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Abstract 

The compressive strength of Ultra-High Performance Concrete (UHPC) is a function of the 
type, property and quantities of its material constituents. Empirically capturing this relationship 
often requires the utilization of intelligent algorithms, such as the Artificial Neural Network 
(ANN), to derive a predictive model that fits into an experimental dataset. However, its black-box 
nature prevents researchers from mathematically describing its contents. This paper attempts to 
address this ambiguity by employing two deep machine learning techniques—Sequential Feature 
Selection (SFS) and Neural Interpretation Diagram (NID)—to identify the critical material 
constituents that affect the ANN. 110 UHPC compressive strength tests varying based on the 
material quantities were compiled into a database to train the ANN. As a result, four material 
constituents were selected; mainly, cement, fly ash, silica fume and water. These material 
constituents were then employed into the ANN to compute more accurate predictions (r2 = 80.1% 
and NMSE = 0.012) than the model with all eight material constituents (r2 = 21.5% and NMSE = 
0.035). Finally, a nonlinear regression model based on the four selected material constituents was 
developed and a parametric study was conducted. It was concluded that the utilization of ANN 
with SFS and NID drastically improved the accuracy of the model, and provided valuable insights 
on the ANN compressive strength predictions for different UHPC mixes.  

Keywords: Compressive Strength; Ultra-High Performance Concrete; Deep Machine 
Learning; Sequential Feature selection; Neural Interpretation Diagrams.  

Nomenclature 

X Input parameters in the form of a matrix 

θk  A matrix composed of randomly generated weights per layer k 

O(X) Vector form of predictions 

g(x)  Activation function  

bk  Vector composed of the bias units in layer k 

J Jacobian matrix 𝜕𝑓(𝑃)
𝜕𝑃

 

ε Error or cost 

δP Solution when JδP is orthogonal to the column space J 
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i Individual number of neurons 

n Total number of neurons 

a Hidden neuron 

SSR Sum of squared residuals 

Cov Covariance matrix 

fc Concrete compressive strength 

A/B Regression coefficients 

1. Introduction: 

Machine learning algorithms such as Artificial Neural Network (ANN) have been extensively 
used, in different fields, to evaluate predictive outcomes that closely agree with the experiment. 
However, an experiment could consist of a comprehensive test matrix with a large number of 
parameters in which the majority exhibits little contribution to the test outcomes. This necessitated 
computer scientists to develop novel selection algorithms based on data-driven models; thereby 
identifying the most relevant independent variables and rapidly reducing the dimensionality of the 
input matrix. The need for soft computing tools in predictive modeling of engineering components, 
systems and materials is continuously rising; where ANN emerged as one of the most popular soft 
computing paradigms that have been successfully applied in several engineering fields [1]. 
Generally, ANN has been implemented in the prediction and approximation of character and 
pattern recognition, image processing, forecasting, classification, optimization, and control related 
problems [1]. This advocated researchers to propose ANN models and solve a wide variety of civil 
engineering problems [2–7]. Furthermore, extensive applications in ANN behavioral modeling of 
concrete structural elements have been reported in several studies [8–15]. In recent years, research 
interests have migrated towards utilizing different ANN models to solve predictive-based 
challenges of building material like: steel, concrete, and composites [16–20]. The majority of 
problems related to concrete characteristics like fresh and hardened properties have been 
successfully addressed using ANN modeling based on collected experimental data. Moreover, 
prediction of concrete compressive strength using ANN models has been an area of continuous 
research in the recent years. This, in turn, motivated researchers to employ ANN computing for 
evaluating compressive strength of normal weight, light weight and recycled concrete [21–25]. 
Other researchers investigated various predictive models to interpret the compressive strength of 
high performance concrete using different machine learning techniques [26–28]. Afterwards, the 
emergence of ultra-high performance concrete (UHPC) necessitated further development of ANN 
modeling towards behavioral predictions.  

Researchers have successfully developed ANN models to accurately simulate the performance 
of UHPC [29–31], however, these black-box paradigms offer little insights on what takes place 
during ANN computations. Therefore, addressing this ambiguity should be the next step in 
advancing the movement of implementing intelligent algorithms when assessing the performance 
of UHPC mixes, while mathematically demonstrating it. Application in deep machine learning 
have shown promising works in this regard where the optimization techniques that take place 
during an ANN training phase is leveraged to iteratively select the parameters that influence the 
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model’s accuracy [29–31]. The selected parameters can then be employed into the ANN, or any 
other intelligent regression algorithm, to improve the accuracy of the predictive model while 
understanding the physical phenomenon behind these selections. 

In this investigation, a deep machine learning technique based on an ANN, which employs 
deep machine learning algorithms in identifying the critical parameters that influence the accuracy 
of predicting the compressive strength of UHPC, is presented. A comprehensive database of 
experimental results, with several parameters, is collected from published UHPC compressive 
strength tests. Afterwards, a series of ANNs pertaining different architectures were iteratively 
employed to consistently obtain a final model. This model is then used with SFS and NID to 
systematically select the material constituents that influence the model’s predictions of UHPC 
compressive strength. Finally, the previously selected material constituents are used to derive an 
analytical model and perform parametric studies to investigate their relationships with the 
compressive strength of UHPC.  

2. UHPC and ANN: Background 

The evolution of UHPC has led structural engineers to improve the compressive strength, 
ductility, and durability of heavy loaded reinforced concrete structures. Several researchers have 
investigated the mechanical behavior of UHPC and its applications over the last four decades [32], 
where UHPC usually exhibits a compressive strength that would range from 150 MPa to 810 MPa 
[33–35]. The ingredients required to produce such high compressive strength material are: (a) high 
dosage of cement (up to 800 kg/m3); (b) lower water/binder ratio (lower than 0.20); (c) high-range 
water-reducing (HRWR) admixture; (d) very fine powders (crushed quartzite, silica fume, and 
nano-silica); and (d) steel fibers and/or polyethylene fibers [36, 37]. Other researchers aimed at 
developing sustainable and economical approaches by reducing the amount of cement and silica 
fume, and compensate these reductions with the addition of fly ash and sand [38–40]. However, 
most of the aforementioned mixtures result in exhausting a large amount of resources and 
performing tests on many batches, while barely predicting the strength of UHPC [41]. Therefore, 
acquiring an analytical model that is a function of the constituents of UHPC is needed to easily 
and accurately predict compressive strength values [29–31]. 

