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Abstract

This paper explores a novel connection between two areas: shape analysis of surfaces
and unbalanced optimal transport. Specifically, we characterize the square root normal
field (SRNF) shape distance as the pullback of the Wasserstein—Fisher—Rao (WFR)
unbalanced optimal transport distance. In addition we propose a new algorithm for
computing the WFR distance and present numerical results that highlight the effec-
tiveness of this algorithm. As a consequence of our results we obtain a precise method
for computing the SRNF shape distance directly on piecewise linear surfaces and gain
new insights about the degeneracy of this distance.

Keywords Unbalanced Optimal Transport - Shape Analysis - Square-Root Normal
Field - Wasserstein-Fisher-Rao
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1 Introduction

This paper contributes to two different areas: elastic shape analysis (ESA) [55] and
unbalanced optimal mass transport [13, 35]. The main results of our article are twofold:
first we develop a new algorithm for the numerical computation of the Wasserstein—
Fisher—Rao distance [12, 25, 35] (a form of unbalanced optimal mass transport), and
secondly we establish a connection between these two areas, which in turn allows for
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the exact computation of the Square Root Normal Field distance, which is a widely
used similarity measure in ESA of surfaces; see e.g. [21, 22, 30, 32] and the references
therein. Before we describe the contributions of the present article in more detail, we
will briefly discuss the background of these two fields.

Background

In mathematical shape analysis, one is interested in quantifying and describing the
differences between geometric objects, such as point clouds, geometric curves, or
unparametrized surfaces [2, 16, 55, 62]. The main sources of difficulty in this area are
the high (infinite) dimensionality and the non-linearity of such spaces; e.g., the shape
space of surfaces is an (infinite dimensional) function space modulo several finite
and infinite dimensional group actions. Consequently, even simple operations such as
addition or averaging are not well-defined on such spaces. Riemannian geometry has
been proven to provide a successful framework to tackle this challenging task: in a
Riemannian viewpoint, one considers the space of all shapes of interest (geometric
objects) as an infinite dimensional manifold and equips it with an (infinite dimensional)
Riemannian metric, thereby encoding the invariances of the objects in the geometry
and building a convenient setup for subsequent statistical analysis. In the context of
geometric curves or surfaces this approach is often referred to as Elastic Shape Analysis
(ESA) [55, 61], despite the analogy to elastic stretching and bending energies being
only loose [46, 47].

In this article we will focus on elastic shape analysis of surfaces, i.e., we con-
sider Riemannian metrics on the quotient space Imm (M, R?)/ Diff (M) of immersions
modulo reparametrizations, where M is a compact two dimensional manifold (the
parameter space), Imm(M, R?) denotes the space of immersions of M into R> and
Diff (M) is the diffeomorphism group of the parameter space. One can define a Rie-
mannian metric on the quotient spaces, by considering a reparametrization invariant
metric on the space of immersions, such that the projection is a Riemannian sub-
mersion. Over the past years there has been a significant amount of work dedicated
to studying the mathematical properties of such metrics and in particular sufficient
conditions to guarantee non-degeneracy of the geodesic distance [39] and local well-
posedness [4] of the geodesic equations have been derived. However, the analogs of the
global existence and completeness results, that have been derived in the case of planar
curves [8, 9, 33] are still missing. From an application point of view, the most impor-
tant task is a fast and robust implementation of the geodesic boundary value problem,
which in the setup of geometric statistics serves as the basis for any subsequent sta-
tistical analysis [41]. In general, the absence of explicit formulas for geodesics makes
this a highly non-trivial task. Motivated by similar results in the case of geometric
curves, several simplifying transformations have been proposed that locally flatten the
Riemannian metric [22, 26, 27]. The most successful among these is the so-called
Square Root Normal Field (SRNF) transformation [22], which assigns an invariant
(pseudo) distance to the space of immersions by considering the L?-distance between
appropriately weighted normal vector fields. The corresponding shape distance can
then be calculated by minimizing over the action of the reparametrization group, see
Sect. 3.2 for an exact definition of this framework. Based on the resulting compu-
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tational ease and convincing results [3, 32], the SRNF framework has been proven
successful in a variety of applications, see e.g. [23, 28, 31, 37]. In a recent paper [24]
certain degeneracy results for the resulting distance have been characterized, but a
more detailed theoretical study of its properties is still missing; the second part of this
article will contribute towards this aim.

The optimal mass transport (OMT) problem was first formulated as a non-convex
optimization problem on the space of transport maps by Monge in 1781 [40]. Since
then a large amount of work has been dedicated to gaining a better theoretical under-
standing of this challenging model; we refer to the monographs [58, 59] for a detailed
introduction to the field. Over the past years OMT has proven successful in a variety of
applications, ranging from Computer Vision to Image Analysis and in particular Statis-
tics and Data Science, see e.g. [19, 42, 45, 53, 54] and the reference therein. Fueled by
these applications efficient numerical discretizations of OMT have been developed [5,
10, 38, 42] including in particular the celebrated Sinkhorn algorithm [15, 52], which
efficiently solves an entropic regularized version of the OMT problem.

The original formulation of OMT is rooted in the assumption that both densities
have the same total mass. Motivated by applications, where this can be a limiting factor,
various formulations of OMT that lift this restriction have been proposed [12, 25, 35,
36, 43]; such transportation problems are also called unbalanced transport problems.
In particular, a new family of metrics that interpolates between the Wasserstein and the
Fisher—Rao metric has been introduced in [12, 25, 35]. The theoretical properties of
this model, called Wasserstein—Fisher—Rao distance (WFR) or Hellinger—Kantorovich
distance, have been studied in detail in [14, 34, 35] and, as with traditional optimal
transport, efficient Sinkhorn-type, entropy regularized methods have been introduced
in [13].

Contributions

We start our presentation by reviewing the Kantorovich formulation of the WFR
distance, where we will focus on the induced distance on the subspace of all finitely
supported measures on S2. In this setting the computation of the WFR distance reduces
to a convex optimization problem on the space of discrete semi-couplings, i.e., on the
space of pairs of constrained matrices, see Sect. 2.2 and Lemma 2.14. In Sect. 2.3, we
prove that the set of measures on S with a fixed number of support points is a locally
flat metric space with respect to the WFR metric. This result is an extension of a result
in [12], in which the same result is proved for measures on convex Euclidean domains
instead of S2. In Sect. 2.4 we use the formulations of Sect. 2.2 to develop an efficient
coordinate descent algorithm, whose convergence is ensured by the convexity of the
problem. We can find an explicit solution to the optimization problem when restricted
to the space of semi-couplings with a fixed first (second, resp.) matrix, cf. Lemma 2.16.
This gives rise to a simple, numerically efficient algorithm to compute the optimal
semi-coupling. In Sect. 2.5 we then present an open source pytorch! implementation
of this algorithm and compare it in several experiments to the entropic regularized
Sinkhorn solver of [13].

1 Our code is available at https://github.com/emmanuel-hartman/WassersteinFisherRaoDistance.
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In the second part of our article, we focus on the SRNF distance. We start by
presenting a unified framework for the SRNF distance that allows us to incorporate
both smooth and piecewise linear surfaces (simplicial complexes). We then show that
this extended framework coincides with the original SRNF distance when restricted
to smooth surfaces, cf. Theorem 3.1. The main contribution of the second part, which
establishes a connection between the SRNF distance on the space of unparametrized
surfaces and the Wasserstein—Fisher—Rao distance on the space of Borel measures on
S, is presented next; more precisely, we construct a map from the space of piecewise
linear surfaces to the space of finitely supported Borel measures on S2, such that the
SRNF shape distance is the pullback of the Wasserstein—Fisher—Rao distance via this
map, see Theorem 3.4. The central building block of this result is related to the theory
of area measures [ 1], which have a long history in convex geometry and in particular in
Brunn—Minkowski theory, cf. [49] and the references therein. In the context of shape
analysis of curves, area measures have been recently studied in [11].

Theorem 3.4 highlights the degeneracy of the SRNF distance: in the recent
paper [24] it has been shown that there exist families of non-equivalent closed sur-
faces that are indistinguishable by the SRNF distance. Our result shows that for any
closed surface, there exists a unique convex surface such that the SRNF distance can-
not distinguish them. It turns out that this convex surface is exactly the solution of the
well-known Minkowski problem [48, 50], which allows us to use algorithms of convex
geometry to present examples of such pairs of surfaces that are indistinguishable by
the SRNF, cf. Fig. 4.

As a second outcome of Theorem 3.4, we obtain a new algorithm for the precise
SRNF distance computation by reducing it to the solution of the Wasserstein—Fisher—
Rao distance. Thus the algorithm developed in the first part of the paper directly applies
to this situation. In the final section of this article, we present numerical experiments
and, in particular, a comparison to previous implementations of the SRNF distance.

2 Unbalanced Optimal Transport and the Wasserstein-Fisher-Rao
Distance

In this section, we will first recall the Kantorovich formulation of the recently proposed
Wasserstein—Fisher—Rao distance. We will then discuss the restriction of this distance
to the space of finitely supported measures on S2. In our main result of this section, we
will construct an efficient splitting algorithm for the computation of this distance. We
will prove the convergence of our algorithm using the result that the computation of
this distance can be reduced to optimizing a concave function over a finite-dimensional
convex set.

2.1 The Wasserstein-Fisher-Rao Distance
In recent years, there has been a concerted effort by the optimal transport community

to extend the definition of well-studied classical optimal transport to unbalanced prob-
lems, i.e. to transport problems that allow for expansion and compression of mass. We
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will consider a specific example of such a generalization called the Wasserstein—
Fisher—Rao distance that was introduced independently by [12] and [35]. In the
following, we will discuss the corresponding Kantorovich formulation, as introduced
in [14], for the special case of measures on S2.

