
Runtime Recovery of Web Applications under

Zero-Day ReDoS Attacks

Zhihao Bai

Department of Computer Science

Johns Hopkins University

Baltimore, US

Email: zbai1@jhu.edu

Ke Wang

Department of Computer Science and Technology

Peking University

Beijing, China

Email: 1600012805@pku.edu.cn

Hang Zhu

Department of Computer Science

Johns Hopkins University

Baltimore, US

Email: hzhu@jhu.edu

Yinzhi Cao

Department of Computer Science

Johns Hopkins University

Baltimore, US

Email: yzcao@cs.jhu.edu

Xin Jin

Department of Computer Science and Technology

Peking University

Beijing, China

Email: xinjinpku@pku.edu.cn

Abstract—Regular expression denial of service (ReDoS)—
which exploits the super-linear running time of matching regular
expressions against carefully crafted inputs—is an emerging class
of DoS attacks to web services. One challenging question for a
victim web service under ReDoS attacks is how to quickly recover
its normal operation after ReDoS attacks, especially these zero-
day ones exploiting previously unknown vulnerabilities.

In this paper, we present REGEXNET, the first payload-based,
automated, reactive ReDoS recovery system for web services.
REGEXNET adopts a learning model, which is updated constantly
in a feedback loop during runtime, to classify payloads of
upcoming requests including the request contents and database
query responses. If detected as a cause leading to ReDoS,
REGEXNET migrates those requests to a sandbox and isolates
their execution for a fast, first-measure recovery.

We have implemented a REGEXNET prototype and integrated
it with HAProxy and Node.js. Evaluation results show that
REGEXNET is effective in recovering the performance of web
services against zero-day ReDoS attacks, responsive on reacting
to attacks in sub-minute, and resilient to different ReDoS
attack types including adaptive ones that are designed to evade
REGEXNET on purpose.

Index Terms—Regular expression Denial of Service (ReDoS);
Deep Neural Networks; Adversarial Machine Learning; Online
Feedback Loop

I. INTRODUCTION

Regular expressions (regexes), a fundamental tool in com-

puter software, are widely used in web services to manipu-

late, validate, and scrape user data [1], [2]. Although widely

adopted, the matching process of regexes, especially against

carefully crafted inputs, can take super-linear, i.e., polynomial

or even exponential, time with respect to the input length,

leading to a so-called regex denial of service (ReDoS) [3], [4],

[5] and posting a critical threat to web services today [4], [6].

For example, one study has shown that thousands of regexes

in over 10,000 JavaScript or Python modules are vulnerable

to ReDoS [4]. Another study has shown that 339 out of 2,846

popular websites suffer from at least one ReDoS vulnerability,

which can be easily exploited to take down the websites [5].

Because of the severe situation of ReDoS attacks, re-

searchers have proposed various defenses [7], [8], [3], [5], [9],

[10], [11], which can be roughly categorized into two general

types: proactive and reactive. On one hand, proactive defenses

mitigate ReDoS attacks by speeding up regex matching. For

example, several libraries, such as safe-regex [7] and rxxr2 [8],

are proposed to check the safety of regexes for Node.js

applications via an e-NFA structure. Wüstholz et al. [3] also

present an algorithm to check the vulnerabilities of regexes

via an NFA-alike structure. The state of the art from Davis

et al. [12] proposes a sound ReDoS defense using selective

memoization schemes.

While proactive approaches are effective in defeating Re-

DoS attacks, there are some tradeoffs in preventing them being

deployed in practice. For example, many existing ReDoS de-

fenses [7], [8], [3], [5], [9], [10] are not sound [13], [14], [15],

[16], leaving some regexes still vulnerable; some defenses,

particularly Davis et al. [12], are sound in ensuring linear

matching time but take significantly more space, possibly

leading to a space-related DoS. In addition, many existing

approaches [7], [8], [17], [12] need modifications to either

the web application itself or the web framework supporting

the application, thus facing obstacles in deployment.

On the other hand, a reactive approach, as opposed to

proactive, is to recover web services from ReDoS attacks,

especially zero-day ones, during runtime after being taken

down. This is also important because a proactive approach may

fail or is not in place due to deployment concerns. The most

naı̈ve yet still common reactive approach is probably manual

inspection, which leads to a gap for a website between being

unavailable and going back online. As a concrete example, it

took StackOverflow about 34 minutes to recover from an un-

known ReDoS vulnerability in its source code, which included

10 minutes to analyze suspicious web requests and identify the

cause, 14 minutes to fix problematic code segments, and 10

minutes to roll out the software update [18].



Reactive approaches can be automated. Particularly, Ram-

part [11]—the state-of-the-art reactive approach—adopts a

behavior-based, statistical approach to differentiate normal and

malicious requests based on consumed CPU resources. If

malicious, Rampart blocks future requests from the same IP

address or with exactly the same content to defend against

so-called CPU-exhaustion Denial-of-Service (DoS) attacks.

However, there is a major drawback of Rampart. Adversaries

can bypass Rampart by launching distributed attacks from

different IPs using, e.g., a botnet, and more importantly adopt

polymorphic attack payloads after content manipulation.

In this paper, we present REGEXNET, the first payload-

based, runtime, reactive ReDoS recovery system for web

services. Specifically, REGEXNET inspects payloads including

those embedded directly in the request itself and those trig-

gered indirectly, e.g., from database queries, as they may also

come from previous requests and are stored in the server. One

advantage of such a payload-based recovery system is that it

disregards the request source, e.g., IP addresses, and is robust

to content manipulations. More importantly, a payload-based

recovery system can be combined with existing behavior-based

ones to together protect and recover web services.

Our key insight is that malicious payloads triggering ReDoS

attacks have to obey certain underlying patterns, which stay

invariant during content manipulation across different attacks

targeting the same vulnerable regex. For example, if a vul-

nerable regex takes super-linear time in matching a series of

spaces, the malicious payload has to include such a pattern.

