


SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja,

Yuandong Tian, Ying Zhang, Xin Jin

the IP and optical layers, and multi-step decision making is ex-
actly the kind of problems that RL is designed to solve. Recent
results have demonstrated the capability of RL in solving hard com-
binatorial problems that cannot be easily solved by conventional
solutions [28, 32, 45]. Second, the effects of the decisions (e.g., de-
ciding the capacity of one IP link) can only be evaluated once the
entire network has been planned. Hand-tuned heuristics often fo-
cus on local decisions to maximize (implicit) local metrics, while
RL is designed to handle delayed rewards and explicitly optimize
for the global objective.

While many problems in different domains have these charac-
teristics, it is particularly appealing to apply deep RL to network
planning. Deep RL is notorious for its high sample complexity.
Many domains rely on simulations to obtain enough samples for
training. Yet, there is a gap between simulation and practice (e.g.,
in robotics), and this is a major obstacle for deep RL solutions to
be used. In network planning, however, there is no such gap. A
network plan generated by an RL agent can be accurately and effi-
ciently evaluated by calculating its cost and checking the service
expectation requirements at the cost of cheap CPU cycles in the
same way as a plan evaluator is used now in production by network
operators. And many network plans can be sampled to train the RL
agent.

Given the potential of this deep RL approach, we need to address
two technical challenges to realize its promise. First, we need to
represent the network topology with various numbers of nodes
and links into a state vector for the RL agent to use, and the repre-
sentation needs to handle topology dynamics when the RL agent
applies actions to change the topology (e.g., adding IP capacity).
We address this problem by encoding the network topology with a
graph neural network (GNN) and learn an embedding vector repre-
sentation. Moreover, we design a novel domain-specific node-link
transformation to transform the topology before feeding it to the
GNN. This transformation is critical because network planning is
primarily concerned with the bandwidth provided by links and
directly using GNNs cannot handle parallel links.

Second, deep RL is not a panacea. One straightforward approach
is to directly use it to generate the final network plan. Deep RL can
learn to find reasonably good solutions relatively quickly, but given
the combinatorial nature of the problem, converging to the opti-
mal solution is fundamentally hard. Instead, we leverage a hybrid
approach which contains two stages. The first stage uses deep RL
to learn to prune the search space, and the second stage uses an
ILP solver to find the optimal solution. Because the search space
has been pruned significantly by deep RL, the ILP solver can finish
the second stage quickly. This approach resembles today’s practice
of using hand-tuned heuristics to prune the search space. Remark-
ably, our approach does so without the need of human expertsÐthe
RL agent replaces human experts to automatically generate pruning

strategies.
Our approach is incrementally deployable and interpretable. Net-

work operators can examine the pruning strategies generated by
deep RL and check whether they match their intuition and expe-
rience for interpretability. NeuroPlan is not intrusive to the cur-
rent practice of network planning. Network operators can decide
whether to incorporate the pruning strategies generated from RL
together with their hand-designed strategies. Alternatively, they

can keep using their existing tools to generate network plans, and
compare these plans with that generated by NeuroPlan to decide
which plan to use. In addition, NeuroPlan also provides a knob for
operators to easily and explicitly tune between optimality and run-
ning time of the ILP solver. We are in the process of incorporating
this solution to the operational planning process in a large WAN.

In summary, we make the following contributions.

• We propose NeuroPlan, a deep RL approach to solve the network
planning problem.

• We design domain-specific techniques based on GNNs and node-
link transformation for state encoding, and leverage a hybrid
approach to find the optimal solution.

• We implement a NeuroPlan prototype. Evaluation on real topolo-
gies and setups from production networks demonstrates that
NeuroPlan scales to large topologies beyond the capability of ILP
solvers, and reduces the cost by up to 17% compared to hand-
tuned heuristics. The 17% cost saving is significant given the high
cost (e.g., billions of dollars) of building WANs and the tremen-
dous efforts of developing and manually tuning heuristics for the
baseline, and NeuroPlan relieves humans from these efforts.

Finally, there is an emerging trend towards self-driving net-
works [24, 34, 38, 39]. The over-arching goal is to bring automa-
tion to network managementÐoperators only specify high-level
intents and networks manage themselves. While the goal is tremen-
dously attractive, it is an open question how to achieve it. In this
paper, we make a concrete step towards this goal by bringing AI
techniques and automation to an important network management
taskÐnetwork planning. Notably, our solution is not intrusive. It
demonstrates the viability of self-driving networks and the potential
of using AI techniques to relieve the burden of network operators.

Open-source. The code of NeuroPlan is open-source and is pub-
licly available at https://github.com/netx-repo/neuroplan.

2 NETWORK PLANNING PRIMER

Large content service providers operate a global network of tens of
datacenters and hundreds of Point of Presence (PoP) sites. The back-
bone network interconnecting the datacenters and PoPs typically
serves hundreds of terabits of traffic at any given time. Continuous
changes in user demands, services, and traffic patterns dictate that
the backbone network needs to continuously evolve to meet these
needs. Importantly, operational issues such as upgrading network-
ing hardware, scheduled maintenance, and failures also need to
be taken into consideration to ensure high network reliability and
performance. The network planning process is a critical step in
dimensioning the backbone network to satisfy these requirements.

The high-level goal of network planning is to determine how to
scale the network to satisfy the traffic given a future demand fore-
cast. By working with a content provider’s network planning team
closely, we summarize a few properties of a real-world network
planning process below.

First, it is cross-layer as it considers both the optical layer and
the IP layer. At the IP layer, it determines the amount of capacity
in Gbps for each IP link, as well as the number of transponders

259



Network Planning with Deep Reinforcement Learning SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

A

B C

D

E F

A

B C

D

E F

(a) Short-term planning. (b) Long-term planning.

IP Link 1

Site Fiber IP Link Failure

IP Link 2

IP Link 1

IP Link 4

IP Link 3

IP Link 2

Figure 1: An example for network planning to satisfy a

100Gbps flow fromA toDunder any of the three single-fiber

failures. (a) Short-term planning uses two IP links A-B-C-D

and A-E-F-D. (b) Long-term planning adds a new fiber B-F,

and uses two IP links A-B-C-D and A-B-F-D. Other options

(e.g., using A-E-F-D and A-E-F-B-C-D) consume more fibers.

and routers to procure at each site to support such capacity. At the
optical layer, it estimates the number of fibers to turn on, as well
as new fiber path to build or purchase. Across layers, it layouts
the mapping of IP links and underlying fiber paths. All of these
decisions form a network plan that is being procured and deployed
over the months and years. It contributes to the most significant
portion of network infrastructure expenditure.