Ghafari et al. [29] investigated the implementation of back-propagation neural network 
(BPNN) and statistical mixture design in predicting the required performance of UHPC. Their 
objective was to predict both the compressive strength and the consistency of UHPC with two 
different types of curing, mainly, steam curing and wet curing, using both BPNN and statistical 
mixture design. Fifty three concrete specimens were designed based on the design matrix of the 
statistical mixture design, and the constituents that make up the mixture were taken as the 
independent parameters of the BPNN model. The results indicated that BPNN was capable of 
predicting the compressive strength and slump flow with higher accuracy than the statistical 
mixture design. Kasperkiewicz et al. [30] used ANN to predict the optimal mix proportion of 
cement, silica, superplasticizer, water, fine aggregate, and coarse aggregate of high performance 
concrete (HPC), despite having data complexity, incompleteness, and incoherence. Their model 
showed a significant correlation between the actual and the predicted values observed, where an 
optimum mix can be approximated using an ANN model. Awodiji et al. [31] trained a series ANN 
models to investigate the relationship between the compressive strength and ratio of material 
quantities to curing age for different hydrated lime cement concrete mixes. As a result, the models 
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achieved correlation coefficients that ranged between 90.1–98.4%; indicating that the models were 
successful in predicting the compressive strength for different concrete mixes. Although the 
accuracy of the previously proposed ANN models [29–31] were reasonable, nevertheless, the 
reduction of input parameters will simplify the ANNs architectures and enhance their models’ 
computational efficiency. Therefore, researchers developed robust techniques that can reveal the 
contents within the ANN model by means of identifying the most influential independent 
parameters that can be used to improve the accuracy of the ANN.  

3. Related Works 

Feature selection is an example of one of the developed techniques in which the algorithm 
identifies the features contributing strongly to the prediction model by sorting the feature subsets 
based on a user-imposed evaluation measure (i.e., error/performance), which scores differently for 
every added feature subset. This intelligent selection process improves the performance of the 
model, in terms of accuracy and precision, and facilitates a better understanding of data processing 
[42, 43]. There are two types of feature selection classes; mainly filter method, which highlights 
the intrinsic characteristics of the independent variables measured by means of fundamental 
statistics, and wrapper method, which measures the efficiency of the independent variables based 
on the regression/classification model’s performance [44–46]. This study focused primarily on 
incorporating the wrapper method, Sequential Feature Selection (SFS) algorithm.  

Zhou et al. [45] used the SFS paradigm within the Markov Blanket, another machine learning 
technique, to select the most critical features of human motion recognition. As a result, the total 
number of features was rapidly reduced where this improved the algorithm’s capabilities of 
showing better recognition accuracy than traditional methods. Rodriguez-Galiano et al. [46] also 
used SFS when tackling ground water quality problems where 20 parameters were extracted from 
a comprehensive database. This study implemented four types of machine learning algorithms with 
SFS, and located the underlying parameters impacting the performance of each machine learning 
technique. As a result, the Rain Forest machine learning algorithm used with SFS showed 
promising results, where only three features were necessary to predict the most accurate results. 
Besides SFS learning tool, another variable importance method, termed neural interpretation 
diagram (NID), was employed by Ozesmi et al. [47] to study the spatial models for habitat selection 
of marsh-breeding bird species. This algorithm was incorporated within an ANN model to visually 
inspect the bearing-effect of each habitat variable, with respect to the classification approach, and 
successfully obtain the critical parameters from the total dataset. Afterwards, the authors employed 
these candidate parameters into a new ANN model; thereby providing them a better understanding 
of the mechanisms of habitat selection.  

This study aims at utilizing SFS and NID within a BPNN to successfully identify the material 
constituents that contribute to the compressive strength of UHPC. The machine learning tools 
analyzed eight material constituents from 110 UHPC compressive strength tests, collected from a 
comprehensive database [48–59], and selected the dominant and most influential features that 
enhance the performance of the BPNN model. In addition, Abram’s classical model for predicting 
concrete compressive strength was modified using the selected features and the regression 
coefficients were derived based on a minimization algorithm through the nonlinear regression 
analysis. Finally, a parametric study was conducted, using the selected features, to investigate the 
behavioral impact of each material constituent on the compressive strength of UHPC. 
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4. Methodology of modeling: 

The investigation conducted was based on four systematic steps; mainly, data collection, 
verification of BPNN, execution of SFS and NID, and analysis of selected features. Fig. 1 outlines 
this approach within a flowchart where it was possible to develop a robust and accurate predictive 
model. The first and second boxes (Input Data and Design/Validate BPNN Model) elucidate the 
process of iteratively training the data until a BPNN structure that can make both accurate and 
consistent predictions is obtained. The third box (Execute SFS/NID) highlights the employment 
of deep machine learning algorithms (SFS and NID) to systematically select the material 
constituents that influence the accuracy of the BPNN predictions during the training phase. The 
last box (Analyze Selected Material Constituents) consists of carrying out a comprehensive 
parametric study that underscores the relationship between the compressive strength and the 
variations in material quantities in different UHPC mixes.  

 

Fig. 1. Flowchart of the Deep Machine Learning Approach 

Table 1 presents the common constituent materials of UHPC mixes used in different 
experimental investigations [49–59] with their corresponding code names and statistical 
measurements; the maximum, minimum, mean, median, and standard deviation. A detailed list of 
the parameters tested during this study can be found in Appendix A (Table A.1). In addition, all 
compressive strength values were measured after 28 days from casting. A nested plot composed 
of the frequency distributions for each material constituent investigated in this study is presented 
in Fig. 2.  

