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ABSTRACT. We show for a certain class of operators A and holomorphic func-
tions f that the functional calculus A — f(A) is holomorphic. Using this
result we are able to prove that fractional Laplacians (1 + A9)P depend real
analytically on the metric g in suitable Sobolev topologies. As an application
we obtain local well-posedness of the geodesic equation for fractional Sobolev
metrics on the space of all Riemannian metrics.

1. INTRODUCTION

The space of all Riemannian (Lorentzian, resp.) metrics plays an important role
in many areas of pure and applied mathematics and in particular in mathematical
physics: it is the natural configuration space for Einstein’s equation in general
relativity [30], it is the central object in Teichmiiller theory [38, 79], and it appears
in the context of mathematical shape analysis [80, 21]. The above are just a few
examples of an extensive list.

Riemannian geometry on the space of all Riemannian metrics starts with de Witt
[30], who developed a Hamiltonian formulation of general relativity using an L?
metric on the space of all pseudo-Riemannian metrics with fixed signature. Ebin
[31] used this metric to prove his slice theorem and, followed by many others, in-
vestigated its mathematical properties. Clarke [24] showed that the completion of
Met (M) with respect to the L? geodesic distance contains degenerate and highly
irregular metrics. This motivated the quest for stronger metrics without this de-
generacy, including conformal deformations of the L? metric [26] and higher order
Sobolev metrics [14, 74]. These developments are reviewed more extensively in
Section 1.1.1.

This article establishes local well-posedness of the geodesic equation for a wide
class of metrics on the space of all Riemannian metrics. A simplified version, for the
special case of fractional order Sobolev metrics, of our main result reads as follows:
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Theorem. On any closed manifold M and for any real number p > 1, the geodesic
equation of the weak Riemannian metric

Gy(h, k) = / Tr(g~thg™ (1 + A9)PE)vol(g), g € Met(M), h,k € T, Met(M),
M

is locally well-posed in the sense of Hadamard.

Here the Bochner Laplacian AY acts on symmetric covariant two-tensor fields
and is associated to the Levi-Civita connection of the Riemannian metric g. The
theorem follows from the more general Theorems 6.4 and 6.7. It extends previous
well-posedness results for integer order Sobolev metrics (see Section 1.1.2) to more
general metrics, including metrics of fractional order. The proof is an adaptation of
the seminal method of Ebin and Marsden [32] for establishing local well-posedness
of the incompressible Euler equation. The adaptation is necessary because the ac-
tion of diffeomorphisms on metrics differs from the right-action of diffeomorphisms
considered in fluid mechanics. The main difficulty is to show that the geodesic spray
is smooth in suitable Sobolev topologies. This is a consequence of the following new
perturbative result for fractional Laplacians:

Theorem. Let M be a closed manifold of dimension m, let o € (m/2,00) with
a > 1, let E be a natural first order vector bundle over M, let A9 be the Bochner
Laplacian on E induced by a Riemannian metric g, and let s,s — 2p € [—a,a].
Then the following map is real analytic:

Metga (M) 3 g — (14 A9 € L(T g+ (E), T a2 (E)).

Here Metya (M) is the cone of Riemannian metrics on M with Sobolev reg-
ularity H®. The theorem is a special case of Theorem 5.4 below, which covers
fractional powers and more general holomorphic functions of Bochner Laplacians
on arbitrary tensor bundles with symmetries. The operators are defined using the
Levi-Civita connection of the metric and may have coefficients with less regularity
than the Dirac and divergence form operators studied in previous related work;
see Section 1.1.3. Moreover, these operators are considered not just as unbounded
operators on L2, but on an entire scale of fractional Sobolev spaces of positive and
negative regularity, with particular attention to the boundary cases of minimal and
maximal regularity. The above perturbative result is easily seen for integer powers
p. To extend it to non-integer powers p, we show that the functional calculus is
real analytic in the following sense:

Theorem. Let A be a densely defined invertible R-sectorial operator with bounded
H>™ caleulus on a complex Banach space X, and let (X,)rer be the fractional do-
main spaces associated to A. Then the following map is well-defined and holomor-

phic near A for all B <~ and s,s+1r € [8,v+ 1]:
L(Xg41,X5) N L(Xy11,X,) 2 B B™" € L(Xs, Xopr).

This is a special case of Theorem 4.5 below, which is formulated for a more
general class of holomorphic functions f(B) instead of fractional powers B~". This
theorem unifies a series of earlier results for special classes of operators and pertur-
bations, and also strengthens them by linking the domain and range of the operator
f(B) to the growth or decay of the function f; see Section 1.1.3. The proof is based
on resolvent integral representations of the functional calculus, as pioneered in the
study of perturbations of eigenvalues and eigenvectors by Rellich and Kato [72, 52].
The notion of R-sectoriality, which appears in the statement of the theorem, is a
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generalization of the more widely known notion of sectoriality, and coincides with
sectoriality on Hilbert spaces. Further key tools are perturbative results for opera-
tors with bounded H>° calculus [29, 50] and convenient calculus [55].

1.1. Context of the results. This paper contributes to several different fields:
Riemannian geometry on spaces of metrics, well-posedness of geometric partial
differential equations, and perturbative operator theory. We next describe these
contributions in the context of previous work and highlight potential future appli-
cations and developments.

1.1.1. Riemannian geometry on the space of all Riemannian metrics. The study
of Riemannian metrics on the space Met(M) of all Riemannian metrics has a rich
history. De Witt [30] developed a Hamiltonian formulation of general relativity by
writing down for the first time the canonical L2-metric on the space of all pseudo-
Riemannian metrics of fixed signature, even splitting it into the trace-free part and
the trace part; see also [69, 37] and the references therein. Motivated by these phys-
ical applications, the mathematical properties of this metric on Met(M) have been
studied in detail: Ebin [31] proved the slice theorem. Freed and Groisser [39] de-
scribed the geodesics and curvature. The article [42] extended this to non-compact
manifolds and also described the Jacobi fields and the exponential mapping. This
was extended to the space of non-degenerate bilinear structures on M in [44] and
restricted to the space of almost Hermitian structures in [43]. Clarke showed that
the geodesic distance for the L?-metric is a positive topological metric on Met (M)
and determined that the metric completion of Met(M) contains degenerate and
highly irregular metrics; see [22, 23, 25, 24].

This motivated the study of stronger Riemannian metrics on Met(M): Clarke
[26] first introduced a conformal deformation of the L2-metric such that the de-
generate zero metric does not belong to the metric completion. The paper [14]
then studied a natural family of stronger Diff (M )-invariant Riemannian metrics on
Met(M) and proved that the geodesic equation is locally well-posed for the integer
order Sobolev type metrics considered there. See also the review paper of Smo-
lentsev [74]. There was, however, a significant gap in the proof of [14]: it was not
checked if the geodesic spray extends smoothly to Sobolev completions of Met(M).
One of the main result of the present article fills this gap (Theorem 5.4) and extends
the well-posedness result from integer-order Sobolev metrics to a far more general
class of metrics, including metrics of fractional order.

In addition the results of this paper provide an integral step towards constructing
a Riemannian metric on Met(M) such that the completion does not contain any
degenerate metrics. This would have direct implications for Riemannian geometry
on shape spaces of surfaces, where the question of completeness is still open and of
fundamental importance in data-analytic applications; see e.g. the overview article
[11]. Furthermore, we hope that our results will be of use in general relativity,
e.g., on the space of Riemannian metrics on a Cauchy surface containing initial
conditions for solving Einstein’s equation. This will require an extension of our
results to non-compact manifolds M, which is left open for future work.

1.1.2. Well-posedness of EPDiff equations. In their pioneering work [32] Ebin and
Marsden studied the incompressible Euler equation of fluid dynamics by viewing
it in Arnold’s geometric picture [3] as a geodesic equation on a group of diffeo-
morphisms. This led to a proof of local well-posedness, which has subsequently
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been adapted to a variety of other settings, including the Camassa—Holm [20, 54],
Constantin-Lax-Majda [27, 36, 17] and EPDIiff equations [47], as well as several
Riemannian structures on spaces of immersions which appear in the context of
shape analysis [64, 13].

The Ebin—Marsden approach requires an extension of the geodesic spray to a
smooth vector field on appropriate Sobolev completions of sufficiently high order.
This allows one to view the geodesic equation as a flow equation with respect to a
smooth vector field, an ODE, and therefore one obtains local existence and unique-
ness using the theorem of Picard—Lindel6f. The main difficulty in this approach is
to show that all involved operators extend smoothly to the corresponding Sobolev
completions. These operators typically depend on the foot point only via the pull-
back metric. For this reason, the space of Riemannian metrics is the fundamental
object for proving these results.

The results of this article are the basis for establishing these smoothness prop-
erties for a wide class of operators and spaces (including fractional Sobolev metrics
on diffeomorphisms, immersions, or densities) and have already led to new well-
posedness results; see the follow-up article [15]. We want to emphasize that these
results are relatively easy to prove for differential operators [32, 65], but highly
non-trivial beyond this class, e.g., for pseudo differential operators; see [35, 12, 10].
In all of these settings, the generalization from integer to fractional order met-
rics allows a more fine-grained look at the relation between analytic and geometric
properties of Riemannian mapping spaces and their geodesic equations, following
e.g. [33, 65, 16].

1.1.3. Perturbation theory for linear operators. The systematic study of perturba-
tion problems for parameterized families of unbounded self-adjoint or normal opera-
tors in a Hilbert space with common domain of definition and compact resolvent has
been initiated by Rellich in a series of papers [72]; see also his monograph [73]. This
theory culminated in Kato’s monograph [52]. The main tool in their analysis is the
resolvent integral, which allows one to obtain perturbative results for eigenvalues
and eigenvectors. In particular, Rellich showed that eigenvalues and eigenvectors
can be parameterized real analytically along real analytic curves of self-adjoint op-
erators. However, in general the eigenvalues cannot be chosen smoothly and the
eigenfunctions not even continuously as functions of the operator. Nevertheless, by
[58], the increasingly ordered eigenvalues are Lipschitz continuous. Further recent
contributions can be found in [1, 56, 58, 57, 70, 71].