Secondly, network planning is a multi-phased, iterative process.
Making all these decisions in one shot is complex and does not meet
the operational needs. For instance, building new fiber path takes
much longer time and thus such decision needs to be made several
years a-priori. Thus, in production networks, the planning process
is done over the short-term and long-term horizons respectively to
generate short-term actionable signals for operational teams, while
allowing optimal long-term network evolution strategy. Short-term
planning provides decisions for adding or removing capacity over
existing IP links on a given fiber footprint, for a time range of the
next few months. Long-term planning, on the other hand, decides
the future fiber paths, hardware equipments, and new sites. Note
that the IP topology is up for change in this step. The goal is to
extract the most cost-effective IP topology and the corresponding
IP and optical equipment required to support future IP topologies.

Lastly, network planning is failure-aware. A key objective of net-
work planning is to ensure the reliability of the backbone network
under different failure scenarios such as fiber cuts, site failures
and natural disasters. We illustrate the failure-aware multi-phase
planning in an example in Figure 1. For simplicity, assuming the
traffic demand is a single flow of 100Gbps from site A to site D, the
goal is to plan a network of IP links that satisfies the demand and
minimizes the cost, which is approximated as the number of fibers
used. The failure scenarios to consider are marked as the red cross,
each of which can happen independently. Short-term planning is
to decide the capacity of the two existing IP links, shown as dotted
lines. A single IP link (link 1: A-B-C-D or link 2: A-E-F-D) is not
sufficient, because it would not survive the failures. As shown in

Figure 1(a), we need to build both 100Gbps IP links to ensure that
the flow from A to D is always satisfied when either A-E or B-C
fails.

A long-term planning example is shown in Figure 1(b). Here
we can change both the optical and IP topology. Assume that we
decide to add a new fiber B-F, which also introduces another new
possible failure. There are two options to add a new IP link between
A and D, link 3 (A-B-F-D) and link 4 (A-E-F-B-C-D). Consider three
possible plans: (1, 2), (1, 3), (2, 4), which can satisfy the demand
under any of three possible failures. Plan (1,3) has a lower cost than
the other two, because IP link 1 and 3 share one fiber A-B so that
this plan only consumes 5 fibers while other plans use more fibers.
This example illustrates that both long-term planning and failure
scenarios would result in a potentially large search space to explore.

3 EXISTING APPROACH AND CHALLENGES

In this section, we describe a standard solution to network planning
that is used in a production network. Importantly, we highlight the
scalability challenge of the existing solution and summarize a few
heuristic methods used to tackle the challenge. This challenge and
the ad-hoc workarounds motivate us to explore more intelligent
and more systematic solutions in the rest of this paper.

3.1 Problem Formulation

Symbol Description

F Fiber set
L IP link set
N IP node set
Λ Failure set
Ω Flow set
Sf Maximum available spectrum over fiber f

ϕl f Spectrum efficiency of IP link l over fiber f

Cl Capacity (in Gbps) of IP link l
Cmin
l

Minimum capacity (in Gbps) of IP link l

∆f Set of IP links traversing over fiber f

Ψl Set of fibers traversed by IP link l
Y (l ,ω, λ) Traffic of flow ω over IP link l under failure λ
costf Cost of building fiber f

costI P Cost of turning up IP capacity per Km per Gbps

Table 1: Key notations in problem formulation.

At a high level, the backbone network topology is abstracted as
a graph where each IP/optical site is represented as a node and the
optical fibers between them make up the edges in a layer 1 (L1)
topology. The IP links traversing over the fibers create an overlay IP
topology, usually referred to as layer 3 (L3) topology. The backbone
traffic is represented as flows between different sites with various
Classes of Services (CoS) based on service characteristics. The over-
all goal of network planning is to minimize the total network cost
while meeting all constraints imposed by hardware and operational
requirements. The problem can be formulated as an optimization
problem under a set of constraints. The mathematical formulation
is described below. Table 1 summarizes the key notations of the
problem formulation.

260



SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja,

Yuandong Tian, Ying Zhang, Xin Jin

Objective. The objective of the ILP is to minimize the total network
cost, which is a sum of the cost on optical layer and IP layer. Other
metrics such as flow latency can also be included in the objective
based on operational requirements. The cost of optical layer consists
of one-time procurement cost of fiber pairs, one-time fiber light
up and monthly operating cost. The cost of IP layer comes from
buying IP equipments and operational cost to turn up IP capacities.
For the sake of simplicity, we abstract the cost as the sum of IP link
costs where each link’s cost is proportional to the capacity added
over the IP link as well as the the fiber cost underneath, shown as
Eq 1.

min
∑

l ∈L

(Cl × costI P +
∑

f ∈Ψl

costf ) (1)

s.t.
∑

l :lsrc=n

Y (l ,ω, λ) −
∑

l :ldst=n

Y (l ,ω, λ) = Traf f ic(ω,n)

∀ω ∈ Ω, λ ∈ Λ (2)

Cl ≥
∑

ω

Y (l ,ω, λ), ∀λ ∈ Λ (3)

∑

l ∈∆f

Cl × ϕl f ≤ Sf (4)

Cl ≥ Cmin
l

(5)

The constraints in Equation 2-5 are explained below.

• Flow conservation constraint (Eq. 2): The amount of egress traffic
needs to be equal to the amount of ingress traffic plus the node’s
self-generated traffic for every flow under every failure scenario.
Traf f ic(ω,n) is: the volume of ω if n is the source of ω, negative
of the flow volume if n is the sink, and 0 otherwise.

• Link capacity constraint (Eq. 3): The capacity of each IP link is
dictated by the capacity requirement of the aggregated traffic
volume on the link under any failure λ. Note that due to oper-
ational constraints, each IP link can only be turned up in fixed
capacity unit, i.e., Cl s are integer variables in the formulation.

• Spectrum consumption constraint (Eq. 4): At the optical layer, all
constraints are expressed as that the total spectrum consumed is
less than the maximum available spectrum for each fiber [26, 65,
66, 68]. The spectrum consumed over a fiber is the sum of IP link
capacities going over the fiber multiplied by the corresponding
spectrum efficiency (i.e., spectrum consumption to support each
IP capacity unit).

• Existing topology constraint (Eq. 5): For short-term planning, there
is an additional constraint that each link’s capacity should not
deviate from existing production capacity by too much, denoted
by Cmin

l
. This is to avoid churns of the topology from an opera-

tional perspective. For long-term planning, Cmin
l

is set to 0 for
the candidate links to be added to the topology.