Therefore we denote by M. (S?) the space of finite Borel measures on S2. To
formulate the Kantorovich problem for unbalanced transport we introduce the notion
of a semi-coupling, which is a direct generalization of the notion of a coupling, which
is used in standard OMT:

Definition 2.1 (Semi-couplings [14]) Given u,v € M (S?) the set of all semi-
couplings is given by

P v) = {00, 71) € M (87 x S22 Projo)o = i, (Projsyn = v}

The Wasserstein—Fisher—Rao distance from u to v can be defined as the infimum of a
functional on the space of semi-couplings of w and v.

Definition 2.2 (Wasserstein—Fisher—Rao Distance [14,35]) The Wasserstein—Fisher—
Rao Distance on M (5?) is given by

WER : M (5%) x M, (§?) — R* defined via

(w,v) > inf f \/@(u,v)u—\/ﬂ(u,v)v
(vo,yDel(u,v) \ Js2xs2 14 14

where y € M (5% x §2) such that y < yp, y1.

5 1/2
dy (u, v))

The following theorem summarizes the main result about this distance function:

Theorem 2.3 (Properties of the Wasserstein—Fisher—Rao Distance [12, 14, 35]) Given
any w, v € M (S?) there exists an optimal (yo, 1) € T'(i, v) such that

\/@(u,v)u—\/ﬂ(u,v)v
y y

Further, (M (5%), WFR) is a geodesic length space.

2
WFR (i, v)? = / dy (u, v).

52x §2

2.2 The Subspace of All Finitely Supported Measures

We will now consider the restriction of this metric to the subset of all finitely supported,
finite measures on S2

m
/\/lfroo(Sz) = Za,-&ul. :meN,aq e RT, andu; € 7} € M, (5%,

i=1
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where 8, is the Dirac measure at u € S2. Note that for ., v € MZ=(S 2) an arbitrary
semi-coupling (Yo, ¥1) € I'(u, v) is not required to be finitely supported. We will
introduce a subset of discrete semi-couplings and show that optimizing over all valid
semi couplings is equivalent to optimizing over our restricted subset.

Definition 2.4 (Discrete semi-couplings) Let i, v € M<°°(SZ) withp = Y"1 a; 8y,
andv = Z 1 bjdy;. Adiscrete semi-coupling of w and v is a pair of (m+1) x (n+1)
matrices (A B) satlsfylng the properties:

(a) foralli, j, A;j > Oand B;; > 0;

(b) foralli =1,...,m,a; = Ajo+ -+ Ain;

(c) foreach j =0,...,n, Ag; =0;

(d) forall j =1,...,n,b; = Byj + -+ By

(e) foreachi =0,...,m, Bjo = 0.

We denote the set of all discrete semi-couplings of i and v by A(u, v).

Note that the discrete semi-couplings from u to v represent a proper subset of I' (i, v).
Thus, to show that we can compute WFR (i, v) by simply optimizing over A(u, v)
we need the following lemma.

Lemma2.5 Let u,v € Mjoo(Sz) with p = Y 'L, a;i8y; and v = Z’}:l bj8y,;. Let
(vo, 1) € T'(, v); then there exists (A, B) € A(u, v) such that

2
/ \/@(u,v)u—\/ﬂ(u,v)v
§2x 82 14 14

where ug = vy = (1,0, 0) € S2.

Proof Construct (A, B) as follows:

dyu,v) = Z Z IVAijui —/Bijv; |

i=0 j=0

Fori e {1,...,m}and j € {1, ...,n}, A;j = yo/y (ui, v;) and B;; = y1/y (u;, v;),
fori € {1,...,m}, Ajo = a; — Z;le vo/v (ui, vj),

for j € {1,....,n}, Boj = b; — szzl vi/y Wi, vj),

fori € {0, ..., m}, Bjo =0, and

for j € {0, ...,n}, Ap; =0.

Note that by construction (A, B) € A(u, v). Observe,

2 2
‘/)/0 /—lv dy(u,v) = / ‘/)/0 dy(u,v)—{—/ ‘ n dy(u, v)
14 Y
S><S S§2xS? S§2x 52
—2/ [ I G vy, v)
Yyvv
§2xS2?

_Za,+Zb —2ZZFF(M, vj)

i=1 j=1

3

= ZI\/ATjui—/Bijjlz
0 j=0
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Corollary 2.6 Let j1,v € M$%(S?) with p = Y /", a8y, and v = Z?:l bjdy;.
Then

2
WFR (i, v)? = (AB)eAW)ZZ"/A i — /Bijvj|?

=0 j=0

Remark 2.7 By writing out the norms inside the summation and excluding terms that
sum to zero, one obtains the following alternative formula for WFR:

1/2

m
WER(p,v) = [ Y "a; + Zb -2 sup ZZ,/A,,B,,(M,-
i=1

Remark 2.8 Given a discrete semi-coupling (A, B), the zeroth column of A and zeroth
row of B are included to handle the case where all of the mass at the corresponding
support is destroyed/created rather than transported. This does not mean, however,
that these rows/columns being zero correspond to no creation/destruction of mass. We
will demonstrate this fact in the following example.

Example 2.9 We consider the example with i = 2§, + 8,, and v = §,, + 38,, with

1 0
u1=v1=<0>, u2=v2=<1).

The corresponding weight matrix between the supports is then given by

a-(39).

Consequently the optimal semi-coupling is given by:

000 000
A=]020] andB={010
001 003

Notice that even though the zeroth column of A and zeroth row of B are all zeros, a
unit of mass is destroyed and two units of mass are created. For contrast we consider
a second example with the same masses but different supports: u = 28,, + d,, and
V = 8y, + 38y, where

1 0 0
wma=(2)e m=(D). e (9).

This time the corresponding weight matrix between the supports is given by

=)
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and an optimal semi-coupling is given by:

000 003
A=1020)andB=|010
100 000

In this case, two units of mass are destroyed (one from each support of ) and three
units are created (all three are created at the second support of v).

2.3 Flatness of the Space of Measures with a Fixed Number of Support Points

Note that while the main result of this section proves a fundamental fact about the
geometry of the space of finitely supported measures, this result is not a prerequisite
for the rest of the paper. Let M’} denote the set of measures on § 2 that are supported
at precisely n points. It is clear that M’} has a natural structure as a 3n-manifold. In
the following theorem, we will show that the restriction of the WFR metric to M’} is
locally isometric to the distance function corresponding to a flat Riemannian metric
on this space.

Theorem 2.10 There is a flat Riemannian metric on M| whose Riemannian distance
function agrees with the Wasserstein—Fisher—Rao metric on a small neighborhood of
every point.

Furthermore, let

Py = {m,...,xn) e (R —0)": foralli £ j, 2 # ﬁ} c (R/(01)"

il Ixjl
and define
n
Qn i Pa = M by Qu(xi. .. x) = Y 1% 128/ e
i=1
Then, for every x = (x1, ..., Xp) € Py there existsan€ > 0 suchthatforally,z € P,

with |y — x| < € and |7 — x| < € the optimal discrete semi-coupling from Q, (y) to
0,(2) is a pair of diagonal matrices.

Remark2.11 Theorem 2.10 is closely related to Theorems 4.1 and 4.2 of [12]. The
main difference is that in [12], the domain of the measure is assumed to be a convex
region in R4, whereas in Theorem 2.10, the domain is S2. Another difference is that
in [12], a lower bound on the size of the neighborhood on which the metric is flat
is given. The proof given here is more elementary (a straightforward application of
differential topology) and thus we hope it is of interest in itself.

Before we are able to prove Theorem 2.10, we need the following technical lemma.
Lemma 2.12 Let M be an m-dimensional manifold, and C a compact subset of M.

Let f : R" x M — R be a C* function, let x) € C C M. Define g : M — R by
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g(x) = (0, x). Assume that g restricted to C attains an absolute minimum at x,
and that x is the only point of C where g achieves this minimum. Also, assume that g
has a critical point at xo and that the Hessian of g at xg is positive definite. (Clearly
this assumption is independent of which chart containing x is used to compute the
Hessian.) Now, suppose that there exists { > 0 such that for all p € R" with |p| < ¢,
the function M — R defined by x — f(p, x) has a critical point at xy. Then there
exists € > 0 such that for all p € R" with |p| < €, the function C — R defined by
x — f(p, x) attains an absolute minimum at x.

Proof Suppose the lemma is false. Then there exist sequences { px} € R" with py — 0
and {x;} € C such that for all k € N, f(px, xx) < f(pxk, x0). By compactness of C,
we may choose a subsequence of {x;} that converges in C. Continue to denote this
subsequence by {x;} (and denote the corresponding subsequence of {pi} by { px}). Let
¢ = lim x. There are two cases to consider:

Case 1. Suppose ¢ # xg. In that case, by the continuity of f, f(0,c¢) =
lim f(pg, xx) < lim f(pk, x0) = f(0, xp), contradicting the hypothesis g achieves
its minimum on C only at the point xg.

Case 2. Suppose ¢ = xp. By taking subsequences, we may assume that all of the
xi lie in a single chart of M; hence, for the rest of this proof we will replace M by
U C R™ and xg by 0 € R™. Recall that one assumption in our Lemma is that the
Hessian of g at 0 is positive definite; denote its smallest eigenvalue by A. (Using the
chart, we are now thinking of g as a function U — R.) Clearly the condition that the
lowest eigenvalue of the Hessian of the map y — f(p, y) at x is greater than /2
is an open condition on (p, x). Hence we can choose § > 0 so that for all |p| < §
and |x| < &, this condition is satisfied. Choose k¢ such that |py,| < § and |xx,| < 6.
Define the map g : N5(0) — R by g(x) = f(px,, x). Define L : [0,1] — R by
L(t) = f(piy» txk,)- Using the chain rule, we see that L” (1) = kaOH(pkO, Xko ) Xk s
where H denotes the Hessian of g. Since we are assuming that the smallest eigenvalue
of H on Nj5(0) x Ns(0) is greater than A/2, it follows that L” () > |xg,|**/2 for all
t € [0, 1]. Also, recall the assumption that 0 is a critical point of g; hence L’(0) = 0.
From this, it follows that f(pk,, xk,) = L(1) > L(0) = f(px,, 0). This contradicts
our original construction of the sequences {pi} and {x;}, which required that for all
k, f(pk,xx) < f(pk,0), thereby proving the lemma.