Table 1: Range of input parameters for training, validation and testing 

Symbol   Statistical Measurements 

Variable Coded   Minimum Maximum Mean Median 
Standard 
Deviation 

Cement (kg/m3) C  383 1600 879.7 786 329.8 
Silicafume (kg/m3) SI  0 367.95 192.0 196 94.6 

Input UHPC Data 

Design/Validation 

BPNN Model 

Execute SFS/NID 

Analyze Selected 

material constituents 
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Flyash (kg/m3) FA  0 448 33.0 0 72.7 
Sand (kg/m3) SA  0 1898 980.0 1107 513.8 

SteelFiber (kg/m3) SF  0 470 39.0 0 74.8 
QuartzPowder (kg/m3) QP  0 750 36.9 0 125.9 

Water (kg/m3) W  109 334.5 197.1 185.3 54.3 
Admixture (kg/m3) A  0 185 31.9 30.1 28.2 

f'c (MPa) fc   95 240 152.2 147.9 31.5 

 

Fig. 2. Frequency Distribution of Experimental Data 

4.1.Artificial neural network: 

ANN is a machine learning paradigm that mathematically imitates the learning functions of a 
human brain in the sense of analyzing different experiences registered by the neurons and locating 
an accurate solution based on a trial-and-error approach. There are two types of ANN models: (1) 
feed forward; and (2) feed backward. The feed forward requires that the ANN model to have an 
adjusted or learned network, by means of a back-propagating (BP) technique in order to make 
predictions. The feed backward model attempts to approximate the predictor variables and uses 
the true response variables to compute the cost or error between them. Afterwards, the algorithm 
adjusts the weights such that the network converges on the most accurate solution. For this reason, 
the BP feed-forward multilayer perceptron was extensively used in different engineering 
applications [12, 22, 29].  

The architecture of a typical ANN is composed of input neurons, hidden neurons, bias units, 
wires, and output neurons. The input neurons consist of each parameter in the form of a vector 

Silica Steel Fiber Water
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(input by the user), the wires represent randomly generated matrices called weights that manipulate 
the function’s slope or steepness, the hidden neurons map the weights variables using user-defined 
activation functions, and the bias units control the output function’s shift; either upward or 
downward. 

Eq. (1) shows a vertorized form of the complex combinations during the analysis period for a 
single-hidden layered system.  

 𝑂(𝑋) = 𝑔(𝜃𝑘𝑋 + 𝑏𝑘) (1) 
Where X represents the input parameters in the form of a matrix, θk is a matrix composed of 
randomly generated weights per layer k (starting from the hidden layer), O(X) is the vector form 
of predictions, g(x) is the activation function and bk is a vector composed of the bias units in layer 
k.  

Prior to the final output, each row was transformed within a certain domain using a user-
defined activation function. In this study, the sigmoid function was used as presented in eq. (2). 

 𝑔(𝑥) =
1

1 + 𝑒−𝑂𝑖
 (2) 

The BP technique uses a minimization cost approach, Levenberg-Marquardt algorithm, which 
is an iterative technique that locates the local minimum of a multivariate function expressed as the 
sum of squares of non-linear real-valued functions. The Levenberg-Marquardt algorithm uses both 
the Gradient Descent Method and Gauss-Newton method to help the solution converge [60]. Eq. 
(3) summarizes the iterative technique in an algebraic matrix form. 

 𝐉𝑇𝐉𝛿𝑃 = 𝐉𝑇𝜺 (3) 
Where J is the Jacobian matrix 𝜕𝑓(𝑃)

𝜕𝑃
, ε is the error or cost (𝐽(𝜃) = ‖

1

2𝑅
∑ (𝑂(𝑋𝑟) − 𝑌𝑟)2𝑅
𝑟=1 ‖), and 

δP is the solution when JδP is orthogonal to the column space J. By altering or damping the 
elements in 𝐉𝑇𝐉, the cost ε varies and δP is calculated. Afterwards, θ is adjusted using eq. (4) and 
O(X) is recalculated using eq. (1). This algorithm reiterates until ε decreases leading to a reduction 
in the damping rate as the solution slowly converges. 

 𝜃1 = 𝜃0 + 𝛿𝑃 (4) 
Where θ1 and θ0 represent the adjusted weights and initial weights, respectively.  

  Fig. 3 displays the schematics of an ANN with one input layer, one hidden layer, and an 
output layer. Both the subscripts and superscripts are used to identify the neuron and layer 
numbers, respectively. Ultimately, the subscripts i and n are used to identify the individual and 
total number of neurons, respectively, within the input layer k. Each input neuron, Xi, contains one 
independent parameter and Xi+1 contains the subsequent column until n neurons are passed into 
the BPNN structure. Similarly, the subscripts j and m also denote the individual and total number 
of neurons, respectively, within an arbitrary hidden layer k+1, where each hidden neuron, 𝑎𝑗𝑘+1, 
receives weighted matrix-products from each neuron, Xi, via the wires connecting between the 
input and hidden layers. These wires contain weights, θ, and are responsible for transforming the 
mapped sum-products into the neighboring layers.  
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Fig. 3. ANN Architecture 

4.2.Sequential Feature Selection: 

Feature selection reduces the dimensionality of data by selecting a subset of measured features 
and to build a simpler prediction model [61]. This machine learning algorithm is composed of two 
components: the objective function, which is the criteria the algorithm tracks when selecting the 
features, and the search algorithm, which is the approach the machine learning tool uses to 
add/remove features from a subset. A popular search algorithm used in several studies [44–46] is 
the Sequential Feature Selection (SFS), which is a function that is initialized during a predictive 
model assessment and it sequentially appends variables into the model until any further addition 
does not yield a sufficient change in the objective function. In this study, the objective function 
used was the Normalized Mean Square Error (NMSE), and the search algorithm implemented was 
SFS within a BPNN. Fig. 4 shows the algorithm SFS uses when performing a selection. 