For brevity, we focus on the fundamental variables and constraints.
Different routing protocols and traffic engineering system require-
ments (e.g., MPLS tunneling selection [8], OSPF [14]) can be incor-
porated into the problem formulation in practice.

3.2 Pain Points in Today’s Approach

The network planning problem is formulated as an ILP problem
and can be directly solved with an off-the-shelf ILP solver such
as Gurobi [19] and CPLEX [11]. The primary issue of the ILP ap-
proach is the scalability of the ILP solver. For example, one of our
production network has about 100 nodes, 300 links and 500 fail-
ure scenarios. In short-term planning, it is translated into an ILP
problem with 42 million variables and 5 million constraints. In long-
term planning, the number of variables goes up to 400 million. Even
worse, the topology size grows at a rate of 20% per year. In practice,
we heavily use hand-tuned heuristics based on human expertise
to overcome the scalability challenge. For the long-term planning
problem, we can only get an actionable signal after applying heuris-
tics and running the ILP solver for 3-4 days. Below, we describe
the pain points of our existing approach from our experiences of
planning for a large scale WAN.

Short-term planning. In short-term planning, the IP topology is
given, and the task is to decide the capacity on given IP links. For
such cases, building and solving an ILP with thousands of vari-
ables and constraints can be done in a few minutes using existing
commercial solvers. However, since the amount of computation
needed grows exponentially when the topology size increases, the
ILP approach cannot be directly used for large topologies. In such
cases, we rely on heuristics to solve the problem, some of which
are described below.

• Topology decomposition.We decompose the topology into several
smaller sub-topologies, and each sub-topology is solved with
an ILP. The decomposition is usually done by segmenting the
topology into geographical regions where each region is aligned
to actual operational/management blocks of the production net-
work and sizing inter-regional links (generally subsea or long-
haul terrestrial links). The segmentation and stitching are done
manually.

• Topology transformation. We transform the topology to reduce
the problem search space or reduce the number of variables. The
transformation can include actions like enlarging the capacity
unit that can be added over some or all links, restricting capacity
additions on fibers or IP links, or collapsing multiple nodes and
links together. These transformations are determined manually
and decided based on the level of fidelity required from planning
signals.

• Failure selection. Instead of satisfying all failure scenarios jointly,
we only select a subset of the failure scenarios for the ILP (i.e.,
reducing the number of constraints and variables). Based on
the solution, we add more failure scenarios to the ILP until all
scenarios are added. The ordering that the failure scenarios are
added is decided manually.

Different heuristics share the same ideaÐthey all aim to prune the
search space to make the problem tractable. Yet, they all rely on
human expertise and operational experience. It is a tedious, time-
consuming iterative process even for experts as the experts need
to use trial-and-error for the manual parts in the heuristics. As the
search space is pruned, there is a fundamental tradeoff between the
optimality of the solution and the tractability of the ILP. This adds

261



Network Planning with Deep Reinforcement Learning SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

additional complexity to the problem, and yet another iterative
process is employed to find a good trade-off. Even worse, such
process has to be done and tuned for every planning problem as
there are no universal heuristics for all the planning problems.

Long-termplanning. The ILP approach hits the limit of scalability
for even smaller topologies for long-term planning. As an example,
the candidate set of possible IP links for the global topology at our
scale is larger than ten thousand. Of these ten thousand candidates,
fewer than five hundred may make it to the production topology
based on ILP results. Another challenge is that most ILP solvers
struggle to find an optimal integer solution when starting from
almost zero IP capacities on the candidate links, compared to the
short-term planning (see explanation of Eq. 5).

Most ILP solvers rely on estimating feasible solutions using pro-
prietary heuristic methods and then using branch-and-cut tech-
niques [44, 50] to eliminate sub-optimal solutions. Since the search
space is large, the generic heuristic methods of solvers suffer in
finding good quality solutions for these problems. Further, the pos-
sible number of branches for the long-term planning problem is
too large. Besides the strategies used in short-term planning above,
we leverage warm-start to feed potential feasible solutions to ILP
solvers and help solvers converge faster to an optimal. Warm-start
solutions can include previously known good designs or solutions
from manually crafted heuristics. The warm-start solutions require
considerable manual intervention and domain expertise, and are
iterative and time-consuming.

4 NEUROPLAN DESIGN

4.1 A Deep RL Approach

The network planning problem is a multi-step decision making
problem, which is exactly the set of problems that RL is designed
to solve. Specifically, RL considers the problems where there is an
agent interacting with an environment [46, 47]. The agent observes
the environment, takes actions to change the environment, and
receives rewards from the environment. Through a series of inter-
actions, the agent learns a policy to maximize its rewards. The RL
setup can be naturally mapped to the network planning problem.
The environment is the network topology with the traffic demand
and reliability policy, the actions are to change the link capacity
of the topology, and the rewards are to indicate the final cost of
the network topology and whether the traffic demand is satisfied
under the reliability policy.

Advantage of deep RL approach.While many problems are fun-
damentally hard in terms of computational complexity, deep RL
has been recently demonstrated to achieve remarkable results in
many domains [1, 34, 43, 54, 59, 69, 74]. The key reason is that deep
RL is able to leverage neural networks to learn the structure of the
particular problem by exploring the search space and exploit the
learned structure to optimize its policy. This is essentially how hu-
mans design heuristics to take advantage of the problem structure
to solve the problem. The real appeal here is that the RL agent can
automatically derive such heuristics using a deep RL algorithm,
obviating the need to manually design and tune heuristics with
human experts.

search space

optimal

RL

𝜶𝟏

𝜶𝟐

Figure 2: Two-stage hybrid approach in NeuroPlan. The first

stage uses RL to find an initial solution, and the second stage

uses ILP to find the final solution in a sub search space near

the initial solution bounded by the relax factor α . The factor

α provides a knob for the trade-off between optimality and

tractability.

Moreover, in the language of RL, RL is able to model delayed
rewards and directly optimize for the global objective. This is the
reason that inmany cases, deep RL algorithms can often beat human
experts. With regard to our problem, the hand-designed heuristics
like the ones we describe in ğ3.2 often focus on local decisions.
For example, a heuristic to limit the capacity of an IP link to a
small range (i.e., tighten the constraint) is often based on the flows
on the IP link, not all flows and the entire topology. It is hard
for human experts to model the relationship between the local
decisions and the global objective in the heuristics, and as a result,
the local decisions are often evaluated with local metrics that are
only loosely coupled with the global objective. In comparison, deep
RL can choose an action even if the impact of the action can only be
evaluated after several steps, i.e., the reward of the action is delayed.
Deep RL is able to learn to choose actions to directly optimize for
the global objective.

