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A B S T R A C T

This paper presents the use Machine Learning (ML) techniques to study the behavior of shear-deficient re-
inforced concrete (RC) beams strengthened in shear with side-bonded and U-wrapped fiber-reinforced polymers
(FRP) laminates. An extensive database consisting of 120 tested specimen and 15 parameters was collected. The
resilient back-propagating neural network (RBPNN) was used as a regression tool and the recursive feature
elimination (RFE) algorithm and neural interpretation diagram (NID) were employed within the validated
RBPNN to identify the parameters that greatly influence the prediction of FRP shear capacity. The results in-
dicated that the RBPNN with the selected parameters was capable of predicting the FRP shear capacity more
accurately (r2 = 0.885; RMSE = 8.1 kN) than that of the RBPNN with the original 15 parameters (r2 = 0.668;
RMSE = 16.6 kN). The model also outperformed previously established standard predictions of ACI 440.R-17,
fib14 and CNRDT200. A comprehensive parametric study was conducted and it concluded that the im-
plementation of RBPNN with RFE and NID, separately, is a viable tool for assessing the strength and behavior of
FRP in shear strengthened beams.

1. Introduction and background

Externally strengthening reinforced concrete (RC) structures has
been a popular practice in both the industry and research community
over the last few decades [1–5]. This application involves bonding
composites to the surfaces of RC members to upgrade their strength,
stiffness, and ductility [6–8]. In particular, experimental investigations
have been conducted to study the shear behavior of RC beams ex-
ternally strengthened using composites like carbon-fiber reinforced
polymers (CFRP), glass fiber-reinforced polymers (GFRP), aluminum
alloy (AA) plates, and high strength steel wires [1,9–14]. Other studies
involved different shear strengthening schemes, where the major
schemes that have been implemented in the literature were FRP U-
wrapped and side-bonded sheets/strips [1,4,7,15]. This encouraged the
development of empirical models for predicting the design shear
strength of RC beams externally strengthened using bonded FRP sheets/
strips [16,17]. All developed models, very much, follow the same
concept where the ultimate shear capacity of an externally strength-
ened RC beam is the summation of the shear contribution from concrete
(Vc), steel (Vs), and FRP (Vf).

Furthermore, this concept assumes that the beam's shear force
components reach their peak values without one component failing
prior to the other. It overestimates the shear strength and does not

account for any shear interaction between the different shear force
components explained earlier [17]. Chen et al. [17] published an article
about the shear interaction-effect between FRP strips (U-wrapped and
side bonded) and internal steel stirrups. A design shear capacity model
for FRP shear-strengthened RC beams was developed in which the ef-
fects of the size, spacing, and yield strength of the steel stirrups on the
FRP contribution in shear were considered. Their findings represented a
valuable step forward in the literature; however, the model develop-
ment does not account for crack-width variations that are dependent
on: (a) the amounts of steel and FRP shear reinforcement; (b) tensile
reinforcement. Another study was conducted by Colotti and Swamy
[18], where an analytical model was developed to estimate the shear
contribution of FRP reinforcement, by assessing the flexural-shear in-
teraction between the internal steel reinforcement and external FRP
reinforcement. As a result, the model is capable of evaluating the shear
capacity of FRP-strengthened RC beam with sufficient accuracy and
reliability. However, its mathematical structure is lengthy and
somehow complicated since it analytically accounts for various cases
such as: (a) flexural-shear interaction failure modes including the
contribution of external shear reinforcement, FRP debonding, and FRP
rupture; (b) shear web-crushing; (c) pure flexural failure modes.

With the advancement in soft computing, machine learning (ML)
methods have been utilized to identify and address civil engineering
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problems [18–21]. Artificial Neural Network (ANN), is a computational
paradigm that mimics the human brain by receiving inputs and itera-
tively maps them into an arbitrary number of matrices. This process is
repeated until the model minimizes the error and accurately approx-
imates a solution. By utilizing the regression nature of this tool, civil
engineers have executed it to produce dynamic models that evaluate
the response variables [22]. ANN was also used in a variety of studies
which involved investigating the nonlinear behavior of concrete
structures [18,22,23]. Recently, researchers have implemented ANN to
accurately predict the shear capacity of RC beams that are strengthened
using composite materials [24]. Other retrofitting applications invol-
ving the confinement effect of composite materials on the axial-load
capacity of RC columns were also investigated using ANN [25–27].
ANN has also been successful in modeling FRP debonding by identi-
fying the parameters that directly influence this failure mode [28].

However, a drawback of implementing ANN is its black-box nature
that offers little tangible insight of how the model analyzes the in-
dependent parameters. This drawback can be partially eliminated by
using variable importance methods which incorporate ML models.
Common ML tools used extensively in the published literature are
Sequential Feature Selection (SFS) [36] and Neural Interpretation
Diagram (NID). These algorithms assist the user in identifying the
parameters that significantly influence the model and thus understand
the behavior of the model. For instance, Rodriguez Galiano et al. [29]
used SFS methods to select the most important features within subset of
20 parameters in predicting groundwater pollution. As a result, the final
model with the selected features yielded the most accurate results.
Mozumder, and Laskar [30] employed the NID to study the viability of
ANN in predicting unconfined compressive strength of geo-polymer
stabilized clayey soil. The study focused on studying 283 soil samples
by feeding them as inputs into an ANN, and predicting the strength of
soil. The trained ANN incorporated a NID to perform a sensitivity
analysis and identify the most influential features that affect the model.
As a result, the liquid limit and the plastic limit resulted in negative
effects on the ANN model while the other parameters showed positive
association with the ANN model.

