and mitigation API and demon-
strate the convenience for developers to build new defenses.
We open-source the prototype of Jagen in [73].
Detection API and logic. To implement Query(proto, func
,mode, freq), we need multiple universal sketches [20] and
signature-based counters in the switch data plane. We imple-
ment a universal sketch using a smaller number of ALUs than
its original model implementation. As presented in Table 5,
we achieve better resource efficiency by combining redundant
sketch constructions and merge multiple hash computations
and register operations into a single ALU operation. These
optimizations are chosen depending on the specific resource
numbers from Barefoot Tofino switch [12] and the accuracy
guarantees we want to achieve. Thus these configurations are
subject to change for other types of programmable switches.
When implementing signature-based counters, we write
custom packet parsers to count some particular packets (e.g.,
TCP SYN, ICMP, and UDP DNS requests). Based on the
configured mode and freq, the counters in the switch will
either be self-reported or pulled by the switch controller. We
will use these counters to compute attack-specific signatures
(e.g., the number of unacked/terminated SYN requests) based
on detection logic.

Mitigation API. We implement mitigation API using P4 and

macro functions with several underlying structures described
below. We also give an example workflow of Jagen’s SYN
proxy and its abstract code in Figure 10. We refer reads to the
project repository for more examples.

1. Blocked Bloom filters: We split Bloom filter’s single array
into multiple registers as a blocked Bloom filter. This split
will maintain asymptotically the same error bounds [29].
We implement the blocked filter with one CRC32 hash per
block of 1-bit registers. In each switch pipeline stage, we
parallelize multiple blocks of filters for resource efficiency.

2. Counting Bloom filters: The goal of CBF is to record the
inserted flow identities while supporting deletions from
the filter. We implement CBF using an efficient two-part
structure, where the controller maintains a complete CBF
with 8-bit counters and the switch data plane stores an
equivalent bloom filter with 1-bit registers.

3. LRU cache: We implement a lossy hash table with multi-
layer of Least Recently Used (LRU) caches (r register ar-
rays of d entries). When insertion, we hash the item to
select one of d columns to conduct a rolling replacement
of the r entries in the column by replacing the first one
with the new entry, the second with the first, the third with
the second, etc. When query, we check if the current item
appears in one of the corresponding r entries in one of the
d columns based on the hash.

4. Key-value store: We implement a key-value store based
on the P4 logic of [68]. We offer a store that stores up to
64K entries with 16-byte keys (up to 64-byte) and 128-byte
values. This store can be used for DNS or ARP caches in
the local network for high-performance lookups.

5. Switch-embedded structures: We leverage the embedded
exact, range, or ternary’ match-action tables (using
SRAM and TCAM) where we specify a set of flow identi-
ties to match and define the action as allow, drop, rate_limit.

3The term “ternary” refers to the memory’s ability to store and query data
using three different inputs: 0, 1, and wildcard.
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In ReportCtr and Recirculate, we encapsulate the corre-
sponding P4 copy_to_cpu and recirculation primitives
with the packet header modifier.

Network Controller. The control part of Jagen is imple-
mented in Python and is connected to the switch control
via RPC. This controller has three major functionalities: (a)
Query statistics from the switch data planes and compute a
detection logic via the detection API and Thrift API [74]; (b)
Run or rerun the resource management heuristic by fetching
current routing information and detection information from
each switch as a global state; (b) Deploy mitigation modules
via RPC to switch control and configure the stored mitigation
modules via switchd daemon.

8 [Evaluation

We evaluate Jagen extensively on defending prevalent volu-
metric DDoS attacks [18] and demonstrate that:

1. Jagen’s obtains significantly more accurate metrics than
out-of-band sampling approach. Jagen’s mitigation func-
tions are more salable and effective than Poseidon [3].

2. Jagen detects DDoS attacks with high accuracy and esti-
mates the volumes of attacks with low errors (< 3%).

3. Jagen mitigates attacks with high effectiveness — low false
positive and negative rates varying from 0.0 to 0.073.

4. Jagen adapts to dynamic and variable-sized attacks within
end-to-end 15 seconds with high effectiveness. Our larger
scale network-wide simulator shows that Jagen returns near-
optimal resource allocation decisions within 1 sec.