An alternative is to apply supervised learning which uses a train-
ing set with labeled samples to train a neural network. However,
supervised learning usually requires a large training set and a label
for each sample (i.e., optimal plan for a network) in the training
set, both of which are hard to obtain for our problem, especially for
large-scale network topologies. The key benefit of deep RL is that
it is able to explore the search space automatically and efficiently.

Challenge 1: Dynamic network topology. While it is natural
and appealing to apply deep RL to network planning, there are
two primary technical challenges. The first challenge is to model
dynamic network topology in deep RL. A deep RL agent typically
requires a vector to encode the environment state as the input of
its neural network to generate actions. However, the environment
of the network planning problem is the network topology, which
is a graph. The size of a graph varies depending on the number of
nodes and edges, and the structure cannot be easily captured with
a vector. To make it more challenging, the graph is dynamic when
the RL agent interacts with the topology to change the capacity of
IP links.

To address this challenge, we leverage graph representation
learning [13] to encode the network topology with GNNs [52].
GNNs are a family of neural networks specifically designed for
graph data [78]. It takes a graph as input and can learn to generate

262



SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja,

Yuandong Tian, Ying Zhang, Xin Jin

RL

Plan Evaluator

ILP
New
Plan

Network
Topology

Traffic
Demand

Cost
Model

Failure
Scenarios

Reliability
Policy

Figure 3: The workflow of NeuroPlan.

embedding vectors to represent its nodes, links or the entire graph.
It can support many node-level, link-level or graph-level tasks. For
our problem, GNNs are better than other sequence-based graph
representations (e.g., recurrent neural networks [16]) since GNNs
eliminate the dependency of the order where the nodes are given in
the input. We take the dynamic network topology as the input of a
GNN to generate an embedding vector for the entire topology. The
embedding vector captures the essential features of the topology,
and serves as the input of the RL agent. One characteristic about
our problem is that we care about edges (i.e., the capacity of the
IP links), not nodes, of the graph. And there exist parallel links
between two IP nodes, which aremapped to different fiber paths and
are associated with different failure scenarios. The novelty in our
approach is that we use a domain-specific node-link transformation
to transform the topology based on this characteristic to improve
learning efficiency and support parallel links.

Challenge 2: Trade-off between optimality and tractability.

A straightforward approach to apply deep RL to network planning
is to directly use the RL agent to generate the network plan. Given
the combinatorial nature of the problem, it is fundamentally hard
for the RL agent to find the optimal solution. The RL agent can
learn to find reasonably good solutions, but it is both unpredictable
and time-consuming for the agent to find the optimal solution.

To address this challenge, we leverage a two-stage hybrid ap-
proach with RL and ILP. Instead of using RL to directly generate the
final solution, we use it to prune the search space and bootstrap ILP.
Figure 2 illustrates our approach. It is infeasible to search the entire
space to find the optimal solution with ILP due to the large and
complex search space. In the first stage, we use deep RL to learn to
find a reasonable solution. In the second stage, we use ILP to only
search the space near the solution found by deep RL. We use the
relax factor α to control the size of the space to explore by ILP. The
relax factor α provides a tunable knob for the network operator
to trade-off between optimality and tractability. A large α (α2 in
Figure 2) allows ILP to explore larger space, but the problem may
be intractable or takes a very long time for the ILP solver to solve.
On the other hand, a small α (α1 in Figure 2) may not include the
optimal solution in the search space, but the ILP solver may finish
the second stage quickly.

Workflow of NeuroPlan. Figure 3 shows the workflow of Neu-
roPlan. The input of NeuroPlan consists of five components, i.e.,
traffic demand, network topology, failure scenarios, reliability pol-
icy and cost model. The RL agent only needs to encode the network
topologies. The other four components are handled by the plan

evaluator. The RL agent interacts with the plan evaluator to learn
to generate network plans that minimize the network cost while
satisfying the traffic demand under the reliability policy. The plan
evaluator generates rewards to the RL agent. It receives the net-
work plan from the RL agent, checks whether the traffic demand is
satisfied under different failure scenarios, and uses the cost model
to compute a cost of the plan. The reliability policy specifies the
demand of flows with which Classes of Service (CoS) has to be satis-
fied under which subset of failure scenarios. A reward is calculated
based on a combination of whether the demand is satisfied and the
cost of the plan. We describe the details of RL agent and the reward
encoding in ğ4.2. After the learning process is completed, the RL
agent outputs an initial plan for the first stage. At the second stage,
the ILP solver uses ILP to find the final plan in the pruned search
space near the initial plan defined by the relax factor α . We describe
the details of pruning the search space using the initial plan and
the relax factor α in ğ4.3.

Unifying short-term and long-term planning.We use Neuro-
Plan to unify short-term and long-term planning with the same
approach. The main difference between short-term and long-term
planning is whether the IP links are given. Our key observation is
that the starting topology for long-term planning can be considered
as a topology with all the candidate IP links with the starting capac-
ity to be zero. These candidate IP links are mapped to different fiber
paths that are currently not used but can potentially be procured or
built to the topology. Then both short-term and long-term planning
can be solved by the same agent that decides capacity to a given
topology until the traffic demand is satisfied under the reliability
policy.

4.2 NeuroPlan Training Algorithm

Figure 4 shows the process of the RL agent to generate a network
plan from the original network topology. For each step i , the RL
agent performs an action to update the network topology (e.g.,
add some capacity to an IP link). The plan evaluator checks the
updated topology to see if the traffic demand is satisfied under the
reliability policy. The condition for a trajectory to stop is that the
traffic demand is satisfied under the reliability policy or the number
of steps (i.e., the number of actions taken) is equal to a pre-defined
threshold. It is a common practice for deep RL to set a maximum
number of steps to stop a trajectory even if the task (e.g., find a
plan that satisfies the traffic demand under the reliability policy)
is not completed. This helps improve training efficiency as the RL
agent is early stopped on unpromising trajectories. If the current
trajectory is terminated, the RL agent starts a new trajectory from
the original network topology to gain more experience to train its
neural network. Otherwise, the agent performs another action for
step i+1. For each step, the agent receives an award after it performs
its action.