 

Fig. 4. Forward Selection Algorithm 

O 

𝑎𝑚
𝑘  

𝑎𝑗+1
𝑘  

𝑎𝑗
𝑘 

Output layer  
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Xn 

Xi+1 

Xi   

  

  

  

  

    

 

Wires 
𝑔ቌ෍෍൫𝑋𝑖 × 𝜃𝑖𝑗

𝑇൯

𝑚

𝑗=0

𝑛
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ቍ 
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4.3.Neural Interpretation Diagram 

Neural interpretation diagram (NID) is an ANN structure that demonstrates the relative 
importance an independent variable has with the response variable in terms of the weights’ 
magnitudes and signs. The algorithm deconstructs the weights for each input node during the 
analysis stage until a list of all weights is stored in a matrix. Afterwards, the matrix is equated to 
each input node and scaled relative to all the other input variables, and a single value is obtained 
for each input variable that describes the relationship with the response variable in the model. This 
information helps users identify the type of correlation the network facilitates and notifies them 
which input variables are irrelevant and suppressed by the weights. The opposite is observed for 
the network whose input parameters have positive associations with the network, i.e., more 
relevant. Fig. 5 shows an example of an NID diagram with one hidden layer and one output unit. 
The solid blue lines represent the positive affiliation from one neuron to the neighboring neuron(s), 
where the thicker lines indicate stronger associations, whereas a red line indicates negative 
association of the input variable with the network and hindering the accuracy of the prediction 
model.  

 

Fig. 5. NID Diagram 

4.4.Nonlinear Regression: 

One of the objectives of this study is to produce an analytical model with the selected features 
from the aforementioned methods, SFS and NID. The nonlinear regression is used when the 
dependent and independent variables are not simultaneously linear. It estimates an arbitrary 
nonlinear function such that the cost or standard error between the theoretical and experimental 
results is minimized. These estimations are carried out by iteratively selecting appropriate 
parameters according to the standard error; where the parameters can be multiplicative coefficients 
and/or exponents. The standard error is a function of the parameters and is shown in eq. (5), where 
SSR is the sum of the squared residuals, n is the number of data points in the dataset, and Cov(i,i) 
is the i-th diagonal element in the covariance matrix. 

 𝑆𝐸𝑟𝑟𝑜𝑟(𝑃𝑖) = √(
∑𝑆𝑆𝑅

𝑛 − 1
) × 𝐶𝑜𝑣(𝑖, 𝑖) (5) 

hθ(X) 
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Xi   
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The parameters are initialized by the user in which poor assumptions can lead the model to 
diverge from the actual result; therefore, implementing SFS and NID will reduce the independent 
parameters and improve convergence during the analysis. Since Abram’s formula [62] is 
applicable for predicting the compressive strength of 7-days and 28-days old concrete, it was used 
as a mathematical structure during the nonlinear regression analysis, as shown in eq (6). Nonlinear 
regression was carried out using IBM SPSS 23 software package.  

 𝑓𝑐 = 𝐴 × 𝑋−𝐵 (6) 
   

Where X is the water-to-binder ratio, and A and B are regression coefficients. 

5. ANN Modeling for prediction of compressive strength of UHPC 

5.1.Design of ANN 

In this study, BPNN was used to make predictions and to identify the most relevant features. 
The BPNN was constructed in MATLAB [61] using the Levenberg-Marquardt minimization 
algorithm. The training parameters like the total epoch, learning rate, and minimum gradient were 
1000 epochs, 0.001, and 10-7. A total of 110 observations with eight material constituents were 
used to train and test the BPNN model, where the UHPC constituents were normalized and written 
as a ratio of the material constituent to cement. This helped avoid heavy fluctuations in the results 
and minimized any extreme outliers in the dataset. Table 2 shows the normalized parameters range 
(maximum and minimum) as a percentage of cement, and the compressive strength values 
(maximum and minimum). 

Table 2: Training and Testing Normalized Data 
Symbol   Range 

Variable Symbols   Minimum Maximum 
Cement C  1 1 

Silica fume SI  0 0.333 
Fly ash FA  0 1.01 
Sand S  0 4.70 

Steel Fiber SF  0 0.448 
Quartz Powder QP  0 0.938 

Water W  0.1084 0.515 
Admixture A  0 0.282 
f'c (MPa) fc   95 240 

5.2.Verification of ANN 

There are two types of verification strategies to be employed within the BPNN; mainly, the 
numerical solver verification and the over fitting verification. The numerical solver verification is 
the process in which the number of neurons is iteratively increased with each BP analysis. During 
each run, the error is stored in a vector and plotted versus the corresponding number of neurons. 
The over-fitting verification is used to ensure that the BPNN does not memorize how to interpret 
a specific range of inputs such that it can be implemented to predict results using a newly collected 
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database. For the first type of verification, the BPNN’s numerical solver, Levenberg-Marquardt, 
was verified by testing an arbitrary range of neurons and measuring the performance of the model 
per neuron using NMSE as indicator. In this study, the increment started from one neuron and 
ended with 15 neurons, where the model was analyzed 10 times for each neuron. Therefore, for 
each neuron trained, ten NMSE values were evaluated and stored in a matrix while the mean and 
95% confidence interval were calculated for each column vector (neuron) and represented as a 
dashed line and a shaded region, respectively, versus the number of neuron(s). Fig. 6 shows the 
plot of all the trained analyses with the minimum average NMSE point circled at 11 neurons, and 
the upper and lower confidence interval shown in the light blue shaded area. While implementing 
the first verification process, the second verification process was implemented in which the data 
was randomly split into three sets; 70% for the training set, 15% for the validation set, and 15% 
for the testing set. By combining both processes, the verification strategies resembled that of a k-
fold cross-validation approach where the model’s input parameters were randomly divided into 
segregated sets and trained multiple times until the best performing ANN was constructed. Fig. 7 
shows the verified ANN architecture where the neurons inscribed with the letters ‘I’ and ‘H’ 
followed by a number are the input and hidden neurons with their corresponding number of units, 
respectively, and the neurons with the letters ‘B’ and ‘O’ followed by numbers are the bias and 
output units, respectively. A published article has shown that a double-layered ANN is sufficient 
enough to simulate the nonlinear behavior of UHPC [36]. Therefore, seven neurons were used in 
the first hidden layer and three neurons were used in the second hidden layer. 

