Runtime Recovery of Web Applications under
Zero-Day ReDoS Attacks

Zhihao Bai
Department of Computer Science
Johns Hopkins University
Baltimore, US

Email: zbail @jhu.edu

Yinzhi Cao
Department of Computer Science
Johns Hopkins University
Baltimore, US

Email: yzcao@cs.jhu.edu

Abstract—Regular expression denial of service (ReDoS)—
which exploits the super-linear running time of matching regular
expressions against carefully crafted inputs—is an emerging class
of DoS attacks to web services. One challenging question for a
victim web service under ReDoS attacks is how to quickly recover
its normal operation after ReDoS attacks, especially these zero-
day ones exploiting previously unknown vulnerabilities.

In this paper, we present REGEXNET, the first payload-based,
automated, reactive ReDoS recovery system for web services.
REGEXNET adopts a learning model, which is updated constantly
in a feedback loop during runtime, to classify payloads of
upcoming requests including the request contents and database
query responses. If detected as a cause leading to ReDoS,
REGEXNET migrates those requests to a sandbox and isolates
their execution for a fast, first-measure recovery.

We have implemented a REGEXNET prototype and integrated
it with HAProxy and Node.js. Evaluation results show that
REGEXNET is effective in recovering the performance of web
services against zero-day ReDoS attacks, responsive on reacting
to attacks in sub-minute, and resilient to different ReDoS
attack types including adaptive ones that are designed to evade
REGEXNET on purpose.

Index Terms—Regular expression Denial of Service (ReDoS);
Deep Neural Networks; Adversarial Machine Learning; Online
Feedback Loop

I. INTRODUCTION

Regular expressions (regexes), a fundamental tool in com-
puter software, are widely used in web services to manipu-
late, validate, and scrape user data [1], [2]. Although widely
adopted, the matching process of regexes, especially against
carefully crafted inputs, can take super-linear, i.e., polynomial
or even exponential, time with respect to the input length,
leading to a so-called regex denial of service (ReDoS) [3], [4],
[5] and posting a critical threat to web services today [4], [6].
For example, one study has shown that thousands of regexes
in over 10,000 JavaScript or Python modules are vulnerable
to ReDoS [4]. Another study has shown that 339 out of 2,846
popular websites suffer from at least one ReDoS vulnerability,
which can be easily exploited to take down the websites [5].

Ke Wang
Department of Computer Science and Technology Department of Computer Science
Peking University
Beijing, China
Email: 1600012805 @pku.edu.cn

Hang Zhu
Johns Hopkins University
Baltimore, US
Email: hzhu@jhu.edu

Xin Jin

Department of Computer Science and Technology

Peking University
Beijing, China
Email: xinjinpku@pku.edu.cn

Because of the severe situation of ReDoS attacks, re-
searchers have proposed various defenses [7], [8], [3], [5], [9],
[10], [11], which can be roughly categorized into two general
types: proactive and reactive. On one hand, proactive defenses
mitigate ReDoS attacks by speeding up regex matching. For
example, several libraries, such as safe-regex [7] and rxxr2 [8],
are proposed to check the safety of regexes for Node.js
applications via an e-NFA structure. Wiistholz et al. [3] also
present an algorithm to check the vulnerabilities of regexes
via an NFA-alike structure. The state of the art from Davis
et al. [12] proposes a sound ReDoS defense using selective
memoization schemes.

While proactive approaches are effective in defeating Re-
DoS attacks, there are some tradeoffs in preventing them being
deployed in practice. For example, many existing ReDoS de-
fenses [7], [8], [3], [5], [9], [10] are not sound [13], [14], [15],
[16], leaving some regexes still vulnerable; some defenses,
particularly Davis et al. [12], are sound in ensuring linear
matching time but take significantly more space, possibly
leading to a space-related DoS. In addition, many existing
approaches [7], [8], [17], [12] need modifications to either
the web application itself or the web framework supporting
the application, thus facing obstacles in deployment.

On the other hand, a reactive approach, as opposed to
proactive, is to recover web services from ReDoS attacks,
especially zero-day ones, during runtime after being taken
down. This is also important because a proactive approach may
fail or is not in place due to deployment concerns. The most
naive yet still common reactive approach is probably manual
inspection, which leads to a gap for a website between being
unavailable and going back online. As a concrete example, it
took StackOverflow about 34 minutes to recover from an un-
known ReDoS vulnerability in its source code, which included
10 minutes to analyze suspicious web requests and identify the
cause, 14 minutes to fix problematic code segments, and 10
minutes to roll out the software update [18].

Reactive approaches can be automated. Particularly, Ram-
part [11]—the state-of-the-art reactive approach—adopts a
behavior-based, statistical approach to differentiate normal and
malicious requests based on consumed CPU resources. If
malicious, Rampart blocks future requests from the same IP
address or with exactly the same content to defend against
so-called CPU-exhaustion Denial-of-Service (DoS) attacks.
However, there is a major drawback of Rampart. Adversaries
can bypass Rampart by launching distributed attacks from
different IPs using, e.g., a botnet, and more importantly adopt
polymorphic attack payloads after content manipulation.

In this paper, we present REGEXNET, the first payload-
based, runtime, reactive ReDoS recovery system for web
services. Specifically, REGEXNET inspects payloads including
those embedded directly in the request itself and those trig-
gered indirectly, e.g., from database queries, as they may also
come from previous requests and are stored in the server. One
advantage of such a payload-based recovery system is that it
disregards the request source, e.g., IP addresses, and is robust
to content manipulations. More importantly, a payload-based
recovery system can be combined with existing behavior-based
ones to together protect and recover web services.

Our key insight is that malicious payloads triggering ReDoS
attacks have to obey certain underlying patterns, which stay
invariant during content manipulation across different attacks
targeting the same vulnerable regex. For example, if a vul-
nerable regex takes super-linear time in matching a series of
spaces, the malicious payload has to include such a pattern.
REGEXNET relies on recent advancements in deep learning
to efficiently learn such an underlying, invariant pattern and
detect inputs with the pattern quickly, i.e., in linear time,
without human intervention. If a request is detected as a
trigger to ReDoS vulnerabilities, REGEXNET will migrate it
from corresponding web servers to sandboxes for isolated,
controlled execution.

While intuitively simple, deep learning is not a silver bullet.
Although it can efficiently learn the underlying pattern and
make fairly accurate predictions for unseen payloads, state-of-
the-art deep learning makes mistakes, especially under adver-
sarial environments. Here are two scenarios: (i) the learning
model itself has some false positives and negatives, and (ii) an
adversary can launch an adaptive attack, just as what people
did in the vision field [19], [20], against the learning system.

REGEXNET tackles the imperfection of the learning model
via an online feedback loop, which collects all the client-side
inputs related to a web request, such as the request itself
and database query responses, and the processing time of the
request to update the learning model. The idea—being inspired
by adversarial training proposed by Goodfellow et al. [20] and
further improved by Madry et al. [21]—keeps improving the
model, thus making it stronger over time.

We have implemented a system prototype of REGEXNET,
and integrated it with HAProxy [22], a widely-used software
load balancer, and Node.js [23], a popular web application
framework. We believe that REGEXNET can be deployed as a
fast, first measure for ReDoS recovery, in addition to the slow

/(?:charset |encoding) \s*=\s*[""]2.x ([\w\-1+) /i
(a) A vulnerable regular expression.
content-type:charset=.....x
(- is repeated by n times in the input.)

(b) A malicious input to trigger the vulnerability.

/(?:charset |encoding) \sx= (\s*[’"]_ox|\s*) ([\w\-]1+) /1
(c) A semantically equivalent regular expression without vulnerabilities.

Fig. 1. An illustration of a real-world vulnerable regular expression, its
exploits and semantically-equivalent, safe counterpart.

process of fixing and rolling out the source code update with
human engineers. We have evaluated REGEXNET in a real-
world Node.js web application testbed and measured the sys-
tem performance under a wide variety of real ReDoS attacks
including zero-day and adaptive ones. The evaluation results
show that the throughput and latency of a web application
under ReDoS attacks can quickly recover to the normal level
within sub-minute, which is several orders of magnitude faster
than a manual recovery. We also compare REGEXNET with the
state-of-the-art reactive ReDoS defense, Rampart, and show
that REGEXNET significantly outperforms Rampart in terms
of normalized throughput.
In summary, we make the following contributions.

o We propose REGEXNET, the first payload-based, automated
ReDoS recovery system for web services that leverages a
learning model to classify requests and recover websites
after zero-day ReDoS attacks.

e« We design an online feedback loop for REGEXNET to
collect training data at runtime, continuously train its model
online, and automatically update its model to classify and
migrate requests, in face of adaptive, unknown attacks.

e We implement a system prototype of REGEXNET and
demonstrate its effectiveness, responsiveness, and resiliency
with experiments on a testbed with a wide variety of real-
world ReDoS attacks on Node.js.

II. REGEXNET OVERVIEW

In this section, we start from a motivating example and ex-
plain the key ideas of REGEXNET in recovering web services
from ReDoS attacks. Then, we present the threat model of
REGEXNET and how REGEXNET is deployed in practice.