REGEXNET relies on recent advancements in deep learning

to efficiently learn such an underlying, invariant pattern and

detect inputs with the pattern quickly, i.e., in linear time,

without human intervention. If a request is detected as a

trigger to ReDoS vulnerabilities, REGEXNET will migrate it

from corresponding web servers to sandboxes for isolated,

controlled execution.

While intuitively simple, deep learning is not a silver bullet.

Although it can efficiently learn the underlying pattern and

make fairly accurate predictions for unseen payloads, state-of-

the-art deep learning makes mistakes, especially under adver-

sarial environments. Here are two scenarios: (i) the learning

model itself has some false positives and negatives, and (ii) an

adversary can launch an adaptive attack, just as what people

did in the vision field [19], [20], against the learning system.

REGEXNET tackles the imperfection of the learning model

via an online feedback loop, which collects all the client-side

inputs related to a web request, such as the request itself

and database query responses, and the processing time of the

request to update the learning model. The idea—being inspired

by adversarial training proposed by Goodfellow et al. [20] and

further improved by Madry et al. [21]—keeps improving the

model, thus making it stronger over time.

We have implemented a system prototype of REGEXNET,

and integrated it with HAProxy [22], a widely-used software

load balancer, and Node.js [23], a popular web application

framework. We believe that REGEXNET can be deployed as a

fast, first measure for ReDoS recovery, in addition to the slow

/(?:charset|encoding)\s*=\s*[’"]? *([\w\-]+)/i

(a) A vulnerable regular expression.

content-type:charset= ... x

( is repeated by n times in the input.)

(b) A malicious input to trigger the vulnerability.

/(?:charset|encoding)\s*= (\s*[’"] *|\s*)([\w\-]+)/i

(c) A semantically equivalent regular expression without vulnerabilities.

Fig. 1. An illustration of a real-world vulnerable regular expression, its
exploits and semantically-equivalent, safe counterpart.

process of fixing and rolling out the source code update with

human engineers. We have evaluated REGEXNET in a real-

world Node.js web application testbed and measured the sys-

tem performance under a wide variety of real ReDoS attacks

including zero-day and adaptive ones. The evaluation results

show that the throughput and latency of a web application

under ReDoS attacks can quickly recover to the normal level

within sub-minute, which is several orders of magnitude faster

than a manual recovery. We also compare REGEXNET with the

state-of-the-art reactive ReDoS defense, Rampart, and show

that REGEXNET significantly outperforms Rampart in terms

of normalized throughput.

In summary, we make the following contributions.

• We propose REGEXNET, the first payload-based, automated

ReDoS recovery system for web services that leverages a

learning model to classify requests and recover websites

after zero-day ReDoS attacks.

• We design an online feedback loop for REGEXNET to

collect training data at runtime, continuously train its model

online, and automatically update its model to classify and

migrate requests, in face of adaptive, unknown attacks.

• We implement a system prototype of REGEXNET and

demonstrate its effectiveness, responsiveness, and resiliency

with experiments on a testbed with a wide variety of real-

world ReDoS attacks on Node.js.

II. REGEXNET OVERVIEW

In this section, we start from a motivating example and ex-

plain the key ideas of REGEXNET in recovering web services

from ReDoS attacks. Then, we present the threat model of

REGEXNET and how REGEXNET is deployed in practice.

A. A Motivating Example

In this part, we illustrate a real-world vulnerable regex

in Fig. 1 and explain how it makes websites vulnerable to

ReDoS attacks. The vulnerable regex [5] is applied upon every

request to parse the accepted charset in the HTTP header

for encoding purposes. An adversary targeting this vulnerable

regex sends many requests containing malicious payload (e.g.,

one shown in Fig. 1(b)) in the charset HTTP header to the

vulnerable website: each request originated from the adversary

will occupy the server for a fairly long time and all these add

up to a Denial of Service (DoS) consequence.

We now explain why the regex in Fig. 1(a) is vulnerable.

The vulnerable part in this regular expression is \s*[’
’’]? *, which matches strings with zero or more of \s



(metacharacter for whitespace, such as space, tab, and carriage

return), zero or one of ’ and ’’, and zero or more of

(space character with ASCII code 3210). The malicious

payload shown in Fig. 1(b) is a string with n space characters.

A space character can be either matched with \s or . As such,

the matching process needs to split this string into two parts,

with one matching \s* and the other matching *. Because

there are (n + 1) different ways to split the string, the regex

engine needs to exhaust all the (n+1) combinations to figure

out the string cannot be matched. Since each combination takes

O(n) time to match, the time complexity to match this string

is O(n2), i.e., super-linear.

B. Threat Model and Practical Deployment

Threat Model. REGEXNET’s threat model considers a website

hosting a web service as a potential victim. The victim may

deploy a vulnerable regex to match against incoming HTTP re-

quests. The adversary is the client(s) of the web server, which

sends requests with malicious payloads for ReDoS attacks.

Borrowing classic terminologies in Cross-site Scripting (XSS)

attacks, we further classify ReDoS attacks into two categories,

i.e., reflected and stored, based on the adversary’s behaviors.

First, a reflected ReDoS adversary keeps sending malicious

requests to the vulnerable web server. Each request may be

polymorphic in contents and origins, i.e., the adversary may

adopt different IP addresses and change the malicious payload

to avoid being detected. We call this attack reflected because

the ReDoS impacts are reflected back to other benign users of

the same service.

Second, a stored ReDoS adversary just sends one malicious

request to the vulnerable web server and then the request or

part of the contents are stored at the server side. Then, when

a benign user sends a request to the server, the stored contents

are fetched and matched against a vulnerable regex, leading to

a DoS attack. For example, the adversary may post a comment

with malicious payloads on a blog and the vulnerable regex is

a filter of illegal contents: Every benign request to the blog will

trigger the ReDoS attack. We call this attack stored because

the ReDoS payload is stored at the server-side database.