Testbed. We deploy Jagen on a testbed of one 6.5 Tbps Bare-
foot Tofino switch and eleven Dell R230 servers (Intel Xeon
E2620 v4, 64GB RAM, 40Gbps Intel Network Interface Card).
For single attack experiments, we use ten 40 Gbps servers to
generate traffic and the remaining one as the targeted victim.
We enable Intel DPDK [75] library on each server to achieve
high-performance traffic generation. When sending legitimate
traffic, we replay one-hour Internet traces from CAIDA [76]
in a loop®, at an aggregated packet rate of 59 Million pack-
ets per second (Mpps). For TCP related attacks, the sender
maintains up to 1,048,576 legitimate TCP connections using
virtual IP addresses. The controller of the switch pulls the
detection result every 5 seconds.

Attack traffic generation. To evaluate Jagen, we use real-
world attack traces [77, 78] and launch a set of seven repre-
sentative volumetric attacks: (1) To launch SYN flood, we
use MoonGen [79] with DPDK [75] to send SYN requests
with random source IP addresses. (2) To launch ICMP flood
and TCP/UDP elephant flows, we implement custom Lua
scripts to send ICMP, ACK/UDP traffic via MoonGen. (3)
When launching DNS and NTP amplification attacks, we
cannot exploit the public DNS and NTP servers to reflect the

SWhen replaying traces, the TCP SYNs are sent without establishing
actual connections.
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Figure 11: Comparison with NetFlow [16].

traffic. Instead, we set up local DNS and NTP servers for-
warded to Google public DNS [80] and the server pool from
ntp.org, and the local DNS responses will flood the victim
servers. (4) To launch a Memcached amplification attack,
we deploy Memcached [81] onto servers and send GET re-
quests with forged source IPs to the targeted victim.
Evaluation metrics and parameters. In estimating the at-
tack volumes, we use relative error as ‘dete"’efr—;:’l;flr”e—wl‘,
where detected_vol is the volume reported, and true_vol is
the true volume of attack traffic. In the mitigation, we evaluate
the false positive rate (FPR) and false negative rate (FNR).
FPR is the rate of how much benign traffic is mistakenly
mitigated as malicious traffic (false positives FP), defined as
WIW. FNR is the rate of how much malicious traf-
fic is identified as benign traffic and is not mitigated (false
negatives FN), defined as N Hm‘: ivp -

For every period of time 7T (e.g., 5 sec in our experiments),
the detection can be pulled by the controller to identify the
occurrence, type, and volume of an attack. By default, if Jagen
detects the occurrence of the DDoS attacks for two consec-
utive time windows, the resource manager on the controller
will compute the mitigation module allocation and deploy the
needed modules to the switch. Thus, we measure the total
reaction time as |2 x T+ TRes_allocation + TSoft_update|-

When configuring the probabilistic structures in the mit-
igation functions, the default blocked Bloom filters use 7
different hash functions with 44.04M entries (5.25MB mem-
ory). For DNS, NTP, and Memcached amplification attacks,
the counting Bloom filters use 4 different hash functions with
11.01M entries (1.31MB memory) by default.

8.1 Comparison with Existing Solutions

Comparison with NetFlow on detection. NetFlow [16] is a
standard network monitoring tool to conduct out-of-band net-
work traffic analysis. Despite its processing delay in handling
large batches of sampled packets, we compare the accuracy of
five different DDoS-related detection tasks between Jagen and
NetFlow using two real-world attack traces [77, 78]. The tasks
include T1: Unique source IPs, T2: Distinct 5-tuple flows, T3:
Unique SYN connections, T4: Top sources in volume, and
T5: Top victims in volume. We configure the sampling rate
of NetFlow as 1/100 in order to keep up with the line-rate
and low detection delay. Note that at this sampling rate, Net-
Flow stores a large number of packets and uses significantly
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Defense (40G) Poseidon (FPR/FNR)  Jagen (FPR/FNR)
SYN proxy 2M, 25.2% / 1.3% 2M, 0.0% / 1.3%
DNS/NTP defense  2M, 1.2% / 3.7% 2M, 0.7% / 3.1%

Table 6: Jagen vs. Poseidon on defense effectiveness.

more memory space than Jagen. As shown in Figure 11(a),
Jagen’s sketch-based detection has better accuracy than Net-
Flow across the tasks.