A. A Motivating Example

In this part, we illustrate a real-world vulnerable regex
in Fig. 1 and explain how it makes websites vulnerable to
ReDoS attacks. The vulnerable regex [5] is applied upon every
request to parse the accepted charset in the HTTP header
for encoding purposes. An adversary targeting this vulnerable
regex sends many requests containing malicious payload (e.g.,
one shown in Fig. 1(b)) in the charset HTTP header to the
vulnerable website: each request originated from the adversary
will occupy the server for a fairly long time and all these add
up to a Denial of Service (DoS) consequence.

We now explain why the regex in Fig. 1(a) is vulnerable.
The vulnerable part in this regular expression is \s* [’
' r1?.%, which matches strings with zero or more of \s

(metacharacter for whitespace, such as space, tab, and carriage
return), zero or one of / and ’’, and zero or more of
- (space character with ASCII code 321p). The malicious
payload shown in Fig. 1(b) is a string with n space characters.
A space character can be either matched with \s or .. As such,
the matching process needs to split this string into two parts,
with one matching \s* and the other matching _+. Because
there are (n + 1) different ways to split the string, the regex
engine needs to exhaust all the (n 4 1) combinations to figure
out the string cannot be matched. Since each combination takes
O(n) time to match, the time complexity to match this string
is O(n?), i.e., super-linear.

B. Threat Model and Practical Deployment

Threat Model. REGEXNET’s threat model considers a website
hosting a web service as a potential victim. The victim may
deploy a vulnerable regex to match against incoming HTTP re-
quests. The adversary is the client(s) of the web server, which
sends requests with malicious payloads for ReDoS attacks.
Borrowing classic terminologies in Cross-site Scripting (XSS)
attacks, we further classify ReDoS attacks into two categories,
i.e., reflected and stored, based on the adversary’s behaviors.

First, a reflected ReDoS adversary keeps sending malicious
requests to the vulnerable web server. Each request may be
polymorphic in contents and origins, i.e., the adversary may
adopt different IP addresses and change the malicious payload
to avoid being detected. We call this attack reflected because
the ReDoS impacts are reflected back to other benign users of
the same service.

Second, a stored ReDoS adversary just sends one malicious
request to the vulnerable web server and then the request or
part of the contents are stored at the server side. Then, when
a benign user sends a request to the server, the stored contents
are fetched and matched against a vulnerable regex, leading to
a DoS attack. For example, the adversary may post a comment
with malicious payloads on a blog and the vulnerable regex is
a filter of illegal contents: Every benign request to the blog will
trigger the ReDoS attack. We call this attack stored because
the ReDoS payload is stored at the server-side database.

Practical Deployment. REGEXNET is provided as a software
appliance that is deployable on general-purpose servers at the
application layer of a web server to inspect all the web traffic
after decryption. It is an appliance of network function virtual-
ization (NFV), and can be deployed together with other NFV
appliances. We consider two types of deployment models.

First, the direct deployment is via web service providers.
Specifically, a provider runs an instance of our system co-
located with its web servers in the same datacenter to protect
itself from ReDoS attacks. Large-scale web service providers
with geographically-distributed datacenters need to run a sep-
arate instance of REGEXNET in each of its datacenters. These
REGEXNET instances communicate with each other to update
their learned models.

Second, a public cloud service provider can also deploy
REGEXNET via exposing APIs to the users of the public cloud,

and provide REGEXNET as a ReDoS recovery service for its
users. Specifically, these APIs will provide a callback function
for each incoming web request—once REGEXNET identifies a
request as ReDoS traffic, the callback function will be invoked
to alert cloud users to take corresponding actions. A cloud user
can also call the provided APIs to let the cloud provider know
that a request is benign or malicious so that the provider can
update the model. Note that the cloud service provider needs to
maintain a model for each user to avoid cross-contamination,
i.e., a model being polluted by other cloud users.

C. Key Ideas

Overview. The key idea of REGEXNET is to quickly analyze
all the requests to a web server and predict whether they will
lead to a significantly long processing time: If so, REGEXNET
will migrate those requests to separate sandboxes and isolate
their impact from the rest for a fast recovery. The analysis
includes the request itself for reflected ReDoS and all the
responses from database queries for stored ReDoS. Next,
REGEXNET will directly isolate all the malicious requests
launched by a reflected ReDoS adversary; REGEXNET will
also isolate all the requests viewing pages containing the
malicious payload injected by a stored ReDoS adversary. As a
result, all the normal services of the web server under reflected
ReDoS will be recovered; the services of pages with no stored
ReDoS payload are restored and pages with stored ReDoS
payload are isolated by REGEXNET.

Linear-time analysis of requests. Next, we describe how
REGEXNET achieves fast recovery via a quick analysis of all
requests. REGEXNET relies on deep neural networks (DNNs)
to learn the behaviors of matching regexes against sequential
data among consecutive characters with a few samples just
like few-shot learning and mimic such matching during the
classification stage in a linear time.

Particularly, REGEXNET uses a linear-time DNN to match
malicious requests, instead of super-linear time regex match-
ing. While this seems counterintuitive at first glance, our
approach actually reflects how the malicious requests should
be matched in linear time using a semantically equivalent
regular expression without vulnerabilities. We use the same
example in Fig. 1 to illustrate why the solution works. Fig. 1(c)
shows a semantically equivalent regex without vulnerabilities.
The vulnerable part \s= [’/ ’’] ?_* is divided into two parts,
ie., \sx[” 77]1_%, and \s«. Each part matches any string
in linear time, and thus this regex eliminates the vulnerability
that exists in Fig. 1(a).

We now use Fig. 2 to explain why a DNN can reflect the
matching of a semantically equivalent regex without vulnera-
bilities in Fig. 1(c). Note that the figure only shows the portion
related to the vulnerable part to simplify the illustration. First,
Fig. 2(a) shows the state machine of the vulnerable regular
expression in Fig. 1(a) to match a malicious input. There
are two states, i.e., S1 and Sz, which map to \s* and _*.
Since the space character matches both states and there are
(n+ 1) possible combinations to partition n space characters,

\s -

(a) A vulnerable state machine

| Sequence of spaces |

| DNN
[|
Unit 1 Unit 2 Unit n
|i1==l_l | | i2==|_| | in==_1
t
i1 i2 in

(b) An equivalent, non-vulnerable state machine (c) Anideal, learned DNN capturing the vulnerable inputs,
(a failed matching of n*Liis O(n?)). (the second path matches the vulnerable inputs).

which mimics the second path in (b).

Fig. 2. An explanation that REGEXNET can capture the correct logics of regex matching with O(n) time based on the example in Fig. 1.

the total matching time is O(n?). Second, Fig. 2(b) shows
the state machine of the semantically equivalent regex without
vulnerabilities to match a malicious input. There are only two
possible paths with O(n) matching path: The malicious string
does not match the top path, and only matches the bottom path.
Lastly, we use Fig. 2(c) to show how a DNN can mimic the
behavior of the correct regex for linear-time matching. Each
unit in the DNN receives a character as input and the DNN is
trained to recognize sequences of spaces. Note that Fig. 2(c)
is a simplified illustration to show the main idea. The actual
model in REGEXNET uses a combination of embedding, 1-
d convolutional, spatial pyramid pooling and fully-connected
layers that can process variable-length input with linear time.

ITII. REGEXNET DESIGN
We describe the design of REGEXNET in this section.

A. REGEXNET Design Goals

REGEXNET is designed to recovery web services from zero-
day ReDoS attacks, with the following goals.

« Effective. REGEXNET should effectively recover a web
service to resume processing of requests from normal clients
after a zero-day ReDoS attack by providing a comparable
throughput (in terms of requests processed per second) and
latency (in terms of processing latency of each request).

« Responsive. REGEXNET should quickly react to a zero-day
ReDoS attack, and minimize the downtime of a web service
caused by the attack.

o Resilient. REGEXNET should be resilient to different Re-
DoS attack types, no matter whether a ReDoS attack is
targeted at a known or unknown vulnerability.

o Low overhead. REGEXNET should incur low overhead on
the throughput and latency of request processing.

o Scalable and fault-tolerant. REGEXNET should be able to
scale out based on the amount of web traffic, and tolerate
the failures of individual system components.

B. REGEXNET Architecture and Workflows

Fig. 3 shows the overall architecture of REGEXNET.
REGEXNET, a ReDoS recovery system, is a software appli-
ance that recovers web servers under ReDoS attacks from
adversarial clients. REGEXNET relies on an online feedback

RegexNet
(6) model update Online feedback loop

__(2) feed query response as inputs |

E—)
Qaeeet” €= D =)
& signal P Collector

(2) collect query

41) copy

Normal
% Request
q ¢ \

/ response
é ReDoSi b;_lgsger Normal
Attack i executor e
' (1) dispatch *(4) migrate u
i Database
! Database
| query
i Sandbox

Fig. 3. REGEXNET architecture.

loop to train a customized DNN model, leverages the model
to detect malicious ReDoS requests, and then isolates them
to separate sandboxes—i.e., an elastic bounded (e.g., 10%)
fraction of server instances—to mitigate their impact on web
services. REGEXNET has a collector, which serves as a shim
layer running in each web server instance and collects in-
formation related to the request execution, such as database
query response and runtime execution time, for the feedback
loop. Another important module is a load balancer, which
spreads web requests over web servers, and copies them to
the DNN model for request classification. We provide various
load balancing policies for REGEXNET, including round-robin
as default, so that all server instances will be equally utilized.
We now describe the workflow of REGEXNET.