 

Fig. 6. Verification Plot for ANN 

Mean 
95% confidence 

Legend: 
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Fig. 7. ANN Architecture 

6. Variable importance methods 

6.1.Execution of SFS 

The SFS algorithm was executed 200 times to capture all possible combinations of independent 
features when using a BPNN. Fig. 8 shows a bar plot representing the percentage of features that 
were used during the 200 trials. Based on the results of these trials and the most dominant 
combination during the analysis, a threshold of 20% was imposed as the lower bound for selecting 
the variables that have the largest contribution. The reason for selecting 20% was dependent on 
the shape of the bar chart, whereby a pattern was shown when observing the small percentage 
difference between the four variables that have contributed more than 20% of trials. Therefore, the 
four variables; Cement, Silica Fume, Flyash, and Water were selected as the most relevant features 
within the prediction model. While preparation techniques and curing regimes have been regarded 
as significant factors for enhancing the performance of UHPC [32], it has also encouraged on-
going investigations in the effect that the material constituents exhibit on the compressive strength 
of UHPC [38]. Furthermore, researchers have conducted experimental investigations using these 
exact material constituents to individually monitor the performance of UHPC in terms of 
compressive strength [57].  
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Fig. 8. Bar Plot of the Percentage of Features that Contributed to the Model 

6.2.Execution of NID 

The NID [47] was used to verify the selected parameters in the SFS method where it was 
plotted within the verified ANN to visually inspect the features during the analysis. Since the 
weights dictate the relative influence of information that is processed in the network, a positive 
association with the response is represented with a solid blue line and a negative association with 
the response is represented with a red line as previously indicated in Fig. 5. The NID was plotted 
using the statistical programming package, R [47]. Fig. 9 shows the NID diagram using the 
previously verified ANN model. It is clearly observed that C, SI, FA, and W demonstrate strong 
positive association during the analysis, where SI and W show the most dominant positive 
associations with their neighboring hidden units similar to the bar plot in Fig. 8. This was visually 
measured according to the thickness, color and number of blue wires shown in Fig. 9 where most 
of these wires consisted of positive large weighted values that indicate their influential 
characteristics in the BPNN model. As a result, the selected constituents in this section match with 
the material constituents selected from the previous section; hence, the utilization of both SFS and 
NID have shown consistency in identifying features within a predictive model. This proves that 
the existence of large databases, like the one in this study, enabled the use of advanced machine 
learning algorithms to successfully identify the influential parameters of the function and thus gave 
room for the incorporation of statistical toolboxes (i.e., nonlinear regression) to develop a simple 
robust model for approximating the compressive strength of UHPC without inclusion of other 
parameters. 
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Fig. 9. NID Representation 

7. Results and discussions 

7.1.ANN results 

The selected features, i.e., influential parameters, were employed into a new BPNN model to 
study their performance. As a result, the trained ANN that used the selected features showed 
stronger agreement with the experimental results in contrast with the ANN prior to the selection. 
Table 3 shows the statistical measurements calculated for both cases in which the coefficient of 
multiple determination (r2) was used to measure the variation between the prediction model’s data 
and its mean compared to that of the experimental results. The NMSE was used to measure the 
overall variation between the predicted and experimental results. It was observed that the r2 value 
before and after selection was 21.5% and 80.1%, respectively, and the NMSE before and after 
selection was 0.035 and 0.012, respectively.  

Table 3: Statistical Measurement using ANN Before and After SFS/NID 

Statistics Measurements Before Selection After Selection 
r2 0.215 0.801 

NMSE 0.035 0.012 
 

Furthermore, correlation plots between the predicted and experimental results were generated 
for both the trained ANN models, as shown in Fig. 10, where the red line represents a perfect fit 
to the data and the dotted lines represent the percent deviation (±15%) from the perfect fit. As a 
result, the ANN with the selected features was able to make 80.1% of its predictions within the 
±15% threshold whereas the ANN with all the features was able to make 61% of its predictions 
within the same threshold. This concluded that the model with the selected features outperformed 
the model with all the features.  

(a) Before SFS (b) After SFS 
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Fig. 10. Percent Deviation of Predicted versus Experimental 

Fig. 11 summarizes the predicted-to-experimental compressive strength ratio for both ANN 
models, where the model with the selected features demonstrated better performance with higher 
percentage of values (89.1%) ranging between 0.8 and 1.2 than the ANN with all features, (65.4%). 

 

Fig. 11. Ratios of Experimental and Predicted for Both ANN Models 

7.2. Developed Model based on Nonlinear Regression Analysis: 

Abram’s formula, given in eq. (6), was rewritten by explicitly expanding X to a water-to-binder 
form as given in eq. (7) and initiated within a nonlinear regression analysis using IBM SPSS 23. 
The material constituents; W, C, SI, and FA were written in kg/m3. As a result, the regression 
coefficient values with the statistical measurements are tabulated in Table 4 where the proposed 
model’s r2 and NSME values were 71.6% and 0.0645, respectively. 
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 𝑓𝑐 = 𝐴 × (
𝑊

(𝐶 + 𝑆𝐼 + 𝐹𝐴)
)
−𝐵

 (7) 

Table 4: LSG Coefficients 

Regression Coefficients Coefficients Values r2 NMSE 
A 93 

0.716 0.0645 
B 0.35 

  

Fig. 12 summarizes the performance of the proposed model and the correlation between the 
predicted and experimental compressive strength results. 

 

Fig. 12. Summary of the Proposed Model’s Performance 

Although the ANN model developed in this investigation predicted the concrete strength with 
high level of accurately, however, the accuracy of the ANN prediction model and its limitation in 
predicting concrete strength is bounded by the boundaries of the input parameters used in training 
the ANN which are the maximum and minimum values of the nine parameters given in Table 1. 
For input values outside the domain of boundary values, the accuracy of the predicted concrete 
strength cannot be confidently assured. 