Perturbations of nonlinear functions of operators have been studied first in the
context of Kato’s square root problem, which comprises the identification of the
domain of the square root of an operator and continuous dependence on param-
eters [4, 62, 5, 52]. While resolvent integrals are still a key tool, a major diffi-
culty is that their convergence requires some extra regularity, which forces one to
work in a weaker topology than one would optimally desire. This can be seen in
Lemma 4.2.(a)—(c) below and in several perturbative results for fractional powers
of selfadjoint operators associated to sesquilinear forms; see e.g. [77, Theorem 2.5]
or [6, Theorem 6.1]. To avoid this loss of regularity it seems necessary to impose
some additional bounds on imaginary powers of operators or more general bounded
holomorphic functions of operators [60, 78, 6]. For example, Dirac operators and
divergence form operators can be shown to have bounded H* calculus uniformly
on an L™ neighborhood of their coefficients [6, 66, 9, 8, 7]. In the case of general
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sectorial operators, neither bounded imaginary powers nor boundedness of the H>°
functional calculus are stable under relatively bounded perturbations. However,
boundedness of the H> functional calculus is stable under perturbations in two
distinct fractional domain scales [50]. This is a key ingredient to our general result
on holomorphic perturbations of the functional calculus (see Theorem 4.5).

1.2. Structure of the article. Section 2 sets up some notation and lists some
external results, which are used extensively throughout the article. Section 3 estab-
lishes the real analytic dependence of the Bochner Laplacian on the Riemannian
metric. Section 4 contains our general result on holomorphic perturbations of the
functional calculus. Section 5 applies this general result to Laplacians on closed
Riemannian manifolds. Section 6 shows the local well-posedness of the geodesic
equation for fractional order Sobolev metrics on the manifold of all Riemannian
metrics.

2. PRELIMINARIES

2.1. Setting. We use the notation of [14] and write N for the natural numbers
including zero. Smooth will mean C*° and real analytic C“. Real vector spaces
and their complexifications will not be distinguished notationally. Sobolev spaces
induced by Riemannian metrics g are denoted by H*(g), s € R (see Section 5.2). If
g has finite Sobolev regularity, they coincide with the standard Sobolev spaces H*
for a restricted range of s (see Lemma 5.3).

Throughout this paper, without any further mention, we fix a smooth connected
closed (i.e., compact without boundary) manifold M of dimension m € N5.

2.2. First order natural bundles. A first order natural bundle over M is a
smooth vector bundle F — M associated to the first order frame bundle of M with
respect to some representation of GL(m). The completely reducible representations
give rise to exactly the tensor bundles and their subbundles which are described
by symmetries: the irreducible ones corresponding to Young tableaus, possibly
tensored by a bundle of p-densities |A™|P(T*M) for p € R. Examples are trivial
bundles, TM, T*M, S*T*M, A¥T*M, and the bundles following the algebraic
symmetries of Riemannian curvatures. See [53] for a treatment of natural bundles
and [41] for a description of Young tableaus. In this paper, by a first order natural
bundle we shall mean one which is induced by a completely reducible representation;
i.e., the tensor bundles and their subbundles described above.

2.3. Sobolev spaces. We write H*(R™,R") for the Sobolev space of order s € R
of R™-valued functions on R™. We will now generalize these spaces to sections of
vector bundles. Let FE be a vector bundle of rank n € Nsg over M and let T'(E)
denote the corresponding space of (smooth) sections. We choose a finite vector
bundle atlas and a subordinate partition of unity in the following way. Let (u; :
U; = u;(U;) CR™);cr be a finite atlas for M, let (¢;)ier be a smooth partition of
unity subordinated to (U;)cr, and let ¢; : E|U; — U; x R™ be vector bundle charts.
Note that we can choose open sets U such that supp(y;) C U? C U? C U; and
each u;(U?) is an open set in R™ with Lipschitz boundary (cf.[19, Appendix H3]).
Then we define for each s € R and f € I'(E)

1R e ) = Z I praen 0 i © (i - ) 0 uy | Fe (rem ny
icl



6 M.BAUER, M.BRUVERIS, PHARMS, PW.MICHOR

where prg. denotes the projection onto R™ C R™. Then ||-||p,,. (&) is a norm, which
comes from a scalar product, and we write I'ys (F) for the Hilbert completion of
I'(E) under the norm. It turns out that I'g«(E) is independent of the choice of
atlas and partition of unity, up to equivalence of norms. We refer to [75, Section 7]
and [45, Section 6.2] for further details.

In this article we only consider Sobolev spaces H*. Most of the results carry
over with suitable modifications to other scales of complex interpolation spaces,
including scales of Bessel potential spaces H*P. Another possible generalization is
to replace the compact manifold M by an open manifold and use Sobolev spaces
measured by a smooth background Riemannian metric of bounded geometry on M,
in the spirit of Eichhorn [34].

2.4 Theorem. Module properties of Sobolev spaces. Let E1, Es be vector
bundles over M and let s1, 52,5 € R satisfy

(a) s1+s2>0, min(sy,s2) > s, and 51+ 52 — 5 >, or

(b) s €N, min(s1,s2) > s, and 51 +82 — s> %, or

() —s1 €N or —sz €N, 51 + 52 >0, min(sy,s2) > s, 51+ 52 — 5 > 3.

Then the tensor product of smooth sections extends to a bounded bilinear mapping

g (El) X I grso (EQ) —T'ys (El & Eg)

Proof. Recall that H® = W2 = H*2. Thanks to the local description of Sobolev
spaces in Section 2.3 it suffices to consider compactly supported functions and
distributions on R™. The sufficiency of condition (a) in the case s > 0 follows from
[81, Théoreme 2] or [18, Theorem 5.1] or [18, Theorem 7.3]. Duality allows one
to replace (s1, s2,s) by (s1,—s, —s2) or (—s, s2, —s1), which implies the sufficiency
of condition (a) in the case min(sy, s2) < 0. The sufficiency of condition (a) in
the remaining case s < 0 < min(sy, s2) has been shown in [18, Theorem 8.3]. The
sufficiency of condition (b) follows from [81, Théoréme 2] or [18, Theorem 6.1].
The sufficiency of condition (c) follows by duality from condition (b). O

Note that the conditions of the above theorem are invariant under multiplication
and duality. Indeed, letting p(s1,s) denote the set of all sy such that (s, $2,5)
satisfies condition (a), (b), or (c) of Theorem 2.4, one easily verifies that the
following statements hold for all r;s,t € R:

o If « € p(r,s) and B € p(s,t), then min(c, B) € p(r,t), and the tensor product of
smooth sections extends to a bounded bilinear mapping

I'ga (El) X I'gs (Eg) — I' gmin(a,p) (El ® Es).
o If B € p(r,s), then 8 € p(—s, —1).

2.5. Convenient calculus. We will make essential use of convenient calculus as
developed in [40] and [55]. A locally convex vector space X is called convenient if
each Mackey Cauchy sequence has a limit; equivalently, if for each smooth curve
c: R — X the Riemann integral fol c(t) dt converges. This property and those
mentioned below depend only on the system of bounded sets in X. Every Banach
and Fréchet space is convenient. Moreover, by [55, Theorem 2.15] the following
constructions preserve convenient vector spaces: limits, direct sums, and strict
inductive limits of closed embeddings; this is needed in Lemma 4.2. Mappings
between convenient vector spaces are called smooth if they map smooth curves to
smooth curves. A smooth mapping is real analytic if it is real analytic along each
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affine line. A mapping is holomorphic if it is holomorphic along each holomorphic
map from the unit disk in C to X, or even along each affine complex line.
We will make essential use of the following properties [55].

(a) Smooth (or real analytic or holomorphic) curves can be recognized if they
remain so after applying each bounded linear functional in a subset of the dual
which is large enough to recognize bounded subsets.

(b) Convenient smoothness coincides with all other notions of C* up to Fréchet
spaces. Moreover, convenient real analyticity and holomorphicity coincides
with all other notions of C* and H* up to Banach spaces.

(c) If X and Y are convenient, then the space L(X,Y) of bounded linear operators
between X and Y is convenient. Moreover, the following uniform boundedness
theorem hold true: an L(X,Y)-valued map is smooth if and only if all its
evaluations against € X are smooth. Similar statements hold with smooth
replaced by real analytic; this is called real analytic uniform boundedness theo-
rem [55, Theorem 11.14]. This follows from (a) and the classical linear uniform
boundedness theorem.

3. LAPLACIANS ASSOCIATED TO RIEMANNIAN METRICS OF FINITE SOBOLEV
REGULARITY

This section develops the theory of Riemannian metrics of finite Sobolev regu-
larity and their induced Laplacians on general first order natural vector bundles,
which are exactly tensor bundles with symmetries. The main results are on func-
tional analytic properties of the Laplacians and on real analytic perturbations of
the metric.

3.1. Metrics of Sobolev order. The bundle of symmetric covariant two-tensors
is denoted by S?T*M and the subbundle of positive definite tensors by S37T*M.
Then the space of smooth Riemannian metrics is the space I'(S2T*M) of smooth
sections. Moreover, for any o € (m/2,00), the space of Riemannian metrics of
Sobolev regularity « is the space of H“-sections:

Met o (M) =T ga (STT*M).

This is well-defined because the condition o > m/2 ensures that the tensors in
[ ga (S?T*M) are continuous and that Metga (M) is an open subset of the space
[ ga (S?T*M). More generally, a fiber metric of regularity a on a vector bundle E
is an element of I' o (S5 E*).

3.2 Lemma. Inverse metric. For any a € (m/2,00), the inverse metric is
well-defined and real analytic as a mapping

Metga (M) 2 g g~ ' € Tya(S5TM).
Proof. The inverse metric satisfies the implicit equation Tra3(g ® g~1) = Idra,

where the trace Trp 3 contracts the second and third tensor slot. The left-hand side
of this implicit equation is real analytic in g and g~! because the tensor product

Q:Ta(T"M QT M) X Tga(TM QTM) -5 The(T"M QT*M @ TM @ TM)
is bounded bilinear by the module property of Theorem 2.4, and the trace
Tros: Tge(T"M QT M QTM @TM) - T'ye (T*"M @ TM)
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is bounded linear. Thus, it follows from the real analytic implicit function theorem
for Banach spaces that g — g~! is real analytic. O

3.3 Lemma. Volume form and duality. Let o € (m/2,00), and let Vol M =
|[A™|(T*M) denote the volume bundle. Then the following statements holds:
(a) The Riemannian volume form is well-defined and real analytic as a mapping

Metge (M) 3 g +— volY € T'ga(Vol M).