Recently, two studies were conducted by the authors of this paper to
investigate the viability of implementing ANN with NID to accurately
predict the FRP shear resistance in externally strengthened RC beams,
and ANN with SFS to accurately predict the compressive strength of
ultra-high performance concrete [31,32]. This encouraged the im-
plementation of a more confident framework such that recursive fea-
ture elimination (RFE), a sister tool of SFS, with NID can be utilized to
identify and select the critical parameters in a model. The aim of this
study is to implement ML algorithms with a validated ANN to identify
the critical parameters which affect the accuracy of predicting the FRP
shear capacity of strengthened RC beams with FRP laminates and ob-
tain a rational model. An extensive database of 120 points with 15
variables was compiled from the published literature, where the geo-
metric and mechanical properties of concrete, internal steel reinforce-
ment, and FRP strips/sheets were accounted for. The selected para-
meters were carefully studied and compared to published experimental
works to validate the model’s consistency. Predictions were made using
the model with the selected features and compared to the predictions
calculated using previously established models found in international
design codes and standards (ACI 440.R-17; fib14; CNRDT200). Finally,
a comprehensive parametric study was conducted to investigate the
effect of FRP and internal transverse steel reinforcement on the FRP
shear capacity of shear-strengthened RC beams. The findings of this
study could assist structural engineers and researchers in implementing
emerging ML tools in simulating the shear behavior of externally
strengthened RC beams.

2. Research significance

The previously mentioned models [17,18] follow the truss analogy

in which a list of failure modes is assumed to derive different expres-
sions. This produces a network of discrete models whose complexity
increases as the number of assumptions increases; hence, arriving at an
impractical model that is difficult to use in design. Therefore, devel-
oping analytical models using the truss analogy, alone, imposes certain
restrictions and is somehow lengthy and complicated. In addition,
several experimental investigations involving an extensive variation in
parameters were conducted in the literature. These extensive databases
should be utilized in emerging computational toolboxes (i.e., ANN,
RFE, and NID) to accommodate the dynamic nature of the system, while
maintaining a simple model.

3. Methodology

3.1. Resilient back propagation neural network

Another AI tool that is a modified version of ANN is the resilient
back-propagation neutral network (RBPNN), where both algorithms
tweak the biases and weights such that the model locates a local
minimum in the error or loss function [33]. By taking the partial deri-
vative of the loss function in terms of the weights (dE/dω), it is possible
to know the direction of the local minimum in a function and manip-
ulate the initial weights. The underlying differences between the BPNN
and RBPNN algorithms are: (a) the RBPNN imposes a unique learning
rate, ηk, for every weight in the ANN model as opposed to the BPNN
algorithm, which uses a learning rate to the overall model; (b) when
calculating the next weights of the model, the BPNN algorithm accounts
for both the sign and magnitude of the partial derivative, whereas the
RBPNN uses only the sign such that the learning rate mainly influences
the convergence of the model. Equation (1) summarizes the RBPNN
algorithm in the ANN, where t is the iteration step and k represents the
weight between the connected neurons. In this study, the Resilient Back
Propagation Neural Network (RBPNN) was employed as a wrapper for
another machine learning tool called neural interpretation diagram
(NID), which will be discussed in the following sections.
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The accuracy of an ANN model is highly dependent on the nature of
the data it analyzes. To avoid overfitting and obtaining inaccurate
predictions, the input data points need to be scaled between a com-
parable range of numbers and aim for a smoother relationship, noise
reduction, and feature extraction. There are several scaling techniques
in the literature that map the data points to a certain domain of num-
bers, which include: the min-max normalization, the Z-score normal-
ization, and the sigmoidal normalization. In this study, the min-max
normalization was used to map the parameters between a domain,
[0,1], as presented in Equation (2). The min-max normalization scaling
technique simplifies the ML tools since all of the parameters are within
the same scale; making it easier to compare and become more robust.
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The matrix multiplication that occurs within the hidden layers is
accompanied with an activation function that transforms the calculated
set of results into a particular domain of numbers. The most popular
activation functions used in regression and classification analyses are:
(a) sigmoid function; (b) hyperbolic tangent function; (c) linear acti-
vation functions. In this study, the sigmoid function was used re-
peatedly between the hidden and outputs layers, and the linear acti-
vation function was used to transform the final predictors to the
linearized form. Equation (3) and Equation (4) presents these activation
functions, where F is the function containing variable X. The sigmoid
activation function maps the products of the hidden layers between 0
and 1 while maintaining its nonlinear form, which simplifies the ANN
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and makes it more versatile.
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3.2. Neural interpretation diagram

Researchers have advocated the usage of ML tools to visually inspect
the magnitude of the ANN’s weights and interpret the input variables’
contributions in the ANN model [34,35]. Neural interpretation dia-
grams (NID) provide a visual representation of the positive (high in-
fluence) and negative (low influence) weights using different high-
lighted colors on the ANN model’s wires. Fig. 1 shows a single hidden
layered NID with blue and red colored wires, where both the blue
(solid) and red (dashed) colors represent a positive (high influence) and
negative (low influence) association between the input and output
variables, respectively. Interpreting connection weights of NIDs, alone,
is difficult due to the complexity of connections among the neurons.
Therefore, Olden and Jackson [35] proposed a Randomization test that
quantifies the input variable’s contributions and constructs multiple
ANN models, with different initial random weights. Afterwards, the
most accurate ANN model is selected and the initial weights are used to
estimate the relative importance, using the Garson’s algorithm. As a
result, a histogram is generated to illustrate the frequency of positive
associations (high influence) corresponding to each input parameter.
This method empirically constructs the relationships between the input
and output parameters, which precludes the physical soundness of the
ANN model and forced it to over fit. To alleviate this, another variable
importance ML algorithm should be used to validate the results pro-
duced by the NID.