8. Parametric studies and sensitivity analysis: 

Since the proposed ANN model was capable of predicting results that agree well with the 
experimental data, a parametric study was conducted to investigate the influence of the selected 
parameters on the compressive strength of UHPC. Plots were generated, where some of the 
independent parameters were held constant while the others were varied according to their 
practical range of values. The final ANN model is appended to this paper (see Supplementary 
material 1) where the model can be loaded into the MATLAB environment to carry out the 
parametric study. A sample of the parametric study can be found in Supplementary Material 2. It 
is worth mentioning that the material constituents should be normalized against cement, as 
explained in section Design of ANN, before executing the parametric study. 
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8.1.Design of the Parametric Study 

Prior to performing the parametric study, the trend and distribution of data were analyzed such 
that practical ranges were imposed within the upper and lower boundaries of the input parameters 
within the ANN. Additional information regarding these statistical measurements is found in Table 
1. During data collection, each experiment (row) within the data demonstrated an underlying 
relationship in terms of its corresponding material constituents. For instance, the increase in 
cement was accompanied by an increase in fly ash, silica fume and water; meaning, there existed 
a certain ratio between these material constituents. Therefore, when designing the matrix for 
parametric study the material constituents that were maintained had their ratios fixed throughout 
each parametric study. Table 5 summarizes the parametric study conducted in this investigation 
where some ratios were fixed while the remaining parameters were varied during each study.  

Table 5: Summary of Parametric Study 

Parametric Study Constant ratios Varying Parameters (kg/m3) 
Effect of fly ash at selected quantities of 

silica fume water/cement ratio = 12.5%  Fly ash (0–200) 
Silica fume (20, 40, 60, 80) 

Effect of silica fume at selected quantities 
of fly ash water/cement ratio = 12.5% Silica fume (0–200) 

Fly ash (40, 80, 120, 160) 
Effect of water at selected quantities of fly 

ash 
cement/silica fume ratio = 

25%  
water (100–350) 

Fly ash (40, 80, 120, 160) 
Effect of water at selected quantities of 

silica fume cement/fly ash ratio = 25%  water (100–350) 
Silica fume (20, 40, 60, 80) 

8.2. Effect of fly ash at varying quantities of silica fume 

Fig. 13 shows the effect of fly ash on the compressive strength of UHPC at selected quantities 
of silica fume (20, 40, 60, 80 kg/m3) and at constant water/cement ratio of 12.5%. It was observed 
from Fig. 13(a) and (b) that each individual curve demonstrated an inverse relationship between 
the compressive strength (response variable) and the fly ash (independent variable), for all 
quantities of silica fume. Moreover, both mixes shown in Fig. 13(a) and (b) exhibited maximum 
compressive strength values when the quantities of fly ash and silica fume were maintained at 
values of 0 kg/m3 and 20 kg/m3, respectively. This behavior took place despite the large difference 
in the quantities of cement. The curve, then, experienced a slightly linear reduction in compressive 
strength with the continuous addition of; hence, the presence of both fly ash and silica fume 
weakened the mechanical performance of UHPC. However, an increase in the compressive 
strength was observed when the quantities of cement and water were increased by 50% without 
change in water cement ratio. For example, when silica fume ranges between 20 kg/m3 and 80 
kg/m3, the UHPC mix exhibited a large reduction in compressive strength from 235.8 MPa to 
155.6 MPa, at 0 kg/m3 of fly ash as depicted in Fig. 13(a). On the other hand, when similar 
additions of silica fume were made, the mix showed less reduction in compressive strength, i.e., 
from 236.1 to 210.4 MPa, at 0 kg/m3 of fly ash as shown in Fig. 13(b). Therefore, the increase of 
the quantities of cement and water of a UHPC mix tends to suppress the tendencies of reduction 
of UHPC’s compressive strength due to increase in fly ash and silica fume. Furthermore, a 
substantial change in the behavior of both curves is observed when silica fume was increased – a 
downward concave curve, at a silica fume of 20 kg/m3, and an upward concave curve, at a silica 
fume of 80 kg/m3 are observed as shown in Fig. 13(a). However, when the quantities of cement 
and water were increase to 1200 kg/m3 and 150 kg/m3, all curves are downward concave curves 
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despite the changes in silica fume from 20 kg/m3 to 80 kg/m3, as shown in Fig. 13(b). This 
indicated that the presence of silica fume at high quantities of cement and water provide downward 
concave profile (Fig. 13(b)), which allows the UHPC to utilize more compressive strength 
compared to the mix with low quantities of cement and water, shown in Fig. 13(a). In summary, 
the following observations can be made: (a) The compressive strength of UHPC decreases with 
the increase in fly ash; (b) maximum compressive strength is achieved at 0 kg/m3 of fly ash; (c) 
reduction in compressive strength shifts within the inverse profiles due to the addition of both 
cement and water; (d) lower tendencies of developing inflection points was apparent when 
increasing the amount of cement and water, despite extreme changes in the quantities of silica 
fume. Fig. 13(c) and (d) show surface plots of the aforementioned 2D plots in generalized contour 
plots. 

 

Fig. 13. Effect of fly ash at varying quantities of silica fume 

(a) Cement = 800 kg/m3, Water = 100 kg/m3 (b) Cement = 1200 kg/m3, Water = 150 kg/m3 

(c) Cement = 800 kg/m3, Water = 100 kg/m3 (d) Cement = 1200 kg/m3, Water = 150 kg/m3 
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8.3. Effect of silica fume at varying quantities of fly ash 