Practical Deployment. REGEXNET is provided as a software

appliance that is deployable on general-purpose servers at the

application layer of a web server to inspect all the web traffic

after decryption. It is an appliance of network function virtual-

ization (NFV), and can be deployed together with other NFV

appliances. We consider two types of deployment models.

First, the direct deployment is via web service providers.

Specifically, a provider runs an instance of our system co-

located with its web servers in the same datacenter to protect

itself from ReDoS attacks. Large-scale web service providers

with geographically-distributed datacenters need to run a sep-

arate instance of REGEXNET in each of its datacenters. These

REGEXNET instances communicate with each other to update

their learned models.

Second, a public cloud service provider can also deploy

REGEXNET via exposing APIs to the users of the public cloud,

and provide REGEXNET as a ReDoS recovery service for its

users. Specifically, these APIs will provide a callback function

for each incoming web request—once REGEXNET identifies a

request as ReDoS traffic, the callback function will be invoked

to alert cloud users to take corresponding actions. A cloud user

can also call the provided APIs to let the cloud provider know

that a request is benign or malicious so that the provider can

update the model. Note that the cloud service provider needs to

maintain a model for each user to avoid cross-contamination,

i.e., a model being polluted by other cloud users.

C. Key Ideas

Overview. The key idea of REGEXNET is to quickly analyze

all the requests to a web server and predict whether they will

lead to a significantly long processing time: If so, REGEXNET

will migrate those requests to separate sandboxes and isolate

their impact from the rest for a fast recovery. The analysis

includes the request itself for reflected ReDoS and all the

responses from database queries for stored ReDoS. Next,

REGEXNET will directly isolate all the malicious requests

launched by a reflected ReDoS adversary; REGEXNET will

also isolate all the requests viewing pages containing the

malicious payload injected by a stored ReDoS adversary. As a

result, all the normal services of the web server under reflected

ReDoS will be recovered; the services of pages with no stored

ReDoS payload are restored and pages with stored ReDoS

payload are isolated by REGEXNET.

Linear-time analysis of requests. Next, we describe how

REGEXNET achieves fast recovery via a quick analysis of all

requests. REGEXNET relies on deep neural networks (DNNs)

to learn the behaviors of matching regexes against sequential

data among consecutive characters with a few samples just

like few-shot learning and mimic such matching during the

classification stage in a linear time.

Particularly, REGEXNET uses a linear-time DNN to match

malicious requests, instead of super-linear time regex match-

ing. While this seems counterintuitive at first glance, our

approach actually reflects how the malicious requests should

be matched in linear time using a semantically equivalent

regular expression without vulnerabilities. We use the same

example in Fig. 1 to illustrate why the solution works. Fig. 1(c)

shows a semantically equivalent regex without vulnerabilities.

The vulnerable part \s*[’ ’’]? * is divided into two parts,

i.e., \s*[’ ’’] *, and \s*. Each part matches any string

in linear time, and thus this regex eliminates the vulnerability

that exists in Fig. 1(a).

We now use Fig. 2 to explain why a DNN can reflect the

matching of a semantically equivalent regex without vulnera-

bilities in Fig. 1(c). Note that the figure only shows the portion

related to the vulnerable part to simplify the illustration. First,

Fig. 2(a) shows the state machine of the vulnerable regular

expression in Fig. 1(a) to match a malicious input. There

are two states, i.e., S1 and S2, which map to \s* and *.

Since the space character matches both states and there are

(n+1) possible combinations to partition n space characters,



\s ⌴

′

"

𝜀

\s ⌴

′

"

\s

𝜀

𝜀

𝜀 𝜀

𝜀

𝜀

(a) A vulnerable state machine 

(a failed matching of  n*⌴ is O(n2)).

(b) An equivalent, non-vulnerable state machine 

(the second path matches the vulnerable inputs).

(c) An ideal, learned DNN capturing the vulnerable inputs,

which mimics the second path in (b).

i1==⌴ …

i1 i2 in

i2==⌴ in==⌴

Unit 1 Unit 2 Unit n

S1 S2

S1 S2

S3

Sequence of spaces

DNN

Fig. 2. An explanation that REGEXNET can capture the correct logics of regex matching with O(n) time based on the example in Fig. 1.

the total matching time is O(n2). Second, Fig. 2(b) shows

the state machine of the semantically equivalent regex without

vulnerabilities to match a malicious input. There are only two

possible paths with O(n) matching path: The malicious string

does not match the top path, and only matches the bottom path.

Lastly, we use Fig. 2(c) to show how a DNN can mimic the

behavior of the correct regex for linear-time matching. Each

unit in the DNN receives a character as input and the DNN is

trained to recognize sequences of spaces. Note that Fig. 2(c)

is a simplified illustration to show the main idea. The actual

model in REGEXNET uses a combination of embedding, 1-

d convolutional, spatial pyramid pooling and fully-connected

layers that can process variable-length input with linear time.

III. REGEXNET DESIGN

We describe the design of REGEXNET in this section.

A. REGEXNET Design Goals

REGEXNET is designed to recovery web services from zero-

day ReDoS attacks, with the following goals.

• Effective. REGEXNET should effectively recover a web

service to resume processing of requests from normal clients

after a zero-day ReDoS attack by providing a comparable

throughput (in terms of requests processed per second) and

latency (in terms of processing latency of each request).

• Responsive. REGEXNET should quickly react to a zero-day

ReDoS attack, and minimize the downtime of a web service

caused by the attack.

• Resilient. REGEXNET should be resilient to different Re-

DoS attack types, no matter whether a ReDoS attack is

targeted at a known or unknown vulnerability.

• Low overhead. REGEXNET should incur low overhead on

the throughput and latency of request processing.

• Scalable and fault-tolerant. REGEXNET should be able to

scale out based on the amount of web traffic, and tolerate

the failures of individual system components.