1) Dispatching requests. The load balancer dispatches web
requests based on customized load balancing policies, and
copies the requests to the DNN-based detection module.

2) Intercepting database query response. The collector inter-
cepts all the queries to the database, records the responses
from the database, and then sends the query response back
to the DNN-based detection module.

3) Detecting and signaling. The DNN-based detection mod-
ule, taking both the request and the query response, clas-

sifies whether the request causes ReDoS, and then signals
the migrator to act based on the result. As an optimization,
when a database response is malicious, the detector can
associate it with the request, and directly classify the
following requests to reduce detection latency.

4) Migrating requests. The migrator, upon receiving the sig-
nal, notifies the corresponding server instance to stop the
processing of the request, and sends it to a sandbox.

5) Collecting processing time. The collector collects the pro-
cessing time of each web request, and uses them to update
the detection model.

6) Updating the model. To close the feedback loop,
REGEXNET updates the model with the collected times.

Note that we choose to design and deploy REGEXNET on
the network layer due to two reasons. First, it does not impose
any latency overhead on benign requests in normal scenarios,
because REGEXNET does not interpose between clients and
web servers, and requests are copied to REGEXNET for pro-
cessing in parallel with normal processing at the web servers.
Once a ReDoS attack happens, while the web servers do spend
CPU resources on processing malicious requests, they are
immediately migrated to sandboxes to isolate their impact after
being classified as malicious by the detection module. The
CPU resources that can be consumed by the malicious requests
at the web servers are capped by the classification time, which
is linear. And remember that even normal requests would take
linear time to be processed. Because in ReDoS attacks the
malicious requests are only a small portion of the total traffic,
the system can quickly recover to resume its operation.

Second, it is application-agnostic and thus minimizes de-
ployment efforts. Specifically, the deployment of REGEXNET
on the network layer eliminates the need for analyzing and
modifying the source code of applications or libraries. There-
fore, it simplifies the deployment and can serve a wide range of
web applications. As a comparison, an alternative approach is
to deploy REGEXNET on the application layer with either the
application code or the library of regular expression matching.
This application-specific approach requires knowledge about
the application code, incurring additionally engineering efforts.
More importantly, the source code for certain applications and
libraries may not even be available.

C. DNN-based Detection Model

Model design. The detection module uses a DNN model to
detect ReDoS attacks. The DNN model takes a web request as
input and classifies whether the request is benign or malicious.
Specifically, a web request r is represented as an array of
characters, i.e., 1 = {¢l|¢; € C} where C is the set of
characters. The DNN model f is applied to r to compute a
label in {0, 1}, i.e., f(r) € {0, 1}, where label 0 means benign
and label 1 means malicious.

Our DNN architecture has four layers, one embedding layer,
one 1D convolutional (convld) layer, one spatial pyramid
pooling (SPP) layer, and a fully-connected layer. When a web
request comes in, the characters are fed into the embedding

layer at the character level. The embedding layer generates
an embedded vector for each character. Then the convld
layer takes these vectors as input and performs convolution
operations on them. The SPP layer converts the output from
the convld layer into fixed length with max pooling. Finally,
the fully-connected layer outputs a result, i.e., either benign
or malicious, for the web request.

We adopt this specific DNN architecture due to the follow-
ing reasons. First, we choose an embedding layer, because
it can turn the input characters into dense vectors, which is
essential to the convergence of the DNN. An advantage of the
embedding layer is that it is able to encode distances between
characters and show their similarity. For example, the distance
between the letter “0” and “1” should be smaller than that of
“0” and “a”, because both “0” and “1” could be matched by
the symbol “\d” in regex which stands for all the digits. Thus,
such property of the embedding layer is important. Second,
we choose a convld layer, because a convld layer is able
to extract local information from the sequence of characters,
and it is also computationally efficient. The convld layer is
followed by tanh as a common practice. Third, we choose an
SPP layer that draws the feature maps from the output of the
convolutional layer only once, and then pools the features in
arbitrary regions to generate fixed-length representations for
the fully-connected layer. Both the convolutional layer and
the SPP layer are able to process data in O(n) time where n
is the length of the data. Lastly, we choose a fully-connected
layer that allows information to flow between units extracted
by the SPP layer, thus being able to capture useful patterns
from a global perspective. Note that we choose SPP instead
of recurrent neural networks (RNNs), because SPP is more
computation-efficient.

Model training and update. REGEXNET provides both an
offline-trained model and an online update procedure. The
offline training is used to bootstrap the DNN model, and
the online training is used to refine the model with real-time
measurements to adapt to both known and unknown attacks.
Note that offline training is optional. REGEXNET can be
deployed without offline training, and only use online training
to learn the attack patterns and react to ReDoS attacks. Offline
training is useful to reduce the reaction time to known attacks.

The offline training component uses a training dataset to
train the initial DNN model. The training dataset could be
collected from previous attacks or generated based on the
analysis for known vulnerabilities. It contains a set of web
requests R = {r;} and their labels L = {l;}, which indi-

cate whether each request is malicious or not. We use the

cross entropy loss Zi(—log(%)) to maximize

the classification accuracy. We use the common mini-batch
gradient descent method to train the model. A challenge in
training a model for ReDoS detection is that the datasets
are usually imbalanced, i.e., there are more benign requests
than malicious requests in the datasets. We sample the benign
requests with random undersampling to make the datasets
more balanced, in order to achieve high detection accuracy.

The online training component continuously refines the
model to detect unknown attacks. There are two steps. First,
the component builds the training data with real-time mea-
surements collected from the web servers. The collector, i.e.,
the shim layer in each server instance, tracks the response
time of each web request, and compares the response time
with a pre-defined threshold. If the response time is above
the threshold, REGEXNET considers the request as malicious
because it consumes excessive CPU resources. The shim
layer immediately reports the malicious request to the online
training component, in order to quickly react to the attack. The
collector also tracks the response time of each request in the
sandbox. If the execution of a request in the sandbox consumes
less time than the threshold, the collector also reports the
request to the online training component, because the request
is misclassified as malicious.

Second, the online training component adopts a hot-start
procedure to update the DNN model to include the newly
collected data. Specifically, the component starts from pre-
viously converged weights and adds newly collected data into
the backward propagation. The advantage of such a hot-start
procedure is that the model is almost converged, and thus the
convergence speed is much faster.

Threshold selection. REGEXNET adopts a threshold in the
online training component for the feedback loop. The threshold
is either specified by an administrator or determined based on
the statistics of benign requests during the testing phase of the
target web application. Specifically, REGEXNET calculates the
average processing time of benign requests x and the standard
deviation o. Then, REGEXNET adopts x4+ 30 as the threshold,
i.e., the requests of which the processing time is above y+ 30
are fed back to the online training component.

There are two things worth noting here. First, malicious
requests that are executed in less than p + 30 time will not
trigger the online feedback loop. Such requests will not slow
down the web application much because their execution time is
relatively small. Additionally, if the attacker chooses to send a
large number of such requests, the detection will default back
to the traditional network-layer, volume-based DoS detection.

Second, the chosen threshold may also introduce false posi-
tives of our DNN-based detection module, e.g., feeding benign
requests with a large file upload to the online feedback loop as
potentially malicious requests. However, these requests are not
dropped. Instead, as shown in Section III-D, they are migrated
to the sandbox, and are still executed, albeit slower due to
the limited resources in the sandbox. The mislabelling can be
fixed by the operator by resetting the threshold, correcting the
mislabeled data and re-training the DNN model.

D. Request Migration

The migration module migrates potentially malicious re-
quests to sandboxes. The detailed procedure is as follows.
First, the migration module receives the IP address of the
scheduled server instance from the load balancer for each
web request. The migration module uses the IP address of
the scheduled server instance to signal its shim layer. Second,

when the shim layer receives the signal, it starts migrating
the web request to a sandbox. We use a primary-backup
approach to enable the shim layer to stop a web request during
processing and be compatible with any web server software.
Specifically, we run two instances in each web server: one
instance is the primary, and the other one is the backup. The
shim layer buffers the web requests in a queue, and sends small
batches of requests to the primary for processing. When the
shim layer receives a notification from the migration module,
it checks whether the request has been sent to the primary or
not. If not, the shim layer can simply remove the request from
the buffer. Otherwise, the shim layer kills the primary, and
makes the backup as the new primary. It resends the previous
batch of requests, except for the malicious one, to the new
primary for processing, and starts a new backup. At the same
time, the malicious request is sent to a sandbox to limit its
impact on normal requests. For stateful request processing,
we leverage the transaction processing of the database to
ensure transactional semantics when killing and restarting
requests. Many applications support fault recovery or seamless
restart. For example, Zero Downtime Release [24] keeps the
partial states in the execution of HTTP requests during restart
and replays these requests on other servers. REGEXNET can
incorporate such solutions to restart requests smoothly.