(b) For any g € Metyo (M), the pairing (h,k) — [ g(h,k)vol’ extends for all
s € [—a,a] to a bounded bilinear map

<-, '>H0(g): FHS (E) X FHfs (E) — R,

which induces a topological isomorphism Tg-s(FE) — (Cgs(E))*, called the
H(g)-duality.
(¢) This duality is real analytic as a mapping

Metga (M) > g (-, '>H0(g) S L(FHfs (E), Ty (E))*)

Proof. (a) As explained in Section 2.3, the space of H®-sections is described
locally. Thus, we may replace M by an open subset U of R™ and use the following
expression of the volume form in local coordinates (z!,...,2™):

vol? = \/det ((g; )7y )dat ... da™.

The determinant Metga (U) 3 g + det(g:;)—; € H*(U) is real analytic by the
module property of Theorem 2.4. The square root H¥(U,Rsq) > f — /f €
H*(U,Rsg) is real analytic, again by the real analytic implicit function theorem
on Banach spaces. Therefore, g — vol? is real analytic, as claimed.

(b) The statement holds for any smooth Riemannian metric ¢ € Met(M). The
pairings induced by g and g are related as follows: for any h, k € Ty (FE),

19 .
/Mg(h, k) vol? = /M g (% G 1gh, k) vold .

Here vol? /vol? € H*(M,R) denotes the Radon-Nikodym derivative, whose coor-
dinate expression can be seen from (a). The linear operator
g

1
Tie(E) 5 h s o §7gh € Tz (E).

vol
is bounded with bounded inverse by Theorem 2.4. This proves (b).
(¢) The operator in the last displayed equation depends real analytically on
g € Metga (M). O

The following lemma generalizes the constructions of Lemmas 3.2 and 3.3 to
arbitrary first order natural bundles.

3.4 Lemma. Induced fiber metrics. Let ¢ € Metye(M) be a Riemannian

metric of Sobolev reqularity o € (m/2,00), and let E be a first order natural bundle

over M.

(a) The metric g induces a canonical fiber metric of class H* on E (up to the
choice of some constants).

(b) The fiber metric can be chosen real analytically in g, yielding a real analytic
map Metga (M) — Do (S3E¥).

(¢) If E is trivial, then the fiber metric is of class C* and does not depend on g.
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Proof.  (a) If E = TI'M is a tensor bundle of contravariant rank r» € N and
covariant rank s € N, then E inherits the canonical metric ¢®" ® (¢~1)®* from
TrM. More generally, if E' is a subbundle of 77 M described by some symmetries
(cf. Section 2.2), then the canonical metric is the restriction of ¢®" ® (g~1)®*
to E. On the line bundle |[A™[P(T*M) of p-densities, (vol?)™?? is the induced
metric. In general, E can be identified with a direct sum of tensor bundles with
symmetries, each tensored with a line bundle of p-densities, and the canonical metric
is defined accordingly as a direct sum of metrics as above. Different identifications
lead to metrics which coincide up to a constant on each irreducible component of the
representation describing F as an associated bundle. In any case, the canonical fiber
metric is of class H* if g is of class H* thanks to the module property of Sobolev
spaces, Lemma 3.3, and the assumption that « is above the Sobolev threshold m /2.

(b) We identify E with a tensor bundle with symmetries and choose the fiber
metric as in the first part of (a), thereby eliminating the non-uniqueness. The
multilinear algebra described there reduces the statement to g~! and (vol?)=2P.
But real analyticity of the inverse metric and volume form has been shown in
Lemmas 3.2 and 3.3. Moreover, the map

Ly (|JA™(T*M)) 2 vol? s (vol?) ™2 € T'ga (JA™|~2P(T* M))

is real analytic because its power series converges on open sets with respect to the

supremum norm, which are H%-open thanks to the Sobolev embedding theorem.
(c) The fiber metric on T)M = M x R does not depend on g and is of class

C®°, and any trivial bundle is a direct sum of such bundles. O

By abuse of notation we will sometimes write g for the metric as well as the
induced fiber metric of Lemma 3.4.

3.5 Lemma. Covariant derivative. Let a € (m/2,00) and s € [1 — «, q].
(a) For each g € Metyo (M) and natural first order vector bundle E over M, there
is a unique bounded linear mapping

Tye(E) 3 h— V9h € Tyeas (T*M ® E)

which acts as a derivation with respect to tensor products, commutes with each
symmetrization operator, and coincides with the Levi-Civita covariant deriva-
tive in the cases E=TM and E =T*M.

(b) The covariant derivative is real analytic as a mapping

Met e (M) 3 g s V9 € L(Tge (E), Tpre1 (T*M @ E)).
(c) If E is trivial, then this holds for all s € R.

We will show this lemma in two ways.

Proof. (a) Assume temporarily that E = TM. Let X, Y, and Z be arbitrary
smooth vector fields. Let ¥ be a smooth covariant derivative on M , either induced
via charts or by a fixed smooth background Riemannian metric. We express the
Levi-Civita connection of g € Metya (M) as

V4Y = VxY + A9(X.,Y)

for a suitable section A9 of the bundle T4M = T*M @ L(TM,TM). As V9 has
to be g-compatible and torsion-free, the tensor field A9 has to satisfy the following
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conditions:
(§Xg)(}/v Z) = g(Ag(X, Y)a Z) + g(Ya Ag(Xa Z))a
A9(X,Y) = A9(Y, X).

We take the cyclic permutations of the first equation, sum them with signs +, +, —,
and use symmetry of A9 to obtain

2g(Ag(X7 Y),Z) = (§Xg)(ya Z) + (ﬁYg)(ZvX) - (ﬁZg)(Xa Y);

this equation determines A9 uniquely as a H“ !-tensor field. It is easily checked
that it satisfies the two requirements above (i.e., compatibility with the metric
and freedom of torsion). Together with the module properties of Theorem 2.4 this
implies (a) for E =TM.

The extension from E = TM to first order natural bundles FE is via multilinear
algebra: the case F = T*M follows by testing with smooth vector fields, and the
general case by choosing local frames for F, writing any H*® section of E as a sum
of scalar H® coefficients times C°° sections of F/, and using the module property of
Theorem 2.4. For the line bundle of p-densities the covariant derivative is simply
determined by V% (vol?)? =0 for all p € R, i.e.,

v

W) (X) - (vol9)?.

(b) As before it is sufficient to treat the case E = T M. The tensor field A9 is
given in abstract index notation by

R T - ~
(A%)%, = §ng((v9)ljk + (V)i — (V9)ijk),

where g% denotes the inverse of the metric. Both g=! € I'ga (ST M) and @g €
g1 (T9M) are real analytic in ¢ € Metya (M), and the contractions between
g~ ! and ﬁg are continuous by the module properties of Theorem 2.4. Therefore,
g — A9 is real analytic Metga (M) — T'ga-1 (T3 M). Together with the module
properties of Theorem 2.4 this shows that VY = VY + A9(-Y) € T ra—1 (TLM) is
real analytic in g for each Y € T'gs (T'M). By the real analytic uniform boundedness
theorem [55, Theorem 11.14] this implies that V9 € L(Tgs(TM),T o1 (T} M)) is
real analytic in g.

(c) The fiber metric on trivial bundles is smooth and does not depend on g by
Lemma 3.4.(c). O

Vv = d(

Note that Lemma 3.5 and the module property of Theorem 2.4 imply that the
covariant derivative is a bounded bilinear mapping

V9 : Tye(TM) x Tye (TM) 3 (X,Y) = VLY € T yyar (TM),.

For E = T M, this can also be seen directly from the defining properties of the
Levi-Civita covariant derivative.

3.6 Remark. Geodesics. The proof of Lemma 3.5 shows that the Christoffel
symbols are of class H*~'. They transform as the last part in the second tangent
bundle, and the associated spray S is an H* !-section of both 7wy : T2M — TM
and T'(mpr) : T?M — TM; see [63, Section 22.6]. If o > 2t + 1, then the spray S9
is continuous and we have local existence (but not uniqueness) of geodesics in each
chart separately, by Peano’s theorem. If o > & + 2, then 59 is C' and there is
existence and uniqueness of geodesics by Picard-Lindelof.
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3.7 Theorem. Bochner Laplacian. Let a € (m/2,00), let s € 2 — o, ], and

let E be a natural first order vector bundle over M.

(a) For each g € Metya (M), the Bochner Laplacian is a bounded Fredholm oper-
ator of index zero

A :Ty(E)> hs —Tt? (VIVIR) € T pos(E).

(b) The Laplacian depends real analytically on the metric, i.e., the following map-
ping is real analytic:

Met e (M) 5 g A9 € LT+ (E), T o2 (E)).

(c) If E is trivial then these statements hold for all s € 2 — o, + 1]. This also
applies to Laplace operators induced by connections which do not depend on
the metric g.

Similar statements for more general differential operators with Sobolev coef-
ficients can be found in [67, Theorem 2] and [48, Lemma 34]; see also [9] and
references therein for operators in divergence form.

Proof. (a) By Theorem 2.4 and Lemma 3.5 the Laplacian is a bounded linear
mapping

g g g™t
A9 Ty (E) 5 Tyt (T*M @ E) 25 T e s (TIM @ E) " Tz (E),

where the first arrow requires s € [1 — «, ], the second arrow requires s — 1 €
[1 — @, a, and the third arrow requires s — 2 € [—a, a]. Integration by part shows
that AY is formally self-adjoint with respect to the H%(g) inner product, and a
similar reasoning as above shows that the H%(g)-adjoint operator (see Lemma 3.3)

(Ag)*’HU(g) =A% T2 (E) = Iyg-+(E)

is also a bounded linear mapping.
The Sobolev regularity of the coefficients of A9 is linked to the number of deriva-
tives as follows: in each vector bundle chart of F, the operator A9 takes the form

AY="a'0p + Y a0,
i=1 i,j=1

for some coefficients a' € H*~H(R™,R"*") and a*/ € H*(R™,R"*"), as can be
seen from the proof of Lemma 3.5. Moreover, the leading-order coefficients (a*)
are coordinate expressions of the cometric and therefore invertible. Therefore, the
elliptic estimates of [48, Lemmas 32-34] may be applied, and it follows for each
s € (2 — a, a] that the operator AY9: 'y« (E) — T'gs—2(FE) has finite-dimensional
kernel and closed range. In particular, it is semi-Fredholm, and its index ind(AY) €
[—00, 00) is well-defined.