B. REGEXNET Architecture and Workflows

Fig. 3 shows the overall architecture of REGEXNET.

REGEXNET, a ReDoS recovery system, is a software appli-

ance that recovers web servers under ReDoS attacks from

adversarial clients. REGEXNET relies on an online feedback

Normal 
Request

ReDoS 
Attack

MigratorDNN

(1) dispatch

Sandbox

Normal 
executor

Collector

(1) copy

Online feedback loop

Load 
balancer

RegexNet

(4) migrate

(3) detect
& signal

(6) model update

(5) collect 
respond time

Database
Database 

query

(2) collect query 
response

(2) feed query response as inputs

Fig. 3. REGEXNET architecture.

loop to train a customized DNN model, leverages the model

to detect malicious ReDoS requests, and then isolates them

to separate sandboxes—i.e., an elastic bounded (e.g., 10%)

fraction of server instances—to mitigate their impact on web

services. REGEXNET has a collector, which serves as a shim

layer running in each web server instance and collects in-

formation related to the request execution, such as database

query response and runtime execution time, for the feedback

loop. Another important module is a load balancer, which

spreads web requests over web servers, and copies them to

the DNN model for request classification. We provide various

load balancing policies for REGEXNET, including round-robin

as default, so that all server instances will be equally utilized.

We now describe the workflow of REGEXNET.

1) Dispatching requests. The load balancer dispatches web

requests based on customized load balancing policies, and

copies the requests to the DNN-based detection module.

2) Intercepting database query response. The collector inter-

cepts all the queries to the database, records the responses

from the database, and then sends the query response back

to the DNN-based detection module.

3) Detecting and signaling. The DNN-based detection mod-

ule, taking both the request and the query response, clas-



sifies whether the request causes ReDoS, and then signals

the migrator to act based on the result. As an optimization,

when a database response is malicious, the detector can

associate it with the request, and directly classify the

following requests to reduce detection latency.

4) Migrating requests. The migrator, upon receiving the sig-

nal, notifies the corresponding server instance to stop the

processing of the request, and sends it to a sandbox.

5) Collecting processing time. The collector collects the pro-

cessing time of each web request, and uses them to update

the detection model.

6) Updating the model. To close the feedback loop,

REGEXNET updates the model with the collected times.

Note that we choose to design and deploy REGEXNET on

the network layer due to two reasons. First, it does not impose

any latency overhead on benign requests in normal scenarios,

because REGEXNET does not interpose between clients and

web servers, and requests are copied to REGEXNET for pro-

cessing in parallel with normal processing at the web servers.

Once a ReDoS attack happens, while the web servers do spend

CPU resources on processing malicious requests, they are

immediately migrated to sandboxes to isolate their impact after

being classified as malicious by the detection module. The

CPU resources that can be consumed by the malicious requests

at the web servers are capped by the classification time, which

is linear. And remember that even normal requests would take

linear time to be processed. Because in ReDoS attacks the

malicious requests are only a small portion of the total traffic,

the system can quickly recover to resume its operation.

Second, it is application-agnostic and thus minimizes de-

ployment efforts. Specifically, the deployment of REGEXNET

on the network layer eliminates the need for analyzing and

modifying the source code of applications or libraries. There-

fore, it simplifies the deployment and can serve a wide range of

web applications. As a comparison, an alternative approach is

to deploy REGEXNET on the application layer with either the

application code or the library of regular expression matching.

This application-specific approach requires knowledge about

the application code, incurring additionally engineering efforts.

More importantly, the source code for certain applications and

libraries may not even be available.

C. DNN-based Detection Model

Model design. The detection module uses a DNN model to

detect ReDoS attacks. The DNN model takes a web request as

input and classifies whether the request is benign or malicious.

Specifically, a web request r is represented as an array of

characters, i.e., r = {ci|ci ∈ C} where C is the set of

characters. The DNN model f is applied to r to compute a

label in {0, 1}, i.e., f(r) ∈ {0, 1}, where label 0 means benign

and label 1 means malicious.

Our DNN architecture has four layers, one embedding layer,

one 1D convolutional (conv1d) layer, one spatial pyramid

pooling (SPP) layer, and a fully-connected layer. When a web

request comes in, the characters are fed into the embedding

layer at the character level. The embedding layer generates

an embedded vector for each character. Then the conv1d

layer takes these vectors as input and performs convolution

operations on them. The SPP layer converts the output from

the conv1d layer into fixed length with max pooling. Finally,

the fully-connected layer outputs a result, i.e., either benign

or malicious, for the web request.

We adopt this specific DNN architecture due to the follow-

ing reasons. First, we choose an embedding layer, because

it can turn the input characters into dense vectors, which is

essential to the convergence of the DNN. An advantage of the

embedding layer is that it is able to encode distances between

characters and show their similarity. For example, the distance

between the letter “0” and “1” should be smaller than that of

“0” and “a”, because both “0” and “1” could be matched by

the symbol “\d” in regex which stands for all the digits. Thus,

such property of the embedding layer is important. Second,

we choose a conv1d layer, because a conv1d layer is able

to extract local information from the sequence of characters,

and it is also computationally efficient. The conv1d layer is

followed by tanh as a common practice. Third, we choose an

SPP layer that draws the feature maps from the output of the

convolutional layer only once, and then pools the features in

arbitrary regions to generate fixed-length representations for

the fully-connected layer. Both the convolutional layer and

the SPP layer are able to process data in O(n) time where n

is the length of the data. Lastly, we choose a fully-connected

layer that allows information to flow between units extracted

by the SPP layer, thus being able to capture useful patterns

from a global perspective. Note that we choose SPP instead

of recurrent neural networks (RNNs), because SPP is more

computation-efficient.