E. Scalability and Fault Tolerance

REGEXNET can easily scale out with more servers to handle
more web traffic. The shim layer runs on each web server,
and scales out with the number of web servers. The number
of sandboxes is decided by the server operator, based on how
much resource the operator wants to allocate for malicious
requests. The detection module and migration module work
together to detect and mitigate ReDoS attacks. One instance
of the detection module and one instance of the migration
module should run together on the server to minimize the
communication overhead between the two, but multiple pairs
of these instances can run independently on several servers to
handle more traffic, as different pairs do not need to coordinate
with each other. The training can be done in one instance of
the training module, and the trained model can be pushed to
all instances of the detection module to update their models.

REGEXNET does not have a single point of failure.
REGEXNET handles its individual component failures as fol-
lows. (i) Detection module. The detection module does not
maintain any state. When an instance of the detection module
fails, it can be easily replaced by a new instance (e.g., a new
server or VM). The new instance gets the latest model from the
training module and then begins to classify requests received
from the load balancer. (i) Migration module. Similar to the
detection module, the migration module does not keep any
hard state either. An instance failure of the migration module
can be handled by using a new instance. (ii1) Training module.
REGEXNET stores the training data and the trained model in
a reliable distributed storage such as HDFS [25]. When the
instance of the training module fails, REGEXNET replaces it
with a new instance. The new instance restarts the training

if the old instance fails in the middle of the training before
the model converges. Otherwise, the new instance simply waits
for new training data from the shim layer to retrain the model.
(iv) Shim layer, web server and sandbox. The shim layer, web
servers and sandboxes process requests, and they naturally
scale out. Their failures can be handled by replacing them
with new instances.

IV. IMPLEMENTATION

We have implemented a system prototype of REGEXNET
with a total of ~2,000 lines of code. The code is open source
and available at https://github.com/netx-repo/RegexNet.

To demonstrate the practicality of REGEXNET in real-world
deployments, the prototype is integrated with HAProxy [22],
a widely-used open-source software load balancer, and
Node.js [23], a popular web framework used by many web ser-
vices. HAProxy has a customizable module for HTTP request
handling that allows developers to add custom functionalities.
We customize this module to copy each web request, as well
as the corresponding server IP that handles the request, to
the detection module of REGEXNET. The detection module
is implemented in Python. It buffers web requests received
from HAProxy in a queue, and performs classification on
each request. It uses PyTorch [26] to run the DNN model for
classification, and the model is periodically updated by the
training module. When a request is classified as malicious,
it signals the migrator module, which stops the request on
the corresponding web server, and migrates the request to
a sandbox. The collector is implemented in C++. It tracks
the response time of each web request and reports them to
the training module. The training module is implemented in
Python based on PyTorch. It trains the DNN model based on
the collected data.

The configuration of the DNN model is as follows. The
model takes a web request as input, which is represented as
a sequence of characters. The embedding layer maps each
character to a 32-dimension vector. The convld layer maps
32 channels from the embedding layer to 16 channels, with
kernel size 64 and stride 32. The convld layer is followed by
a tanh activation layer, and then the output is fed into a 3-level
SPP layer. The SPP layer pools the feature maps with varied
sizes to a fixed size. Finally, the last output of the SPP layer
is reduced to two dimensions by a fully-connected layer, and
a log softmax layer is applied to generate the label.

V. EVALUATION METHODOLOGIES

In this section, we describe our evaluation methodologies.
A. Experimental Setup and Evaluation Metrics

Setup. The experiments are conducted on AWS. The baseline
setup runs a web service on an AWS cS5n.4xlarge instance,
which is equipped with 16 vCPUs (3.0 GHz Intel Xeon
Platinum processor) and 43 GB memory. We use Express-
Cart [27], a popular open-source e-commerce web application
built with Node.js, to run the web service. We insert vulnerable
modules into ExpressCart so that it can be attacked. We use

HAProxy [22] for the load balancer and Redis [28] for the
database. The clients generate a mix of normal and malicious
web requests from different IP source addresses. Next, we
introduce the setup with REGEXNET. REGEXNET adds the
collector and the migrator to the instance that runs the web
service and allocates one vCPU as a sandbox to handle ma-
licious requests. REGEXNET runs the detection module in an
additional p3.2xlarge instance, equipped with 8 vCPUs (Intel
Xeon E5-2686 v4 processor), 61 GB memory and an NVIDIA
GPU (Tesla V100). The adaptive attacks are generated by a
c5n.18xlarge instance with 72 vCPUs (3.0 GHz Intel Xeon
Platinum processor with AVX-512) and 192 GB memory.

Evaluation metrics. In the experiments, we vary the following
parameters: the rate of malicious requests, the size of mali-
cious requests and the type of ReDoS attacks. We use the
following metrics to evaluate the performance of the system.
o Throughput. This is the number of normal requests per
minute (RPM) the system can process.
o Latency. This is the average time handling normal requests.
e Recovery time. This is the time the system takes to recover
from a ReDoS attack.

B. Network Traffics Used in the Evaluation

In this part, we first find modules in Node.js that are vulner-
able to ReDoS attacks. Specifically, we search the Common
Vulnerabilities and Exposures (CVE) database [29] and aca-
demic papers [5] to find existing vulnerable regexes as shown
in Table I. Among them, the vulnerability in ua-parser-7js
is exponential, and those in other modules are polynomial.

Next, we describe the benign and attack network traffics
used in the evaluation. The benign traffic is generated by
Apache HTTP server benchmarking tool ab [30] with 32 con-
current connections. Note that the generated benign requests
have relevant headers that trigger the tested modules. Then,
we describe how we generate attack traffics for the tested
modules. Then we generate two types of attack traffic: normal,
untargeted with random contents, and adaptive with carefully-
crafted contents targeting our learning model.

1) Normal Attacks with Random Exploit Contents: First,
we rely on an automated exploit generation tool, ReScue [13],
to generate a series of exploits. Fig. 4(a) shows an example
exploit for ua-parser—7js. Second, if ReScue fails to gener-
ate exploits for some regexes, we manually analyze the regex,
find a pattern for exploits, and generate a series of exploits.
Fig. 4(b) shows an example exploit for fresh. The pattern
for its exploits is “(random string) + (a random number of
spaces) + (random string)”.

Based on our experience, ReScue is only able to generate
attacks for ua—parser—js and marked, because the min-
imum sizes of their exploits to consume significant CPU time
are hundreds of bytes. Except this, ReScue fails to generate
exploits for useragent of which the minimum size of
exploits is 1 KB. For other vulnerable modules, which require
tens of thousands of bytes, ReScue does not finish in five days,
and we use manually crafted exploits instead.

TABLE I
A SECURITY ANALYSIS OF REGEXNET AGAINST A VARIETY OF REDOS VULNERABILITIES.

CVE ID Module Version Vulnerable Regular Expression Recoverable with REGEXNET
CVE-2017-15010 tough-cookie <233 /77 =;14)) \sx=\s* (["\n\r\0])/ 4
CVE-2016-4055 moment <2.11.2 /(\=)2(2:(\d*) [. 1)2(\d+)\:(\d+) (?:\: (\d+)\.2(\d{3})?) 2/ v
CVE-2015-8858 uglify-js <2.6.0 /oNdx\ L 2\dx (2:e[+-12\d* (2:\d\.2[\.2\d) \d«) ?$/1 v
CVE-2015-8854 marked <0.3.4 /N ((2: 1 [\s\ST)+2) _\b | "\ ((2:*\x| [\s\S])+2) \x (2!\%)/ v
CVE-2015-8315 ms <0.7.1 /7 ((?2:\d+)?\.?\d+) *(milliseconds?|msecs?|ms|seconds?|secs?|s v

. |minutes?|mins?|m|hours?|hrs?|h|days?|d|years?|yrs?|y)?$/
N/A charset <100 /(2:charset|encoding) \s*=\s*["]? ([\w\-]+)/i d
/TN TN/ I\ s 14) (2: (2:\s*; \sxboundary=(?:" ([""]+)" [([";"1+)))
N/A content 03 s \sx [P 4= (22 (27 (25 1010 [(25175 M14)))) #5714 v
N/A fresh <050 /%, / v
N/A forwarded <010 /%, */ v
. /Dell.xStreak|Dell.* Aero|Dell.*Venue|DELL.*Venue Pro|Dell Flash|Dell Smoke
N/a mobile-detect <1.3.6)\ 1ini 31x1xc028 1%CD35 1\\bOOIDLAND | \\b10IDEAND |\\GSOL\\b/ v
N/A platform <134 /" +| +$/g v
N/A ua-parser-js <0.7.14 /ip[honead]+ (?:.x0s\s ([\w]+)*\slike\smac|; \sopera)/ v
N/A useragent <221 /((2:[A-20-9]1+| [A-z\-1+?) 2 (?:the) ? (?: [Ss] [Pp] [Ii] [Dd] [Ee] [Rr] | [Ss]crape| [A-Za-z0-9-1* (?: [C] v

["Uul) [Bb]ot| [Cc]

[Rr] [Ra] [Ww] [L1]) [A-20-9]%) (2: (2: [\/]1v) (\d+) (2:\. (\d+) (2:\. (\d+))?)2)2/

GET http://www.foo.com/

User-Agent: ipaosvWipvWipvWipvWipvWipvWipvWipvWipvWipv
WipvWipvWipvWipvWipvWipvWipvWipvWipviWipvWipviWipviWipv
WipvWipvWipvWipvWipaIccvipalc

(a) A malicious web request for ua-parser-js, which is generated by ReScue.