The set of all semi-Fredholm operators with the same index as AY is open in
L(Tgs(E),Tgs—2(F)) (see e.g. [68, Theorem II1.18.4]). By continuity of the map-
ping

Metga (M) — L(Tys (E),Tgs—2(F)), g— A,
there is a smooth metric § which is sufficiently close to g such that A9 is semi-
Fredholm and has the same index as AY9. But standard elliptic theory implies that
A9 is Fredholm of index zero. Thus, we have shown that AY: Ty (E) — Tye—2(E)
is Fredholm of index zero for each s € (2 — a, a]. This extends to all s € [2 — a, q]
by H°(g)-duality.
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(b) This follows from the real analyticity of the covariant derivative (Lemma 3.5)
and the module properties of Sobolev spaces (Theorem 2.4).

(c) Writing the covariant derivative of functions as a differential, one obtains
from Lemma 3.5 and Theorem 2.4 that the Laplacian is a continuous linear operator

-1
A% HY(M,R) -5 H Y (M, T*M&R) Y5> H2(M, TIM®R) s H*"2(M,R),
where the first mapping is continuous for all s € R, the second one for s — 1 €
[1 — «a,a], and the third one for s — 2 € [—a,a]. A similar statement holds when
the first map d is replaced by a connection which does not depend on g, and the
second map VY is the induced connection on T*"M ® E.

In local coordinates (z%,. .. ,xm) the Laplacian can be expressed as

Agf xl |d t( )| ijaacjf
3 Ty (@ 001)
= Z qlieim 8;11 e 3;’:;,

21505tm €N>o
1<ig 4+ +im <2

where qi1im g o2 FatFim (R™ R). Note that there is no zero-order term.
Assume temporarily that s € (2 — «, a+ 1]. By Theorem 2.4, there is § > 0 such
that the first-order part

S attmi 9k s OO (M R) — H*7(M,R)

1t im =1
is continuous. Therefore, the elliptic estimate of [48, Lemma 32] still holds in
the present setting, and it follows from [48, Lemmas 33-34] that A9: H*(M,R) —
H*~2(M,R) has finite-dimensional kernel and closed range for each s € (2—a, a+1].
The rest of the proof is as before. O

The following lemma shows that the directional derivative of the Laplacian ex-
tends to spaces of lower regularity than predicted by Theorem 3.7. This is used in
Lemma 5.5 and Theorem 6.4 below.

3.8 Lemma. Derivative of the Laplacian with respect to the metric. Let
a € (m/2,00) with a > 1, let E be a natural first order vector bundle over M, let

€2—w,al, and let s € [2 —r,a]. Then the directional derivative of the Laplace
operator with respect to the metric extends to a real analytic mapping

Metga (M) x Ty (S*T*M) 3 (g,q) = Dy 4AY € L(Tgs(E), T grie—2-o(E)).
If the connection on E does not depend on g, then this extends to all r € [1 — «, @

and s € 2 —r,a+1].

Proof. Recall from the proof of Lemma 3.5 that the covariant derivative can be
expressed as VI =V + A9, In the case E = TM the tensor field A9 is a section of
T*M @ L(TM,TM), which is given in abstract index notation by

(A7) = 20" (Tahuan + (FT)ant — (Tohuz).

Thus, the directional derivative Dy V9 = D, ;A9 satisfies
Dy,q(A?)j =3(Dg.09™) (Vi + (Vo)im — (Vo)ijk)
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+ 39" (Dg, (V9)igr + (V)11 — (V9)in)
+ 39" (V)i + Dy, (V)11 — (V9)iin)
+ 30" (Vo)uge + (Vo)ut = Do.o(Va)ish).
It follows from the module properties of Theorem 2.4 together with the formulas
Dyug™ ' ==g7'ag™",  Dy4Vg=Va,
that D, ,AY9 extends to a real analytic map
Metga (M) x Tir (S?T*M) 3 (g,q) = Dy.gAY € Tyr 1 (T*M @ L(TM,TM)).

Taking r < a and a > d/2 for granted, this requires continuity of the multipli-
cation H™ x H*~! — H™~!. By the multilinear algebra described in the proof of
Lemma 3.5, this generalizes from E = TM to all first order natural bundles F,
yielding a real analytic map

Met o (M) x Tgr(S?*T*M) 3 (g,q) = Dy.gAY € Tgrs(T*M @ L(E, E)).

In particular, we will use that this holds for the given bundle F and for its ten-
sor product with T*M. For any h € I'y-(F), differentiating the formula A% =

Trgil(Vqth) of Theorem 3.7 at g € Metga(M) in a smooth direction ¢ €
T(S2T* M) yields

Dy A% = —D, ,(Tr9 ' VIV9h)
= —(DgyTt9 VIV —Ta9  (DygA)Voh —Te?  VI(DyA)h.

In the special case where the connection on F does not depend on g, the last sum-
mand above vanishes. By the H"~! regularity of D, ;A and the module properties of
Theorem 2.4, this formula extends real analytically to all ¢ € T+ (S2T*M). Taking
r <« and « > d/2 for granted, the first summand requires continuity of the multi-
plication H" x H*~2 — H"t5727% the second summand requires continuity of the
multiplication H™ "' x H*~! — H"t5727_and the third summand requires continu-
ity of the multiplication H" ! x H® — H" T 1% and V: Hrts—1-o  grts—2-«a
The third summand requires the additional conditions s < o and r > 2 — , which
are not needed anywhere else. As h € T'ys(E) was arbitrary, the lemma follows
from the real analytic uniform boundedness theorem [55, Theorem 11.14] . O

4. PERTURBATIVE SPECTRAL THEORY OF SECTORIAL OPERATORS

The main result of this section (Theorem 4.5) is that the functional calculus A —
f(A) is holomorphic for certain classes of operators A and holomorphic functions
f. The result hinges on the theory of operators with bounded H*° calculus and
their perturbations [50].

4.1. Sectorial operators. For each w € [0, 7|, the sector S, of angle +w about
the positive real axis in the complex plane is defined as

g . {z€C:z#0and |arg(z)| <w} if w e (0, ]
“ 7 (0,00) if w=0.

For any w € (0, 7], H>°(S,) denotes the Banach algebra of bounded holomorphic
functions on S,, with the supremum norm.
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Let A be a (possibly unbounded) closed linear operator on a Banach space X.
We denote its resolvent set by p(A) and its resolvent by Ry(A4) = (A — X)~! for
A € p(A). Then A is called sectorial of angle w € [0,7) if the spectrum of A
is contained in S, and for all w’ € (w,7), the resolvent operators ARy (A) for
A € C\ S, are uniformly bounded in L(X).

Sectorial operators admit a holomorphic functional calculus as described below,
following [46, Section 2.5.1]. For simplicity we restrict ourselves to invertible oper-
ators, as this eliminates the need for regularization at the origin. Generalizations
to injective operators with dense range have been considered in [50], and we believe
that the results of this section generalize to this setting. In our applications, Rie-
mannian metrics on spaces of mappings, invertibility is a natural assumption and is
needed to formulate the geodesic equation, see Condition 6.2 and thus we consider
only this simpler situation in this article.

Let 0 <w < ¢ <, let 7 > 0, let A be an invertible sectorial operator of angle
strictly less than w, let O be a closed ball centered zero contained in p(A), and let
f be a holomorphic function on S, satisfying

sup  |ATf(N)] < 0.

AESA\O
Then the following Bochner integral is well-defined by the sectoriality of A:
-1
FA) = — FOVRA(A)dA € L(X).

270 Jo(s.\0)

This primary functional calculus can be extended to larger classes of functions as
described in [46, Chapter 1]. In particular, for any z € C, the fractional power A is
well-defined as an invertible sectorial operator [46, Chapter 3]. The (homogenous)
fractional domain space X, of A is defined for any r € R as the completion of the
domain of A" with respect to the norm [|z| = [|A"z[|x. Note that Xo=X. Let

Xop = Noer X, and X+, = Ussr Xs. Note, that these spaces coincide with the
inhomogenous fractional domain space X, defined via the graph norm, thanks to
the assumed invertibility of the operator A.

The following lemma shows that the resolvent map is holomorphic in the oper-
ator. This is the basis for all subsequent considerations.

4.2 Lemma. Perturbations of sectorial operators. Let A be an invertible
sectorial operator of angle strictly less than w € (0,7) on a complex Banach space
X, let (XT)TGR be the fractional domain spaces associated to A, and let O) be a
closed centered ball contained in the resolvent set of A. Then there exists an open
neighborhood U of A for the L(Xl, Xo)-topology such that the following statements
hold for all v € (—o0,1], ¢ € (w,m), and holomorphic functions f: S, — C with
supres,\0 IA"f(A)] < oo.

(a) All operators in U are sectorial of angle strictly less than w, and their resolvent

sets contain the ball O).
(b) The following map is well-defined and holomorphic:

U3 B (A= AMT"RA(B)) € Cy(d(Sw \ O), L(Xo, X)),

where Cy denotes the space of globally bounded continuous functions.
(c) The following map is well-defined and holomorphic:

U3 B (A= AMT"Ry(B)) € Cy(d(Sw \ O), L(X1_r, X1)).
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(d) Assume that A is densely defined, let D be the open unit ball in C, and let
B:D — U be a holomorphic map such that sup.cp || f(B(2))llx, x,) < o°-
Then the following map is holomorphic:

_ —_1/ FOVRA(B(2))dA € L(Xo, X,),
9(5.,\0)

T oW

D>z f(B(2))

where the integral converges in L(Xo, X<,) and L(Xs1_,, X1).