To evaluate entropy-based detection, we generate an HTTP

flood attack. We manually inject source IPs from 50 randomly
picked subnets and a range of victims that share a single 16-bit
subnet. To launch the attack, we replay the Internet trace [76]
with 70% probability to replace a packet with an attack packet.
As presented in Figure 11(b), Jagen captures the changes in
the source IP entropy values and detects the occurrence of the
attack, while NetFlow cannot accurately track the changes in
the entropy values.
Comparison with Poseidon on mitigation. Poseidon[3] de-
signs a hybrid DDoS mitigation solution with programmable
switches and x86 servers. In handling 40Gbps volumetric
attacks with 2M legitimate connections, both Poseidon and
Jagen can operate at the line-rate with us-level latency, show-
ing the promise of programmable switches. Further, we com-
pare the mitigation FPRs/FNRs of the two approaches. With
Poseidon [3], we configure their SYN proxy to use a large
session table of size 2> (8MB SRAM) while Jagen uses
1.31MB SRAM. The monitor of Poseidon for DNS defense
has a Count-Min sketch and we configure it to the same num-
ber of counters for both approaches. As reported in Table 6,
Jagen has a significantly better FPR (0% vs. 25.2%) than
Poseidon in SYN proxy using 6 x less memory. In handling
DNS attacks, Jagen’s defense strategy (Figure 7) is more ef-
fective in reducing the FPR/FNR. We envision that Jagen will
support more sophisticated mitigation strategies to reduce the
FPR/FNR for other attacks using the mitigation APL

8.2 Single Static Attack Evaluation

In this section, we perform experiments with the following
conditions: (1) launch attacks with one attack method and
different volumes; (2) deploy a single mitigation strategy
to the switch; (3) legitimate clients maintain a reasonable
number of normal connections with the targeted server.

Attack volume estimation. In Jagen, the estimated volume
of an attack is useful for the controller to compute the resource
allocation decisions for mitigation. Our testbed can generate
up to 380 Gbps traffic with different attack volumes. In gen-
eral, a higher attack volume leads to a more accurate volume
estimation as it becomes easier to catch. We generate different
volumes of attack traffic for evaluation (0.1%,0.2%,0.5% to
10% of total).

As shown in Figure 12(a), when the flood attack volume
is small from 0.1% to 0.2%, the volume estimation has large
relative errors (from 134% to 32.9%). It is understandable

5%

5 80% . 5 4% —e— DNS Amplification

5 . Attack vol. is too small ‘5 % NTP Amplification

o 60% SYN Flood d>J ° —+— Memcached Amplification
2 =

5§ 40% —=— ICMP Flood 82%

ﬂ 20% —+— Elephant FLows X 1%

0
1.0 25 5.0 75 10.0 1.0 25 5.0 7.5 10.0
Attack Volume Ratio (%) Attack Volume Ratio (%)

(a) Relative errors of estimating the (b) Relative errors of estimating the
volumes of flood attacks. volumes of amplification attacks.

Figure 12: Single static attack evaluation—part one.

as some legitimate traffic can be estimated as attack traffic
at this attack volume. However, such attack traffic that is
below our detection threshold 0.5%, poses small impacts to
the network and technically has no difference from legitimate
users. When attack traffic increases, the relative errors of the
measured volumes significantly decrease to less than 2%. In
addition, as depicted in Figure 12(b) for amplification attacks,
the volume estimation incurs low relative errors (<3%) as
most of the legitimate requests have received responses.

Mitigation effectiveness. To evaluate the effectiveness of
Jagen’s mitigation, we conduct experiments leveraging six
implemented attack countermeasures. As described in the
following, each mitigation mechanism achieves low FPRs
and FNRs when the attack traffic is significant:

e SYN flood attack: Our mitigation strategy has a switch-
optimized SYN proxy and an approximate allowlist to
record the legitimate flows passing the SYN cookie verifi-
cation. There is some probability that the allowlist falsely
allows some attack flows. This probabilistic error from
Bloom filters incurs FNs for the mitigation as shown in
Figure 13(a). As attack volume increases, the SYN-flood
mitigation achieves 0 FPR and small FNRs.