We are now able to proceed with the proof of Theorem 2.10.

Proof of Theorem 2.10 Clearly, the set P, is a 3n-manifold, and the symmetric group
¥, acts freely on P, in the obvious way. Furthermore, if we give P, the standard
Euclidean Riemannian metric restricted from R, 3, acts by isometries. It follows
that P,/ X, inherits the structure of a flat Riemannian manifold.

Let © € M"_; so we can write u© = Z?:l a;8y;, where {uy, ..., u,} is a set of
distinct elements of $2 and each ¢; > O. Clearly the map Q,, as defined in (1),
induces a bijection P,/ X, — M.

To complete the proof of the first statement of Theorem 2.10, we just need to
prove that Q, maps a small neighborhood of each point x in P, isometrically to a
small neighborhood of @, (x) in M’}.. Indeed this will follow directly from the second
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statement, i.e., from the fact that if two measures are supported by the same number
of points and have their support points and weights very close to each other, then
the optimal discrete semi-coupling between them is given by the obvious diagonal
matrices coming from the 1-1 correspondence between their supports and weights.

Let i and v be two measures on S2, both supported at precisely n points. Write
w=>yr_,ad, andv =737, b8, whereuy, ..., u, aredistinctelements of $2and
ai,...,ay > 0; similarly, vy, ..., v, are distinct elements of S2? and by,...,b, > 0.
Recall that a discrete semi-coupling from p to v is defined tobe apairof (n+1) x (n+1)
matrices (A, B) (where both indices in each matrix run from 0 to n) satisfying the
following conditions:

(1) foralli, j, A;jj > 0and B;; > 0;

(2) foralli =1,...,n,a; = Ajo+ -+ Ajn;
(3) forall j =0,...,n, Ag; =0;

(4) forall j =1,...,n,bj = Boj + - -+ Byj;
(5) foralli =0, ...,n, By = 0.

We define a cost function C on the set of all discrete semi-couplings from p to v by

ca. B =Y 3| VB - |

i=0 j=0

An optimal discrete semi-coupling from p to v is defined to be a discrete semi-coupling
that minimizes C. Note that the set of discrete semi-couplings (i.e., the domain of C)
varies according to the particular measures p and v. To remedy this inconvenient fact,
we define a normalized discrete semi-coupling to be pair of matrices (A, B) satisfying
the conditions:

(1) foralli, j, A;; > Oand B;; > 0;
2) foralli =1,...,n, 1 =Aj0+---+ Ajn;
(3) foreach j =0,...,n,Ag; =0;
4) forall j =1,...,n,1 = By; +---+ Byj;
(5) foreachi =0,...,n, Bjp =0.

We then define the normalized cost function by

2

)

e =33 [V, - Vi

i=0 j=0

where ag and bg should be assigned the value 0.

Note that we are just rescaling each row of A and each column of B to make
their sums 1, and then inserting the relevant scalars into the cost function so as not
to change its behavior. Define an optimal normalized discrete semi-coupling from w
to v to be a normalized discrete semi-coupling that minimizes the normalized cost
function. Note that the set of normalized discrete semi-couplings no longer depends
on the particular pair of measures p and v (as long as they are both supported at
precisely n points). However, the normalized cost function does depend on p and v.
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Henceforth, to make this dependence explicit, we write C_‘,W to denote the normalized
cost function corresponding to the measures x and v.

We now make a further change of variables. For each normalized discrete semi-
coupling (A, B), we define another pair of (n + 1) x (n + 1) matrices (P, Q) as
follows: For each i, j, P; j = \/A; j and Q; j = \/B; ;. If we write the cost function
as a function of (P, Q), the form of the cost function becomes

2

Guv(P, Q)= ZZ ‘Qi,jmvj — P; j\/aju;

i=0 j=0

Note that the corresponding domain of G, is the set of all pairs (P, Q) of (n +
1) x (n 4+ 1) matrices satisfying the following:

(1) foralli, j, P;; > 0and Q;; > 0;

) foralli=1,...,n,1=P3+-- -+ P2;
(3) foreach j =0,...,n, Py; =0;

4) forauj:l,...,n,1=Q3j+.-.+Q,3j;
(5) foreachi =0,...,n, Qi =0.

Let 7o denote the domain of G, ,; it is a product of positive orthants of unit spheres,
since each of rows 1 through n of P, and each of columns 1 through n of Q is constrained
to be in such an orthant. (Row 0 of P and column O of Q are each required to be the
zero vector.) Also, note that we can remove the first condition on the domain of G, ,,
thereby extending its domain to be a 2n-fold product of spheres, with each sphere
having dimension #. Denote this extended domain by 7. Clearly, G, is defined (by
the same formula) and smooth on 7.

Now consider the case u = v. In this case, G, , achieves a minimum value of 0
on 7y, and this value is achieved only at the point where

)

Denote this particular discrete semi-coupling by (Py, Qo). In fact, it’s clear that this
value is also a minimum on all of 7 since G, ;, is a sum of non-negative terms. (On
all of 7 there are other points besides (Py, Qo) where this minimum is achieved.)
(Po, Qo) is a critical point of G, , on 7, since it is a point where the minimum is
achieved. Furthermore, we will show that the Hessian of G, ;. at (P, Qo) is positive
definite.

To see that G, has positive definite Hessian at (Po, Qo), reason as follows: Let
(P(t), Q(t)), for —a < t < a, be a path in 7 such that (P(0), Q(0)) = (Py, Qo),
and (P’(0), Q'(0)) # (0,0). We will now show that G, ,,(P(t), Q(t)) has positive
second derivative att = 0, no matter which such path is chosen. Note that no summand
G, (P(t), Q(t)) can have negative second derivative, since (P (0), Q(0)) is a local
minimum of each summand. Hence, it suffices to show that just one summand of
G, u(P (1), Q(t)) has positive second derivative. Note that the diagonal entries of
P’(0) and Q’(0) are all zero, since 7 is a product of spheres. It follows that either
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P’(0) or Q’(0) must have a nonzero entry in an off-diagonal element. Thus, choose

iop # Jjo, and assume that P/ . (0) # 0. (The reasoning is the same for the case

00, jo
Q;O io (0) # 0.) First consider the case jo > 0. The corresponding summand of

Gun(P@), Q) is

2

)Qio,jo(t)\/ bjyvjy = Pig, jo (1) /aiguiy

A straightforward computation shows that the second derivative of this summand at
t=0is

2

2|04, 1 OVEigvjs = Piy 1, O auiy

Since ip # jo, it follows that u;, and v, are linearly independent. Hence this second
derivative is positive, since we are assuming that Pl./O o (0) # 0. For the case jo =0,
we know that Q;, ;, () is constant at zero (since it stays in 7). Therefore Q;O’ i 0) =
0, and it still follows that the second derivative of this summand is positive. This
proves that G, (P(t), Q(t)) has positive second derivative at ¢t = 0 for every path
(P(1), Q(t)) in T with (P(0), Q(0)) = (Po, Qo). Hence the Hessian of G, , at

(Py, Qo) is positive definite.

Claim: For all u, v € ./\/lg, (Po, Qo) is a critical point of G, on 7.

The proof of this Claim is a straightforward computation. First we construct a basis
for the tangent space T(p,, o) 7 , using the fact that 7 is a product of unit spheres. This
basis is a union of two sets. The first set consists of tangent vectors of the form (E; ;, 0),
where E; ; has the entry 1 in the (i, j)-th place and O’s elsewhere, for 1 < i < n,
0 < j <mn,andi # j. The second set consists of elements of the form (0, E; ;), where
E; ; has the entry 1 inthe (i, j)-th space, and 0’s elsewhere, for0 <i <n,1 < j <n,
and i # j.Itis then a trivial calculation to see that the directional derivative of G,
at (Py, Qo) in the direction of any of these tangent vectors vanishes. This proves the
claim.

Let o € MS. We need to prove that there exists an € > 0 such that for all (i, v)
in an e-neighborhood of (ug, (o) in M2 X Mg, the minimum value of G, ,, on 7y is
achieved at (P, Qo).

Define a function H : (P" x P") x T — R by

H((x, y), (P, Q) = G0,0),0,(»n(P, Q).

Clearly, H is smooth. We are now in a position to apply Lemma 2.12. The compact set
Ty plays the role of C in the Lemma. We have shown that (Py, Q) is a critical point of
(P, Q)+ H((x,y), (P, Q)),forall x, y € P,, and that for any xo € P,, (Py, Qo) is
the location of the unique minimum of (P, Q) — H ((xg, x0), (P, Q)) on 7y. Having
also verified the condition on the Hessian, we can conclude from Lemma 2.12 that
there exists an € > 0 such that for all (x, y) with |x — xo| < € and |y — x¢| < €,
H((x, y), (-, -)) attains its maximum (on the domain 7y) at the point (Py, Qo). Thus
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the proof of the second statement follows, which implies at the same time the first
statement.