3.3. Recursive feature elimination

Another ML tool that identifies the most influential parameters
within a model is the Recursive Feature Elimination (RFE) function. RFE
is an optimization technique that aims to find the most contributing
independent parameters within a dataset of distinct parameters during
regression. It is employed with a wrapper, the RBPNN, to repeatedly
create models by recursively appending input parameters to the model
during each run until the error drastically increases. In this study, the
Root Mean Square Error (RMSE) was used to evaluate the error between
the model and the measured values. The RFE works by systematically
removing input parameters until the error is minimized and a dataset
filled with the independent parameters is obtained. Afterwards, it ranks
the selected features based on the order of their elimination. A sum-
mary of the RFE algorithm is shown in Fig. 2.

4. Experimental data: collection, classification and validation

Extensive research has been conducted in studying the nonlinear
behavior of externally strengthened RC beams, in shear, using ANN

models [15–17]. Geometric properties, reinforcing steel, and externally
bonded reinforcement (EBR) details were used as input parameters for
predicting the shear contribution of the EBR. Table 1 presents a brief
summary of studies that have used ANN for selected shear strength-
ening techniques along with the corresponding parameters employed in
those studies.

Perera et al. [40] and Narderpour et al. [38] used ANN to predict
the shear strength of RC beams and compared their predications with
analytical/empirical prediction models from different design codes and
standards. They also carried out sensitivity analyses using the Garson
Index to determine the relative importance of each input parameter
with respect to the shear contribution of FRP. The results showed that
the developed ANN models were capable of accurately predicting the
FRP shear contribution by a larger margin than the analytical/empirical
models obtained from different international codes and standards. Si-
milarly, Perera et al. [40] incorporated AI models like genetic algorithm
and ANN to investigate the shear mechanism of strengthened RC
beams. As a result, the work presented two AI models, GA and ANN,
which outperformed the analytical/empirical models obtained from
international design codes and standards in predicting the shear
strength of externally strengthened beams.

In this study, a database of 120 points and 15 variables consisting of
the geometric and mechanical properties of shear-strengthened RC
beams was collected from the published literature. These data points
varied based on their individual mechanical and geometric properties,
in which the authors followed a predefined criteria such that over-fit-
ting and inaccurate predictions could be avoided. This predefined data
search criteria is described below:

• Normal-sized rectangular and T-shaped RC beam sections were
collected, where the span exceeds four times the depth of the section
or the shear span-to-depth ratio is greater than two (a/d > 2) in
accordance with the ACI 318-14 code [44].

• Both four-point and three-point loading schemes were accounted
for.

• The collected specimens were made up of both normal strength and
high strength concrete.

• The presence and absence of transverse steel reinforcement, with its
corresponding spacing, was accounted for.

• The materials used, in shear strengthening, were fiber-reinforced
polymers (FRP); mainly carbon FRP (CFRP) and glass FRP (GFRP).

• The strengthening techniques of the collected specimens were fo-
cused on U-wrapped and side-bonded (SB) RC beams.

• The specimens consisted of spaced and continuous strips.

• The shear capacity of the FRP retrofit was assumed to be the dif-
ference between the ultimate shear force resisted by the strength-
ened sample and the shear force resisted by the control sample.

The parameters included in this study were similar to the para-
meters studied by previous authors, as shown in Table 1. However,
some parameters, like ratio of both steel and fiber, are functions of
other independent parameters. Therefore, each parameter used in this
study was completely independent to investigate the behavior of each
parameter individually. Table 2 outlines the statistical measurements of
these collected specimens. It is worth mentioning that a value of 0 in
the yield strength of the steel stirrups (fy,s) and area of stirrup-to-spa-
cing ratio (Av/S) indicates no internal shear reinforcement in the tested
beams. Also, a value of 0 in the area of longitudinal reinforcement (Ast)
and width of FRP U-wrap (Bf) indicates that there was no longitudinal
reinforcement and U-wrap strength, respectively, in the tested beams.

Prior to the ANN analysis, the statistical measurements of the data
were evaluated to understand the spread of the points and remove any
outliers that would hinder the analysis. This can be achieved by visually
inspecting these statistical measurements in Table 2, where most of the
parameters have similar medians and means. Fig. 3 presents a graphical
representation of this particular distribution, where the authors

Fig. 1. NID Architecture.
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attempted to obtain a normal or ideal distribution for all parameters.
However, due to the broad spectrum of variables that were studied, a
perfectly bell-shaped distribution was not obtained. These drawbacks
could hinder the model’s accuracy of predicting the shear strength, and
forced the authors to cut down on any outliers without benefitting the
model. Therefore, ML methods should be used to efficiently remove the
independent parameters that negatively influence the model’s perfor-
mance.

5. Artificial selection process

5.1. Validating RBPNN architecture

In this study, the RBPNN was constructed as a wrapper for both the

NID and RFE algorithm; however, its structure is created by defining
the number of hidden layers and neurons in the network. This was
accomplished by implementing a trial-and-error approach and auto-
matically adding one neuron per analysis for a total of 15 neurons.
During each analysis, the data points are divided into the following: (a)
70% for training; (b) 15% for validation; (c) 15% for testing. This se-
paration of data prevents the model from memorizing the solution and
makes it more reliable. Fig. 4 shows the neuron-validation process for
selecting the optimum number of neurons required for the model to
predict the most accurate outputs. It is worth mentioning that for each
neuron inserted ten analyses were executed and the average RMSE was
assigned to the selected neuron. As a result, 8 neurons were sufficient
enough to yield an average RMSE value of about 90 kN.

A double hidden layered RBPNN was also tested in which the

Fig. 2. RFE Flowchart.

Table 1
Studied input parameters for selected strengthened RC beams in shear by different authors.