ICMP flood attack: We launch ICMP flood with generated
ICMP Echo Request packets (type_flag=8) with random
source IPs. ICMP packets are usually rare in the normal traf-
fic and the best-practice is to block them completely [82].
Our reaction-based mitigation is better than that as it does
not affect ping-based diagnosis in the normal case. As de-
picted in Figure 13(a), when the ICMP flood traffic is small
from 0.1% to 0.5%, the counters will not raise the alarm
as it is considered normal. When ICMP traffic is more sig-
nificant, the filter starts blocking the ICMP Echo Requests
which incurs some FPs.

Elephant TCP/UDP flows: When the attacker leverages
high-bandwidth zombie machines to launch a flood attack,
they can generate elephant flows toward the targeted vic-
tim. We allocate different traffic bandwidths for the attack
from 0.1% to 10% and split the bandwidth for 100 elephant
UDP flows. We realize this attack by MoonGen rate lim-
iting and a fixed-sized 100 random source IP generation
when sending UDP packets. Figure 13(a) shows that the
heavy hitter-based filtering achieves low FPRs and FNRs
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Figure 13: Single static attack evaluation—part two.
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Figure 14: Micro benchmarks.

from 0.009 to 0.012 as the underlying sketching algorithm
guarantees high fidelity.

o DNS/NTP amplification: We set up local DNS servers with
BIND 9 [83]. On each local DNS server, we write a C++
custom packet generator to send forged DNS requests lo-
cally (= 0.9 Gbps per server) and the amplified responses
(= 30 to 35 Gbps/server) are sent to the designated destina-
tion. Similarly, we set up local NTP servers with the NTP
spool from ntp.org and generate modified NTP requests to
the local NTP servers. As depicted in Figure 13(b), when
there is 0.5 Mil legitimate requests inserted, the mitigation
FPRs are negligible and FNRs are low from 0.022 to 0.029.
While there are 1.5 Mil requests recorded, the FPRs and
FNRs are still low from 0.024 to 0.028.

o Memcached amplification: In this attack, we conduct a
stress test to add more numbers of unresponded Mem-
cached requests to the allowlist. When the caching services
are running abnormally with 2 to 3 Mil unmatched requests
recorded in the CBEF, the FPRs and FNRs will be increased
to 0.1 and 0.18 (Figure 13(c)). Therefore, if there are in-
deed more benign flows to be recorded, more mitigation
resources are needed.

8.3 Microbenchmarks

Latency: One advantage of using hardware switches for de-
fense is that the processing latency is extremely small for
legitimate traffic. To confirm this, we evaluate the processing
latency of Jagen with a detection module and three mitigation
functions using different sized UDP packets sent from a single

server with DPDK. As depicted in Figure 14(a), there is no no-
ticeable processing latency change at the microsecond-level
for a Jagen-enabled switch.

Hardware resource usage: We measure the resource usage
of Jagen.” P4 allows developers to define their own packet
formats and program the packet actions by a series of match-
action tables, which are mapped into different stages in a
sequential order, along with dedicated resources (e.g., match
entries, hash bits, SRAMs, and action slots) for each stage.
Figure 14(b) shows the resource usage of a switch with de-
tection plus SYN, DNS, NTP mitigation modules. In effect,
there is still adequate room for additional services.

8.4 Large Hybrid and Dynamic Attacks

In this section, we evaluate the effectiveness of Jagen when
handling a hybrid of attack methods. Given that we have only
one programmable switch available, we can deploy up to three
different mitigation strategies at a time due to resource con-
straints. For simplicity, we consider four scenarios using three
different attack methods using 90% of the total bandwidth
(/350 Gbps). For a hybrid and dynamic evaluation (S4), we
run Jagen for 5 hours with dynamically changing attacks
(three randomly picked attack methods) every 15 min. For a
larger-scale network-wide resource deployment, we evaluate
using our greedy heuristic.