Node-link transformation. While there are a variety of GNNs
for different graph data and tasks [1, 43, 78], GNNs are most mature
for handling node features and performing node tasks such as
node classification [29] and node property prediction [74]. In the
context of network planning, however, we care about links, not
nodes. Specifically, we would like the GNN to generate a high-level
graph embedding based on the current capacity of the IP links (i.e.,

263



Network Planning with Deep Reinforcement Learning SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

topology 𝑖

Plan
Evaluator

Stop?
RL

Agent

topology 𝑖+1

yes

no

Next Trajectory

+∆

Figure 4: The process of RL training to generate a network

plan.

A

B C

D E
DE

(a) Before transformation. (b) After transformation.

AB

CE

BC2

BC1

AD

Figure 5: Node-link transformation can handle parallel

links. The node names show the corresponding relationship

between nodes and links.

link features) and the RL agent can utilize the graph embedding to
decide which IP links should have more capacity (i.e., link tasks).
Moreover, there are parallel links (mapped to different fiber paths)
between two nodes, making it harder for the GNN to encode the
features as well as the graph structure.

We design a domain-specific node-link transformation to trans-
form the input network topology before feeding the topology to the
GNN. Unlike complement graph [6] which fills in all the missing
edges to form a complete graph, or dual graph [48] that maps faces
to vertexes, the main idea of the transformation is to map each link
in the input topology to a node in the transformed topology. Then
the link features (i.e., link capacity) in the input topology become
the node features in the transformed topology. This makes it easier
to apply state-of-art GNN algorithms to the topology. The nodes in
the transformed topology are connected if their corresponding links
have one common end in the input topology. Figure 5 provides an
example to illustrate the node-link transformation. Figure 5(a) is the
input topology before transformation. There are five nodes (A, B,
C, D, E) and six links (AB, AD, DE, CE, BC1, BC2) in total. BC1 and
BC2 are two parallel links between node B and node C. Figure 5(b)
is the network topology after transformation. The two parallel links
BC1 and BC2 are mapped to two nodes in the transformed topology.
We do not add links between nodes whose corresponding links
in the input topology are parallel links, e.g., we do not add links
between node BC1 and node BC2 in Figure 5(b). This is because the
parallel links make contribution to the capacity between the same
two nodes, and we do not want to propagate the capacities of the
parallel links during GNN training.

State representation. The state representation includes the net-
work topology and the node features. After the node-link transfor-
mation, the links in the input topology become the nodes in the

Algorithm 1 Learning a plan-generation policy using an actor-
critic algorithm.

Input: The network topology with the original capacity G∗ .

Main routine:

1: // Initialization
2: Initialize the actor parameters θ , the critic parameters θv , the GNN parameters

θд
3: Number of epochs N
4: G ← Reset(G∗)
5: for n=1,2,...,N do
6: // Generate several network plans with the current actor
7: epochBuf f er .clear ()
8: while !EpochEnd do
9: loд p ← π (a |G ; θ, θд )
10: a ← loд p .sample()
11: v ← V (G ; θv , θд )

12: G, r ← UpdateTopo(G, a)
13: epochBuf f er .append(loд p, a, v, r, G)
14: if T rajEnd (G) then
15: G ← Reset(G∗)

16: Reset gradients dθ ← 0, dθv ← 0 and dθд ← 0

17: // Compute gradients wrt. actor gradient loss
18: dθ, dθд ← ComputePLoss(epochBuf f er )
19: Perform update of θ using dθ and θд using dθд
20: // Compute gradients wrt. critic gradient loss
21: dθv , dθд ← ComputeV Loss(epochBuf f er )
22: Perform update of θv using dθv and θд using dθд

Subroutines:
• Reset(G): Reset the network topologyG to its initial state.
• UpdateTopo(G, a): Apply action a to network topologyG , and return the

updated topology and the intermediate reward for the action.
• TrajEnd(G): Define the condition of the current trajectory end as G satisfies

the service expectations or the length.
• ComputePLoss(epochBuffer): Compute the advantage estimates, and update

the gradient as the mean error between it and loд p .
• ComputeVLoss(epochBuffer): Compute the rewards-to-go, and update the

gradient as the mean-square error between it and v .

transformed topology. We use the current capacity of the IP link as
the feature for each node in the transformed topology. For training
efficiency, we normalize each dimension of the node feature across
all the nodes in the transformed topology withmean = 0, std = 1.
This is because an RL agent tends to generate the same action if the
values are the same in most of the dimensions in the input state.
Normalization is a commonly-used technique to avoid generating
a consecutive sequence of same actions.

Action representation. The action representation indicates which
link to select to add capacity and how much capacity to add. Let
the largest amount of capacity unit to add in one step bem and the
number of nodes in the transformed topology is n. The size of the
action space ismn.

An alternative approach is to allow both adding and reducing

capacity for IP links in the actions. It is important to note that both
approaches cover the same search space, i.e., any plan found by
the alternative can be found by only allowing adding capacity in
the actions. There are three benefits to only allow adding capacity
in the actions. First, it leads to a smaller action space. The size of
the action space with only adding capacity is half of that with both
adding and reducing capacity. Second, it leads to a stable and simple
training process. A trajectory can start from the original network
and be terminated once the network can satisfy the demand under

264



SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja,

Yuandong Tian, Ying Zhang, Xin Jin

the reliability policy when the agent only adds capacity. Third, it can
benefit from the stateful failure checking (ğ5) for a faster learning
process. If a network survives a failure, then a network with more
capacity can guarantee to survive the same failure. Thus, there is
no need to check the failures that have been already survived. In
contrast, we have to check all the failures on every step if reducing
capacity is also included in the actions.

One domain-specific customization for action representation is
that we use an action mask to handle the spectrum consumption
constraints. The mask turns off the IP links if adding more capacity
to these links would violate the spectrum consumption constraints.
The stochastic policy only samples among valid IP links instead of
all IP links.

Reward representation. The goal of NeuroPlan is to minimize the
cost of the network while satisfying the traffic demand under the
reliability policy. The ultimate reward is the cost of a network plan.
While in principle we could return the cost of a network plan as a
single final reward to the agent after generating a feasible solution,
it would be hard to train the agent effectively, especially considering
the cases with long trajectories where thousands of steps are needed
for a feasible solution. To generate dense rewards, we assign an
intermediate reward to each step with the cost of the newly added
capacity and scale it down with a normalized parameter to get
a final reward in the range of [−1, 0). It is a common practice to
use reward scaling to get better results for deep RL [21]. After a
pre-defined number of steps, if we cannot get a feasible solution,
we add −1 as the extra penalty for the final reward.