Fig. 14 shows the effect of silica fume on the compressive strength of UHPC at selected 
quantities of fly ash (40, 80, 120, 160 kg/m3) and at constant water/cement ratio of 12.5%. Two 
type of relationships observed in Fig. 14. Fig. 14(a) showed a parabolic decrease in compressive 
strength until a local minimum value is reached and a sudden increase in compressive strength 
were observed with the addition of silica fume. Whereas Fig. 14(b) demonstrated an inverse 
parabolic profile until a local minimum value is reached, followed by a slight increase in the 
compressive strength with the addition of silica fume. An underlying difference in characteristics, 
in terms of both the slope and horizontal shift, is clearly shown when observing both figures. For 
example, in Fig. 14(a), the addition of fly ash (40 kg/m3 to 160 kg/m3) to the mix achieved 
maximum compressive strength values that ranged from 234.4 MPa to 225.1 MPa at 0 kg/m3 silica 
fume, whereas the mix in Fig. 14(b) demonstrated a lesser variation in compressive strength, 236.3 
MPa to 234.2 MPa, despite similar additions in the quantities of fly ash. It is clear that the increase 
in silica fume resulted in a decrease in the compressive strength of the UHPC until a local 
minimum value is reached and then its effect is reversed to an increase in compressive strength as 
shown in Fig. 14(a) and (b). This phenomenon was accompanied with a horizontal shift of the 
minimum values of the compressive strength, however, the addition of cement and water did not 
significantly impact the magnitude of the minimum compressive strength. Nevertheless, the 
increase in water and cement resulted in reduction in slope with the increase of silica fume as 
shown in Fig. 14(b). This indicated that such mix can sustain more strength than a mix similar to 
that shown in Fig. 14(a) in which a sudden drop is observed in the compressive strength with the 
addition of silica fume. This reduction in slope also impacted the scale of the amount of silica fume 
necessary to approximately arrive at similar minimum compressive. In summary, the following 
observations can be made: (a) the compressive strength of UHPC shows a semi-inverse parabolic 
curves and decreases with the increase in silica fume to reach distinctive local minimum; (b) 
maximum compressive strength is achieved at 0 kg/m3 despite the 50% increase in cement and 
water; (c) at certain values of silica fume the compressive strength is not influenced by the amount 
of fly ash; (d) the addition of fly ash caused the minimum compressive values to exhibit horizontal 
shifts; (e) the increase in cement and water affected the slope of the profiles in which the 
compressive strength values did not vary significantly with the addition of fly ash. Fig. 14(c) and 
(d) show surface plots of the aforementioned 2D plots in generalized contour plots of the 
aforementioned 2D plots in generalized contour plots. 
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Fig. 14. Effect of silica fume at varying quantities of fly ash 

8.4. Effect of water at varying quantities of fly ash 

Fig. 15 shows the effect of water on the compressive strength of UHPC at selected quantities 
of fly ash (40, 80, 120, 160 kg/m3) and at constant silica fume/cement ratio of 25%. The curves in 
both Fig. 15(a) and (b) demonstrated a positive parabolic relationship between the compressive 
strength and water. It is observed that both figures demonstrated relatively a small variation in 
compressive strength throughout the increase in the quantities of water. Fig. 15(a) displayed curves 
with a maximum and a minimum whereas the maximum compressive strength ranged between 
183-186 MPa that took place at 125 kg/m3 of water and a minimum compressive strength ranged 
between 135-138.4 MPa that took place at 263.3 kg/m3 of water. The effect of fly ash on 
compressive strength becomes more apparent as water quantity exceeds the threshold correspond 
to the minimum values. On the other hand, Fig. 15(b) exhibited curves with a maximum 
compressive strength ranged between 183 - 186 MPa that was reached at 175 kg/m3 of water. As 
shown in Fig. 15(a), the effect of fly ash on the compressive strength is slightly effective between 
100 kg/m3 and 150 kg/m3 of water, but becomes negligible from 160 kg/m3 to 270 kg/m3 of water 

(a) Cement = 800 kg/m3, Water = 100 kg/m3 (b) Cement = 1200 kg/m3, Water = 150 kg/m3 

(c) Cement = 800 kg/m3, Water = 100 kg/m3 (d) Cement = 1200 kg/m3, Water = 150 kg/m3 
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followed by a more noticeable effect after 300 kg/m3 of water. Similarly, increasing the cement 
and silica fume by 50% did not affect the maximum compressive strength, however, it shifted its 
location. Furthermore, the mix curves shown in Fig. 15(b) required additional quantities of water 
to reach the same maximum compressive strength as that of Fig. 15(a). In summary, the following 
observations can be made: (a) Fly ash has minimum effect on the compressive strength for large 
range of water quantities; (b) For low quantities of cement and silica fume, fly ash has more 
influence on the compressive strength at large quantities of water; (c) The maximum compressive 
strength is not affected by the increase in the quantity of cement and silica fume. Fig. 15(c) and 
(d) show surface plots of the aforementioned 2D plots in generalized contour plots. 

 

Fig. 15. Effect of water at varying quantities of fly ash 

7.5 Effect of water at varying quantities of silica fume 

Fig. 16 shows the effect of water on the compressive strength of UHPC at selected quantities 
of silica fume (20, 40, 60, 80 kg/m3) and at constant fly ash/cement ratio of 25%. As shown in Fig. 
16(a), for a given quantity of silica fume, the compressive strength of UHPC increases with the 
increase in water quantity until a certain compressive strength. This compressive strength shows 

(a) Cement = 800 kg/m3, Silica Fume = 200 kg/m3 (b) Cement = 1200 kg/m3, Silica Fume = 300 kg/m3 