Scenario I [S1]: flood attacks. In this attack scenario, we
launch three flood attacks simultaneously (SYN flood, ICMP
flood, and elephant flows) with 120 Gbps each. As we can
see in the first bar of Figure 15(a), Jagen’s mitigation mod-
ules work well with negligible FPR (<0.005) and median
FNR=0.0213 in ten independent runs using legitimate traffic
replayed from the CAIDA-2018 traces [76].

Scenario II [S2]: amplification attacks. In this attack sce-
nario, we launch three amplification attacks simultaneously
(DNS, NTP, and Memcached amplifications) with equal high
throughput (120 Gbps). As presented in the second bar of
Figure 15(a), Jagen easily mitigates the majority of the attack
traffic with tiny FPRs and small FNRs (~0.0272).

"The actual switch hardware resources are proprietary information.
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Figure 15: Hybrid and dynamic attack evaluation.

Topologies Nodes  Solver (s) Jagen(s)  Errors
Missouri Net. 67 113 0.03 0.0112
GTS CE 149 245 0.05 0.0161
Colt Telecom 153 273 0.05 0.0161
Dial Telecom 193 301 0.05 0.0162

Table 7: Jagen vs. MIP solver on different topologies.

Scenario I1I [S3]: Flood and amplification attacks. In this
attack scenario, we combine one flood attack with two am-
plification attacks (SYN flood, DNS amplification, and NTP
amplification). Similar to the results of S1 and S2, Jagen
achieves ultra-low FPRs and FNRs.

Scenarios IV [S4]: Hybrid, dynamic, and variable-sized
attacks. In this attack scenario, we launch a hybrid, dynamic
attack with changing attack volumes. Every 15 min, we ran-
domly pick three attacks from the total six methods with
different volumes (each from 30 to 300 Gbps with 10 Gbps
as an interval). As shown in Figure 15(b), Jagen handles
this scenario: Attack volume estimation has high accuracy
>0.971, and the mitigation has high effectiveness shown in
FPR, FNR, and F-score. On the controller side, we monitor
the per-second CPU usage using Intel Vtune amplifier [84].
As depicted in Figure 15(c), large hybrid and dynamic attacks
do not exhaust the controller CPU (Intel Pentium quad-core)
due to our efficient offline estimation and resource allocation.

Network-wide simulation. To evaluate the efficiency and
correctness of Jagen’s resource allocation algorithm, we pick
four medium- to large-scale ISP topologies from Topology
Zoo [71] and test them over our greedy heuristic simulator. As
an ISP, we simulate BGP using Quagga [85] and Mininet [86],
and randomly select ten edge routers with a valid configura-
tion (all pairs routed). When simulating a 600 Gbps attack
with six attacks, each BGP router will obtain valid routing
decisions and these decisions are used as input to the resource
manager. As in Table 7, the reported errors of our simulator
are the relative errors from the optimal resource usage, and
our resource managers can return a near-optimal allocation in
real-time (<0.1 sec).

9 Other Related Work

In §2, 3, we have already discussed the closest related work.
We cover other related work here and refer the readers to

survey papers for further reading [87-89].

FPGA-based DDoS defense. Network vendors and re-
searchers have proposed to build DDoS defense using FPGA
such as [90, 91]. The research on exploring the flexibility of
using FPGA for DDoS is limited [92-94]. As a general note,
FPGA isn’t as performant as programmable ASICs and has a
much higher per Gbps cost.

NPU-based DDoS defense. NPU is one kind of network pro-
cessors that target network applications, e.g., packet switching
and firewalls. There are proposals on using NPU based hard-
ware appliances to conduct DDoS defense and other security-
oriented tasks, such as [95], [96].

Network telemetry using programmable switches. A num-
ber of recent works show how to use programmable switches
for memory-efficient and per-packet level network teleme-
try [20, 57, 97-101]. These are related to our work focusing
on DDoS detection and mitigation.