Author Tanarslan et al.
(2012) [37]

Li et al.
(2017) [42]

Perera et al.
(2016) [40]

Perera et al.
(2016) [41]

Naderpour et al.
(2017) [38]

Adhikary et al.
(2004) [39]

Yousif et al.
(2010) [24]

Concrete Details bw (mm) √ √ √ √ √ √
deff (mm) √ √ √ √ √
h (mm) √ √ √
L (m) √
a/d √ √ √ √ √
fc (MPa) √ √ √ √ √ √

Reinforcement Details ρL √ √
ρT,90 √
AT,90

(mm2/mm)
√ √ √

AL,B (mm2) √
AL,T (mm2) √ √
fyT (MPa) √ √ √ √

Externally Bonded
Reinforcement Details

wf/sf √ √ √ √
β (0) √ √ √ √
tf (mm) √ √ √ √ √
ρf √ √
df (mm) √ √
hf/hB √
Ef (MPa) √ √ √ √ √ √
εfu √ √ √
ffu (MPa) √ √

Table 2
Statistical Measurements of the Experimental data.

Parameters Symbols Minimum 1st Quartile Median Mean 3rd Quartile Maximum Standard Deviation

Beam width (mm) bw 75 75 150 144.6 150 250 40.7
Depth (mm) deff 118 118 270 263.5 343 425 84.3
Length (m) L 0.5 0.5 2 2.3 3 4.52 1.0
Span-to-depth ratio (mm/mm) a/d 2.5 2.52 2.78 2.7 3 6 0.8
Compressive strength of concrete (MPa) fc 13.3 13.3 34.7 35.7 41.8 61 10.0
Yield strength of stirrups (MPa) fy,s 0 0 252 235.3 441 645 222.5
Area of stirrups-to-spacing ratio (mm2/mm) Av/S 0 0 0.1885 0.3 0.503 1.57 0.4
Yield strength of longitudinal reinforcement (MPa) fy,L 391 391 464 473.1 500 759 65.5
Area of longitudinal reinforcement (mm2) Ast 0 0 11,093 45,958 73,095 375,406 66,469
Thickness of FRP sheet (mm) tf 0.1 0 0.167 0.3 0.33 2.1 0.4
Width of FRP U-Wrap (mm) Bf 0 0 120 103.5 150 250 67.3
Height of FRP strip (mm) Hf 25 25 300 261.7 305 450 88.4
Width of FRP-to-FRP strip spacing (mm/mm) Wf/Sf 0.05 0.05 1 0.8 1 1 0.3
Ultimate strength of FRP (MPa) ff 160 160 3450 2937 3650 4361 1222
Modulus of elasticity of FRP (GPa) Ef 5.79 5.79 230 197.8 231 390 92.7
FRP shear capacity (kN) Vf 10 10 30.5 33.4 42.5 91 17.8
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approach resembled that of the single layered RBPNN model. However,
the plot generated in this case was a heat map since there are two axes;
a first hidden layer and a second hidden layer. This posed an extreme
computation expense due to the presence of three iterations; therefore,
the maximum number of neurons was capped at 20 neurons. Fig. 5
shows a thermal map composed of two hidden layers with varying
neurons that range from 1 to 20 neurons. Similar to the single hidden
layered model, ten iterations were executed for every neuron added in
each layer. As a result, an RBPNN with 17 neurons in the first hidden
layer and one neuron in the second hidden layer demonstrated the
lowest average RMSE compared to the rest of the model architectures.

5.2. Employing the neural interpretation diagrams

After selecting the number of layers and neurons for an efficient
RBPNN, the NID tool was employed within the model as shown in
Fig. 6(a) and (b). As previously stated, the large number of wires and
inputs make it difficult to extract the exact parameters that have con-
tributed to the NID. Therefore, the Olden histograms, shown in Fig. 6(c)
and (d), were generated to represent the total weights as a function of
the relative importance. In this study, the first NID with all of the
parameters was used to determine the variables with negative im-
portance and the Olden histogram was used to quantify the importance
in terms of a percentage, as shown in Fig. 6(a) and (c). As a result, the
length, longitudinal steel reinforcement and yield strength were the
parameters that demonstrated negative relative importance, whereas
the rest of parameters yielded positive relative importance to the
model. Afterwards, the selected independent parameters were em-
ployed within another NID tool for validation purposes. It has been
observed from Fig. 6(b) and (d) that the previously selected features
have associated positively with the model. However, this does not
imply that all of the selected parameters consist of only blue wires ra-
diating outwards, it means that the weighted average of the red and
blue wires yielded positive outcomes. It is also worth mentioning that
the majority of the FRP properties exhibited the highest relative im-
portance within the model, which is intuitive since the shear capacity of
FRP should depend mostly on its own properties.

5.3. Implementation of recursive feature elimination

While the implementations of NIDs and Olden histograms were
useful approaches in investigating the parameters that contributed to
the RBPNN model, this study also presented the implementation of the
RFE algorithm to emphasize and validate the consistency of these

Fig. 3. Histogram Plots of Collected Parameters.

Fig. 4. Neuron-Validation for a Single-Hidden-Layered RBPNN Model.
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selections. The RFE tool was employed within the validated RBPNN
model multiple times since the tool randomly appends the parameters
until a significant rise in error is evident. Fig. 7 shows the most repeated
selections in the form of a ranking system where the model terminated
at a minimum RMSE value of 14.43 kN was achieved. Afterwards, the

RFE algorithm detected a large marginal RMSE and terminated the
analysis. Finally, the input parameters selected by both previously
employed ML techniques were: beam width (Bw), effective depth of
beam (deff), shear span-to-depth ratio (a/d), compressive strength of
concrete (fc), yielding strength of stirrups (fy,s), Area of stirrups-to-

Fig. 5. Neuron-Validation for a Double-Hidden-Layered RBPNN Model.