Note that Lemma 4.2.(b) implies that B +— f(B) is holomorphic with values in
L(Xo, X<,). Similarly, Lemma 4.2.(c) implies that B — f(B) is holomorphic with
values in L(Xs1_,, X1). In either case there is a loss of regularity. Point (d) shows
that this loss of regularity can be overcome using bounds on the functional calcu-
lus. Indeed, it implies that f(B) is holomorphic in B for any convenient operator
topology such that B — | f(B)l|(x,, x,) is locally bounded; see Section 2.5. This
will be exploited in Lemma 4.4 below.

Proof.  (a) Choose w’ strictly greater than the angle of sectoriality of A and
strictly smaller than 7, fix a centered closed ball () in the resolvent set of A, let
A=C\ S, UQ, and define constants a,b € (0,00) by

a”! = 3sup ||R)\(A)||L(Xo) < 00,
AEA
b1 = 3sup ||AR)\(A)||L(X0) = 3sup | Idx +/\R)\(A)||L(Xo)
NeA AEA
< 3(L+sup [ARA(A) | %)) < o0
AEA

Here the bounds for small A follow from the invertibility and for large A from the
sectoriality of A. Let U be the set of all B € L(X1, Xo) with [|B — Al %, x,) <?.
Then the definitions of a and b imply for all A € A that

2
al Ra(A) 1%y + PIIARN (A x,) < 3 < L
and the definition of U implies for all B € U and = € X; that
[(B=A)z|x, < B = Allpx, x)ll*llx, <0lAz|,-

By [62, Theorem IV.3.17] these estimates show that A is contained in the resolvent
set of B, and the resolvent of B satisfies for all A € A that

[RACA 10
1 —al RA(A)l 1 (xy) = IARN(A) | 1 (x,)

| RA(B) sy < < 3 Ra(A) o

Hence, B is sectorial of angle w’ on Xy, and the resolvent set of B contains Q.

(b) For each A € A, the resolvent (U 5 B +— Rx(B) € L(Xo,X1)) is holomor-
phic. As U is a metric ball, the following series converges in L(Xg, X1) for all B in
this ball:

(n) _ n
RA(B)=)_ A\ (A>1(f A" _ > RA(A)((B - A)Rx(4))",

neN neN

where the second equality can be verified easily by induction on n. We need some
resolvent estimates to show that this series converges uniformly in A in appropriate
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topologies. For all € (=00, 1), one has

sup ||)\1 "ATRAA) I (xp) = sup sup ([P (EA) ]|k, < 00
AEOS v=—exiw’ tERs

where 1, (z) = v "2"(2 — v)~! and the bound follows from

wltd) = [ wRei= [ a0 BRs (),
8(S.\O) 3(5.\O) '

where under the integral on the right-hand side the first factor is integrable and
the second factor is bounded. Together with the bounds in (a) this shows for all
r € (—oo, 1] that

sup [[A7TATRA(A)]| ) < 00

AEA

Therefore, one has for all r € (—oo, 1] that

Z e [V ar Ry() (B - )R 4)”

L(Xo)

< Z sup AT AT Ry (A MrxolB = Al7 o) MR (DI %0 %)
nENA‘ueA

By the definition of b, the right-hand side is finite if
1B = All 1(x,,%,) < 3

which holds true for all B € U. This proves (b).
(c) can be shown as in (b) using the estimate

Z sup HRA ((B — A)Ry(A))" A1 A7

L(Xy)

<3 5 IR 1B = Al s, IFAAN T A3
nGN
(d) Let s < r, and let z € Xo. As A is densely defined, there is a sequence
(Zn)nen in X1_, which converges to z in the Xy topology. By (c) and the contin-
uous inclusion of X; in X,., the following map is holomorphic for any n € N:

U3 B (A= N Ry(B)x,) € Cy(3(S, \ O), X,.).

This implies that the map

-1 .
U3 B~ f(B)x, = — FOOXTL AT Ry (B)2pd) € X,
2mi Jo(s.\0)
is holomorphic, where under the integral the first factor is integrable and the second
one bounded. By Cauchy’s integral theorem, one obtains for any closed ball D C D
and any z in the interior of D that

(0 Er—
2t Joap  z—w

f(B(2))wn =

The assumption sup,cp || f(B(w))l|f,(x,,x,) < oo allows one to take the limit n —
0o, which shows that

FBE)w = — [ LB, g

2w Jop Z—w
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This shows that z — f(B(z))z is holomorphic. As this holds for all z € X, one
obtains from the holomorphic uniform boundedness theorem that z — f(B(z))
is holomorphic, as claimed. The resolvent integrals converge in L(XO,X <r) and
L(X~1_,, X1) thanks to (b)—(c). This concludes the proof of (d). O

4.3. Bounded H calculus and R-sectoriality. Let A be an invertible secto-
rial operator of positive angle strictly less than w € (0,7) on a complex Banach
space X. Then each bounded holomorphic function f on S, defines a possibly
unbounded closed linear operator f(A) [46, Section 2.5.1]. The operator A is said
to admit a bounded H>(S,,) calculus if [46, Section 5.3]

ILf (AL
fereo (SN0} I1fllzee(s.)

3

where || - |[34s (s, is the supremum norm of bounded holomorphic functions on S,,.
We will use in Lemma 4.4 below that boundedness of the H>® calculus is stable
under perturbations which are relatively bounded in two distinct fractional domain
scales [50, Theorem 6.1]. This has been proven first by J. Priiss (1994) in an un-
published article called “Perturbation theory for the class H*°(X)” and published
first in [29]. Moreover, we will use repeatedly that the fractional domain spaces
(XT)TGR associated to operators with bounded H*° calculus are complex interpola-
tion spaces; see [50, Proposition 2.2] or [59, Lemma 4.13]. This characterization is
available also for the larger class of operators with bounded imaginary powers, but
there are no corresponding perturbative results for this class [2, Section 4.6].

Boundedness of the 7> calculus implies a high degree of unconditionality, i.e.,
norm boundedness can be replaced by R-boundedness in several regards (cf.[46, Sec-
tion 5.6] and [50, Section 4]). This follows from quadratic estimates first developed
by [61, 28].

A set F C L(X,Y) of linear operators between Banach spaces X and Y is called
R-bounded [50, Section 3] if there exists a constant C' > 0 such that the following
inequality holds for all n € N, zy,...,2z, € X, By,..., B, € F, and independent
Rademacher random variables €1, ..., e,:

2 2
B| i, < B[ Seune]
k k

A closed linear operator A on a Banach space X is called R-sectorial of angle
w € [0,7) if the spectrum of A is contained in S, and for all w’ € (w,7), the set
{AR)\(A) : A € C\ S} C L(X) is R-bounded [50, Section 3]. On Hilbert spaces
the notions of boundedness and R-boundedness coincide [51, Section 1].

The following lemma carries out the program hinted at in Lemma 4.2.(d): it
identifies an operator topology such that boundedness of the 7> calculus is an open
condition and uses the bounds on the H* calculus to deduce that the functional
calculus is holomorphic without any loss of regularity.

4.4 Lemma. Perturbations of operators with bounded H> calculus. Let
A be an invertible densely defined R-sectorial operator of positive angle strictly
less than w € (0,m) with bounded H*>(S,) calculus on a complex Banach space
X, let (XT)TGR be the fractional domain spaces associated to A, let (O be a closed
centered ball contained in the resolvent set of A, let 6 € R\ {0}, and let V =
L(X1,Xo) N L(Xsy1,Xs). Then there exists an open neighborhood U of A € V

such that following statements hold for all v € [0,1] and ¢ € (w, 7).
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(a) All operators B € U are R-sectorial of positive angle strictly less than w, have
resolvent sets which contain the ball O, and admit a bounded H*(S,) calculus
with uniform bounds

l9(B)lLx .,
sup sup A4 C.9 |B HL(XO,XT) < oo.
BeU gen=(s,)\{0} I9llm=(s,)

(b) For any holomorphic function f: S, — C with supycg_|A\"f(A)| < oo, the

following map is well-defined and holomorphic,

U>Bw f(B) = /8(3 o F(NRA(B)dA € L(X, X,.),

where the integral converges in L(XO,X<T) and L(X>1_T, X1)

Proof.  (a) is proven in the three subsequent steps (al)—(a3).

(al) By Lemma 4.2 there is a neighborhood U of A € V such that all operators
in U are sectorial of angle strictly less than w, and their resolvent sets contain the
ball O.

(a2) We claim that U may be replaced by a smaller neighborhood of A such that
all operators in U are R-sectorial and have uniformly bounded H>(S,) calculus:

HQ(B)HL(X)
sup sup DA /IMA)
BeU gen=(s,)\{0} I9llre=(s,)

As the fractional domain spaces of A are complex interpolation spaces [50, Propo-
sition 2.2], we may assume |0| < 1 for the sake of the subsequent arguments. In the
case § < 0 the claim follows from [50, Theorem 6.1] (with the sign of § reversed)
by noting that in this theorem the condition ran B C ran A~ is not needed as long
as ABA~%~1 extends to a continuous operator on X, which is the case here. The
1>°(S,) calculus is bounded uniformly on U, as can be seen by tracking the con-
stants in [50, Theorem 6.1]. Indeed, in [50], Theorem 6.1 is based on Lemma 6.2,
and the constant C' in the proof of this lemma is uniform in B € U because it de-
pends only on [[A°BA=°7!||x and the R-bound of {M(X) : |arg A| > w}, which
is again uniform in B. The constant C' of [50, Lemma 6.2] is passed on to The-
orem 4.1.(iii), which is proven in Proposition 4.6. This proposition uses only the
R-sectoriality of B and therefore furnishes uniform bounds. This proves the claim
in the case ¢ < 0. In the case § > 0 the claim follows from [50, Corollary 6.5] (again
with the sign of ¢ reversed). This corollary is based on [50, Theorem 6.1] and also
furnishes uniform bounds for the H*°(S,) calculus. This proves (a2).