10 Conclusions

DDoS attacks remain a primary concern for Internet security
today. The emerging programmable switches bring a unique
opportunity to revisit ISP-scale DDoS defense for volumetric
attacks. In this paper, we show that a performant, flexible,
and cost-efficient ISP defense system is well within our reach.
Jagen leverages state-of-the-art switch-optimized strategies to
achieve high detection accuracy and mitigation effectiveness,
and Jagen’s attack coverage can be easily extended using
the API. When handling large-scale attack volumes, Jagen
quickly reacts to dynamic and hybrid attacks with minimal
latency for legitimate traffic. These demonstrated benefits,
along with the natural high performance and low cost, make
the programmable switch ASICs a viable challenger to the
existing hardware appliances and software solutions in ISPs.
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Protocol |Attack Description Jaqen Mitigation Functions
Attackers send a large volume of fabricated SYN packets to Block/Allovlist(),
SYN flood . . . ActionAndTest (drop,syn)
exhuast victim servers' connection pools
HeaderHashAndTest (synproxy)
ACK flood Attackers send forged ACK packets from diverse sources to the BlockList (),
victim servers UnmatchAndAction(syn-ack,drop)
TCP Elephant flows Attacki::rs send large TCP flows to exhaust victim's network Block/AllowList ()
bandwith
RST/FIN Flood Attackers servlc'l fake RST or'FIN packets to flood the victims and [RateLimit()/BlockList ()
interrupt legitimate connections UnmatchAndAction(rst,drop)
i different imi
DNS flood (TCP) Attackers generate a high rate? of DNS requests from differen RateLimit ()
sources to exhaust DNS service. UnmatchAndAction(dns,drop)
DNS Attackers launch forged DNS requests (with victim srcIPs) to o )
lificati public DNS resolvers; the replied traffic of an amplified volume RateLimit () /B}OCkLlst O
amplification will be directed to the victim UnmatchAndAction(dns,drop)
S S s from divers
UDP flood Attackers send a large Yol‘ume of @P packets from diverse RateLimit () /BLockList ()
sources to exhuast victim's bandwidth
Attackers launch forged NTP requests (with victim srcIPs) to o i
NTP amplifaction |public NTP servers; the replied traffic of an amplified volume will RateLimit () /B}OCkLmt O
be directed to the victim UnmatchAndAction(ntp,drop)
SNMP Attackers launch forged SNMP requests (with victim srcIPs) to o )
. SNMP servers; the replied traffic of an amplified volume will be RateLimit () /Blocklist ()
UDP amplifcation directed to the victim UnmatchAndAction (snmp,drop)
SSDP Attackers forge the discovery requests with victim srcIPs to plug- o i
ifacti and-play devices; the replied traffic of an amplified volume will be Ratelimit ()/B}OCkLlst O
amplifaction directed to the victim UnmatchAndAction(ssdp,drop)
Memcached Attackers discover open Memcached servers and send spoofed RateLimit () /BlockList ()
amplification cache requests (with victim srcIPs) to flood the victim UnmatchAndAction (memcached ,drop)
QUIC Attackers send spoofed "hello" messages to QUIC servers; the Block/AllowList ()
amplifaction replied traffic of large volumes will be directed to the victim UnmatchAndAction(quic,drop)
DNS spoofin Attackers send corrupt DNS records to volunerable DNS resolvers KVStore (i 4. 65K)
P & and poision the DNS cache crelip,record,
i h t
ICMP flood Attackérs send a large volume of fabricated ICP echo requests RateLimit () /BlockList ()
from diverse sources
ICMP A large number of spoofed ICMP echo requests with the intended )
Smurf attack victim srcIPs are broadcast to the network using an IP broadcast Block/AllovList ()
RateLimit ()
address
- Attackers send corrupt ARP mappings to a (local) network to
ARP ARP poisonin K i
poisoniig cause denial of service or MITM VStore(ip,mac, 10k)
HTTP Get/Post Attackers send a large volume of HTTP Get and Post requests to BlockList () /RateLimit ()
flood flood a target HTTP server ockhLs arehm
. Attackers try to send a high volume of SIP REGISTER or
SIP register flood kList () /Ratelimit
Application & INVITE packets to SIP servers BlockList()/Ratelinit()
layer Slowloris Attackers launch a large number of small volume connections to  |Block/AllowList ()
exhaust victim server's connection pool RateLimit ()
HTTP slow post Attackers send many.HfFTP Post r'equests with message body in a [Block/AllowList ()
slow rate to let the victim server time-out RateLimit ()

Figure 16: State-of-the-art volumetric attacks and their mitigation strategies in Jaqen.
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