Fig. 6. NID and Olden Histogram for RBPNN with All the Independent Parameters.
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spacing ratio (Av/S), thickness of FRP sheet (tf), width of FRP U-wrap
(Bf), height of FRP strip (Hf), transverse FRP strip width-to-spacing
ratio (Wf/Sf), and FRP elastic modulus (Ef). Further emphasis regarding
the physical soundness of this selection is illustrated in the following
section.

5.4. Physical cogency of the AI selection

This section presents a brief overview on the artificially selected
parameters where the authors of this study referred to published lit-
erature involving these parameters. It was observed that analytical
models developed by international design codes and standards like the
ACI 440.2R-17 [45] and fib14 [46], as shown in Equations (5) and (6),
used some of the parameters selected in this study to estimate the FRP
shear capacity during real-life applications. It is worth mentioning that
the variables in both Equations (5) and (6) are explained in the fol-
lowing sections. Moreover, experimental and numerical investigations
were conducted to study the effect of most of these selected parameters
on the FRP shear capacity of externally strengthened RC beams.
[17,18,42,45–47]. Therefore, the NID and RFE was successful in iden-
tifying the main parameters that exhibit highly nonlinear relationships
with the FRP shear capacity without the implementation of highly
complicated concepts like the truss analogy.

=
+A f α α d

s
(V )

· ·(sin cos )·
ACI

fv fe fv
f (5)

= +V ε E ρ b d θ α α( ) 0.9· · · · · ·(cot cot )·sinf fib fd e f f w, (6)

6. Implementation of RBPNN modeling

6.1. RBPNN modeling with all default parameters

Predictions of the FRP shear capacity using default independent
parameters were performed using the previously validated RBPNN
model. The correlation coefficient (R2) values were calculated during
each randomly split set, where prediction versus experimental curves
were generated to observe the fit during the analysis of each, as shown
in Fig. 8(a)–(d). As a result, the analysis for training, validation, testing,
and all sets yielded R2 values of 0.705, 0.539, 0.615 and 0.668, re-
spectively. Since the R2 values of the training, validation, and testing
sets were roughly similar, it was concluded that the RBPNN was not
overfitting the points.

6.2. RBPNN with selected parameters

Similarly, another RBPNN model was employed to predict the FRP
shear capacity using the selected features. Fig. 9(a)–(d) show the pre-
dicted versus experimental curves of the FRP shear capacities for the
selected features per each set. It was observed that the correlation
coefficient (R2) values for the training, validating, testing and the
combination of all sets were recorded as 0.874, 0.914, 0.961 and 0.885,
respectively. Therefore, it was clearly observed that the model with the
selected parameters outperformed the model with all default para-
meters, which strongly illustrates the benefits of implementing emer-
ging ML toolboxes, specifically NID and RFE.

Furthermore, statistical measurements of both RBPNN models were
calculated as shown in Table 3, where the R2 and RMSE values, before
and after selection, went from 0.668 to 0.885 and 16.6 kN to 8.1 kN,
respectively.

6.3. Code comparison

The evaluation of FRP shear strength resistance was executed using
three different design standards, mainly: the ACI 440.2R-17 [45], fib14
[46] and CNR-DT200 [47] FRP shear strength design standards. Table 4
shows the equations used to evaluate the contribution of FRP shear
resistance based on the bonding configuration (i.e. U-wrap or side-
bonded schemes).

These adopted numerical models yielded an array of shear strength
values in which the predicted and experimental results were plotted
against each other. Moreover, the ratio of the predicted-to-experimental
shear strength was also evaluated and plotted for each design standard.
These plots were compared with the plots produced by the ANN with
selected features, as shown in Fig. 10. As a result, it was observed that
the proposed ANN model was capable of estimating the FRP shear
strength more accurately than the models that are available in the de-
sign standards. In addition, statistical measurements like the RMSE, R2,
standard deviation (SD), coefficient of variation (COV), and mean
predicted-to-experimental shear strength ratio (μP:E) were calculated to
support this conclusion and are shown in Table 5. It is worth men-
tioning that the data points used to evaluate the shear strength of the
specimens were obtained from the test segment (15% of the data
points); hence, a more reliable comparison was made using data that
was not trained or memorized by the proposed ANN (ANNtest).

7. Parametric study

It is clearly demonstrated that the implementation of NID and RFE
tools, within the RBPNN model, yielded more accurate results in pre-
dicting the FRP shear capacity of the strengthened RC beams. As a re-
sult, a parametric study, using the developed RBPNN, was conducted to
investigate the influence of variation of different parameters that affect
the FRP shear strength. This also made the RBNN development more
reliable by comparing the conclusions obtained from the parametric
studies with the conclusions reported in the literature. In this section,
the parametric study was divided into two separate investigations: (a)
effect of FRP properties on FRP shear capacity; and (b) effect of
transverse reinforcement (stirrups) on FRP shear capacity. The range of
applicability of each parameter was assessed such that the parametric
study explores the behavior of the specimens with realistic geometrical
and mechanical properties. The varied parameters in the shear-
strengthened RC beams abide by the codes and standards while pro-
viding the unique behavior of selected parameters within the RBPNN
model. As a result, the two parametric studies were carefully designed
to capture the behavior of shear strengthened beams.

The values of the parameters employed within the parametric study
were selected within a domain bounded by the maximum and minimum
values of experimental data shown in Table 1. For example, the widths
of the beams were between 150 mm and 250 mm. The remaining

Fig. 7. RFE Plot of Selected Features.
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parameters followed the same procedure except for Av/S, ff and Ef,
whereby these parameters were a function of the type of design pro-
cedure used (Av/S) or the type of FRP composite used (ff and Ef). During
the parametric study, the steel shear reinforcement depended on the
minimum and maximum shear reinforcement limits imposed by the ACI
318-14 [44] design provisions as shown in Equations (7) and (8), where
the final values are outlined in Table 6.