2.4 A Convex Optimization Problem

In this section we will study the class of optimization problems, that consist of maxi-
mizing the function

F:A—-R defined via

m n
(A.B) > > > \JA;B;jQj.

i=1 j=1

Here ©;; is any given weight matrix. Recall that the tuples (A, B) € A are subject
to the constraints (a)—(e). In the main result of this part we will explicitly construct a
sequence of semi-couplings that converges to an optimizer of F.

Our motivation for studying this class of optimization problems stems from the
fact that for a particular choice of €2 it is equivalent to calculating the WFR-distance
between two finitely supported measures. This will lead directly to an efficient algo-
rithm to numerically calculate this distance. Note, that most existing methods for
estimating the WFR-distance solve an entropy regularized problem. Our proposed
solution instead converges to the WFR distance by performing an optimization on the
polytope of discrete semi-couplings.

To see this connection between the function F and the WFR-distance let u© =

m n
> a;jéy; and v = ) b;§,, be two finitely supported, finite measures. Recall from

i=1 i=1
Remark 2.7 that the distance from @ to v can be written as

1/2

WFR (11, v) = Za,+2b —2 sup ZZ,/AUB,,(M, vj)

i=1 (AB)E'Al 1 j=1

Thus computing WFR (i, v) is equivalent to finding (A, B) € A that achieves the
supremum

wp 30 Y VA B v,

(A,B)eA ;- =1
which corresponds to the function F with €2 being given by ;; = (u; - v;).

Remark 2.13 (Generalizations of the Algorithm) In [14], the Wasserstein Fisher Rao
distance is formulated on a domain M with a parameter p € (0, 00) as

1
o7 WERL (1, v) = (M) + v (M)

-2 sup /d( : cos(d(x, y)/p)d(/voy1) (x,y)
X, V)<

(vo,yD€ET (1,v)
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where /Yoy = (% %)1/ 2 for y such that g, y1 < y. Another popular distance is
the so-called Gaussian Hellinger-Kantorovich distance, which can be expressed with
a parameter p € (0, 00) as

1 =y
— GHK (i, v) = (M) + v(M) =2 sup / A, v).
P (vo,y1)€l (11, v)

For finitely supported measures (., v these distances can be generically expressed as

%Dist%(u,v) Zal+2b —2 sup ZZ AijBijSj

(AB)EAl 1] 1

where
. WER, (1, v) if Qi = cos(d(ui, vj)/p)
Dist, (i, v) = —d2(u,v))
GHK,(u,v) ifQ;=e 2

As our main result is that the SRNF can be written as the pullback of the WFR distance
with p = 1 for measures on M = S2, we developed the algorithm with this particular
case in mind. However, our algorithm does not depend on the particular choice of 2
and thus it could be also used for these more general situations.

First we will show that the optimum of F will be obtained on a set such that mass
is never transported between supports u; and v; where €;; is negative. Moreover,
we show that F obtains its optimum when all of the mass of a given support is
created/destroyed if and only if none of it can be transported for a suitably small
enough cost. In terms of the discrete semi-couplings this is represented by non-zero
entries in the zeroth column of A and the zeroth row of B. Therefore we define the
subset A of A of all semi-couplings (A, B) € A satisfying

(1) A;j = Bjj; = 0whenever 2;; <0,
(2) Bop; = 0if there exists j such that ;; > 0, and
(3) Ajo = 0if there exists i such that €2;; > 0.

We will now show that the value function F obtains its maximum on A and that F is
concave when restricted to this subset.

Lemma 2.14 The value function F obtains its maximum on A. Moreover, Aisa convex,
compact subset of R™M+1+1 qnd F is concave when restricted to A.

Pr~oof To sllow this statement, let (A, Ii) € A. We will construct a new semi-coupling
(A, B) € Asuchthat F(A, B) < F(A, B). Begin by letting (A, B) = (A, B). Next
foreachi € {1, ..., m} define

arg max € if max €;; >0
ki = { kell,...n} ke{l,...,n}

0 otherwise
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and for each j = {1, ..., n} define

arg max €;; if max €;; >0

lj = {1ell...m} lefl,...,m}

0 otherwise

Step 1: If ;; < 0, we modify Aij and Bij as follows:

e Replace A,-ki by Ajx; + A;j and replace Aij by 0.
e Replace Bljj by By, j + Bij and replace Bzi.,' by 0.

It is clear that the new point satisfies property (1). In the next stage of our modification
we will ensure that our semi-coupling also satisfies (2) and (3).

Step 2:

e If k; # 0, then replace A~ik,- by Aix;, + Ao and AiO by 0.
o If/j # 0, then replace By, ; by By, j + Bo; and By; by 0.

It is clear that (A, B) is an element of A and that (A, B) = (A, B) if (A, B) was
already in A. Moreover, for each i € {1, ..., m} and j = {1, ..., n},

AijBijQij < AijBijQuj

and thus F(A, B) < F (A, E). In fact, it is clear that the value of F steadily increases
along the line from the original point to the new point. This contradicts the assumption
that F' attained a local maximum at the original point. Thus F' obtains its maximum on
the subset A. A parametrized straight line in A will be of the form { p; ;£ +qi ., vijt +zij)-
If we restrict F to such a line, it will be a linear combination of functions of the form
J(pt + q)(yt + z), with positive coefficients. It is easy to verify that a function of
this form always has a second derivative < 0 for all values of ¢ for which it is defined
(i.e., for all values of ¢ for which the quantity under the square root sign is > 0). It
follows that along any line in the domain, either F has at most one local maximum, or
it is constant along that line. Therefore, if F has two local maxima on its domain, then
F must be constant on the entire line through these two maxima. Thus, F is concave
when restricted to A.

Thus, we have reformulated our optimization problem as finding the maximum of a
concave function over a convex set (or equivalently the minimum of a convex function
over a convex set). Next, we will introduce two operators on A: First, let

T : A — Ais defined via (A, B) — (E, B) where
Ajj ifi=0o0rj =0

Bk &
kil TR > B,-le.zk >0

E.. — n
1 > B3 k=1
k=1

0 otherwise

@ Springer



35 Page 16 of 40 Applied Mathematics & Optimization (2022) 85:35

Similarly let

T> : A — A be defined via (A, B) — (A, E) where

B,‘j 1fl=001‘]=0
bjA;R, & 2
Ei'= m—2 if ZAkJij >0
J > Ay k=1
k=1
0 otherwise

We will define a sequence of semi-couplings recursively by initializing the sequence
at some (A, B)g in the interior of A and iteratively updating the two components of
this semi-coupling via T and 7. The primary goal of this section will be to show
that any limit point of this sequence is a maximizer of F, which is formalized in the
following theorem:

Theorem 2.15 Define a sequence of semi-couplingsvia (A, B)y4+1 = Tz(Tl((A, B)r))
where (A, B)g is in arbitrary chosen initialization from the interior of A. Then the
real-valued sequence given by F ((A, B)y) converges to the optimum of F, i.e.,

lim F((A, B)x) = arg max F(A, B).
k=00 (A,B)cA

The key ingredient for the proof of this statement is the observation that applying 7
maximizes F when we fix the second component and similarly for 7, when fixing the
first component. This will allow us to apply results from coordinate descent analysis
to obtain the proof of the above theorem. This will be the content of the following
lemma:

Lemma 2.16 The operators T; restrict to operators on the interior ofﬂ, i.e, T;(A°) C
A°. For a fixed (A, B) in the interior A let ,AI(_,B) be the space of semi-couplings
where the second factor is equal to B and fl( A,—) be the space of semi-couplings where
the first factor is equal to A. Thus,
(1) Ti(A, B) uniquely attains sup F(A/, B)

(A", B)e A p
(2) T>(A, B) uniquely attains ~ sup  F(A, B))

(A,BHeAa -

Proof Let (A, B) be in the interior A. Thus, forany i = 1,...,mand j = 1,...n
such that €;; > 0 we have that A;; > 0 and B;; > 0. We need to show that for any

semi-coupling such that the second matrix is equal to B, F (A,, B) < F(T\(A, B))
where equality holds if and only if (A,, B) =Ti(A, B).

Therefore, let (A', B) be an arbitrary semi-coupling such that the second matrix is
equal to B and let (E, B) = Tl(A/, B).For1 <i <m we let

n
pPi = ZBijQizj .
j=1
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Consider the case where p; = 0. Since (A, B) is in A, B;jj > 0 and B;; = 0 if and
only if QF; = 0. Thus, B;j = 0 forall 1 < j < n. Thus,

n n
Zw/A;jBijQij = Zw/EijBijQij =0,
=1 j=1

It remains to prove the statement for the case that p; > 0. By Cauchy-Schwarz we
have

n
D\ Ay B
=1

IA

Therefore,

m n m n
FA,B)=Y">"JA,BijQu; <Y Y \JE;jB;jQj = F (Ti(A, B)).

i=1 j=1 i=1 j=1

Note that this inequality is strict unless for each 1 < i < m such that
n
> By} >0
k=1

{A } is a scalar multiple of {B; ]Q -}. Since we know Z A = a;, equality holds if
j=1

= i |
N Yot Bik2y o

The proof of (2) follows by a symmetric argument.

and only if

Finally, we need to observe the effect of 7} and 7> on the value of F at the limit
points of our sequence. This is not immediate because our previous results require that
our semi-coupling is in the interior of A, but the limit point of our sequence could lie
on the boundary of A.

Lemma 2.17 If (A, B) is a limit point of (A, B)y, then

F(Ti(A, B)) = F(T»(T1(A, B))) = F(A, B).
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Proof Let (A, B) be a limit point of (A, B); and (A, B);; be a subsequence that
converges ,to (A, B)._Lei € >0.Since FoT) i,s cgntinuous, thEre_exists ad > 0such
thatif [(A, B) — (A, B)|| < é then |F(T1(A, B)) — F(T\(A, B))| <€/3.