Model training and update. REGEXNET provides both an

offline-trained model and an online update procedure. The

offline training is used to bootstrap the DNN model, and

the online training is used to refine the model with real-time

measurements to adapt to both known and unknown attacks.

Note that offline training is optional. REGEXNET can be

deployed without offline training, and only use online training

to learn the attack patterns and react to ReDoS attacks. Offline

training is useful to reduce the reaction time to known attacks.

The offline training component uses a training dataset to

train the initial DNN model. The training dataset could be

collected from previous attacks or generated based on the

analysis for known vulnerabilities. It contains a set of web

requests R = {ri} and their labels L = {li}, which indi-

cate whether each request is malicious or not. We use the

cross entropy loss
∑

i(− log( exp(f(ri)[li])∑
j
exp(f(ri)[lj ])

)) to maximize

the classification accuracy. We use the common mini-batch

gradient descent method to train the model. A challenge in

training a model for ReDoS detection is that the datasets

are usually imbalanced, i.e., there are more benign requests

than malicious requests in the datasets. We sample the benign

requests with random undersampling to make the datasets

more balanced, in order to achieve high detection accuracy.



The online training component continuously refines the

model to detect unknown attacks. There are two steps. First,

the component builds the training data with real-time mea-

surements collected from the web servers. The collector, i.e.,

the shim layer in each server instance, tracks the response

time of each web request, and compares the response time

with a pre-defined threshold. If the response time is above

the threshold, REGEXNET considers the request as malicious

because it consumes excessive CPU resources. The shim

layer immediately reports the malicious request to the online

training component, in order to quickly react to the attack. The

collector also tracks the response time of each request in the

sandbox. If the execution of a request in the sandbox consumes

less time than the threshold, the collector also reports the

request to the online training component, because the request

is misclassified as malicious.

Second, the online training component adopts a hot-start

procedure to update the DNN model to include the newly

collected data. Specifically, the component starts from pre-

viously converged weights and adds newly collected data into

the backward propagation. The advantage of such a hot-start

procedure is that the model is almost converged, and thus the

convergence speed is much faster.

Threshold selection. REGEXNET adopts a threshold in the

online training component for the feedback loop. The threshold

is either specified by an administrator or determined based on

the statistics of benign requests during the testing phase of the

target web application. Specifically, REGEXNET calculates the

average processing time of benign requests µ and the standard

deviation σ. Then, REGEXNET adopts µ+3σ as the threshold,

i.e., the requests of which the processing time is above µ+3σ
are fed back to the online training component.

There are two things worth noting here. First, malicious

requests that are executed in less than µ + 3σ time will not

trigger the online feedback loop. Such requests will not slow

down the web application much because their execution time is

relatively small. Additionally, if the attacker chooses to send a

large number of such requests, the detection will default back

to the traditional network-layer, volume-based DoS detection.

Second, the chosen threshold may also introduce false posi-

tives of our DNN-based detection module, e.g., feeding benign

requests with a large file upload to the online feedback loop as

potentially malicious requests. However, these requests are not

dropped. Instead, as shown in Section III-D, they are migrated

to the sandbox, and are still executed, albeit slower due to

the limited resources in the sandbox. The mislabelling can be

fixed by the operator by resetting the threshold, correcting the

mislabeled data and re-training the DNN model.

D. Request Migration

The migration module migrates potentially malicious re-

quests to sandboxes. The detailed procedure is as follows.

First, the migration module receives the IP address of the

scheduled server instance from the load balancer for each

web request. The migration module uses the IP address of

the scheduled server instance to signal its shim layer. Second,

when the shim layer receives the signal, it starts migrating

the web request to a sandbox. We use a primary-backup

approach to enable the shim layer to stop a web request during

processing and be compatible with any web server software.

Specifically, we run two instances in each web server: one

instance is the primary, and the other one is the backup. The

shim layer buffers the web requests in a queue, and sends small

batches of requests to the primary for processing. When the

shim layer receives a notification from the migration module,

it checks whether the request has been sent to the primary or

not. If not, the shim layer can simply remove the request from

the buffer. Otherwise, the shim layer kills the primary, and

makes the backup as the new primary. It resends the previous

batch of requests, except for the malicious one, to the new

primary for processing, and starts a new backup. At the same

time, the malicious request is sent to a sandbox to limit its

impact on normal requests. For stateful request processing,

we leverage the transaction processing of the database to

ensure transactional semantics when killing and restarting

requests. Many applications support fault recovery or seamless

restart. For example, Zero Downtime Release [24] keeps the

partial states in the execution of HTTP requests during restart

and replays these requests on other servers. REGEXNET can

incorporate such solutions to restart requests smoothly.

E. Scalability and Fault Tolerance

REGEXNET can easily scale out with more servers to handle

more web traffic. The shim layer runs on each web server,

and scales out with the number of web servers. The number

of sandboxes is decided by the server operator, based on how

much resource the operator wants to allocate for malicious

requests. The detection module and migration module work

together to detect and mitigate ReDoS attacks. One instance

of the detection module and one instance of the migration

module should run together on the server to minimize the

communication overhead between the two, but multiple pairs

of these instances can run independently on several servers to

handle more traffic, as different pairs do not need to coordinate

with each other. The training can be done in one instance of

the training module, and the trained model can be pushed to

all instances of the detection module to update their models.

REGEXNET does not have a single point of failure.

REGEXNET handles its individual component failures as fol-

lows. (i) Detection module. The detection module does not

maintain any state. When an instance of the detection module

fails, it can be easily replaced by a new instance (e.g., a new

server or VM). The new instance gets the latest model from the

training module and then begins to classify requests received

from the load balancer. (ii) Migration module. Similar to the

detection module, the migration module does not keep any

hard state either. An instance failure of the migration module

can be handled by using a new instance. (iii) Training module.

REGEXNET stores the training data and the trained model in

a reliable distributed storage such as HDFS [25]. When the

instance of the training module fails, REGEXNET replaces it

with a new instance. The new instance restarts the training



if the old instance fails in the middle of the training before

the model converges. Otherwise, the new instance simply waits

for new training data from the shim layer to retrain the model.