⎛
⎝

⎞
⎠

= ′ ≥A
S

f b
f

b
f

1
16

0.33v
c

w

s

w

smin (7)

⎛
⎝

⎞
⎠

=A
S

A
S
2v b

max min (8)

where f’c is the concrete compressive strength, bw is the width of the
beam, fs is the yield strength of the transverse reinforcement, Ab is the
area of the bar used and Smin is the minimum spacing of stirrups taken
as the greater of 25.4 mm or 1.33 times the aggregate size [44]; in this
study, the minimum spacing and bar diameter used were 50 and
10 mm, respectively.

Furthermore, two types of FRP composites were used in this study;
namely, CFRP and GFRP composites. These different composites were
analyzed separately during the parametric study due to the different
mechanical properties associated with both of these strengthening
materials. This allowed the authors of this paper to assess the different
responses accompanying the input of each composite within the RBPNN
model. Since the data collection was focused primarily on both Side-
Bonded (SB) and U-Wrapped (UW) FRP strengthening schemes, the
parametric study accounted for both of these parameters separately to
illustrate their underlying effect on the FRP shear capacity in externally

strengthened RC beams. Table 7 shows the parameters of the studied
specimens and the range of the parameters that are used as variables for
the two conducted parametric studies. The values of area of stirrups-to-
spacing ratio (Av/S) were obtained from the database and were be-
tween the design limits evaluated using Equations (7) and (8). Simi-
larly, the ultimate tensile strength and modulus of elasticity for both the
CFRP and GFRP sheets were taken as the average values of their cor-
responding composites within the collected database. The parameters
that were varied during the parametric studies were according to their
median and mean values such that most of the properties of shear-
strengthened RC beams were captured.

7.1. Effect of FRP properties on FRP shear capacity

The aim of this parametric study is to investigate the effect of
varying the FRP thickness (tf) and FRP strip width-to-spacing ratio (Wf/
Sf) of the shear strength of RC beams strengthened with two different
strengthening mechanisms: (a) SD and UW; (b) two different FRP ma-
terials (CFRP and GFRP). The FRP thickness (tf) ranged between 0.1 and
0.3 and FRP strip width-to-spacing ratio (Wf/Sf) ranged between 0.25
and 1.0, while the area of stirrups-to-spacing ratio (Av/S) fixed at 0.5,
all other parameters are kept constant as shown in Table 7. This re-
sulted in four conditions for the RC beam, mainly SB-CFRP, SB-GFRP,
UW-CFRP and UW-GFRP.

Fig. 11(a) shows the effect of variation of CFRP thickness (tf) and
width-to-spacing ratio (Wf/Sf) on CFRP shear strength contribution (Vf)
of RC beam strengthened with SB-CFRP. It is observed from Fig. 11(a)
that an exponentially increasing relationship exists between the FRP
shear resistance (Vf) and the width-to-spacing ratio (Wf/Sf). In addition,

Fig. 8. Predicted Versus Experimental Curves for FRP Shear Capacity using the Default Parameters.
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this behavior showed an increase (vertical shift) in the FRP shear re-
sistance as the CFRP thickness increases from 0.1 mm to 0.3 mm. For
example, the model with CFRP thickness of 0.1 mm and a width-to-
spacing ratio of 0.25 achieved an FRP shear capacity of 57.6 kN,
whereas the one with 0.2 mm CFRP thickness achieved an FRP shear
capacity of 63.2 kN (i.e., an increase of 9.72%). This observation is
consistent with the design standard formulae predictions where the FRP
shear capacity is directly proportional to the FRP sheet thickness
[48–50].

Fig. 11(b) shows the effect of variation of CFRP thickness (tf) and
width-to-spacing ratio (Wf/Sf) on CFRP shear strength contribution (Vf)
of RC beam strengthened with U-Wrapped CFRP sheets (UW-CFRP).
Similar exponentially increasing relationship exists as that of Fig. 11(a).
Furthermore, changing the strengthening scheme to a U-Wrapped
scheme enhanced the FRP shear capacity and demonstrated a larger
vertical shift than that of SB-CFRP while still maintaining an ex-
ponential profile similar to that in Fig. 11(a). This demonstrated that
the bottom segment of the U-shaped CFRP sheet enhanced the FRP
shear resistance due to the increase in concrete confinement coupled
with the flexural-shear interaction that were observed in other experi-
mental investigations conducted by Hawileh et al. and Panda et al.
[48,49]. For example, the model with CFRP thickness of 0.1 mm and a
width-to-spacing ratio of 0.25 achieved a CFRP shear capacity of 63 kN,

whereas the one with 0.2 mm CFRP thickness achieved an FRP shear
capacity of 73.9 kN (i.e., an increase of 17.9%). It can be concluded that
the increase in CFRP thickness has more influence in the CFRP shear
capacity (17.9%) for U-Wapped strengthening mechanism as compared
to the influence on Side-Bonded ones (9.72%).

Fig. 11(c) shows the effect of variation of GFRP thickness (tf) and
width-to-spacing ratio (Wf/Sf) on GFRP shear strength contribution (Vf)
of RC beam strengthened with Side-Bonded GFRP sheets (SB-GFRP). It
was observed that the relationship between the GFRP shear capacity
and width-to-spacing ratio followed a bi-linear profile, by exhibiting a
linear increase followed by a constant plateau, as shown in Fig. 11(c).
In addition, this behavior showed an increase (vertical shift) in the
GFRP shear resistance (Vf) as the GFRP thickness increases from 0.1 mm
to 0.3 mm while maintaining the same bilinear profile. For example, at
a thickness of 0.1 mm and a width-to-spacing ratio of 0.25, using a SB
strengthening scheme, the FRP shear capacity reached 13.9 kN,
whereas the section with a thickness of 0.2 mm and similar width-to-
spacing ratio achieved GFRP shear capacity of 16.2 kN, as shown in
Fig. 11(c) (i.e., an increase of 16.5%). The constant plateau portion of
the graph presents a limit in the increase of the GFRP shear strength
contribution (Vf). This phenomena occurred at certain width-to-spacing
ratio of GFRP, roughly in the range of 0.60–0.65, after which no in-
crease is observed in Vf with the increase in the width-to-spacing ratio
as shown in Fig. 11(c). This conclusion is supported by an experimental
and numerical study conducted by Banjara and Ramanjaneyulu [48] in
which an increase in the thickness of GFRP-strengthened sections with
homogeneously bonded sheets resulted in vertical shifts followed by
constant FRP shear capacity.