Since (A, B)k_]. converges to (A, B), it follows from the continuity of F that
F((A, B)kj) converges to F'(A, B). Thus, there exists k; such that

(A, B)x; — (A, B)Il < 8 and |[F((A, B)x;) — F(A, B)| < €¢/3.
Recall, F((A, B)t,) < F(T1((A, B)t;)) < F(A, B). Thus,
|F(Ti((A. B)i, ) — F((A, B)))| < [F((A, B)i;) — F(A. B)| < ¢/3.
Therefore,

|F(Ti(A, B)) — F(A, B)| < |F(Ti(A, B)) — F(Ti((A, B)i,))]
+|F(T1((A, B);)) — F((A, B),)| + |F((A, B)y;) — F(A, B)|
<€/3+€/3+¢€¢/3=¢

The proof that F(T>(T1 (A, B))) = F(A, B) follows by a similar argument.
We can now proceed with the proof of Theorem 2.15.

Proof of Theorem 2.15 Note that forevery k € N, F((A, B)r+1) > F((A, B)y). Since
F is bounded above. The sequence defined by F'((A, B)x) converges.

Let (A B) beallmltpomtof(A B)i.FromLemma?2.16, wehave F (T ((A, B)y)) >
F (A By), for each (A Bi) € A where By i is fixed. Taking the 11m1t of this inequality
as k — oo, we obtain F (T (A B)) > F(A B) for each (A B) € A where B is
fixed. By Lemma 2.17, F (T} (A, B)) = F(A, B).

By the optimality Cond1t10n on convex sets (Prop 2.1.2 in Sect. 2.1 of [6]), we
have V, F(A, B)(A — A ) < 0 for all possible A'. Here V| F is the gradient of F with
respect to the first block. A similar argument shows that, Vo F (A, B)(B — B ) < 0for
all possible B'. Here V) F is the gradient of F with respect to the second block.

Combining the 1nequa11tles and usmg the product structure of A, we obtain the state-
ment VF(A, B)((A, B) — (A B )) < 0 for all (A B ) in A. Thus by the optimality
condition of concave functions on convex sets, (A, B) = arg max F (A, B).

(A,B)c A

2.5 Implementation and Experiments

The theory developed in the previous section directly gives rise to an algorithm
for computing the WFR distance. We outline this procedure in Algorithm 1. A
PyTorch implementation of our algorithm is open source available at https://github.
com/emmanuel-hartman/WassersteinFisherRaoDistance.
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Unlike the Sinkhorn-type methods proposed in [13] and implemented in [17], our
method computes the Wasserstein—Fisher—Rao distance without any entropic regular-
ization.In this implementation, we assume that for all j there exists i such that 2;; > 0
and for all i there exists j such that €2;; > 0. As such, the zeroth rows and columns
of the optimal discrete semi-coupling will have all zero entries, so we omit them from
our implementation. Our reason for making this assumption on £€2;; is that our main
application of this algorithm is to compute SRNF distances between closed surfaces.
For closed surfaces, this assumption will always be valid. (See Sect. 3 of this paper
for more details.)

We implemented Algorithm 1 using PyTorch and perform the computations on
the GPU. The main operations in our algorithm consist of element-wise matrix mul-
tiplication, which leads to a quadratic complexity. This can be also observed in the
computation times in Table 1. As the obtained semi-coupling matrices are usually
sparsely populated, we expect that an implementation utilizing sparse matrix data
types could significantly improve the performance of the implementation.

Algorithm 1 Calculate WFR

procedure WFR_DISTANCE(a, b, u, v, €)
Qjj < (u; -vj)ifi, j > 1 and | otherwise

A, B < some intitialization in A°, err < 0o
C < Zi,j Aij ‘B,‘j . Qij
while doerr > €
(A, B) < WFR_ITERATION(a, b, 2, A, B)
Cprev < €
e < Xy /Ay B9
err < (¢ — cprev)/c
12
retum(Ziai-i-Zjbj—ZZi’j Aij'Bij'Qij>
procedure WFR_ITERATION(a, b, 2, A, B)
!/
Bij < B,‘j . Q,‘j/- Q,’j
R,' <« a,'/ Z, Bi_[
A,’j < Bi/j . Ri
A;/ < Aij . Qij . Qij
Cj « bj/Z,- A;j
return (A,B)

To quantify the performance of our algorithm we perform experiments comparing
our method with entropy regularized methods using a small regularization parameter.
Therefore we construct random pairs of finitely supported measures with a fixed num-
ber of support points. We then calculate the distance using both our algorithm and the
unbalanced Sinkhorn algorithm [13], where we choose the regularization parameter
to be 1 x 1073 (this was the smallest value that led to a stable performance across
all experiments). Therefore we will first discuss the relation between the variables of
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these two algorithms. Due to [14], we have

WFR?(,v) = inf  G(y)
yeM(M?)

where

G(y) = KL((Projo)#y, n) + KL((Proj)#y, v)

- /w log(cos2(d(x, ) A (/2))dy (x, y).

Forthcoming results of by Gallouét, Ghezzi and Vialard [18], show that given a semi-
coupling (y1, y2) one can produce an optimal transport plan,

(1, 12) > v = /yivae “/* where ¢ = —log(cos?(d(x, y) A (/2)))

G(y):/ ‘\/ﬂ(u,u)u—\/ﬁ(u,v)v
w2 |V v y

for y suchthat y;, y» < y.Therefore, we can compare the transport plans produced by
both methods. The Sinkhorn type algorithm proposed in [13] then solves a regularized
optimization problem given by

such that

2
dy(u,v)

inf  G(y)+ LEnt(y)
yeM(M?)

where X is the regularization parameter and Ent(-) is an entropic regularization term.
To obtain a fair comparison of the solutions obtained with our algorithm and the
solutions obtained with the Sinkhorn algorithm, we disregarded the final entropy of the
Sinkhorn solution and only compared the corresponding transport costs. The distances
that resulted from our algorithm were consistently smaller (and consequently more
precise) across all experiments, which can be seen in Table 1, where we report the
mean errors and variances of the Sinkhorn algorithm as compared to the obtained
distance using our algorithm. For each number of support points, the relative errors
were calculated by repeating the experiments 100 times. As one can see in this table our
method produces significantly more accurate distances and without having to choose
an entropic regularization parameter.

We also report the corresponding mean computation times for these experiments
using the Sinkhorn algorithm. As the implementation of [17] does not utilize the GPU,
we ported their implementation to PyTorch to be able to have a fair comparison of
the two methods. Both algorithms are run on an Intel 3.2 GHz CPU with a Gigabyte
GeForce GTX 2070 1620 MHz GPU. We used a maximum of 2000 iterations, but we
usually observed a much faster convergence. While the GPU Sinkhorn implementation
seems to scale better for larger numbers of support points, we believe that the above
mentioned adaptions would lead to a similar complexity for Algorithm 1. In addition,
as one can see in Fig. 1, the Sinkhorn algorithm has a significantly faster convergence
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Table 1 Comparison of the Sinkhorn algorithm of [13] and our Algorithm

Support WER distance Sinkhorn error Timing in seconds

points Alg. 1 Sink. Mean Variance Alg. 1 Sink. (GPU) Sink. [17]
128 24.045 25.040 3.883% 1.835% 0.100 1.348 0.101
256 25.824 26.951 4.445% 2.909% 0.120 1.413 0.135
512 27.526 29.532 7.303% 3.071% 0.179 1.470 0.219
1024 29.724 32.302 8.673% 3.490% 0.398 1.523 0.509
2048 31.728 34.533 8.929% 3.976% 1.372 1.901 4.506
4096 35.061 38.027 8.382% 3.699% 5.569 3.152 20.323
8192 38.385 40.426 5.250% 3.154% 23.472 8.732 81.905

For each number of support points theses results were obtained by calculating the WFR distance between
100 pairs of randomly chosen measures

and will thus lead to a faster computation time. We want to emphasize, however, that
our algorithm solves the exact problem, while the Sinkhorn algorithm only tackles a
regularized problem. This is also mirrored by the fact that in all our experiments the
solutions obtained with our algorithm have a lower distance as compared to corre-
sponding Sinkhorn solutions, cf. Table 1.

3 The SRNF Shape Metric as an Unbalanced Transport Problem

In this section, we will present the main result of our article: the interpretation of the
SRNF shape distance as an unbalanced OMT problem. Our result will then allow us
to compute the SRNF distance using the algorithm introduced in Sect. 2.4 and we will
use this to present several numerical examples at the end of the section.

3.1 Shape Spaces of Surfaces

In all of this section let M be a smooth, connected, compact, oriented Riemannian
2-dimensional manifold with or without boundary. In addition to the smooth structure
on M, we will be also interested in a piecewise linear structure on it. By [60] any such
M indeed admits a Whitehead PL structure. That is, there exists a polyhedral surface
K in R3 and a homeomorphism called a triangulation o : K — M such that o is
differentiable with injective differential on each face of K.

We denote the space of all Lipschitz immersions of M into R3 by Immyi,(M, R?),
ie.,

Immyp (M, R%) = {f € WM (M, R?) : Tf isinj. ae} .

The reason for considering immersions of the Lipschitz class is that this space has two
important subsets: the space of smooth immersions from M to R? and the space of
functions f € Immyp(M, R3) that are PL with respect to the given PL structure on
M.
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As we are interested in unparametrized surfaces, we have to factor out the action
of the group of diffeomorphisms. In the context of Lipschitz immersions the natural
group of reparametrizations for us to consider is the group of all orientation preserving,
bi-Lipschitz diffeomorphisms:

TLip(M) = {y € WM, M) : y~' e WM, M), |Dy| > 0ae.),

where |Dy| denotes the Jacobian determinant of y, which is well-defined as Dy €
L®°. For reasons, that will become clear later in Sect. 3.2, we will also consider two
subsets of I'Lijp(M), namely the group of smooth, orientation preserving diffeomor-
phisms

TooM) ={y € C¥°(M,M): y~' € C®(M, M), |Dy| > 0},

and the set of PL-homeomorphisms. To define the latter, we recall that a PL-
homeomorphism on M is a homeomorphism y : M — M, such that there exists
some subdivision of K such that o ~! o y o o is linear on each face. We denote the
corresponding space of all orientation preserving homeomorphisms by

I'pp(M) ={y € Hompr (M, M) : |Dy| > 0a.e.}.