Training algorithm The RL agent is trained by an Actor-Critic
algorithm [31]. In an Actor-Critic algorithm, we learn an actor
π (a |G;θ ,θд) which gives a probability distribution of next-step
action a given the current topologyG , and a criticV (G;θv ,θд) that
outputs a value to evaluate the current topology G. Actor-Critic
algorithm is known to be more stable and efficient than the simple
policy-gradient algorithm [27], and has been successfully applied
to solve many tasks [3, 63, 69].

Algorithm 1 shows the pseudocode of the training algorithm.
The algorithm first initializes the parameters of the actor, the critic,
the GNN and the number of epochs (Line 2-3). For each epoch,
several network plans are sampled from the probability distribution
of the action returned by the current actor. With the same actor,
many different plans can be sampled in order to achieve adequate
exploration.

The generation of every network plan is termed as a trajectory.
For each trajectory, NeuroPlan starts from the network topology
with the original link capacity (which could be zero). It then gener-
ates the network plan by iteratively performing an action computed
by the actor to the current network topology until the trajectory
ends (Line 8-15). The trajectory is terminated under three condi-
tions: (i) the current network topology satisfies the traffic demand
under the reliability policy; (ii) the trajectory length exceeds a pre-
defined threshold, and (iii) the trajectory is cut off by the current
epoch. Any of the three conditions is true means the trajectory
termination.

At the end of each epoch, we first compute the policy gradient
loss (Line 18). The gradient loss of the actor is defined as the mean
error between the advantage estimate and loд p across the epoch,

feature

topology

mask

GNN

action

value

actor network

critic network

graph
embedding

Figure 6: Actor and Critic network architecture of Neuro-

Plan.

where loд p is the logit of the corresponding sampled action. The ad-
vantage estimate for step i (GAEi ) is calculated as the GAE-Lambda
advantage [53] by

GAEi = ri + γ · vi+1 −vi + γ · λ ·GAEi+1, (6)

where ri and vi is the reward and the output of critic at step i

respectively,γ is the discount factor and λ is a smoothing parameter
for reducing variance. Then we compute the critic gradient loss
(Line 21). It is defined as the mean-square error between the reward-
to-go and v across the epoch, where v is the output of critic. The
reward-to-go is calculated by applying the discount factor to the
intermediate rewards.

Neural network architecture. Figure 6 shows the neural net-
work architecture of the agent. We use a Graph Convolutional
Network (GCN) [29] to encode the transformed network topology
and generate a graph embedding. GCNs are a well-studied type of
GNNs that achieve good performance in many graph representation
tasks [29, 43, 74]. We have also experimented NeuroPlan with a
Graph Attention Network (GAT) [64]. GATs introduce an attention
mechanism as a substitute for the statically normalized convolution
operation in GCNs. GATs did not perform as well as GCNs for our
problem. Moreover, GAT has larger memory requirement, making
it infeasible for large-scale problems.

The high-level idea of GCNs is to perform message propagation
between neighbor nodes for multiple layers. Given n nodes and
an f -dimension feature vector for each node, the first-layer graph
embedding is represented as an n× f matrix,H (0). Then the l +1-th
layer graph embedding can be computed by

H (l+1) = ReLU (D−0.5(A + I )D0.5H (l )W (l )), (7)

whereW (l ) is the learnable weight matrix at l-th layer, A is the
adjacent matrix, I is the identity matrix, and D is the degree matrix
of A. After L layers of GCN, we get the final graph embedding
G = H (L). Then, we feed the graph embedding to the critic and
actor network.

The critic and actor network are both simple Multilayer Percep-
tron (MLP). To realize a stochastic policy, the actor outputs the
logits, which can be used to sample a feasible action after applying
the action mask.

265



Network Planning with Deep Reinforcement Learning SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

4.3 Search Space Pruning

As we have discussed in ğ4.1, considering the scale of the problem,
it is challenging for deep RL to directly generate the final plan.
Algorithm 1 indicates that the RL agent will keep adding capacity to
the network until the network satisfies the traffic demand under the
reliability policy. There may be useless steps in a feasible trajectory
that do not contribute to satisfying the traffic demand. Thus, we
use a two-stage hybrid approach which encodes the plan generated
by deep RL as the maximum capacity constraints for the IP links
to the ILP model. We then solve the ILP model to find the optimal
solution under these constraints with an off-the-shelf ILP solver.
To alleviate the impact of local optimum, we relax the maximum
capacity constraints by multiplying the maximum capacities by
the relax factor α . The relax factor α provides a tunable trade-off
between optimality and tractability.

Interpretability of the solution. In essence, the two-stage ap-
proach resembles the existing approach described in ğ3.2. The RL
agent takes over the job of the heuristics to prune the search space,
and does so in an automated way without the need of human ex-
perts. Then ILP is applied to find the optimal solution in the pruned
search space.

A common issue for deep learning approaches is interpretability.
Our approach avoids this issue and makes the generated solution
interpretable. Specifically, network operators can examine the solu-
tion from the RL agent and check whether the changes match their
intuition and experience. More importantly, they can use the relax
factor α to control the trade-off between optimality and tractabil-
ity. This control is simpler and more explicit than tuning several
hand-designed heuristics. It also clearly dictates the final solution
is optimal in which part of the search space. And it is easy to incor-
porate additional modifications to the pruned search space from
other heuristics.

5 IMPLEMENTATION

RL algorithm and environment.We implement the Actor-Critic
algorithm of the RL agent based on the SpinningUp [55] framework
and add support for GPU training. The RL environment is imple-
mented in Python for compatibility. We list the hyperparameters
used in NeuroPlan in Table 2.

Optimizations for the plan evaluator.As shown in Figure 3, the
plan evaluator interacts with the RL agent and checks if the network
plan satisfies the service expectations. For the problem of network
planning, we only need to focus on the macro-scale behavior of the
network (e.g., the IP link capacity). Thus, we do not need packet-
level simulators (e.g., NS-3 [49]) that model micro-scale network
behaviors such as network congestion. We do not need network
emulators, either, such as Mininet [42] and CrystalNet [36] which
run actual control plane and data plane code.

To check if the current network plan satisfies the service expec-
tations, we formulate the problem as an LP problem and solve it
with the Gurobi Optimizer [19]. Note that the LP problem is only
to check if the current network plan can survive the failures and
the network plan is given, which is much simpler than the existing
approach (ğ3) for the entire network planning problem which tries
to solve an ILP problem and find a plan with minimum cost. Gurobi

Hyperparameter Value

Max length per trajectory {1024, 2048, 4096, 8192}
Max epochs to train 1024
Max length per epoch {1024, 2048, 4096, 8192}
Max capacity units per step {1, 4, 16}
Model nonlinearity ReLU
GNN type GCN
Number of GNN layers 0, 2, 4
MLP hidden layers {64x64, 256x256, 512x512}
Actor learning rate 0.0003
Critic learning rate 0.001
Relax factor α {1, 1.25, 1.5, 2}
Discount factor γ 0.99
GAE Lambda λ 0.97

Table 2: NeuroPlan hyperparameters.