GET http://www.foo.com/
If-None-Match: x (30000 spaces) x

(b) A malicious web request for fresh, which is manually crafted.

Fig. 4. Examples of malicious web requests.

GET http://www.foo.com/
If-None-Match:
XXX >:¢

(30000 spaces)

XXXXKXXXXXXXXKKKKKKKKKKKKKKKKKKKKKKKKKKXXXX XXX KKK
(a) A malicious web request. The consecutive spaces trigger the vulnerability.
GET http://www.foo.com/

If-None-Match:
1D9xx52xxx9x5x9x25x0xxex0rx0622D350x2U5xxx5g8Gx2x
exnfxx759xr0x9x25ex02j22x25360X920e99x22xbr02150518

(30000 spaces)

x2x2x22x2r55x0Z2x0x0v0S10xxxxxx20xXr6x2x2xXF9IxSx1SD
0Fe29xI29I9x7IIxx1xx11e9D0xxx15x0x55xx3xf5rcho2x2cxx

(b) A malicious web request generated by adversarial learning. The consecutive
spaces trigger the vulnerability, but the characters before and after the spaces
bypass the DNN model.

Fig. 5. An example of an adaptive attack targeted at the fresh module.
The vulnerable regex is shown in Table I. REGEXNET can quickly recover
the web service from adaptive attacks as shown in Fig. 7.

2) Adaptive Attacks with Carefully-crafted Exploits: Be-
cause REGEXNET adopts a machine learning model, i.e., a
DNN, previous research [20], [31], [19] in adversarial machine
learning teaches us that one can generate adversarial examples
to evade the learning model and bypass the recovery system.
The method is similar to gradient descent, while we update the
input data instead of the model parameters. To handle discrete
values like characters, we use the method proposed in [31].
The basic idea is to compute the gradients of the embedded
vectors of the input data and find the closest embedded vector
in the opposite direction of the gradients for each vector.

In our experiments, we consider the DNN model as a
whitebox—which is a strong threat model, because the adopted

DNN is usually a blackbox to the adversary in practice—and
then generate adversarial requests for a vulnerable regex. Note
that the original attack may change any characters in a sample,
which may alter the malice of the request. Therefore, we add
additional constraints to ensure that the key exploit triggering
the vulnerable regex remains the same during adversarial
sample generation, and the web request is still legitimate in
terms of the format.

Fig. 5 shows an example of an adaptive attack targeted at the
vulnerability of the fresh module. The vulnerable regex is
shown in Table I, which can be triggered by consecutive spaces
as part of a web request shown in Fig. 5(a). We assume that
an adversary can obtain the trained DNN model and generate
an adversarial input following prior work [31]—the generated
input, as shown in Fig. 5(b), still preserve its malice, i.e.,
consecutive spaces, but has crafted characters before and after
the spaces to evade the model.

VI. EVALUATION

In this section, we evaluate REGEXNET with a wide variety
of real-world ReDoS attacks. Our evaluation aims to answer
the following research questions (RQs).

e RQI: How resilient is REGEXNET against various Re-
DoS attacks, e.g., different vulnerable regexes, reflected vs.
stored, and normal vs. adaptive?

e RQ2: How fast is REGEXNET in recovering web service
under ReDoS attacks? How effective is REGEXNET’s online
feedback loop in dealing with zero-day ReDoS attacks?

e RQO3: How does REGEXNET compare with state-of-the-art
reactive defense, namely Rampart [11]?

e RO4: How effective is REGEXNET under different malicious
loads and message sizes?

e RQ5: What is the accuracy of REGEXNET’s DNN model
especially with an imbalanced or polluted training set?

A. RQI: Resilience against Various ReDoS attacks

In this research question, we evaluate the resiliency of
REGEXNET from three aspects: (i) vulnerabilities in different
regexes, (ii) different vulnerability types, i.e., reflected vs.

60k

I Reflected with RegexNet lE Stored with RegexNet
I Reflected with baseline [EEE Stored with baseline

I
o
~

N
o
~

Throughput (RPM)

0k

Vulnerable Module

(a) Throughput vs. vulnerable modules.

=
o
S

I Reflected with RegexNet B Stored with RegexNet
Il Reflected with baseline [EEE Stored with baseline

=
o
W

=
o
N

Latency (ms)

Vulnerable Module

(b) Latency vs. vulnerable modules.

Fig. 6. System performance under ReDoS attacks on different vulnerable modules. REGEXNET is resilient to different ReDoS attack types.

First Adaptive
__ 60k attack attack
z v v ¥
x
= 40k
>
o
<
2 20k “ - >
o Generate adversarial
£ attack
0k :

0 20 40 60 80 100
Time (s)
Fig. 7. System performance under an adaptive attack. REGEXNET updates

its model online for adversarial examples, and is resilient to adaptive attacks.

stored, and (iii) adaptive attacks that generate adversarial
samples to bypass a trained DNN model.

Resiliency under attacks on vulnerabilities in different
regexes. Fig. 6 shows the system performance under ReDoS
attacks on different vulnerabilities. In this experiment, we set
the malicious load to be 60 RPM, and the maximum message
size to be tens of KB for polynomial vulnerable modules and
hundreds of bytes for exponential vulnerable modules. The
adversary exploits different vulnerabilities in Table I, and we
measure the throughput and latency under these attacks. As we
can see from the figure, the adversary can effectively reduce
the throughput and increase the latency of the web service by
exploiting these vulnerabilities. REGEXNET is able to success-
fully handle all these attacks on different vulnerabilities.

Resiliency under attacks on different types. Fig. 6 also
shows the performance of REGEXNET under different attack
types, i.e., reflected vs. stored. Note that although some mod-
ules are not designed to filter stored contents, e.g., charset,
as their purpose is to inspect HTTP headers, we still apply
them to the stored contents for demonstration and experimental
purposes. Although the attack strategy differs in terms of
reflected and stored attacks, the resiliency of REGEXNET
against these two attacks is similar—particularly, REGEXNET
can learn the patterns of all ReDoS attacks and recover the
performance of the web service, making the web service still
usable to its normal clients.

Resiliency under adaptive attacks in whitebox setting.
The evaluation methodology is as follows. The adversary

100%
80%
60%
40%
20%

0%

Failed to generate
adaptive attacks

Cumulative
Probability (%)

0 30 60 90 120
Latency (s)
Fig. 8. CDF of latency for generating adversarial attacks.

first launches a zero-day attack against a vulnerable module,
namely fresh, generates an adversarial payload under a
whitebox setting, and then launches the second attack immedi-
ately once the adversarial payload is available. The malicious
load is 60 RPM. The maximum message size is 32 KB
(including 30 KB spaces and 2 KB random strings), and the
adversary uses a reflected attack.

Fig. 7 shows the system performance under such an adaptive
attack—REGEXNET can quickly recover the web service.
Specifically, at the time 7 seconds, the adversary launches the
attack, making the throughput drop to almost 0. REGEXNET
quickly collects the malicious requests to train its model,
enabling it to recognize the following malicious requests
and migrates them to sandboxes. The throughput is quickly
recovered within a few seconds. Next, at the time 10 seconds,
the adversary starts to generate an adaptive attack, and suc-
cessfully creates one at the time 92 seconds. This adversarial
example brings the throughput down to almost O again, but
REGEXNET quickly recovers the web service and restores the
system to the original throughput within 5 seconds at the time
of around 97 seconds.

We continue this game between the adversary and
REGEXNET for 100 independent rounds, and show the cu-
mulative (CDF) of the latency for generating adaptive attacks
in Fig. 8. An adversary can only successfully generate an
adaptive attack in 60% cases with an average latency of 56
seconds. The adversary fails to generate any adaptive attacks
for the rest 40% cases after a 120-second timeout—this is why
Fig. 8 is capped at 60%.

It is worth noting that the whitebox assumption of an adver-
sary, i.e., the adversary knows every detail of our DNN model,

S 60k fresh charset ua-parser-js S 60k fresh charset ua-parser-js
a R Z— o Y,
= =
o 40k o 40k
3 3
o Qo
- <
20k ©20k
e e
£ ok £ ok

0 20 40 60 80 100 0 20 40 60 80 100

Time (s) Time (s)
(a) Without REGEXNET. (b) With REGEXNET and offline
training.