(iv) Shim layer, web server and sandbox. The shim layer, web

servers and sandboxes process requests, and they naturally

scale out. Their failures can be handled by replacing them

with new instances.

IV. IMPLEMENTATION

We have implemented a system prototype of REGEXNET

with a total of ∼2,000 lines of code. The code is open source

and available at https://github.com/netx-repo/RegexNet.

To demonstrate the practicality of REGEXNET in real-world

deployments, the prototype is integrated with HAProxy [22],

a widely-used open-source software load balancer, and

Node.js [23], a popular web framework used by many web ser-

vices. HAProxy has a customizable module for HTTP request

handling that allows developers to add custom functionalities.

We customize this module to copy each web request, as well

as the corresponding server IP that handles the request, to

the detection module of REGEXNET. The detection module

is implemented in Python. It buffers web requests received

from HAProxy in a queue, and performs classification on

each request. It uses PyTorch [26] to run the DNN model for

classification, and the model is periodically updated by the

training module. When a request is classified as malicious,

it signals the migrator module, which stops the request on

the corresponding web server, and migrates the request to

a sandbox. The collector is implemented in C++. It tracks

the response time of each web request and reports them to

the training module. The training module is implemented in

Python based on PyTorch. It trains the DNN model based on

the collected data.

The configuration of the DNN model is as follows. The

model takes a web request as input, which is represented as

a sequence of characters. The embedding layer maps each

character to a 32-dimension vector. The conv1d layer maps

32 channels from the embedding layer to 16 channels, with

kernel size 64 and stride 32. The conv1d layer is followed by

a tanh activation layer, and then the output is fed into a 3-level

SPP layer. The SPP layer pools the feature maps with varied

sizes to a fixed size. Finally, the last output of the SPP layer

is reduced to two dimensions by a fully-connected layer, and

a log softmax layer is applied to generate the label.

V. EVALUATION METHODOLOGIES

In this section, we describe our evaluation methodologies.

A. Experimental Setup and Evaluation Metrics

Setup. The experiments are conducted on AWS. The baseline

setup runs a web service on an AWS c5n.4xlarge instance,

which is equipped with 16 vCPUs (3.0 GHz Intel Xeon

Platinum processor) and 43 GB memory. We use Express-

Cart [27], a popular open-source e-commerce web application

built with Node.js, to run the web service. We insert vulnerable

modules into ExpressCart so that it can be attacked. We use

HAProxy [22] for the load balancer and Redis [28] for the

database. The clients generate a mix of normal and malicious

web requests from different IP source addresses. Next, we

introduce the setup with REGEXNET. REGEXNET adds the

collector and the migrator to the instance that runs the web

service and allocates one vCPU as a sandbox to handle ma-

licious requests. REGEXNET runs the detection module in an

additional p3.2xlarge instance, equipped with 8 vCPUs (Intel

Xeon E5-2686 v4 processor), 61 GB memory and an NVIDIA

GPU (Tesla V100). The adaptive attacks are generated by a

c5n.18xlarge instance with 72 vCPUs (3.0 GHz Intel Xeon

Platinum processor with AVX-512) and 192 GB memory.

Evaluation metrics. In the experiments, we vary the following

parameters: the rate of malicious requests, the size of mali-

cious requests and the type of ReDoS attacks. We use the

following metrics to evaluate the performance of the system.

• Throughput. This is the number of normal requests per

minute (RPM) the system can process.

• Latency. This is the average time handling normal requests.

• Recovery time. This is the time the system takes to recover

from a ReDoS attack.

B. Network Traffics Used in the Evaluation

In this part, we first find modules in Node.js that are vulner-

able to ReDoS attacks. Specifically, we search the Common

Vulnerabilities and Exposures (CVE) database [29] and aca-

demic papers [5] to find existing vulnerable regexes as shown

in Table I. Among them, the vulnerability in ua-parser-js

is exponential, and those in other modules are polynomial.

Next, we describe the benign and attack network traffics

used in the evaluation. The benign traffic is generated by

Apache HTTP server benchmarking tool ab [30] with 32 con-

current connections. Note that the generated benign requests

have relevant headers that trigger the tested modules. Then,

we describe how we generate attack traffics for the tested

modules. Then we generate two types of attack traffic: normal,

untargeted with random contents, and adaptive with carefully-

crafted contents targeting our learning model.

1) Normal Attacks with Random Exploit Contents: First,

we rely on an automated exploit generation tool, ReScue [13],

to generate a series of exploits. Fig. 4(a) shows an example

exploit for ua-parser-js. Second, if ReScue fails to gener-

ate exploits for some regexes, we manually analyze the regex,

find a pattern for exploits, and generate a series of exploits.

Fig. 4(b) shows an example exploit for fresh. The pattern

for its exploits is “(random string) + (a random number of

spaces) + (random string)”.

Based on our experience, ReScue is only able to generate

attacks for ua-parser-js and marked, because the min-

imum sizes of their exploits to consume significant CPU time

are hundreds of bytes. Except this, ReScue fails to generate

exploits for useragent of which the minimum size of

exploits is 1 KB. For other vulnerable modules, which require

tens of thousands of bytes, ReScue does not finish in five days,

and we use manually crafted exploits instead.



TABLE I
A SECURITY ANALYSIS OF REGEXNET AGAINST A VARIETY OF REDOS VULNERABILITIES.