Note that any of these reparametrization groups act by composition from the right on
Immy ;, (M, IR3). In addition to the action of these reparametrization groups, we also
want to identify surfaces that only differ by a translation. This leads us to consider the
following three quotient spaces:

Seo 1= Immy;p(M, R*)/ Too(M)/ trans
Stip := Immy;p(M, R/ T ip(M)/ trans
SpL = Immpip(M, R?)/ Tpp(M)/ trans,

which will play a central role in the remainder of the article. Note that we always
consider immersions of Lipschitz class and only vary the regularity of the group
acting on this space.

3.2 The SRNF Framework

The square root normal field (SRNF) map was first introduced by Jermyn et al. in [21]
for the space of smooth immersions. As we will see in the following this mapping
directly extends to all immersions of the Lipschitz class.

For any given f € Immy(M, RR3), the orientation on M allows us to consider
the unit normal vector field ny : M — R3, which is well-defined as a function in
L°°(M, R3). Furthermore, let {v, w} be an orthonormal basis of 7 M. Then for any
f € Immyp(M, R?) we can also define the area multiplication factor at x € M via

ayp(x) = ldfc(v) x dfy(w)|.
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The SRNF map is then given by

@ : Immyip(M, RY)/ translations — L*(M, R%)
f=aqr,

qrx) = /ag(x) ng(x).

We can now use the SRNF to define a pseudometric on Immyp;, (M, RR3)/ translations
by

where

dimm (f1, f2) = 1P (f1) — ()l 2.

The function dimm is only a pseudo-metric due to the non-injectivity of ®. Examples
of this degeneracy have been discussed extensively in the recent article [24].

Next we consider a right-action of I'Ljp (M) on LZ(M ,R3 ) that is compatible with
the mapping ®. Therefore we let

(g*xy)(x) =,/ay,(x)g(y(x)),

where a), (x), the area multiplication factor of y at x, is defined by a,, (x) = /| D, (x)|.
It is easy to check that

Q(f)xy =d(foy)

and that the action of I'Lip(M) on L2(M , ]R3) is by linear isometries, if we put the
usual L2 inner product on L2(M, R3). Thus it follows that the SRNF pseudometric
on Immy (M, R3) is invariant with respect to this action and thus it descends to a
pseudometric on the quotient space Sy jp, which is given by

dsy;, (L1l [f2D) = ) rinf(M)d(fh faoy). LAl [f2] € SLip(M)

€l Lip

Since oo (M) and I'p (M) are both subsets of I'Ljp the invariance properties continue
to hold for the actions of the smaller groups and we can also consider the corresponding
distance functions

ds (LN)[2D) = inf d(fi, faoy), [fil.[f2] € Seu(M)
Y €loo (M)

oo

ds,, ([l 2D = inf  d(f1, foy), [fil.[f2] € SpL(M)
y€l'pL(M)

The remainder of this section will be devoted to showing that the SRNF distance for
each of these three group actions is equivelent. More precisely, we aim to prove the
following theorem:

Theorem 3.1 Let fi, fo € Immyjp(M, R3). Then

dSLip([fl]s [f2]) = dSoo([fl]v [fZ]) = dSpL([fl]s [fZ])
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Remark 3.2 Note that this result implies in particular that for smooth immersions f1, f»
the SRNF metric as defined in this section is equal to the SRNF metric considered
in [21].

The main ingredient for proving this theorem will be the following lemma concerning
the continuity of the action of I' ;,(M) on L%(M, R?). Therefore we first note that
CLip(M) € whoom, M) € WH2(M, M) and thus we can equip I'Lip (M) with the
I - [ly1.2 norm.

Lemma 3.3 The map

(LR, [ 12) (T, 1 - i) = (LR, -2
(g, v) = qxy
is jointly continuous.

Since the W!* topology dominates the W!-2-topology, the lemma would also hold
when equipping I'Ljp(M) with the Lipschitz topology. The reason for equipping
it instead with the W!-2-topology is that the subgroups of smooth and PL dif-
feomorphisms are dense with respect to this topology, but not with respect to the
W1-%_topology. The density of these groups will be a crucial ingredient for our proof
of Theorem 3.1.

Proof The proof of this result is inspired by [8,Proposition 7], where a related result
for one-dimensional domain space M is shown.

Step 1 (Piecewise constant g) Let g € L*(M, R?) be piecewise constant, i.e., there

exists a disjoint family of sets M; such that g = Zy: 1 ujx(Mj). Given a sequence

Yo — v in (CLip(M), || - [ly1.2), we need to show ¢ * y, — ¢ * y in L*(M,R%).
Since M is a 2-manifold, the map

Wi2(M, M) — L' (M, M) defined via y > a,

is continuous by the Sobolev multiplication theorem. Thus,

/ la, — ay,ldx — 0.
M
Further this implies
2
/ lay, — ay,|dx :/ (‘/|ay —ayn|) dx > / lJ/a, — ,/ayn|2dx
M M M

and therefore we also have

2d)c—>0.

[ Ve - va
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Next we define the sets Mij 2 = Yn(M;) N y(M;). Using this we can write the integral
via a double sum as:

N N
Aﬂ@oykﬁ?—(qon%ﬁﬂﬁdx=§:§:AﬂIwyﬁi—unﬁﬁﬁh

i=1 j=1 in

Note that y, — y in W1 and thus for i # j, /‘(Mi/;n) — 0. Meanwhile

2

/j luj/a, —ui/ay,| dx

Mi‘n

2 2 2
< /J. luj/a, —ui/a,|"dx + IIqlloo/j [Vay — /ay, | dx
Mi,n Mi.n
— . — .2 d 2 — 24
= luj—wil™ [ layldx +liqllse | . |v/ay — ay,|"dx.
Mi,n M;

n

Recall, y € W(M, M) thus |a, | is bounded. So

luj — u;l? / la, |dx — 0
Mj

in

as (M} ) — 0. Additionally,
/ | /@, — /@y, |” dx — 0 therefore when i # j,
M

/ ) luj/a, — u,',/ayn|2dx — 0.
M’

in

In the case where i = j we have

/l_ |”i~/“y_“i*/ayn|2:/l_ [ui]® - | Jay, — /ay”|2dx
M

i,n in

SM&AJﬁ}MWWL

Thus,
/ 1(q 0 V) /@y — (q © Yu)/ay,|*dx — 0.
M

Step 2. (general ¢) Letnow g € L>(M,R?), y,, — y in T'Lip(M), and € > 0. Pick ¢’
to be piecewise constant such that |g —¢g'[| ;2 < €/3. Then using the fact that I'Ljp (M)
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acts by isometries and the triangle inequality we have

lg*y —q*ynllr2
<lg*xy—=q xyli2+ g xy —q" * vall2 +1g" * vn — q * yull 12
<lg—=4q'lli2+1lg" xy —q" * vl + llg" —qll 2

<€/34+1q" xy —q" *yull2 +€/3.

From here we can conclude the result using Step 1.

Step 3. (joint continuity) Let now g, — ¢ in L*(M,R3),y, - yin ILip(M), and
€ > 0. Using the fact that I'L;, (M) acts by isometries and the triangle inequality we
have

lg*y —anxvyullz < llg*xy —q*Vallp2 + g % Vi — Gn * Vall L2
=|lg*y —q*vullp2+ llg — qunll2

From here we can conclude the result using Step 2.
We are now able to prove Theorem 3.1:

Proof of Theorem 3.1 Given [ fi], [ f2] € SLip, choose parametrized representations
fi. fo € Immyip(M, R?).

Part 1. (dsLip([fl], [f2) =ds_([f1], [f2]) Note that I'no(M) is a subset of
[Lip(M). Thus,

inf(M) [®(f1) = P(faop)ll2 < yegnf(M) [®(f1) = P(f20 )2

y€lLip 00

To show the opposite inequality, take an arbitrary ¢ € I'Ljp(M) and let € > 0. By
Lemma 3.3, there exists some § > O such that ||g — ¥ [|y1.2 < 6 implies || P(f2) * g —
®(fr) *y|l < €.Since M is a 2-manifold, C*° (M, M) maps are dense in the Sobolev
functions W1-2(M, M) [7]. Since CLip(M) < W12(M, M), there exists y € oo(M)
such that ||g — y|ly1.2 < é. Thus,

[P(f1) = @(f2) * vwrz = [1P(f1) = P(f2) * gllwrz + [P (f2) % g — P(f2) * ¥ w12
< [1®(f1) — P(f2) * gllwi2 + €

Therefore,

inf O(f1)) —P(froy)|l;2 = inf (1) —D(fro); 2.
yer 1P (f1 oy el 1®(fi oy
Part 2. (dSLip (LA L2D =ds,, (1], [ f2])) This follows exactly as in Part 1, using
that I'p (M) is a dense subset of I'Ljp(M). To prove the density we use the fact that
Hompy (M, M) maps are dense in the Sobolev functions W1’2(M, M) as dim(M) =
2, cf. [57].
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3.3 SRNF Shape Metric as an Unbalanced Optimal Transport Problem

First we define a map from L2 (M, R3) to the the space of positive finite Borel measures
on S2, and then show that computing the shape distance between two surfaces is equiv-
alent to computing the Wasserstein—Fisher—Rao distance between the corresponding
measures. For g € L2 M, R3) and U C §2 open, define

q*U = {x € M|q(x) #0and g(x)/|q(x)| € U}.
Then we can define

¥ LM, RY) — M(S?) via ¥ (q) = g

where for U € §2, 1, (U) = / Uq(x) - q(x)dx.
q*

The main goal of this section is to show that the shape pseudo-distance in the SRNF
framework can be written as a pullback of the Wasserstein—Fisher—Rao distance via
the map . We will show this result only for the dense subset of PL surfaces. We
expect that a careful analysis of the continuity of the SRNF map would allow one to
obtain this result also for general Lipschitz immersions, which we plan to study in
future work.