(a3) For r € {0,1} the condition suppey [|B7"||f(x,,x,) < oo is trivially satis-
fied. Thus, we restrict to the case r € (0,1). As the operators B € U have bounded
H>(S,,) calculus, their associated fractional domains (X, p),cr are complex inter-
polation spaces [50, Proposition 2.2]. Thus, there is a constant C' > 0 such that
the following estimate holds for all B € U:

—r 1—r T
1B™" | 1 x0,5%,) = 1Al %, 5, x,) < Cll1d ”L(XO,B,XO)” Id ||L(X1,B7X1)
= C”B71HZ(X0,X1)'

The right-hand side is bounded uniformly on U. This proves (a3) and concludes
the proof of (a).
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(b) Let D denote the open unit ball in C, and let B: D — U be a holomorphic
map. Then (a) implies that

izg”f(B(z))HL(Xg,XT) < sup 1B~ (50,5 IB"f (B 1.0, 500) < 0

Thus, Lemma 4.2.(d) shows that the curve f(B): D — L(X, X,) is holomorphic.
By convenient calculus, this implies (b). O

The following theorem, which is the main result of this section, sums up some
implications of Lemma 4.4 in the common situation where the perturbations can be
controlled in the L(X,41, Xq) topology for all o in an interval |83, 4] or equivalently
for all « € {,~} by complex interpolation.

4.5 Theorem. Perturbations of operators with bounded H° calculus. Let
A be an invertible densely defined R-sectorial operator of positive angle strictly less
than w € (0,m) with bounded H>°(S,) calculus on a complex Banach space X, let
(XT)TGR be the fractional domain spaces associated to A, let B,v € R with 5 < 7,
and let V= L(Xg41, Xp) N L(X 41, X,). Then there exists an open neighborhood
U of A € V such that for all r,s € R with s,s +r € [B,7v+ 1], ¢ € (w,7), and
holomorphic functions f: S, — C with supyeg, [A"f(A)| < 0o, the following map
is well-defined and holomorphic:

Us B~ f(B) € L(Xy, Xopr).

Proof. As A has bounded H*(S,,) calculus, the fractional domain spaces are com-
plex interpolation spaces [50, Proposition 2.2]. Thus, V is continuously embedded
in all intermediate spaces L(Xqa11, Xo) with a € (8,7). We first focus on the case
r > 0. For each s € [3,7] and r € [0,1] the statement follows from Lemma 4.4
applied to the operator A € L(X,;1,X,). The conditions of the lemma are sat-
isfied because there is always space below or above the interval [s,s + 1] within
the larger interval [3,y + 1]. The statement can be extended to higher values of
r by composition with integer powers of B. This shows that the statement holds
for all s € [8,v] and nonnegative r with s + r < v+ 1. The remaining case where
s € (v,7+ 1] and r is nonnegative with s +r < v+ 1 is covered by writing

B BIB)

f(B): X, X, X,,
where the first arrow is holomorphic in B because inversion is holomorphic, and
the second arrow is holomorphic in B thanks to Lemma 4.4 applied to the function
A = AT f(A) and the operator A € L(X,41,X,). Thus, we have shown the
statement for all » > 0. The corresponding statement for » < 0 can be obtained by

writing

B"f(B) B!

£(B): X, X X,

where the first arrow is holomorphic in B thanks to Lemma 4.4 applied to the
function A — A" f(A), and the second arrow is holomorphic in B because inversion
is holomorphic. ([

4.6 Remark. Real Banach spaces. The results in Lemmas 4.2 and 4.4 generalize
to real Banach spaces X as follows. The resolvent mappings in Lemma 4.2.(b)—
(c) are real analytic because real analytic mappings between real Banach spaces
extend to holomorphic mappings on small complex neighborhoods. This implies real
analyticity of the resolvent integrals in L(Xo, X<,) and L(X>1_,, X)), i.e., with a
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loss of regularity. Lemma 4.2.(d), where there is no loss of regularity, generalizes
from holomorphic to real analytic curves provided that the bound on f(B(z)) holds
not only for real z, but also for nearby z with small imaginary part. This can be
difficult to verify if the holomorphic extension is not given explicitly. This problem
is settled in Lemma 4.4, which implies for real Banach spaces X and V that the
functional calculus B +— f(B) is real analytic.

5. PERTURBATIVE SPECTRAL THEORY OF LAPLACE OPERATORS

In this section the perturbative spectral theory of Section 4 is applied to the
particular case of Laplace operators on compact Riemannian manifolds. The per-
turbations are taken with respect to the Riemannian metric in Sobolev topologies.
We first present some auxiliary results about functional calculus and fractional do-
main spaces of Laplace operators (Lemmas 5.1 and 5.3) and then prove our main
result (Theorem 5.4) on perturbations of fractional Laplacians.

The following lemma describes the functional calculus of the Laplace operator
associated to a fixed metric. The Laplacian is considered as an operator from
T'y1(F) to T'g-1(E) because this is the only option which works simultaneously for
all Sobolev regularities o > 1 of the metric.

5.1 Lemma. Functional calculus of Laplacians. Let « € (m/2,00) witha > 1,

let g € Metga (M), and let E be a natural first order vector bundle over M. Then

the following statements hold:

(a) The operator 1 + AY9: T'gi(E) — Ty-1(FE) is invertible, and the following
bilinear form is an equivalent scalar product on I'g—1(E):

D1 (B) x Dyi(E) 3 (b k) = (14 A%) by k) pogg) € R,

where (-,-Ygo(g): D1 (E) x Tg-1(E) — R is the H(g) duality of Lemma 3.3.
We will write T g—1(4)(E) for the space I' -1 (E) with this scalar product.

(b) The operator 1+ A9 with domain T g1 (E) is unbounded self-adjoint on the space
L1 (E) and has a compact inverse. Thus, there evists an orthonormal
basis of eigenvectors (e;)ien in I'y-1(4)(E) and a non-decreasing sequence of
eigenvalues (\;)ien in (0,00) such that

Vi € N: eiEI‘Hl(E), (1+Ag)€i:)\i6i.
(c) For each function f: {1, A2,...} = R the following is a densely defined self-
adjoint linear operator on I'g-1(4)(E):
Dom(f(1+ AY)) - Ty (E),
9y.
f(l-FA ) h— Z<hi’ei>FH71(g)(E)f(/\i)ei’
ieN

where

Dom(f(1+ A%)) = {h € Ta1(q) (B ) _(hiedt, (o f(N)* < OO} :
ieN
(d) Let ¢ € (0,m), recall that S, := {z € C\ {0} : |argz| < ¢} denotes the open
sector of angle £¢ about the positive real azis, and let f: S, — C be a holomor-
phic function which satisfies for some r € (0,00) that supyeg_ |A"f(A)] < occ.
Then the operator f(1 + AY) € L(T'g-1(4)(E)) coincides with the following
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resolvent integral for any w € (0,¢) and any closed centered ball O in the
resolvent set of 1 + AY:
1

F+A9) = —— FOVRA(1+ A%)dA € L(T -1y (E)),
27 Ja(s.\0)

where the integral converges in L(I'g-1(4)(E)).

Proof.  (a) The operator AY is non-negative symmetric with respect to the H°(g)
pairing (-, -) go(g) of Lemma 3.3.(b) in the following sense:

Vh,k € T (E) : <Agh7k>H0(q) = <h7Agk>H0(g)7 <Agha h>H0 ) > 0.

(9

This can be seen via approximation by smooth g, h, k using the continuity of g —
() mo(g) established in Lemma 3.3 and the continuity of g ~— AY established in
Theorem 3.7. This implies that 1 + AY is strictly positive and thus injective. As
an injective operator it is semi-Fredholm, which implies that its index is well-
defined in [—o0, 00). It actually has vanishing index because the curve ¢ — ¢t + AY
deforms it continuously into the Laplace operator, which has vanishing index by
Theorem 3.7.(a). Thus, 1 + A%: Tjn(E) — T'y—1(F) is continuously invertible.
Therefore, the bilinear form in (a) is a weak scalar product, which we denote by
(-, '>FH—1<9>(E)' For any two metrics g,§ € Metga (M), let

N N g
199 .= (h = (1 + Ag)%g_lg(l + Ag)‘lh) € LTy (E)).
vor

Then I99 is continuous with continuous inverse I99, the scalar products induced
by g and ¢ are related by

<h7 k)F

and the norms induced by g and ¢ are related by

H-1(9)(E) = (I99h, k>FH*1<§)(E)’

Gnl/2
M2y gy @0y @) < M,y

1/2

T2,y B0y 0 S WML, 72 ey o)

Thus, these norms are equivalent. Moreover, it is well-known that the norm induced
by any smooth metric § € Met(M) is equivalent to the norm on I'gy-1(F). This
concludes the proof of (a).

(b) The operator 1 4+ A9: T'y1(E) — I'y-1(E) is symmetric with respect to
the H%(g) pairing and invertible by (a). This implies that its inverse is symmetric
with respect to the scalar product on I'y-1(45)(E) and everywhere defined, thus
self-adjoint. Therefore, also the operator 1 + A9 is self-adjoint as an unbounded
linear operator on I'g—1(4)(E). Its inverse is a compact operator because I' 1 (E)
is compactly embedded in I'g;—1 (E). Thus, the spectral properties of compact self-
adjoint positive operators imply (b).

(c) follows from the well-known functional calculus for unbounded self-adjoint
linear operators; see e.g.[76, Theorem VIIL.3.2].

(d) is the holomorphic functional calculus for invertible sectorial operators de-
scribed in Section 4. The operator 1 + AY is invertible by (b). Its eigenvalues are
contained in [1, 00), and the norm of its resolvent can be estimated by the distance
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to the closest eigenvalue: for any w € (0,7),

A
sup [[AR)(1+ A9 B < sup ————— < 0.
,\e(c\s_wH ( M, acas,, dist(A, [1,00))
Thus, 1 + A9 is sectorial of angle zero. Together with the assumed decay of f this
yields

[ IO IR+ 8% sy < o
9(S.\O)

This shows convergence of the resolvent integral in L(I'-1(FE)). The holomorphic
functional calculus coincides with the one described in (c¢) thanks to Cauchy’s
residual theorem because the region S, \ () contains all eigenvalues of 1 + A9
in its interior, the resolvent is holomorphic away from the eigenvalues, and the
residuals of the resolvent at the eigenvalues are projections onto the corresponding
eigenspaces. (Il

5.2. Fractional domain spaces. Let o € (m/2,00) with « > 1, let g € Metya (M),
let F be a natural first order vector bundle over M, let A be the self-adjoint posi-
tive linear operator 1 + A9 on I'yy—1 (E) with Dom(A) = [y (E), and let (X,.),er
be the fractional domain spaces of A (see Section 4.1). Note that these spaces are
Hilbert spaces [59, Theorem 4.36], which coincide with the Bessel potential spaces
for smooth Riemannian metrics g. For any r € R, we define

Lr(g)(E) i= Xr41)/2

with equality of norms. This notation is justified by Lemma 5.3.(b) below, which
establishes an isomorphism between I'gr(4) () and I'g+(E) for certain values of r.
It should be kept in mind, however, that these spaces are in general not isomorphic
for other values of r and never isometric.