Optimizer is a commercial optimization solver and supports a vari-
ety of programming languages. For efficiency, the failure checking
part is implemented with Gurobi in C++ and compiled to a binary
file which is then called in Python code. The implementation of
NeuroPlan has two optimizations to accelerate the training process.

The first one is source aggregation. Assume there are l IP links,
m IP nodes, n optical fibers and f flows. We have l variables to
represent the IP link capacities and n constraints for spectrum
consumption. For each failure, there are f m constraints for flow
conservation, 2l constraints for IP link capacity (two directions
for every IP link), 2l variables to represent the traffic volume on
the IP links (two directions for every IP link). We do not need the
spectrum consumption constraints when doing failure checking
since they have been encoded in the action mask (ğ4.2). Given
s failures, the total number of constraints is s(f m + 2l), and the
number of variables is l + 2s f l . If we do not consider the Classes
of Services (CoS) for the flows, f can bem2 at most. Rather than
formulating the constraints with individual flows, we apply source

aggregation [60], which aggregates the flows with the same source
as one single flow. Such optimization decreases the number of
constraints from s(f m+2l) to s(m2

+2l) and the number of variables
from l + 2s f l to l + 2sml .

The second one is stateful failure checking. As described in ğ4.1, if
a network survives a failure, then a network with more capacity can
guarantee to survive the same failure. To realize the stateful failure
checking, we maintain a fixed order of failures. For each step, we
check the failure scenarios starting at the failure that is not survived
in the previous step instead of trying to solve all the failures at one
time. Moreover, we can group the failures and employ multiple
machines to check failure groups in parallel, which enables training
for problems with a large number of failures. In some cases, the time
to build up a Gurobi model is even longer than the time to solve the
model. Thus, we only update the constraints that are influenced
by the failure in the model, avoiding building up the model from
scratch for each failure.

The evaluation results in ğ6.1 shows the efficiency of the two
optimizations.

266









Network Planning with Deep Reinforcement Learning SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

REFERENCES
[1] AlphaFold. https://deepmind.com/blog/article/

alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology.
[2] Global state of the WAN Report, 2020. https://info.aryaka.com/

state-of-the-wan-report-2020.html.
[3] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and

Y. Bengio. An actor-critic algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086, 2016.

[4] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[5] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial op-
timization: a methodological tour d’horizon. European Journal of Operational
Research, 2020.

[6] J. A. Bondy, U. S. R. Murty, et al. Graph theory with applications. Macmillan
London, 1976.

[7] Q. Cappart, T. Moisan, L.-M. Rousseau, I. Prémont-Schwarz, and A. Cire. Com-
bining reinforcement learning and constraint programming for combinatorial
optimization. arXiv preprint arXiv:2006.01610, 2020.

[8] Y. Chang, S. Rao, and M. Tawarmalani. Robust validation of network designs
under uncertain demands and failures. In USENIX NSDI, 2017.

[9] L. Chen, J. Lingys, K. Chen, and F. Liu. Auto: Scaling deep reinforcement learning
for datacenter-scale automatic traffic optimization. In ACM SIGCOMM, 2018.

[10] X. Chen and Y. Tian. Learning to perform local rewriting for combinatorial
optimization. Advances in Neural Information Processing Systems, 2019.

[11] CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer.
[12] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli,

T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Convolutional networks on graphs
for learning molecular fingerprints. arXiv preprint arXiv:1509.09292, 2015.

[13] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch
geometric. arXiv preprint arXiv:1903.02428, 2019.

[14] B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF weights.
In IEEE INFOCOM, 2000.

[15] O. Gerstel, C. Filsfils, T. Telkamp, M. Gunkel, M. Horneffer, V. Lopez, and A. May-
oral. Multi-layer capacity planning for ip-optical networks. IEEE Communications
Magazine, 2014.

[16] A. Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[17] L. Gu, D. Zeng, W. Li, S. Guo, A. Y. Zomaya, and H. Jin. Intelligent vnf orchestra-
tion and flow scheduling via model-assisted deep reinforcement learning. IEEE
Journal on Selected Areas in Communications, 2019.

[18] P. Gupta, M. Gasse, E. B. Khalil, M. P. Kumar, A. Lodi, and Y. Bengio. Hybrid
models for learning to branch. arXiv preprint arXiv:2006.15212, 2020.

[19] Gurobi solver. https://www.gurobi.com/.
[20] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils, T. Telkamp, and

P. Francois. A declarative and expressive approach to control forwarding paths
in carrier-grade networks. In ACM SIGCOMM, 2015.

[21] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep
reinforcement learning that matters. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2018.

[22] Q. Huang, A. Haj-Ali, W. Moses, J. Xiang, I. Stoica, K. Asanovic, and J. Wawrzynek.
Autophase: Juggling hls phase orderings in random forests with deep reinforce-
ment learning. arXiv preprint arXiv:2003.00671, 2020.

[23] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, et al. B4: Experience with a globally-deployed software
defined wan. In ACM SIGCOMM, 2013.

[24] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar. A deep reinforcement
learning perspective on internet congestion control. In International Conference
on Machine Learning, 2019.

[25] Z. Jia, M. Zaharia, and A. Aiken. Beyond data and model parallelism for deep
neural networks. arXiv preprint arXiv:1807.05358, 2018.

[26] J. M. Kahn and K.-P. Ho. Spectral efficiency limits and modulation/detection tech-
niques for dwdm systems. IEEE Journal of Selected Topics in Quantum Electronics,
2004.

[27] S. M. Kakade. A natural policy gradient. Advances in Neural Information Processing
Systems, 2001.

[28] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial
optimization algorithms over graphs. Advances in Neural Information Processing
Systems, 2017.

[29] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[30] V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman. Rl-cache: Learning-
based cache admission for content delivery. IEEE Journal on Selected Areas in
Communications, 2020.

[31] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Advances in Neural
Information Processing Systems, 2000.

[32] W. Kool, H. Van Hoof, and M.Welling. Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475, 2018.

[33] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

[34] E. Liang, H. Zhu, X. Jin, and I. Stoica. Neural packet classification. In ACM
SIGCOMM. 2019.

[35] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy. Progressive neural architecture search. In Proceedings
of the European Conference on Computer Vision (ECCV), 2018.