Theorem 3.4 Given two PL surfaces Sy and S> parameterized by fi and f> the SRNF
shape distance can be computed as an unbalanced transport problem. More precisely,
we have

ds;;, (Lf1]. [f2]) = WER(Y 0 ¢ (f1). ¥ 0 ¢ (/2)).

Proof Assume that S} and S, are triangulated compact oriented PL surfaces in R3,
and let f : M — S| be a PL parametrization of S;. Let {o; ;":1 denote the faces of
S1, and let {rj};?zl denote the faces of S,. For each i, assume that o; has area a; and
oriented unit normal vector u;. For each j, assume that 7; has area b; and oriented
unit normal vector v;. Let .4 be the set of all discrete semi-couplings from /(S1) to

¥ (S$2).

Claim 1 We may equivalently express the shape distance by

geHom?}, (81,52)

ds, (AL LAD =Y ai+Y bj—2  sup /MCI>(f1)~<I>(g0f1)-
i=1 j=1
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Proof of Claim 1 Recall by Theorem 3.1,

ds., (LAl LAD?

inf  ||®(f)) — D 2
yeIl‘}rulL(M) 1P (f1) (f2op)ll;2

inf f |D(f1) — ®(f20p)|dx

y€lpL(M)

=Za,+2b -2 sup /Id>(f1)~<l>(fzoy)ldx

VGFPL(M)

Every y € I'pL(M), correspondsto g = froy o fl_1 € Hom',tL(Sl, S7). Thus,

I (AL =Y 0+ 300 =2 s [ @)oo .
i=1 =

geHom}, (S),52) /M

This completes the proof of Claim 1. Now recall from Remark 2.7

WER(Y 0 ¢ (f1), Y 0p(f2))* = ZHZ” —2 sup ZZ AijBij(ui -v))

(A.B)yeA ;2] 5

Therefore, showing ds,; ([ fi], [f2]) = WER(Y 0 ¢(f1), ¥ o ¢(f2)) is equivalent to
showing

sup /Q(fl)'Q(gofl)dX— sup ZZ\/Al]Blj(ul U])

geHomp, (81,5 /M (ABeAiy i)

Claim 2 Assume that (A, B) is a discrete semi-coupling from v (S;) to ¥ (S3). Then
for all € > O there is a PL homeomorphism g : §§ — S such that

‘/M qf - qgof — Z\/AijBij(”i V)| < €.
i,J

Proof of Claim 2 Let (A, B) be a discrete semi-coupling from ¥ (S1) to ¥ (S2) such
that foreach 1 <i <mand 1 < j < n, A;;, B;j > 0. We will first prove the claim
for this restricted case and extend it to all semi-couplings by continuity.

Leta : M — R denote the area multiplication factor of f, and let u : M — S>
denote the unit normal vector function corresponding to f. First we choose a real
number r € (0, 1). For each 1 < i < m, subdivide o; into n smaller 2-simplexes
oij such that each o;; has area A;;. Similarly, for each 1 < j < n, subdivide t;
into m smaller 2-simplexes 7;; such that each 7;; has area B;;. Foreach 1 <i <m
and 1 < j < n, choose a smaller 2-simplex &;;, whose closure is contained in the
interior of 0;;, such that 6;; has area equal to r A;;. Similarly, foreach 1 <i < m and
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1 < j < n, choose a smaller 2-simplex 7;;, whose closure is contained in the interior
of 7;;, such that 7;; has area equal to r B;;.

We now construct an orientation preserving PL homeomorphism g, : S — 5.
First, foreach 1 <i <mand 1 < j < n, define g, : 6;; — 7;; to be an arbitrary
PL orientation preserving homeomorphism with constant area multiplication factor.

Note that S| — (U Ue ) is homeomorphic to S — (U U % ) Hence, we can

i=1j=1 i=1j=1
simply extend the homeomorphism g, which we already defined on the 0;;’s to a
homeomorphism S; — S, in an arbitrary manner. Denote the unit normal function
coming from the parametrization g, o f of S by v, : M — S%. Denote the area
multiplication factor of g, o f bym, : M — R.

Write M = M; U M,, where M} = f~! (

ﬂCE
TC=

6,-]) and M, = M — M,. For
i =1
eachl <i <mand1 < j < n,let M;; = f I(O'l'j). Note that on each M;;,

_ aBij .
m, = T Compute:

/le CIgrOf—Zm:Z/ Va/mp(u; - v])—ZZ/ Va a”(u, vj)

i=1 j=1 i=1 j=1

:ZZ/ / Bij (u, vj) = Zarea(a,j) / (u, v;)
i=1 j=1 Mij i=1 j=1

_ /—area( &) /area(o,J)Blj( i v
i= 1/ 1

= ZZ\/area((?,-j)\/area(fij)(ui “Vj)

i=1 j=1

=2 D VrAi/rBijui - vp).

i=1 j=1

Meanwhile by the Schwarz inequality,

‘/ qf ~dgrof
M,

=‘ Vavimr )| < [ Jai el
M M,

i Lol

m n m
area | S| — UU&;} area | S) — U fi‘}

i=1j=I i=1j=I

= /(1 —r)area(S;)y/(1 — r) area(S,).
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Soasweletr — 1,

/ qs - qgrofezz,/A,jB,j(u, v])and/ qf - qgof — 0.
M

i=1 j=1

Hence,

m
/Qf Qgrof%ZZ\/AuBz](ut Uj)

i=1 j=1

Thus Claim 2 follows for the case in which foreach 1 <i <mand 1 < j < n,
A;j > 0and B;; > 0. The general case then follows immediately from the continuity
of

m n
Z Z VAijBij(ui - vj)
i=1 j=1

as a function of (A, B). This completes the proof of Claim 2. It follows that

sup /qu'Qg0f> ZZ AljBlj(ul Uj)

geHom}, (81,52) {At,}{Bl,}eAl 1j=1

We are left to show the opposite inequality.

Claim 3 Assume g is a PL-homeomorphism from S; to Sy, then there exists a discrete
semi-coupling (A, B) such that

/MCIf “dgof = Z\/Aij\/Bij(ui V).
i.j

Proofof Claim 3 Let g : S| — S be an orientation preserving PL. homeomorphism.
Forl <i <mand1 < j < n, define 0;; = g’l(tj) N o; and define 7;; = g(0;)).
Now define two (m + 1) x (n + 1) matrices A and B via:

Forl <i <mandl < j <n, A;; = area(o;;) and B;; = area(t;;).
FOI'Oijn,Aj():O.

For0 <i <m, By; =0.

For0 <i <m,

Ajp =a; — Zarea(au)

For0 < j <n,

m
Byj =bj — Zarea(r,-j).
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The pair of matrices (A, B) is a discrete semi-coupling from ¥ (S1) to ¥ (S2) by
construction. We say that (A, B) is the semi-coupling corresponding to the homeo-
morphism g. Let 1 <i <mand1 < j < nandlet M;; = f_l(Uij) C M. Denote
the area multiplication factor of g on o;; by m;;. Then by the Schwarz inequality,

/M[j qf *qgof = /Mij mm - Ja)mij(x)vjdx
= fM,—,- Va@),/a@)m;(x) dx(u; - v))

< \// a(x) dx/ a(xX)m;j(x)dxu; -vj) =/ Ajj/Bij(u; -vj)

i

Summing over all i and j we obtain:

/ qf “qgof = Z/ qf *dgof = Zf a(x)m(x)(u; - vj)
M i,j M,'j i,j M,'j
< Z\/Aij\/ Bij(u; - vj).
i,J
This completes the proof of Claim 3. It follows that,

m n
sup quf-qgofS sup Y > A Bijui - vj).

geHom}, (51,52) (A (BijleA oy =

and thus the theorem is proved.

Remark 3.5 In this section we have defined a mapping from the shape space of PL
surfaces in R? to the space of finitely supported measures on S%. We have then shown
that the SRNF (pseudo-) distance between two surfaces is equal to the WFR distance
between the two corresponding measures. It is shown in [12, 14, 35] that the space
of finitely supported measures on S? is a geodesic length space. One might hope
that geodesics in this space could somehow be “lifted" to geodesics in the space of
PL surfaces. The main problem with this plan is that there is an infinite-dimensional
space of surfaces corresponding to each measure; see [24] for examples of arbitrar-
ily high dimensional spaces of surfaces corresponding to a single measure. Hence,
there is no unique way of lifting geodesics in the space of measures to the space
of surfaces. Because of this degeneracy, which is inherent to the SRNF, there is no
direct way to define a “geodesic" in the space of surfaces with respect to the SRNF
distance function. While it is true that existing methods (involving gradient searches
over the reparametrization group; see for example [22]) do result in plausible-looking
deformations from one surface to another, these deformations are not geodesics in any
strict mathematical sense. Thus in order to define geodesics formally in the space of
surfaces, one would have to resolve the degeneracy of the SRNF distance function by,
for example, adding extra terms to the SRNF metric, see e.g. [21, 56].