= 60k fresh charset ua-parser-js S 60k [fresh charset ua-parser-js
z P e - :
= 40k = 40k
3 3
o Q
< <
S 20k S 20k
o I
F ook £ ok

0 20 40 60 80 100 0O 20 40 60 80 100

Time (s) Time (s)

(¢) With REGEXNET and online (d) With REGEXNET and both of-
training. fline and online training.

Fig. 9. System performance under three ReDoS attacks over time. With a
combination of offline and online training, REGEXNET reacts to attacks in
sub-minute.

is unrealistic. In practice, the adversary cannot calculate the
gradients so easily as the adversary has to probe REGEXNET
and build her own surrogate model, which takes an even longer
time, to create one adversarial example. The experiment shows
an ideal, upper-bound case for an adaptive attacker.

Summary: REGEXNET is resilient against all kinds of—
i.e., reflected vs. stored and normal vs. adaptive—ReDoS
attacks against different vulnerable regexes in terms of
throughput and latency.

B. RQ2: Recovery Speed under Known and Unknown Attacks

In this research question, we evaluate how fast REGEXNET
can recover web services under ReDoS attacks, especially
those zero-day ones. Note that REGEXNET uses a combination
of offline and online training—the DNN model is trained
with known attacks offline, and continuously updated with an
online feedback loop for zero-day attacks. We show how this
combination enables REGEXNET to quickly react to ReDoS
attacks on both known and unknown vulnerabilities.

In this experiment, the adversary launches a dynamic Re-
DoS attack that targets at different ReDoS vulnerabilities over
time. Specifically, at time 10-30 seconds, 40-60 seconds
and 70-90 seconds, the adversary sends malicious requests
on the fresh, charset and ua-parser—-js modules
respectively. During the attack, the malicious load is set to
60 RPM, and the maximum message size is set to 30 KB
for fresh and charset and 128 B for ua-parser—7js.
Fig. 9(a) shows the system throughput without REGEXNET
under this dynamic attack. We can see that the throughput
drops significantly when the adversary generates malicious
requests targeted at the three vulnerabilities. The extra duration
with low throughput for 60-65 seconds is due to the queued
malicious attacks.

Only with offline training, the system is able to handle
known attacks, but cannot handle unknown ones. Fig. 9(b)
shows the time series of the system throughput with

== RegexNet
=@ Rampart

F o 20 40 60 80 100
Malicious Load (RPM)

Fig. 10. System performance under different malicious loads, with

REGEXNET and Rampart respectively.

REGEXNET, which is only trained with the vulnerability of the
fresh module offline, but do not do any adaptation online.
At time 10-30 seconds, the attack on the fresh module
is launched, and REGEXNET is able to recover the system
throughput to 44K RPM, as REGEXNET has already learned
the attack pattern by offline training. For the attack on the
charset module , although REGEXNET has not been trained
on this module, because the attack pattern of the charset
module is similar to that of the fresh module, REGEXNET
is still able to recover the system. However, at time 70-90
seconds, because the attack pattern of the ua-parser—js
module is different and the system does not train the model
online, the system cannot handle this unknown attack and the
performance drops to 24K RPM.

With online training, the system is able to adapt to unknown
attacks. Fig. 9(c) shows the time series of the system through-
put with REGEXNET, using only online training to handle
attacks. With the online feedback loop, REGEXNET can learn
the patterns of all three attacks, even if the model has not been
trained for them offline. The system throughput can achieve
about 40K RPM if the dynamic, zero-day attack happens. For
all the three vulnerabilities, REGEXNET can use its online
feedback loop to recover the system throughput in sub-minute.

Finally, we show the benefits of both offline and online
training. Fig. 9(d) shows the time series of the system through-
put with REGEXNET, which is trained with the vulnerability of
the fresh module offline, and uses the online feedback loop
to update the model at runtime. Similar to the case only with
offline training, the system is able to directly recover under the
attacks on the fresh and charset modules. At time 70-90
seconds, the attack pattern of the ua-parser-7js module is
different and has not been learned. REGEXNET quickly learns
the attack and shows nearly no performance loss.

Summary: REGEXNET can quickly recover web services
under zero-day ReDoS attacks within a minute.

C. RQ3: Comparison with State of the Art

In this research question, we compare REGEXNET with
the state-of-the-art reactive defense, Rampart [11], against
reflected ReDoS attacks. While Rampart is able to block
future attacks by recording some information from malicious
requests like IP addresses, the attacker could easily circumvent
Rampart by using different IPs for each malicious request.

S 60k 103 —m— RegexNet
2 g l—e— Baseline
= 40k £

s —a— RegexNet ‘2102

g 20k —o— Baseline 2

] 8

£ ok 10!

0 20 40 60 80 100 0 20 40 60 80 100

Malicious Load (RPM) Malicious Load (RPM)

(a) Throughput vs. malicious load.

Fig. 11. System performance under different malicious loads, with and
without REGEXNET.

(b) Latency vs. malicious load.

M)
o
=}
~
=
o

©

—=— RegexNet
|—e— Baseline,

a m
< 40k - 3
3 —&— RegexNet >102
_§’20k Baseline § b
2 3
F ook 10!
0 10 20 30 40 50 0 10 20 30 40 50

Message Size (KB) Message Size (KB)

(a) Throughput vs. message size.

Fig. 12. System performance under different message sizes, with and without
REGEXNET.

(b) Latency vs. message size.

Consequently, Rampart can only detect ongoing attacks and
stop them, and thus performs worse than REGEXNET.

Fig. 10 shows this result. The numbers of CPU cores for
Node.js and PHP are both set to 1. For a fair comparison,
we use normalized throughput, because they have different
implementations (Node.js vs. PHP). In addition, the maximum
message size is set to 30 KB for REGEXNET and 40 KB
for Rampart, because such malicious requests consume ap-
proximately the same CPU time for each implementation. We
can see that the throughput of Rampart decreases significantly
when the malicious load increases, and drops to one-tenth with
a malicious load of 100 RPM. On the contrary, the throughput
of REGEXNET drops little even with high malicious load.

Summary: REGEXNET significantly outperforms Ram-
parts as the malicious load increases.

D. RQA4: Different Malicious Payloads and Message Sizes

In this research question, we evaluate the throughputs and
latencies of REGEXNET under different malicious payloads
and message sizes. Specifically, we inject a ReDoS attack on
the fresh module, and measure the throughput and latency
without and with REGEXNET.

Effectiveness under different malicious loads. Fig. 11 shows
the throughput and latency of the web service under different
malicious loads. The maximum message size is set to 30
KB. When there is no malicious load, the throughput of
REGEXNET is nearly the same as that of the baseline (i.e.,
without REGEXNET). It means that the shim layer introduces
negligible overhead. The throughput of the baseline drops to
one-third when the malicious load is just 40 RPM, and drops
to almost 0 when the malicious load is 60 RPM. Accordingly,
the latency of the baseline grows quickly with the increase of
the malicious load. This result confirms the serious damage
that can be caused by ReDoS attacks in previous work [4],
[5], as an adversary only needs a small number of malicious
requests to take down a web service. Note that we do not

show latencies for malicious loads greater than 60, because in
this case the server is overloaded and the latency will increase
to arbitrarily large. In comparison, REGEXNET can maintain
throughput and latency even under a heavy malicious load.

Effectiveness under different message sizes. Fig. 12 shows
the system performance under different maximum message
sizes. The load of malicious requests is set to 60 RPM. The
adversary uses a uniform distribution to choose a size close
to but no greater than the maximum message size for each
malicious request. We avoid setting the size to the maximum
size for all malicious requests as this would make the attack
easily identifiable. As it takes super-linear time for the regex
engine to match a malicious request, the bigger the message
size is, the longer CPU time the request is going to consume.
This intuition is confirmed by the behavior of the baseline.
The throughput of the baseline halves when the message size is
20KB, and drops to almost 0 when the message size is 30 KB.
The latency also increases significantly. Similar to Fig. 11(b),
we do not show latency for message sizes greater than 30 KB
due to an arbitrarily large value. REGEXNET can maintain
high throughput and low latency even when the message size
is 50 KB. We want to emphasize that the vulnerability in the
fresh module is quadratic, so it requires a relatively large
message size to take down the service. It is possible that a
web service can limit the request size to handle such attacks.
However, limiting the request size is not always an option,
as some web services do allow large requests, e.g., receiving
product reviews on e-commerce sites, and more importantly,
there are vulnerabilities that are exponential.

Summary: The throughput of REGEXNET decreases
very slowly and the latency stays almost the same as
the malicious load and message sizes increase.

E. RQ5: DNN’s Accuracy

In this research question, we evaluate the accuracy of the
DNN model adopted by REGEXNET. We first create datasets
to test the accuracy of the classifier in typical scenarios, and
then test the classifier with imbalanced and polluted datasets.