Note the shift in the scales of spaces I'zr(4)(E) and X(TH)/Q. This shift comes
from the fact that A is the Laplacian on I'y—1(E); it would disappear if A was
the Laplacian on I'po(E). Either way yields the same spaces I'gr(4)(E) by [50,
Proposition 2.1], but the second construction requires higher Sobolev regularity
o > 2 instead of oo > 1.

5.3 Lemma. Fractional Laplacian. Let a € (m/2,00) with o > 1, let g €
Metgo (M) and let E be a natural first order vector bundle over M. Then the
following statements hold:

(a) For all 7,5 € R, the operator (1 + A9)(=7)/2 Che()(E) = Thr(g)(E) is an

isometry with the same eigenfunctions (e;) and eigenvalues ()\1(-5#)/2

Lemma 5.1.

(b) For all s € [—a,a], the identity on T'(E) extends to a bounded linear map
Tgs(g)(E) — Tys(E) with bounded inverse such that the following function is
locally bounded:

) as in

Metpe (M) 3 g = ([ 1A L0y (B).Pas (B)) + 1A L0 g (B) D gre gy () € R
(¢) If E is trivial, then (b) holds for all s € [—a,a + 1].
Lemma 5.3 provides sufficient conditions for the equality of the fractional domain

spaces and the usual Sobolev spaces; see points (b) and (c). We repeat our warning
that this equality may cease to hold when theses conditions are violated.
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Proof.  (a) holds by the definition of the fractional domain spaces; see Sec-
tion 5.2.

(b) The statement follows from the following three claims:
Claim 1: The statement holds for s = —1. This follows from Lemma 5.1.(a),
noting that the operator 199 constructed in its proof depends continuously on
g € Metya (M)
Claim 2: If the statement holds for r € [—a,a] and if s = r + 2k € [—a,a] for
some k € Z, then the statement holds for s. To prove the claim, note that the
following norms are finite and depend continuously on g € Metg« (M) by (a) and
Lemma 5.1:

1A | L(0 oy (B) e (2)) = 11+ A ML) (B).Dae ()
<A 200y (29,0 (B N+ AT 7F I L0 (), 000 (B)

1A | L(0 e (B) T e () = (1 4+ AP L0 (B). i) ()
<N+ AYM L e (8). e () NI L i (B). Do) ()

Claim 3: If the statement holds for si,s2 € R, then it holds for all s in the
convex hull of {s1,s2}. This is true because the scales of spaces I'y«(FE) and
Che(q)(E), s € R, are complex interpolation spaces by [75, Theorem 7.4.4] and
[50, Proposition 2.2].

(c) follows by replacing the interval [—«, ] in Claim 2 by [—a, a + 1]. O

Having identified the fractional domain spaces in Lemma 5.3, we are ready to ap-
ply the general perturbative result in Theorem 4.5 to the present setting of Laplace
operators associated to non-smooth metrics.

5.4 Theorem. Perturbations of functions of the Laplacian. Leta € (m/2,00)
with a > 1, let E be a natural first order vector bundle over M, let r,s € R with
s,s+r € [—a,al, let ¢ € (0,m), and let f be a holomorphic function on S, with
SUPjes, INT/2f(N)| < 0o. Then the following map is real analytic:

g’—) f(1+Ag), MetHa (M) — L(FHS(E),FH7+S(E)>
If E is trivial, then this holds with [—a, a] replaced by [—a, a + 1].

Proof. By Theorem 3.7 the Laplacian is real analytically as a map
Metga (M) g— 14+ AY € L(Tga(E),Tga—2(E)) N L(Cg-a+2(E),Tg-a(E)).

Moreover, the functional calculus is real analytic by Theorem 4.5. Note that the
conditions of the theorem are satisfied because the assumption « > 1 ensures that
8= —a and v := a — 2 satisfy § < ~. If F is trivial, then Theorem 3.7 holds with
[—a, a] replaced by [—a, « + 1]. O

Recall from Lemma 3.8 that the directional derivative of the Laplacian with
respect to the metric extends to Sobolev spaces of low regularity. This also applies
to fractional Laplacians, as shown in the following lemma. These results are used
in the proof of Theorem 6.4 below.

5.5 Lemma. Derivative of the fractional Laplacian. Let a € (m/2,00) with
a > 1, let E be a natural first order vector bundle over M, let ¢ € (0,7), and
let f be a holomorphic function on S, which satisfies for some p € (1,a] that
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Supaes, AP f(A)| < 0o. Then the derivative of Py = f(1 + A9) with respect to the
metric g extends to a real analytic map

Met gra (M) x T g2p—o (S*T*M)) 3 (g,q) = Dy ¢Py € L(T o (E), T - (E)).

Proof. Let X,Y, Z be the spaces of operators given by

X = L(l'ge(E),Tyo-2(E)) N L(Tgz2-0 (E),I'g-a (E)),
Y = L(Tue(E),Tg-at20-1 (E)) N LT o242 (E), L g-o (E)),
Z = L(Fch (E), T'ga-2 (E)) N L(PHQ—2P+2 (E),PHQ—2P (E))

Note that the conditions a > 1 and p > 1 ensure that X, Y, and Z are intersections
of operator spaces on distinct Sobolev scales, as required in Theorem 4.5. Moreover,
let U be an open neighborhood of 1 + A9 € X with g € Metga (M) such that the
holomorphic functional calculus is well-defined and holomorphic in the sense of
Theorem 4.5. Then the desired map is the composition of the following two maps:

Metga (M) x T g2p—a (S?°T*M) € (g,q) = (1 + A9, D, ,A%) € (X,Y),
(U,Y) > (A, B) = Dapf(A) € L(T'ga(E),Tg-a(E)).

The first map is real analytic by Theorem 3.7 and Lemma 3.8. The second map
needs some interpretation. Note that the identity

L FOVRA(A)BR(A)dA
27 Jo(s.,\0)

1
= AT FNRA(A)AP~“BRy(A)dA.
T Ja(S,\O)

implies that
YVAeUVBeYNZ: DAny(A) e AaipDA,Apfan(A).

The right-hand side is the composition of the following maps, which are real analytic
by Theorem 4.5:

(U,Y) 3 (A, B) — (A, AP°B) € (U, 2),
(U,Z) 5 (A, B) — (A, Dapf(A) € U x LT g (E), T ge20 (E))
U x L(Cgra (E), T gra—2s (E)) 5 (A, B) = A*PB € L(T o (E),Tg—a (E))

This shows the statement for p € (1, @]. Finally, the statement for f(z) = 2P with
p =1 follows directly from Lemma 3.8. O

6. METRICS ON SPACES OF METRICS

This section is devoted to Riemannian geometry on spaces of Riemannian met-
rics. The theory developed in the previous sections will be used to establish well-
posedness of the geodesic equation for a wide class of metrics, which are defined
via the functional calculus of Laplace operators. Our main results, Theorems 6.4
and 6.7 below, close a gap in an earlier proof in [14] for integer order metrics and
generalize this result to a much wider class of metrics, including Sobolev metrics of
fractional order.
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6.1. Weak Riemannian metrics on Met(M). We consider Diff (M )-invariant
Riemannian metrics on Met(M) of the form

GF (k)= [ Telg(Ph)g ) vollg),
M

where for each g € Met(M), the operator
P,: T(S*T*M) — T(S*T*M)

is positive and symmetric with respect to the H%(g) inner product, i.e.,

/ Tr(g~(Pyh)g~'h)vol(g) > 0, iff h # 0 € T, Met(M)
M

/ Tr(g~ " (Pyh)g k) vol(g) = / Tr(g~ hg ™" Pyk) vol(g); -
M M
Note, that these two conditions are necessary in order to ensure that GF is a
Riemannian metric. In the following we will refer to P as an operator field. Further
conditions on this operator field are formulated in Condition 6.2 below.

Including the operator field P in the definition of the metric allows one to con-
sider higher order metrics. In particular the setting encompasses the following
examples:

P _ —1p —1 0 :
Gy (h, k) —/Tr(g hg~k)vol(g), H"-metric
or = / Tr (g_lhg_l(l + Ag)pk) vol(g) Sobolev HP metric, p € Rsg
M

or = /M Tr (g_lhg_lf(l + Aq)k> vol(g)

where f is a suitable spectral function as considered in Sections 4 and 5. Further
metrics considered in the literature include curvature and volume weighted metrics,
which can also be formulated in the present framework [26].

6.2 Conditions on P. We will frequently use the following conditions on the
operator field P and non-negative real numbers «, p with a > m/2:
(a) The operator field P is smooth as a map

Metga (M) 3 g — P, € GL(T o (S*T* M), T a2 (S*T* M),

where GL denotes bounded linear operators with bounded inverse.
(b) The operator field P is Diff (M )-equivariant in the sense that one has for all
¢ € Diff(M), g € Metya (M), and h € T o (S?*T*M) that

©*(Pgh) = Pp=g(¢"h).
(c) For each g € Metya (M), the operator P, is nonnegative and symmetric

with respect to the H%(g) inner product on I'ga (S?T*M), i.e., for all h,k €
T g (S2T*M):

/ Tr(g~" Pyhg™"h) vol(g) > 0,
M

/Tr(g_nghg_lk)Vol(g):/ Tr(g~thg~tP,k) vol(g).
M M



26 M.BAUER, M.BRUVERIS, PHARMS, PW.MICHOR

(d) The H(g) adjoint of the derivative of P with respect to the metric is well-
defined as a smooth map

Met o (M) x T'ya (S*T*M) 3 (g, h) = (D(y,.)Pyh)*
€ L(Tga (S*T*M),T go—2p (S*T*M))

such that the following relation is satisfied for all g € Metg« (M) and h,k €
Ty (S?T*M):

/TY(9’1((D<g,q>Pq)h)g’1k)Vol(g)=/ Tr (9~ 'q9~ 1 (D(g,) Pyh)*(K)) vol(g).
M M

6.3 Remark. In [14, Section 3.2] we had more complicated conditions, and we
implicitly claimed that they imply Condition 6.2 above. There was, however, a
significant gap in the argumentation of the main result. Namely, we did not show
the smoothness of the extended mappings on Sobolev completions. The results of
this article allow us to close this gap and to extend the analysis to the larger class
of fractional order metrics.