@ Springer



Applied Mathematics & Optimization (2022) 85:35 Page330f40 35

The mapping we introduced does, however, restrict to a bijection between the space
of closed convex PL surfaces in R? and a subspace of the finitely supported measures
on 2. Therefore it would be possible to define geodesics in the space of closed convex
surfaces as lifts of geodesics in this subspace; this was done recently for the space of
convex curves in [11].

Remark 3.6 Using the mapping that we have defined from the shape space of surfaces
in R? to measures on S2, we can pull back any distance function on the space of
measures to obtain a pseudo-distance function on the shape space of surfaces. While
the main purpose of this paper is to show that the SRNF pseudo-distance is obtained
in this manner from the WFR distance on the space of measures, it might be of
interest to use other distance functions on the space of measures to obtain interesting
pseudo-distances on the space of surfaces. A likely candidate for this would be the
p-parametrized WFR distance function defined in [14]. The corresponding pseudo-
distance on surfaces would have a natural interpretation as assigning different weights
to the direction of the normal vector as opposed to the shrinking or expansion of area
on the surfaces. As explained in Sect. 2, the algorithm introduced in Sect. 2 would
also provide a computation of this generalized version of the SRNF pseudo-distance.
Note that any pseudo-distance on surfaces obtained in this way would have the same
degeneracy as the SRNF pseudo-distance.

3.4 SRNF Computation Experiments

By Theorem 3.1, we can utilize Algorithm 1 to compute the exact SRNF pseudo-
distance directly between two simplicial meshes. The resulting method is described
in Algorithm 2.

Algorithm 2 Calculate SRNF shape distance

procedure SRNF_DISTANCE(ST, S2, €)
u; < the unit normal of the ith face of S|
a; < the area of the ith face of Sy
v; < the unit normal of the ith face of S
bj < the area of the ith face of Sy
return WFR_DISTANCE(a, b, u, v, €)

To quantify the performance of Algorithm 2 we compare it to the method intro-
duced in [32]. In their implementation surfaces are assumed to be represented by a
spherical parametrization and the diffeomorphism group is discretized using spherical
harmonics. This in turn allows one to formulate the SRNF distance computation as
a constrained minimization problem over the coefficients of the reparametrization in
the chosen spherical harmonics basis. In the following, we will refer to this method
as the parametrization-based method.

Most data that one encounters in real applications is, however, not given in such
a parametrized form but rather as a simplicial complex. Thus one first has to solve
the parametrization problem [51], which is of comparable difficulty to the geodesic
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(a) SRNF shape distances produced by (b) Correlation plot of distances from the
Algorithm 2 (Orange) and by the method method of [32] and Algorithm 2.
of [32] (Blue).

Fig. 2 Comparison of Algorithm 2 and the method of [32] for 552 pairs of surfaces from the TOSCA
dataset. The shape distances used in this experiment are sampled from pairs of shapes from the TOSCA
data set as displayed in Fig. 5

boundary problem itself. In our experiments, we used 24 shapes from the TOSCA
dataset (simplicial meshes), for which we also had access to spherical parametriza-
tions, which have been calculated using the method of [44] as implemented in [29].
We present the result of this comparison in Fig. 2 which consists of three subplots:
Fig. 2a, which highlights the distances computed with both methods for 552 pairs
of PL surfaces. The precise distances produced by our method (Orange) are consis-
tently lower than the parametrization-based distances produced by the method of [32]
(Blue). The mean relative error of the parametrization-based method compared to our
method is 174.582% with a standard deviation of 90.077%. Note that this error con-
sists of both an approximation error of the spherical parameterization of the simplicial
complex and an approximation error of the optimal reparametrization. In Fig. 2(b),
we plot the correlation between these two methods of computing the distances which
have a Pearson correlation coefficient of 0.793. Note that this is comparable to the
correlation of elastic distances between functions on the line that are either computed
using dynamic programming or computed using an exact algorithm, cf. [20, 33, 55].

The main drawback of our method is that it does not produce an optimal reparam-
eterization that aligns the two surfaces, i.e., we do not obtain point correspondences
between the two meshes. We can, however, still interpret the information in the opti-
mal semi-coupling to visualize a “fuzzy" correspondence between the surfaces. This is
visualized in Fig. 3: given two PL surfaces S; and S», we color each face of S, accord-
ing to its unit normal vector. Further let (A, B) be the optimal semi-coupling between
¥ (S1) and ¥ (S2). We then color each face of S| with normal vector u; according to the
color of the face of S> with normal vector vy where kK = arg max j Ajj, i.e., each face
on S is colored by the same color as the face where most of its mass is transported.
Examples of such correspondences are presented in Fig. 3.
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51 52

Fig.3 Fuzzy point correspondences: each face of the source surface (S) on the right is colored according
to its normal vector. The faces of the target surfaces (S7) on the left are colored according to the optimal
discrete semi-coupling from v (S7) to ¥ (S>)

»

Fig. 4 Four pairs of distinct shapes indistinguishable by the SRNF metric: each shape on the bottom
row is the unique closed, convex polyhedron reconstructed from the area measure associated with the
corresponding shape on the top row. Thus the SRNF shape distance between each of these pairs is zero

The phenomenon of distinct closed surfaces that were indistinguishable by the
SRNF shape pseudo-distance was first studied in [24]. As a result of Theorem 3.1,
we obtain a full characterization of this phenomenon: Note that the Wasserstein—
Fisher—Rao distance is a true distance and so the SRNF distance between two surfaces
is zero if and only if they are mapped to the same measure by . A useful observation
from the study of convex polyhedra, due to Minkowski, is that every measure on S°
satisfying the closure condition corresponds to a unique (up to translation) closed,
convex polyhedron in R3, see e.g. [48]. Therefore, each closed PL surface has SRNF
distance zero from this unique closed convex polyhedron. In Fig. 4, we give exam-
ples of PL surfaces and the convex polyhedron reconstructed from the corresponding
measure. This reconstruction is performed using the Python package polyhedrec [50]
available at https://github.com/gsellaroli/polyhedrec.

Despite these known drawbacks, the SRNF pseudo-metric has been demonstrated
to be successful in applications surrounding the classification of surfaces. We demon-
strate this by considering a toy example of shapes from the TOSCA dataset, that
includes 4 cats, 7 dogs, 17 gorillas, 10 horses, and 9 lionesses. We then compute the
SRNF pseudo-distance matrix using our Algorithm 2 and visualize the results using
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Fig. 5 Multi-dimensional scaling plot: a subset of the TOSCA dataset is plotted according to 3d multi-
dimensional scaling of the SRNF distance matrix produced by Algorithm 2

3d multi-dimensional scaling in Fig. 5. One can see that the SRNF distance, despite
its degeneracy, produces meaningful clusters.

4 Conclusion

In this article we propose a novel method to precisely compute the SRNF shape
distance between PL surfaces. This method follows from three results each of which
has interesting implications in its own right:

First, we propose a novel method for computing the Wasserstein—Fisher—Rao dis-
tance in unbalanced optimal transport. While fast estimations of this metric can be
achieved by including an entropy regularization term, we propose a new method that
solves exactly for the WFR distance.

Second, we extend the SRNF framework to surfaces parameterized by Lipschitz
immersions. This class of surfaces notably includes both smooth surfaces and PL
surfaces. We then show that this extended framework is consistent with the original
SRNF distance which was formulated in the smooth category.

Finally, we establish an equivalence between the SRNF and the Wasserstein—Fisher—
Rao distance on the space of Borel measures on S2. In addition to establishing a new
method to compute the SRNF shape distance, this result offers insight into theoretical
problems that exist surrounding the SRNF shape distance. For instance, this result
gives us tools to analyze the phenomenon of distinct closed surfaces that are indistin-
guishable by the SRNF shape pseudo-distance as highlighted in Fig. 4.

Open Questions and Future Work This project provides several open questions and
opportunities for future work. The first set of open questions concerns Algorithm 1: in
all of Sect. 2.4, we consider specifically the Wasserstein—Fisher—Rao distance between
measures supported on S%. An obvious open problem is to investigate whether the
results of Sect. 2.4 and the associated algorithm can be generalized to a larger class of
domains and general unbalanced OMT problems. Extending this algorithm to more
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general domains should follow easily from alternate characterizations of the distance
developed in [13, 14, 35]. Generalizing the algorithm to other unbalanced OMT prob-
lems may be more challenging and require restricting to unbalanced OMT problems
that only optimize cost functions satisfying certain properties. There are also pos-
sibilities for future work in making our algorithm more efficient, by implementing
sparse data types and/or absorption thresholds as entries of the discrete semi-coupling
approach zero. Further, as future work, we would like to update our implementation
to work with more general weight matrices so that our algorithm can be effectively
used for other applications of unbalanced optimal transport.

The main result of this paper gives us new tools for studying the SRNF shape
distance. Currently, we have only proven this result for PL shapes and we leave the
extension of Theorem 3.4 to all surfaces in Spjp as an open problem. We expect that
this result could follow from Theorem 3.4 using the density of PL surfaces in S
with respect to the SRNF pseudo-metric and carefully studying the continuity of all
involved operations. Further, there are opportunities for future work in characteriz-
ing the relationships between shapes that are indistinguishable via the SRNF shape
distance. Understanding this relationship may serve to help in developing meaningful
SRNF based interpolations between shapes based on optimal discrete semi-couplings
between the associated measures.

Another interesting subject for future research is to gain a better understanding of
the set of all shapes of closed surfaces corresponding to a given measure on S. It
seems clear that this set is, in general, infinite dimensional. See [24] for a construction
of arbitrarily high dimensional sets of this form. Consequently there are several natural
questions that arise: Does the geometry of this set depend on the given measure on
527 Can the shape space of surfaces be thought of as a fiber bundle over the space of
measures on S2?
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