Dataset generation. For each vulnerable module, the dataset
contains a training dataset and a test dataset, both of which
consist of samples labeled as benign or malicious. We insert
the corresponding field into the header of a basic HTTP
request. For malicious samples, the content of the field is
attacking content, which is crafted manually or generated by
ReScue [13]. For benign samples, the content of the field is a
random string. The composition of the training dataset depends
on the experiment. The test dataset consists of 100 benign
samples and 100 malicious samples. Each iteration is to train
the model with a batch of size 64. Each batch consists of 32
malicious samples and 32 benign samples, which are selected
randomly from the training dataset and allow duplication.

Accuracy over imbalanced datasets. A typical scenario of
REGEXNET is to train the classifier with real-time feedback,
where there are a large number of benign samples and a small

)

=
o
S
X

~100%

2 80% R 80%
& 60% & 60%
§40% —— 1 —h— 32 540% —— 1 —h— 32
o 20% 8 == 128 9 20% 8 =< 128
< 0% < 0%
2 4 6 8 10 0 2 4 6 8 10
Iterations Iterations
(a) fresh (b) ua-parser-js

Fig. 13. Classification accuracy for imbalanced datasets.

number of malicious samples. To simulate such a scenario, we
test the accuracy of the classifier over an imbalanced training
dataset, which consists of 1024 benign samples and a few
malicious samples. We test the classifier for two vulnerable
modules, fresh and ua-parser-js. Fig. 13 shows that
the accuracy on the test dataset increases when the training
proceeds, and each curve means different numbers of mali-
cious samples in the training dataset. Since randomness plays
an important role in such a small number of iterations, the
reported accuracy is averaged over 100 runs. For fresh in
Fig. 13(a), the accuracy increases to more than 90% within
5 iterations for 8 or more malicious samples. Even for only
1 malicious sample, it can quickly converge to an accuracy
of more than 80%. For ua-parser—-js in Fig. 13(b), the
accuracy increases to more than 90% in about 3 iterations
with 32 or more malicious samples. In addition, the accuracy
is more than 80% for only 8 malicious samples. However, the
curve for only 1 malicious sample shows overfitting and low
accuracy, because the pattern of the attacking messages of
ua-parser—7js is more complicated than that of fresh.
In conclusion, this figure shows that the classifier is able
to achieve high accuracy with a small number of malicious
samples, and the convergence takes only a couple of iterations.

Accuracy over polluted datasets. A challenging scenario is
that the attacker tries to pollute the training dataset. This can
be achieved by sending pollution requests which have the
same pattern as malicious requests but does not exceed the
running time due to the small size. For example, for fresh
module, a malicious request requires more than 20K spaces to
consume a significant amount of CPU time, while a pollution
request might contain only thousands of spaces. Consequently,
the running time of these pollution requests does not exceed
the threshold, and will be labeled as benign to pollute the
training dataset. To show the performance of REGEXNET
under this type of attack, we add such pollution samples to
the training dataset and test the accuracy of the classifier.
We use fresh module in this experiment. Similar to the
imbalanced dataset, we generate malicious requests and benign
requests to form the dataset. Besides, we generate pollution
requests as stated above, and mark them as benign samples.
The training dataset consists of 896 purely benign samples,
128 pollution samples (labeled as benign) and 32 malicious
samples. The validation dataset consists of 100 purely benign
samples and 100 malicious samples. Fig. 14 shows the result
of the classifier over the polluted dataset. Each curve means a
different size for pollution requests. For example, 1K means

100%

S 80%
> 60%
€ a0% —=— No Pollution 10K
g - 1K —e— 20K
< 20% —— 5K

0% : : : : :

0 2 4 6 8 10
Iterations

Fig. 14. Classification accuracy for polluted datasets.

the size of the pollution requests is about 1K. We can see that
all curves for polluted datasets are very close to the curve for
No Pollution, which means that pollution does not affect the
training. In other words, REGEXNET is able to classify benign
and malicious requests under such pollutions.

Summary: The DNN used in REGEXNET is with >95%
accuracy even with imbalanced or polluted training
dataset and converges quickly under a few iterations.

VII. DISCUSSION

In this section, we discuss a few common questions that
people may have for REGEXNET.

HTTPS traffic. REGEXNET is able to handle HTTPS traf-
fic just like HTTP ones. The reason is that REGEXNET is
deployed at the load balancer of a website, a module for
distributing web requests at the application layer higher than
the transportation layer. That is, all the encrypted traffic,
e.g., those transmitted in HTTPS, has already been decrypted
and available for analysis. Particularly, our implementation of
REGEXNET adopts HAProxy, an open-source load balancer
that supports the distribution of TLS/SSL connections.

Character encodings in malicious requests. REGEXNET
is able to detect malicious ReDoS attacks even if malicious
contents are encoded, e.g., replacing spaces with “%20”. The
reason is that after a few requests, the online feedback loop
of REGEXNET, just like in the case of an adaptive attack, will
capture the encoded attack pattern and update the DNN-based
detection module for the detection.

Cross-request states. REGEXNET does not change or affect
any cross-request states, especially those in the same session.
Even if only one request belonging to a session is migrated
and isolated, the request can still be correctly processed in
the sandbox. The reason is that even without REGEXNET,
the current load balancer may distribute requests of the same
session to different server instances. Cross-request states,
e.g., authentication credentials and a shopping cart of an e-
commerce website, are maintained via client-side cookies and
server-side databases, which are both shared across different
server instances.

Continuous adaptive attack. Adaptive attacks, as shown in
§VI-A and Fig. 8, take a relatively long time even under an
ideal, whitebox setting as compared to fast recovery supported
by REGEXNET. That is, if an adversary continuously launches

an adaptive attack, REGEXNET can still quickly recover the
web service and make it at the target throughput most (i.e.,
>90%) of the time. More importantly, as prior adversarial
training work shows, more adversarial examples will just make
attacks harder, i.e., the longer time and with a higher chance
of failure. As we have shown in §VI-A, the adversary fails
to generate malicious requests for 40% of the cases during a
continuous attack. To summarize, we believe that REGEXNET
is resilient to continuous adaptive attacks.

VIII. RELATED WORK

Regular expression. Regex, a popular search pattern, is
widely used in many scenarios, such as data manipulation
and validation [1], [2], [32] and processing texts [33], [34].
There are some prior works that try to accelerate the matching
algorithms of regexes. For example, Thompson et al. [16]
propose a new regular expression search algorithm for better
performance. Sidhu and Prasanna [35] rely on hardware, i.e.,
FPGAs, to accelerate regex matching. As a comparison, the
purpose of REGEXNET is different, i.e., recovering an affected
website after being attacked instead of finding and fixing the
vulnerability beforehand. Such a task is important to bring an
affected website back online in an incident while none of the
prior works accelerating regex can.

DDoS attacks. Distributed denial-of-service (DDoS) attacks
disrupt the normal operation of a target, e.g., with a flood of
network traffic from many different sources. There have been
extensive efforts contributed to DDoS attack detection and
defense [36], [37], [38], [39]. First, several algorithms have
been proposed to detect DDoS attacks. For example, Barford
et al. [36] present an algorithm based on signal analysis. Moore
et al. [38] use backscatter analysis to quantitively understand
the nature of DDoS attacks. Jin et al. [40] propose to deploy
hop-count filtering to detect DDoS attacks efficiently. Lakhina
et al. [41] use traffic feature distributions to mine network
anomalies. Second, researchers have proposed SDN/NFV-
based methods, being orthogonal to algorithm-based methods,
for defense. For example, FRESCO [42] provides modular
composable security services in Software-Defined Networks
(SDN). AvantGuard [43] can be used for developing more
scalable and resilient SDN security services by introducing
two data plane extensions, which are connection migration
and actuating triggers. Lastly, Bohatei [44] introduces more
flexibility and elasticity by setting up tag-based forwarding
rules proactively. In contrast, REGEXNET focuses on protect-
ing web services against low-bandwidth ReDoS attacks—none
of the aforementioned works is able to do so.

ReDoS attack and defense. ReDoS is proposed as a new
class of low-bandwidth DoS attacks that exploit algorithmic
deficiencies [6]. ReDoS is also a common type of attack from
a software engineering perspective. Lauinger et al. [45] show
that the use of client-side JavaScript libraries may induce
vulnerabilities to ReDoS attacks. Davis et al. [4] also explore
super-linear regex engines that make ReDoS attacks possible
in Python core besides JavaScript.

ReDoS defense is an important problem in academia and
industry. Substack develops safe-regex [7], which detects
ReDoS attacks by limiting the star height to 1. rxxr2 [8],
developed by Rathnayake et al., presents a static analysis
that forms powers and products of transition relations, and
thereby reduces the ReDoS problem to reachability. Weideman
et al. [46] apply results from ambiguity of nondeterministic
finite automata to the problem of determining the asymp-
totic worst-case matching time. Wiistholz et al. [3] present
Rexploiter that is able to automatically identify vulnerable
regexes and determines whether a malicious input string can
be matched against a vulnerable regex. Besides ReDoS attack
detection, Merwe et al. [47] investigate techniques which
can be used to transform vulnerable regexes into harmless
equivalent expressions. Slowfuzz [9] and Singularity [10]
proposed automated tools to explore algorithmic complexity
vulnerability in a blackbox. Node.cure [17] modifies Node.js
framework to enforce timeouts on different API usages and
defend against ReDoS attacks.