The following theorem provides a wide class of operators which satisfy Condi-
tion 6.2:

6.4 Theorem. Conditions on P. Let ¢ € (0,7), let p € (1,00), and let f be a
holomorphic function on the sector S, which satisfies for some constant C' > 0 that

VzeS,: CH2P| < |f(2)| < CJ2P).
Then the field of operators
Met(M) 3 g+ Py := f(14+ AY) € L(D(S*T*M),T(S*T*M))

satisfies Condition 6.2 for any o € (m/2,00) N [p,00). For f(z) = 2P (i.e., the
fractional Laplacian) the theorem continues to hold for p = 1.

Proof. We shall check Condition 6.2.(a)—(d) one by one.

(a) follows from Theorem 5.4 applied to the functions f and f~1.

(b) Diff(M)-invariance of (1 + A9) is well-known for smooth g and follows in
the general case by approximation, noting that the pull-back along a smooth dif-
feomorphism is a bounded linear map between Sobolev spaces of the same order
of regularity [49, Theorem B.2]. By the resolvent integral representation of the
functional calculus this implies Diff (M )-invariance of f(1 + A9).

(c) is well-known for smooth g, h, k and follows in the general case by approx-
imation using the continuity of g + (-,-) go(4) established in Lemma 3.3 and the
continuity of g — P,.

(d) By Lemma 5.5 the derivative of P with respect to the metric extends to a
smooth map

Metga (M) x Tgzp—a (S2T*M) 3 (g,q) = Dy P, € L(Tga(E), T o (E)).

Equivalently, by changing the order of the arguments g, ¢, and h, the following
function is smooth:

Met g (M) x Do (E) 3 (g, h) = Dy Pyh € L(L r2o-a (S°T* M), T gr-a (E)).
Dualization using the H%(g) duality shows that the adjoint is smooth

Metga (M) x T'ga(E) 3 (g,h) = (D(g,yPyh)* € L(T'ga (E), T go—2p (S2T*M)).

d
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Next, we derive the geodesic equation of the metric G:

6.5 Theorem. The geodesic equation. In the notation of Section 6.1, the
geodesic equation of the metric GT' reads as

11 N 1 _ _
guw =Py} §(D<g,->ngt) (gt)+ZgTr(g "(Pyge)g ' gt)

1 1 _ 1 _
+ 3909 Y(Pyge) + §(Pg9t)9 "9t = (D(g,9,)Pa)gt — 3 Tr(g 1gt)(ngt)},

where the subscripts t denote differentiation in time, and (D (4. Pyg:)* is the adjoint
defined in Condition 6.2.(d).

The above formula has been first obtained in [14, Section 3.1] using a Hamiltonian
approach. To keep the presentation self-contained we present a direct derivation.

Proof. The kinetic energy of a path g: [0,1] — Met(M) is defined as

1

1
Bo) =5 [ Gllan g
0

The variation in the direction of a path h: [0,1] — ['(S?*T*M) with vanishing end
points is given by

1
Dg,hEz/ / (Tr((Dg,hg_l)qutg‘lgt)+Tr(g‘1ngtg‘1ht)
0 M

Dy, vol(g)

1 1
S Tr (97 (Digy P)gegge) + 5 Tr (97 Pgrg ™!
+ 5T (9 (D Plgeg 9:) + 5T (97 Pgeg ™ 9:) vol(g)

) vol(g)dt.

Using the variation formulas [14]

_ 1, - D5 vol(g) _
D 1 — _ 1h 1 9, —T 1h
g,h9 g g VOl(g) I‘(g )

we obtain

1
Dg,hE=// (ﬂ(g_lhg‘ll?qgtg_lgt)+TY(9‘1ngtg‘1ht)
0 M

1 - - 1 ~ ~ _
+5 T (g "(Dyg.nP)grg™ ' gi) + §Tf(9 "Pgig~ " g:) Tr(g 1h)> vol(g)dt.

Integrating by parts in the variable ¢ of the second term and using the definition of
the adjoint for the third term allows one to write the variation of the energy as

1
Dy nE :/ / Tr (97 hg™ " Py(gee — Tglgs. g¢))) vol(g)dt,
0 M

where the Christoffel symbol 'y (g:, g¢) is given by the right-hand side of the geodesic
equation in the statement of the theorem. O

We will show well-posedness of the geodesic equation using the Ebin—Marsden
[32] approach of extending the geodesic spray to a smooth vector field on T' Met go (M)
for sufficiently high o and showing that solutions exist on an interval which is inde-
pendent of a. The latter statement is a consequence of the no-loss-no-gain theorem
of [32], which we adapt to the present setting in the following lemma.
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6.6 Lemma. No-loss-no-gain. Let a > m/2, let S be a smooth Diff (M)-
invariant vector field on T Metge (M), let T € (0,00], let U be an open Diff (M)-
invariant subset of T' Metga (M), and assume that the flow of S exists as a smooth
map
F1°: [0,T) x U — T Met o (M).

Then the flow restricts to a smooth map

F1°: [0,7) x (U NT Met gas1(M)) = T Met o+ (M).
Thus, there is no loss or gain in reqularity during the evolution along S.

Proof. The proof is divided in two steps.
(a) We claim that there is a finite number n € N and vector fields X3,..., X,
such that T gat1 (S2T*M) carries the initial topology with respect to the map

Tpat1(S?T*M) > h e (b, Lx,h, ..., Lx, h) € Tga(S*T* M),

where £ denotes the Lie derivative. Loosely speaking, this means that h has reg-
ularity H**! whenever h and its Lie derivatives have regularity H®. The claim
can be shown by adapting the proof of [32, Lemma 12.2] to diffeomorphisms act-
ing on Riemannian metrics by pull backs. This task is facilitated by the fact that
the vector fields in the present setting are not required to be divergence free. The
key observation is that in any chart, Lie derivatives along coordinate vector fields
coincide with ordinary derivatives. Moreover, the charts can be constructed as in
Section 2.3 such that the coordinate vector fields extend to smooth vector fields
on all of M. Thus, the claim follows from the well-known fact that the space
HetL(R™ R™m+1)/2) carries the initial topology with respect to the map

HOYR™ R™™HD/2Y 5 by (h, i h, ..., Opmb) € HO(R™, R™MFD/2ymt1

(b) The rest of the proof is as in [32, Theorem 12.1]. Let X € X(M) be a
smooth vector field, and let R 3 5 — ¢, := FIX € Diff(M) be the flow of X on
M. As the Diff (M)-equivariance of S implies the Diff (M)-equivariance of F1¥, one
obtains for any s € R>g, ¢t € [0,T], and (g, h) € T Metga+1 (M) that

i (F1F (9,h)) = FIF (259, 1).
Differentiating this equation with respect to s and evaluating at s = 0 yields
Lx (F1F (g,h) = TFI (Lx(g, h)).

The right-hand side, seen as a function of ¢, is a smooth curve in 77T Met ga (M)
thanks to the H**! regularity of (g,h) and the smoothness of F1° in the H*
topology. Thus, the left-hand side enjoys the same regularity, and it follows from
(a) that ¢t — F1Z (g, h) is a smooth curve in T Met o1 (M). O

We are now able to prove the main result of this section, namely local well-
posedness of the geodesic equation under Condition 6.2, which is satisfied for frac-
tional order Sobolev metrics by Theorem 6.4.

6.7 Theorem. Well-posedness of the geodesic equation. Assume that the

operator P satisfies Condition 6.2 for some p € R>q and all a € [ag,00) with

ap € (m/2,00). Then the following statements hold for each o € [ag, o).

() The initial value problem for the geodesic equation has unique local solutions in
Metga (M). The solutions depend smoothly on t and on the initial conditions
g(0) € Met®(M) and g;(0) € Ty (S?*T*M).
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(b) The Riemannian exponential map exp’ exists and is smooth on a neighborhood
of the zero section in T Metya (M), and (m,exp®) is a diffeomorphism from a
(smaller) neighborhood of the zero section to a neighborhood of the diagonal in
Met* (M) x Met™(M).

(c) The neighborhoods in (a)—(b) are uniform in o and can be chosen open in the
H topology. Thus, (a)—(b) continue to hold for o = 0, i.e., on the Fréchet
manifold Met(M) of smooth metrics.

Proof.  (a) This can be shown as in [14, Theorem 3.2]. For the convenience of
the reader we repeat the proof in the notation of the present paper. The geodesic
equation can be written as

gt = S1(g,h) :==h

e X 1 _ _
b= Sa(g, ) i= By (5D, Page)" (90) + 79 (9™ (Pyg)g ™" 90)

1 B 1 _ 1 _
+ 59t9 Y(Pyge) + §(ngt)g Yo — 3 Tr(g 1915)(ngt)>'

This is the flow equation of the geodesic spray S = (51, S2), which is a vector field
on the tangent space T Met gra (M) = Metga (M) X T'ga (S2T*M). For any a > ag,
a term by term investigation of the right-hand side using Condition 6.2.(c)—(d)
shows that S is a smooth vector field on T Metga(M). Thus, the theorem of
Picard-Lindelof shows that the flow of S exists as a smooth map

F1°: [0,T) x U — T Met g (M)

for some T' > 0 and some open subset U of T'Metga (M), which may be chosen
Diff (M)-invariant thanks to the Diff (M )-equivariance of S.

(b) follows from (a) as in [14, Theorem 3.2], and (c) follows from Lemma 6.6.

(]
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