CVE ID Module Version Vulnerable Regular Expression Recoverable with REGEXNET

CVE-2017-15010 tough-cookie <2.3.3 /ˆ(([ˆ=;]+))\s*=\s*([ˆ\n\r\0]*)/ ✓

CVE-2016-4055 moment <2.11.2 /(\-)?(?:(\d*)[. ])?(\d+)\:(\d+)(?:\:(\d+)\.?(\d{3})?)?/ ✓

CVE-2015-8858 uglify-js <2.6.0 /ˆ\d*\.?\d*(?:e[+-]?\d*(?:\d\.?|\.?\d)\d*)?$/i ✓

CVE-2015-8854 marked <0.3.4 /ˆ\b_((?:__|[\s\S])+?)_\b|ˆ\*((?:\*\*|[\s\S])+?)\*(?!\*)/ ✓

CVE-2015-8315 ms <0.7.1 /ˆ((?:\d+)?\.?\d+) *(milliseconds?|msecs?|ms|seconds?|secs?|s ✓

N/A charset <1.0.0
|minutes?|mins?|m|hours?|hrs?|h|days?|d|years?|yrs?|y)?$/

✓
/(?:charset|encoding)\s*=\s*["]? *([\w\-]+)/i

N/A content <3.0.5
/ˆ([ˆ\/]+\/[ˆ\s;]+)(?:(?:\s*;\s*boundary=(?:"([ˆ"]+)"|([ˆ;"]+)))

✓
|(?:\s*;\s*[ˆ=]+=(?:(?:"(?:[ˆ"]+)")|(?:[ˆ;"]+))))*$/i

N/A fresh <0.5.0 / *, */ ✓

N/A forwarded <0.1.0 / *, */ ✓

N/A mobile-detect <1.3.6
/Dell.*Streak|Dell.* Aero|Dell.*Venue|DELL.*Venue Pro|Dell Flash|Dell Smoke

✓
|Dell Mini 3iX|XCD28|XCD35|\\b001DL\\b|\\b101DL\\b|\\bGS01\\b/

N/A platform <1.3.4 /ˆ +| +$/g ✓

N/A ua-parser-js <0.7.14 /ip[honead]+(?:.*os\s([\w]+)*\slike\smac|;\sopera)/ ✓

N/A useragent <2.2.1
/((?:[A-z0-9]+|[A-z\-]+?)?(?:the)?(?:[Ss][Pp][Ii][Dd][Ee][Rr]|[Ss]crape|[A-Za-z0-9-]*(?:[ˆC]

✓
[ˆUu])[Bb]ot|[Cc][Rr][Aa][Ww][Ll])[A-z0-9]*)(?:(?:[\/]|v)(\d+)(?:\.(\d+)(?:\.(\d+))?)?)?/

GET http://www.foo.com/

User-Agent: ipaosvWipvWipvWipvWipvWipvWipvWipvWipvWipv

WipvWipvWipvWipvWipvWipvWipvWipvWipvWipvWipvWipvWipv

WipvWipvWipvWipvWipaIccvipaIc

(a) A malicious web request for ua-parser-js, which is generated by ReScue.

GET http://www.foo.com/

If-None-Match: x (30000 spaces) x

(b) A malicious web request for fresh, which is manually crafted.

Fig. 4. Examples of malicious web requests.

GET http://www.foo.com/

If-None-Match:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

(30000 spaces)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

(a) A malicious web request. The consecutive spaces trigger the vulnerability.

GET http://www.foo.com/

If-None-Match:

1D9xx52xxx9x5x9x25x0xxexOrxO622D350x2U5xxx5g8Gx2x

exnfxx759xr0x9x25ex02j22x25360X920e99x22xbrO2150518

(30000 spaces)

x2x2x22x2r5Sx0Zx0x0vOS1Oxxxxxx20xr6x2x2xF9xSx1SD

0Fe29xI29I9x7IIxx1xxi1e9D0xxx15x0x55xx3xf5rcho2x2cxx

(b) A malicious web request generated by adversarial learning. The consecutive

spaces trigger the vulnerability, but the characters before and after the spaces

bypass the DNN model.

Fig. 5. An example of an adaptive attack targeted at the fresh module.
The vulnerable regex is shown in Table I. REGEXNET can quickly recover
the web service from adaptive attacks as shown in Fig. 7.

2) Adaptive Attacks with Carefully-crafted Exploits: Be-

cause REGEXNET adopts a machine learning model, i.e., a

DNN, previous research [20], [31], [19] in adversarial machine

learning teaches us that one can generate adversarial examples

to evade the learning model and bypass the recovery system.

The method is similar to gradient descent, while we update the

input data instead of the model parameters. To handle discrete

values like characters, we use the method proposed in [31].

The basic idea is to compute the gradients of the embedded

vectors of the input data and find the closest embedded vector

in the opposite direction of the gradients for each vector.

In our experiments, we consider the DNN model as a

whitebox—which is a strong threat model, because the adopted

DNN is usually a blackbox to the adversary in practice—and

then generate adversarial requests for a vulnerable regex. Note

that the original attack may change any characters in a sample,

which may alter the malice of the request. Therefore, we add

additional constraints to ensure that the key exploit triggering

the vulnerable regex remains the same during adversarial

sample generation, and the web request is still legitimate in

terms of the format.

Fig. 5 shows an example of an adaptive attack targeted at the

vulnerability of the fresh module. The vulnerable regex is

shown in Table I, which can be triggered by consecutive spaces

as part of a web request shown in Fig. 5(a). We assume that

an adversary can obtain the trained DNN model and generate

an adversarial input following prior work [31]—the generated

input, as shown in Fig. 5(b), still preserve its malice, i.e.,

consecutive spaces, but has crafted characters before and after

the spaces to evade the model.

VI. EVALUATION

In this section, we evaluate REGEXNET with a wide variety

of real-world ReDoS attacks. Our evaluation aims to answer

the following research questions (RQs).

• RQ1: How resilient is REGEXNET against various Re-

DoS attacks, e.g., different vulnerable regexes, reflected vs.

stored, and normal vs. adaptive?

• RQ2: How fast is REGEXNET in recovering web service

under ReDoS attacks? How effective is REGEXNET’s online

feedback loop in dealing with zero-day ReDoS attacks?