Fig. 11(d) shows the effect of variation of GFRP thickness (tf) and
width-to-spacing ratio (Wf/Sf) on GFRP shear strength contribution (Vf)

Fig. 9. Predicted Versus Experimental Curves for FRP Shear Capacity using the Selected Parameters.

Table 3
Statistical Measurements for Both RBPNN Models.

Statistics Measurements Before Selection After Selection

r2 0.668 0.885
RMSE (kN) 16.6 8.1
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of RC beam strengthened with U-Wrapped GFRP sheets (UW-GFRP).
The behavior of the UW-GFRP is similar to that of the SB-GFRP (i.e.,
bilinear profile). However, the increase (vertical shift) in the GFRP
shear resistance (Vf) as the GFRP thickness increases from 0.1 mm to

0.3 mm while maintaining the same bilinear profile, is larger as shown
in Fig. 11(d). This confirms that the increase in GFRP thickness influ-
ence the FRP shear strength contribution more in UW than in SB
strength mechanism. For example, at GFRP thicknesses of both 0.1 mm

Table 4
International design standards for shear strength of FRP.

Design Standards Equations where
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where Vf = the contribution of FRP shear resistance; dfv = the depth of FRP strip from top of sheet to center of bottom reinforcement; n= the number of sheets used;
tf = the thickness of each FRP sheet; Sf = the center-to-center spacing between FRP sheets; θ = angle of concrete diagonal crack with respect to the beam’s axis;
α = the angle of FRP sheet; ffe = the effective stress of FRP at failure; εfe = the FRP effective design strain; Ef = the elastic modulus of FRP. For further information
regarding the calculation of Vf using CNR-DT200, refer to [47].

Fig. 10. Correlation and deviation plots.
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and 0.2 mm, with width-to-spacing ratio of 0.25, both sections achieved
FRP shear capacities of 17.3 kN and 23.4 kN (i.e., an increase of
37.0%).

7.2. Effect of internal transverse reinforcement (stirrups) on FRP shear
capacity

The FRP strip width-to-spacing ratio ranged between 0.25 (spaced
strips) to 1.0 (longitudinally homogenous sheet) such that these values
were within the range prescribed in Table 2. Low amounts of internal
transverse reinforcement (stirrups) were used to simulate a shear de-
ficient RC beam during the parametric study as per the maximum and
minimum transverse reinforcement prescribed by ACI 318-14 [44] and
presented in Table 6. Finally, the mechanical properties of steel, con-
crete and FRP composites were taken as the average values in Table 2.

Fig. 12(a) shows the effect of variation of the internal transverse
reinforcement, where the area of stirrups-to-spacing ratio (Av/S) and
CFRP strip width-to-spacing ratio (Wf/Sf) were varied based on a side-
bonded CFRP scheme (SB-CFRP). It is observed from Fig. 12(a) that a
slowly increasing parabolic relationship exists between the FRP shear
resistance (Vf) and the stirrups-to-spacing ratio (Av/S), accompanied by
an increase (vertical shift) in the FRP shear strength contribution as the
width-to-spacing ratio (Wf/Sf) increases from 0.25 to 1. For example,
the model with width-to-spacing ratio of 0.25 and a stirrups-to-spacing
ratio of 0.25 achieved an FRP shear capacity of 56.1 kN, whereas the
width-to-spacing ratio increased to 0.5 while making no changes to the
other parameters, the model yielded an FRP shear capacity of 59.2 kN
(i.e., an increase of 5.53%). However, when larger amounts of Av/S are
used, the slope of the graph begins to decline; indicating a reduction in
shear strength contribution by CFRP as area of stirrups-to-spacing.
Several researchers conducted experimental and numerical investiga-
tions and reported this conclusion [16,50].

Fig. 12(b) shows the effect of variation of the internal transverse
reinforcement, where the area of stirrups-to-spacing ratio (Av/S) and
CFRP strip width-to-spacing ratio (Wf/Sf) were varied based on a U-
Wrapped CFRP scheme (UW-CFRP). A similar slowly increasing para-
bolic relationship to that of Fig. 12(a) is observed. Furthermore,
changing the strengthening scheme to a U-Wrapped scheme showed
little enhancement to the FRP shear capacity with very similar vertical
shifts as that of SB-CFRP.

Fig. 12(c) shows the effect of variation of the internal transverse
reinforcement, where the area of stirrups-to-spacing ratio (Av/S) and
GFRP strip width-to-spacing ratio (Wf/Sf) were varied based on a side-
bonded GFRP scheme (SB-GFRP). It was observed that the relationship
between the GFRP shear capacity and width-to-spacing ratio followed a
bi-linear profile for high GFRP strip width-to-spacing ratio (Wf/Sf) (i.e.,
exhibiting a linear increase followed by a constant plateau). However,
at lower Wf/Sf values (i.e., 0.25 and 0.5) the curves seem to exhibit a

parabolic profile similar to those of Fig. 12(a) and (b). All curves
showed an increase (vertical shift) in the GFRP shear resistance (Vf) as
the width-to-spacing ratio (Wf/Sf) increases from 0.25 to 1.0, as shown
in Fig. 12(c).