[36] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes, A. Rybalchenko,
G. Lu, and L. Yuan. CrystalNet: Faithfully emulating large production networks.
In ACM SOSP, 2017.

[37] Y. Liu, H. Zhang, W. Gongt, and D. Towsley. On the interaction between overlay
routing and underlay routing. In IEEE INFOCOM, 2005.

[38] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with
pensieve. In ACM SIGCOMM, 2017.

[39] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh.
Learning scheduling algorithms for data processing clusters. In ACM SIGCOMM,
2019.

[40] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev. Reinforcement learning
for combinatorial optimization: A survey. arXiv preprint arXiv:2003.03600, 2020.

[41] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu. Interpreting deep learning-
based networking systems. In ACM SIGCOMM, 2020.

[42] Mininet. http://mininet.org.
[43] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang, Y.-J. Lee,

E. Johnson, O. Pathak, S. Bae, et al. Chip placement with deep reinforcement
learning. arXiv preprint arXiv:2004.10746, 2020.

[44] J. E. Mitchell. Branch-and-cut algorithms for combinatorial optimization prob-
lems. Handbook of applied optimization, 2002.

[45] A. Mittal, A. Dhawan, S. Manchanda, S. Medya, S. Ranu, and A. Singh. Learning
heuristics over large graphs via deep reinforcement learning. arXiv preprint
arXiv:1903.03332, 2019.

[46] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[47] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis. Human-level control through deep reinforcement learning. Nature,
2015.

[48] T. Nishizeki and N. Chiba. Planar graphs: Theory and algorithms. Elsevier, 1988.
[49] NS-3 network simulator. https://www.nsnam.org/.
[50] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of

large-scale symmetric traveling salesman problems. SIAM review, 1991.
[51] H. Peng, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, Y. Song, and Q. Yang. Large-scale

hierarchical text classification with recursively regularized deep graph-cnn. In
WWW, 2018.

[52] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph
neural network model. IEEE Transactions on Neural Networks, 2008.

[53] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[54] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. v. d.
Driessche, T. Graepel, and D. Hassabis. Mastering the game of go without human
knowledge. Nature, 2017.

[55] OpenAI Spinning Up. https://spinningup.openai.com/en/latest/.
[56] J. Suárez-Varela, A. Mestres, J. Yu, L. Kuang, H. Feng, A. Cabellos-Aparicio, and

P. Barlet-Ros. Routing in optical transport networks with deep reinforcement
learning. IEEE/OSA Journal of Optical Communications and Networking, 2019.

[57] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos. Learning to
optimize: Training deep neural networks for wireless resource management.
In IEEE 18th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), 2017.

[58] Y. Tang, S. Agrawal, and Y. Faenza. Reinforcement learning for integer pro-
gramming: Learning to cut. In International Conference on Machine Learning,
2020.

[59] Y. Tian, J. Ma, Q. Gong, S. Sengupta, Z. Chen, J. Pinkerton, and C. L. Zitnick. Elf
opengo: An analysis and open reimplementation of alphazero. arXiv preprint
arXiv:1902.04522, 2019.

[60] M. Tornatore, G. Maier, and A. Pattavina. Wdm network design by ilp models
based on flow aggregation. IEEE/ACM Transactions on Networking, 2007.

[61] M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and D. Li. Mlgo: a
machine learning guided compiler optimizations framework. arXiv preprint
arXiv:2101.04808, 2021.

[62] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar. Learning to route with
deep rl. In NIPS Deep Reinforcement Learning Symposium, 2017.

[63] K. G. Vamvoudakis and F. L. Lewis. Online actorścritic algorithm to solve the
continuous-time infinite horizon optimal control problem. Automatica, 2010.

270



SIGCOMM ’21, August 23–28, 2021, Virtual Event, Netherlands

Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja,

Yuandong Tian, Ying Zhang, Xin Jin

[64] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903, 2017.

[65] S. Verdú. Spectral efficiency in the wideband regime. IEEE Transactions on
Information Theory, 2002.

[66] S. Verdú and S. Shamai. Spectral efficiency of cdma with random spreading. IEEE
Transactions on Information Theory, 1999.

[67] J. Wang, D. Ding, H. Wang, C. Christensen, Z. Wang, H. Chen, and J. Li. Polyjuice:
High-performance transactions via learned concurrency control. In USENIX
OSDI, 2021.

[68] P. J. Winzer. High-spectral-efficiency optical modulation formats. Journal of
Lightwave Technology, 2012.

[69] Y. Wu and Y. Tian. Training agent for first-person shooter game with actor-critic
curriculum learning. In ICLR, 2016.

[70] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[71] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[72] Z. Yang, B. Chandramouli, C. Wang, J. Gehrke, Y. Li, U. F. Minhas, P.-Å. Larson,
D. Kossmann, and R. Acharya. Qd-tree: Learning data layouts for big data
analytics. In Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data, 2020.
[73] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan. Distai: Data-driven automated

invariant learning for distributed protocols. In USENIX OSDI, 2021.
[74] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec. Graph convolutional policy

network for goal-directed molecular graph generation. In Advances in Neural
Information Processing Systems, 2018.

[75] D. Zeng, L. Gu, S. Pan, J. Cai, and S. Guo. Resource management at the network
edge: A deep reinforcement learning approach. IEEE Network, 2019.

[76] C. Zhang, P. Patras, and H. Haddadi. Deep learning in mobile and wireless
networking: A survey. IEEE Communications surveys & tutorials, 2019.

[77] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla. Heterogeneous graph
neural network. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2019.

[78] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun. Graph neural networks: A
review of methods and applications. arXiv preprint arXiv:1812.08434, 2018.

[79] D. Zhuo, M. Ghobadi, R. Mahajan, A. Phanishayee, X. K. Zou, H. Guan, A. Krish-
namurthy, and T. Anderson. RAIL: A case for redundant arrays of inexpensive
links in data center networks. In USENIX NSDI, 2017.

[80] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.

271


	Abstract
	1 Introduction
	2 Network Planning Primer
	3 Existing Approach and Challenges
	3.1 Problem Formulation
	3.2 Pain Points in Today's Approach

	4 NeuroPlan Design
	4.1 A Deep RL Approach
	4.2 NeuroPlan Training Algorithm
	4.3 Search Space Pruning

	5 Implementation
	6 Evaluation
	6.1 Implementation Efficiency
	6.2 Optimality for Small-Scale Problems
	6.3 Scalability for Large-Scale Problems
	6.4 Sensitivity Analysis

	7 Related Work
	8 Conclusion
	References