• RQ3: How does REGEXNET compare with state-of-the-art

reactive defense, namely Rampart [11]?

• RQ4: How effective is REGEXNET under different malicious

loads and message sizes?

• RQ5: What is the accuracy of REGEXNET’s DNN model

especially with an imbalanced or polluted training set?

A. RQ1: Resilience against Various ReDoS attacks

In this research question, we evaluate the resiliency of

REGEXNET from three aspects: (i) vulnerabilities in different

regexes, (ii) different vulnerability types, i.e., reflected vs.











an adaptive attack, REGEXNET can still quickly recover the

web service and make it at the target throughput most (i.e.,

>90%) of the time. More importantly, as prior adversarial

training work shows, more adversarial examples will just make

attacks harder, i.e., the longer time and with a higher chance

of failure. As we have shown in §VI-A, the adversary fails

to generate malicious requests for 40% of the cases during a

continuous attack. To summarize, we believe that REGEXNET

is resilient to continuous adaptive attacks.

VIII. RELATED WORK

Regular expression. Regex, a popular search pattern, is

widely used in many scenarios, such as data manipulation

and validation [1], [2], [32] and processing texts [33], [34].

There are some prior works that try to accelerate the matching

algorithms of regexes. For example, Thompson et al. [16]

propose a new regular expression search algorithm for better

performance. Sidhu and Prasanna [35] rely on hardware, i.e.,

FPGAs, to accelerate regex matching. As a comparison, the

purpose of REGEXNET is different, i.e., recovering an affected

website after being attacked instead of finding and fixing the

vulnerability beforehand. Such a task is important to bring an

affected website back online in an incident while none of the

prior works accelerating regex can.

DDoS attacks. Distributed denial-of-service (DDoS) attacks

disrupt the normal operation of a target, e.g., with a flood of

network traffic from many different sources. There have been

extensive efforts contributed to DDoS attack detection and

defense [36], [37], [38], [39]. First, several algorithms have

been proposed to detect DDoS attacks. For example, Barford

et al. [36] present an algorithm based on signal analysis. Moore

et al. [38] use backscatter analysis to quantitively understand

the nature of DDoS attacks. Jin et al. [40] propose to deploy

hop-count filtering to detect DDoS attacks efficiently. Lakhina

et al. [41] use traffic feature distributions to mine network

anomalies. Second, researchers have proposed SDN/NFV-

based methods, being orthogonal to algorithm-based methods,

for defense. For example, FRESCO [42] provides modular

composable security services in Software-Defined Networks

(SDN). AvantGuard [43] can be used for developing more

scalable and resilient SDN security services by introducing

two data plane extensions, which are connection migration

and actuating triggers. Lastly, Bohatei [44] introduces more

flexibility and elasticity by setting up tag-based forwarding

rules proactively. In contrast, REGEXNET focuses on protect-

ing web services against low-bandwidth ReDoS attacks—none

of the aforementioned works is able to do so.

ReDoS attack and defense. ReDoS is proposed as a new

class of low-bandwidth DoS attacks that exploit algorithmic

deficiencies [6]. ReDoS is also a common type of attack from

a software engineering perspective. Lauinger et al. [45] show

that the use of client-side JavaScript libraries may induce

vulnerabilities to ReDoS attacks. Davis et al. [4] also explore

super-linear regex engines that make ReDoS attacks possible

in Python core besides JavaScript.

ReDoS defense is an important problem in academia and

industry. Substack develops safe-regex [7], which detects

ReDoS attacks by limiting the star height to 1. rxxr2 [8],

developed by Rathnayake et al., presents a static analysis

that forms powers and products of transition relations, and

thereby reduces the ReDoS problem to reachability. Weideman

et al. [46] apply results from ambiguity of nondeterministic

finite automata to the problem of determining the asymp-

totic worst-case matching time. Wüstholz et al. [3] present

Rexploiter that is able to automatically identify vulnerable

regexes and determines whether a malicious input string can

be matched against a vulnerable regex. Besides ReDoS attack

detection, Merwe et al. [47] investigate techniques which

can be used to transform vulnerable regexes into harmless

equivalent expressions. Slowfuzz [9] and Singularity [10]

proposed automated tools to explore algorithmic complexity

vulnerability in a blackbox. Node.cure [17] modifies Node.js

framework to enforce timeouts on different API usages and

defend against ReDoS attacks.

As a comparison with existing work, REGEXNET is the first

application-agnostic ReDoS recovery system by leveraging a

DNN model to classify normal and malicious requests for

web services. Prior works focus on defending against ReDoS

attacks beforehand, but zero-day attacks may still penetrate

and affect a vulnerable web service—REGEXNET can recover

these web services that are under attack.

Attacks against learning-based systems. It is well known in

adversarial machine learning [48], [49] that existing learning-

based systems can be evaded [50], [51], [52], [53], [19].

REGEXNET is the same; however, the online feedback loop

introduced in REGEXNET can correct these mistakes, e.g.,

evasive samples, so that the influence of such adaptive attacks

introduced by evasive inputs will be limited to the same

as a zero-day ReDoS attack—as shown in our evaluation,

REGEXNET can also recover the affected web services from

adaptive attacks under one minute.

IX. CONCLUSION

In conclusion, we present REGEXNET, a payload-based,

recovery system to recover web services from zero-day ReDoS

attacks. REGEXNET leverages the observation that requests

triggering the super-linear running time of a vulnerable regular

expression usually contain a particular string pattern, which

can be learned using a DNN model. We design an online

feedback loop for REGEXNET so that the DNN model is

continuously trained and updated online based on data col-

lected from web servers at runtime. We have implemented

a prototype of REGEXNET, integrated it with HAProxy and

Node.js, and demonstrated its effectiveness, responsiveness

and resiliency with experiments on a testbed with real-world

ReDoS attacks.
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