Fig. 12(d) shows the effect of variation of the internal transverse
reinforcement, where the area of stirrups-to-spacing ratio (Av/S) and
GFRP strip width-to-spacing ratio (Wf/Sf) were varied based on a U-
Wrapped GFRP scheme (UW-GFRP). The behavior of the UW-GFRP is
similar to that of the SB-GFRP; a combination of bilinear profiles for
high GFRP strip width-to-spacing ratio (Wf/Sf) and parabolic for low
Wf/Sf. The bilinear behavior indicated that for of width-to-spacing ratio
(Wf/Sf) greater than 0.5, the contribution of CFRP to shear strength
does not increase and peaks at area of stirrups-to-spacing ratio (Av/S) in
the range of 0.5–0.75 as shown in Fig. 12(c) and (d). It is observed from
Fig. 12(d) that the additional surface area provided by the U-wrap
scheme accelerated the rate at which the GFRP shear strength con-
tribution reached its limit as a function of Av/S.

8. Summary and conclusions

In this study, a large database consisting of the mechanical and
geometric properties of a shear-retrofitted RC beam was collected and
analyzed using a RBPNN together with ML techniques such as RFE and
NID. These ML techniques were used to construct a simpler network
with fewer input parameters than the original one whereby the mod-
ified model yielding more accurate predictions than that of the original
one. Furthermore, a parametric study was carried out to investigate the
effect of different parameters on the shear capacity of FRP-strengthened
RC beams. The model is consistent with previously conducted experi-
mental studies. The following conclusions have been drawn from this
study:

• RBPNN used with RFE and NID has proven to be an efficient ap-
proach in identifying the variables that strongly associated with the
model.

• The RBPNN with the selected features was capable of predicting the
FRP shear capacity more accurately (r2 = 0.89; RMSE = 8.1 kN)
than the RBPNN with all original features (r2 = 0.67;
RMSE = 16.6 kN).

• For the testing data, the RBPNN with the selected features out-
performed all considered international code predictions by far with
r2 = 0.96 compared to ACI with r2 = 0.48, fib14 with r2 = 0.39 and
CNR-DT200 with r2 = 0.48.

• The parametric study explored the influence of a wide range of
parameters on the FRP shear strength contribution. Such wide range
of parameters cannot be easily covered by experimental investiga-
tions. The trends and behavior of the studied RC beams corrobo-
rated very well with the available experimental investigation re-
sults.

• For RC Beams strengthened with CFRP (UW or SB), the relationship
between the FRP shear strength contribution and the FRP strip
width-to-spacing ratio (Wf/Sf) is positively exponential for both SB
and UW strengthening schemes. Slight increase in slope was evident
when strengthening scheme changed from SB to UW.

• For RC Beams strengthened with GFRP (UW or SB), there is an
optimum width-to-spacing ratio (Wf/Sf) for each FRP fiber thickness
beyond which the FRP shear strength contribution (Vf) will not in-
crease. The optimum FRP strip width-to-spacing ratio ranged

Table 5
Statistical measurements of international design standards and proposed ANN.

Models ACI 440.2R-17 fib14 CNR-DT200 ANNtest

RMSE (kN) 48.1 21.1 93.4 9.40
R2 0.482 0.392 0.484 0.961
SD (kN) 43.9 20.88 82.5 8.80
COV (%) 90.7 52.8 91.6 28.6
μP:E 1.775 1.18 2.85 1.06

Table 6
Section properties for calculating reinforcement limits in the parametric study.
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between 0.5 and 0.75 for both SB and UW strengthening schemes.

• For RC Beams strengthened with CFRP (UW or SB), the relationship
between the FRP shear strength contribution and the area of stir-
rups-to-spacing ratio (Av/S) is positively parabolic for both SB and
UW strengthening schemes. Significant increase in slope was evident
when strengthening scheme changed from SB to UW.

• For RC Beams strengthened with GFRP (U-Wrapped or Side-Bonded)
there is optimum area of stirrups-to-spacing ratio (Av/S) for FRP
strip width-to-spacing ratio (Wf/Sf) greater than or equal to 0.75;
beyond which the FRP shear strength contribution (Vf) will not

increase. The optimum Av/S ratio is 0.50–0.75 for both SB and UW
strengthening schemes.

• Using UW in both CFRP and GFRP sheets added an extra vertical
shift due to the concrete confinement and flexural-shear interaction
reported in other studies, indicating the consistency of the RBPNN
with experimental investigations.
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Table 7
Properties of shear strengthened RC beams investigated in this parametric study.

Parameter Description Symbol (unit) Side-Bonded (SD) U-Wrapped (UW)

CFRP GFRP CFRP GFRP

Beam width bw (mm) 150 150 150 150
Beam effective depth de (mm) 300 300 300 300
Shear span-to-depth ratio a/d 2.5 2.5 2.5 2.5
Concrete compressive strength fc (MPa) 30 30 30 30
Steel yield strength fy (MPa) 400 400 400 400
FRP strength ff (MPa) 3900 510 3900 510
FRP Modulus of elasticity Ef (GPa) 230 24.2 230 24.2
FRP width bf (mm) N/A N/A 150 150
FRP height hf (mm) 300 300 450 450
FRP strip width-to-spacing ratio Wf/Sf 0.25–1 0.25–1 0.25–1 0.25–1
FRP thickness tf (mm) 0.1–0.3 or 0.2 0.1–0.3 or 0.2 0.1–0.3 or 0.2 0.1–0.3 or 0.2
Area of stirrups-to-spacing ratio Av/S 0.5 or 0.25–1 0.5 or 0.25–1 0.5 or 0.25–1 0.5 or 0.25–1

Fig. 11. Parametric Study on the Effect of FRP Properties on the FRP Shear Capacity.
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