As a comparison with existing work, REGEXNET is the first
application-agnostic ReDoS recovery system by leveraging a
DNN model to classify normal and malicious requests for
web services. Prior works focus on defending against ReDoS
attacks beforehand, but zero-day attacks may still penetrate
and affect a vulnerable web service—REGEXNET can recover
these web services that are under attack.

Attacks against learning-based systems. It is well known in
adversarial machine learning [48], [49] that existing learning-
based systems can be evaded [50], [51], [52], [53], [19].
REGEXNET is the same; however, the online feedback loop
introduced in REGEXNET can correct these mistakes, e.g.,
evasive samples, so that the influence of such adaptive attacks
introduced by evasive inputs will be limited to the same
as a zero-day ReDoS attack—as shown in our evaluation,
REGEXNET can also recover the affected web services from
adaptive attacks under one minute.

IX. CONCLUSION

In conclusion, we present REGEXNET, a payload-based,
recovery system to recover web services from zero-day ReDoS
attacks. REGEXNET leverages the observation that requests
triggering the super-linear running time of a vulnerable regular
expression usually contain a particular string pattern, which
can be learned using a DNN model. We design an online
feedback loop for REGEXNET so that the DNN model is
continuously trained and updated online based on data col-
lected from web servers at runtime. We have implemented
a prototype of REGEXNET, integrated it with HAProxy and
Node.js, and demonstrated its effectiveness, responsiveness
and resiliency with experiments on a testbed with real-world
ReDoS attacks.

Acknowledgments. We thank our shepherd Giancarlo Pelle-
grino and the anonymous reviewers for their valuable feed-
back. Xin Jin (xinjinpku@pku.edu.cn) is the corresponding
author. This work is supported in part by NSF grants 1813487,
1854000, 1854001 and 1918757.

[1

—

[3

=

[4]

[5]

(10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]
[19]
[20]
[21]
[22]

[23
[24]

[25]

[26
[27

[28]
[29]
[30]

REFERENCES

“Regular Expression.”
Regular_expression.

H. Hosoya, J. Vouillon, and B. C. Pierce, “Regular expression types for
XML,” in ACM SIGPLAN Notices, 2000.

V. Wiistholz, O. Olivo, M. J. Heule, and I. Dillig, “Static detection
of DoS vulnerabilities in programs that use regular expressions,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, 2017.

J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee, “The impact of
regular expression denial of service (ReDoS) in practice: an empirical
study at the ecosystem scale,” in Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, 2018.

C.-A. Staicu and M. Pradel, “Freezing the web: A study of ReDoS
vulnerabilities in JavaScript-based web servers,” in USENIX Security
Symposium, 2018.

S. A. Crosby and D. S. Wallach, “Denial of service via algorithmic
complexity attacks,” in USENIX Security Symposium, 2003.
“safe-regex.” https://github.com/substack/safe-regex.

A. Rathnayake and H. Thielecke, “Static analysis for regular expression
exponential runtime via substructural logics (extended),” arXiv preprint
arXiv:1405.7058, 2014.

T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “SlowFuzz: Automated
domain-independent detection of algorithmic complexity vulnerabili-
ties,” in ACM Conference on Computer and Communications Security,
2017.

J. Wei, J. Chen, Y. Feng, K. Ferles, and L. Dillig, “Singularity: Pattern
fuzzing for worst case complexity,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2018.

W. Meng, C. Qian, S. Hao, K. Borgolte, G. Vigna, C. Kruegel, and
W. Lee, “Rampart: Protecting web applications from CPU-exhaustion
denial-of-service attacks,” in USENIX Security Symposium, 2018.

J. C. Davis, F. Servant, and D. Lee, “Using selective memoization
to defeat regular expression denial of service (ReDoS),” in [EEE
Symposium on Security and Privacy, 2021.

Y. Shen, Y. Jiang, C. Xu, P. Yu, X. Ma, and J. Lu, “ReScue: crafting
regular expression DoS attacks,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018.
C. Campeanu, K. Salomaa, and S. Yu, “A formal study of practical
regular expressions,” International Journal of Foundations of Computer
Science, 2003.

N. Chomsky, “Three models for the description of language,” IRE
Transactions on information theory, 1956.

K. Thompson, “Programming techniques: Regular expression search
algorithm,” Communications of the ACM, 1968.

J. C. Davis, E. R. Williamson, and D. Lee, “A sense of time for
JavaScript and Node.js: first-class timeouts as a cure for event handler
poisoning,” in USENIX Security Symposium, 2018.

“Outage postmortem - July 20, 2016.” https:/stackstatus.net/post/
147710624694/outage-postmortem-july-20-2016.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in IEEE Symposium on Security and Privacy, 2017.

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in ICLR, 2015.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations, 2018.

“HAproxy.” http://www.haproxy.org/.

“Node.js.” https://nodejs.org/en/.

U. Naseer, L. Niccolini, U. Pant, A. Frindell, R. Dasineni, and T. A.
Benson, “Zero downtime release: Disruption-free load balancing of a
multi-billion user website,” in ACM SIGCOMM, 2020.
“Apache Hadoop Distributed File System (HDEFS).”
apache.org/.

“PyTorch.” https://pytorch.org/.

“A fully functioning Node.js shopping cart with Stripe, PayPal and
Authorize.net payments..” https://github.com/mrvautin/expressCart.
“Redis data structure store.” https://redis.io/.

“Common Vulnerabilities and Exposures.” https://cve.mitre.org/.
“Apache HTTP server benchmarking tool.” https://httpd.apache.org/
docs/2.4/programs/ab.html.

https://en.wikipedia.org/w/index.php?title=

http://hadoop.

(31]

(32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]

[52]

[53]

N. Papernot, P. McDaniel, A. Swami, and R. Harang, “Crafting ad-
versarial input sequences for recurrent neural networks,” in MILCOM,
2016.

F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet inspec-
tion,” in ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, 2006.

M. Firtman, Programming the Mobile Web: Reaching Users on iPhone,
Android, BlackBerry, Windows Phone, and more. O’Reilly Media, Inc.,
2013.

R. J. Ray and P. Kulchenko, Programming Web Services with Perl.
O’Reilly Media, Inc., 2002.

R. Sidhu and V. K. Prasanna, “Fast regular expression matching using
FPGAs,” in FCCM, 2001.

P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of
network traffic anomalies,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, 2002.

J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM Computer Communication Re-
view, 2004.

D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage,
“Inferring internet denial-of-service activity,” ACM Transactions on
Computer Systems, 2006.

J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey,
and M. Karir, “Taming the 800 pound gorilla: The rise and decline
of NTP DDoS attacks,” in ACM SIGCOMM Conference on Internet
Measurement Conference, 2014.

C. Jin, H. Wang, and K. G. Shin, “Hop-count filtering: an effective
defense against spoofed DDoS traffic,” in ACM Conference on Computer
and Communications Security, 2003.

A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic
feature distributions,” in SIGCOMM CCR, 2005.

S. W. Shin, P. Porras, V. Yegneswara, M. Fong, G. Gu, and M. Tyson,
“FRESCO: Modular composable security services for software-defined
networks,” in NDSS, 2013.

S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined net-
works,” in ACM Conference on Computer and Communications Security,
2013.

S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and elastic DDoS defense,” in USENIX Security Symposium, 2015.

T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
JavaScript libraries on the web,” arXiv preprint arXiv:1811.00918, 2018.
N. Weideman, B. van der Merwe, M. Berglund, and B. Watson,
“Analyzing matching time behavior of backtracking regular expression
matchers by using ambiguity of NFA,” in International Conference on
Implementation and Application of Automata, 2016.

B. Van Der Merwe, N. Weideman, and M. Berglund, “Turning evil
regexes harmless,” in Proceedings of the South African Institute of
Computer Scientists and Information Technologists, 2017.

L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D.
Tygar, “Adversarial machine learning,” in Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence, 2011.

M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security of
machine learning,” Machine Learning, 2010.

N. Srndic and P. Laskov, “Practical evasion of a learning-based classifier:
A case study,” in IEEE Symposium on Security and Privacy, 2014.

Y. Cao, X. Pan, Y. Chen, and J. Zhuge, “JShield: Towards real-time and
vulnerability-based detection of polluted drive-by download attacks,”
in Proceedings of the 30th Annual Computer Security Applications
Conference, 2014.

M. Kearns and M. Li, “Learning in the presence of malicious errors,”
in Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, 1988.

G. Wang, T. Wang, H. Zheng, and B. Y. Zhao, “Man vs. machine:
Practical adversarial detection of malicious crowdsourcing workers,” in
USENIX Security Symposium, 2014,