(c) Cement = 800 kg/m3, Silica Fume = 200 kg/m3 (d) Cement = 1200 kg/m3, Silica Fume = 300 kg/m3 
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clear decays as silica fume increases from 20–60 kg/m3. However, when silica fume continues to 
increase, the model exhibits a plateau in compressive strength wherein additional amounts of water 
is required to facilitate a significant increase in compressive strength. For instance, the mix with 
the smallest quantity of silica fume (40 kg/m3) has the maximum compressive strength of 224 MPa 
reached at water quantity of 175 kg/m3 while the mix with largest silica fume (160 kg/m3) has the 
minimum compressive strength of 176 MPa reached at water quantity of 200 kg/m3 as shown in 
Fig. 16(a). At around 200 kg/m3 of water, all mixes with different silica fume quantities, converged 
to the same compressive strength of around 176 MPa after which the behavior reversed, i.e., mixes 
with large quantities of silica fume exhibited larger compressive strength with continuous rise with 
increase in water quantity. Fig. 16(b) shows similar behavior to that of Fig. 16(a), however, 
additional quantities of water were needed for the mixes to reach their maximum compressive 
strength. Similarly, all mixes shown in Fig. 16(b) converged at the same compressive strength of 
172 MPa, however, at a larger quantity of water 340 kg/m3 compared to the mixes of Fig. 16(a). 
In summary, the following observations can be made: (a) The curves exhibited negative vertical 
shifts in compressive strength similar to the inverse relationship shown in Fig. 14(a) and (b). (b) 
The curves showed horizontal shifts in the quantities of silica fume due to the sequential addition 
of fly ash; (c) The curves of different silica fume quantities showed different maximum 
compressive strength values at different quantities of water; (d) Curves with large quantities of 
silica fume required more water quantities to reach their maximum compressive strength. Fig. 
16(c) and (d) show surface plots of the aforementioned 2D plots in generalized contour plots. 
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Fig. 16. Effect of water at varying quantities of silica fume 

9. Summary and conclusion 

This investigation was conducted to predict the compressive strength of UHPC using ANN 
with the most influential parameters of the concrete mix. The investigation consisted of four major 
steps: (1) employment of the SFS and NID machine learning tools for identifying and selecting 
the most influential features or parameters; (2) analysis of selected features using BPNN; (3) 
modification and calibration of Abram’s classical model using nonlinear regression; and (4) 
conduction of a sensitivity analysis to study the effect of each selected feature in the properties 
and behavior of UHPC. The outcomes of this study are: 

• The incorporation of BPNN with SFS and NID was capable of rapidly reducing the 
dimensionality of the database; making it simpler for the prediction model to evaluate 
compressive strength values.  

• The BPNN model with the four selected features predicted the results more accurately 
(r2 = 80.1%; NMSE = 0.012) than the model which all eight parameters (r2 = 21.5%; 

a) Cement = 800 kg/m3, Fly ash = 200 kg/m3 b) Cement = 1200 kg/m3, Fly ash = 300 kg/m3 

c) Cement = 800 kg/m3, Fly ash = 200 kg/m3 d) Cement = 1200 kg/m3, Fly ash = 300 kg/m3 
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NMSE = 0.035). Furthermore 80.1% of the values predicted using the four selected 
parameters are within ±15% deviation boundary limit compared to only 61% of values 
predicted using all eight parameters. 

• Abram’s classical model was modified using nonlinear regression and a final model 
was proposed. It yielded results that closely agreed with that of the experimental results 
with r2 = 71.6% and the NMSE = 0.0645.  

• It is observed that the maximum compressive strength of UHPC was achieved without 
the presence of silica fume, and the minimum compressive strength was achieved with 
additional silica fume until a specific amount of silica fume was reached.  

• It was also observed that, the increase of fly ash showed a decrease in the compressive 
strength of UHPC. This decrease was accompanied with a horizontal shift; indicating 
sustainable compressive strength throughout the addition of silica fume.  

• A parabolic relationship was reported when the compressive strength was plotted 
against the water content. Essentially, at a typical amount of fly ash and increasing 
quantities of silica fume, the mix requires additional water to facilitate a significant 
increase in compressive strength. This relationship shifts to the right when quantities 
of fly ash are increased, indicating larger demands of water for the additional binders 
(fly ash and silica fume).  

• The curves developed in this study can be utilized to predict the compressive strength 
of UHPC mixes and to understand the underlying relationships between the 
compressive strength of UHPC and design mix material constituents. 

• In spite of the accuracy of the ANN model developed in this investigation, it is 
important to emphasize that there are limitations to this accuracy. Such limitations are 
greatly influenced by whether the input parameters are within the domain of the 
applicable boundary values used in training the ANN model.   

Appendix A 

Table A.1: Collected database. 
No. Cement Silicafume Flyash Sand SteelFiber QuartzPowder Water Admixture fc 

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) MPa 
1 750 115 125 1104 0 0 180 25 125 
2 712 115 125 1142 0 0 180 25 125 
3 675 115 125 1179 0 0 180 25 118 
4 637 115 125 1217 0 0 180 25 118 
5 750 115 125 1104 0 0 180 25 128 
6 750 115 125 1103 0 0 180 25 124 
7 750 115 125 1111 0 0 180 25 116 
8 675 115 125 1178 0 0 180 25 128 
9 637 115 125 1224 0 0 180 25 110 

10 807 225 0 972 0 243 196 13 204 
11 712 231 0 1020 156 211 109 30.7 138 
12 778 194 189 1166 0 0 185.61 28 185 
13 753 188 183 1129 0 0 170.88 27 166 
14 745 186 181 1118 0 0 178.94 27 162 
15 740 185 180 1110 0 0 173.19 27 200 



25 
 

16 778 194 189 1167 0 0 171.35 28 181 
17 758 190 184 1138 0 0 170.2 28 155 
18 745 186 181 1118 0 0 178.94 27 159 
19 1365 151.6 0 647 0 0 151.6 30.26 136.4 
20 1365 149 0 647 51.7652 0 149 30.26 137.9 
21 1365 273 0 647 103.5304 0 273 30.26 140.8 
22 1365 273 0 647 155.2956 0 273 30.26 155.3 
23 1600 273 0 310 0 0 273 38.22 135 
24 1600 273 0 310 51.7844 0 273 38.22 135.9 
25 1600 320 0 310 103.6088 0 320 38.22 143.2 
26 1600 320 0 310 155.4732 0 320 38.22 145.7 
27 1600 320 0 310 0 0 320 77.22 124.1 
28 1600 320 0 310 52.5444 0 320 77.22 128.3 
29 1600 320 0 310 105.0888 0 320 77.22 127.6 
30 1600 320 0 310 157.6332 0 320 78.22 144.1 
31 1600 320 0 292 0 0 320 35.37 135.5 
32 1600 320 0 292 51.3474 0 320 36.37 146.8 
33 1600 320 0 292 102.6948 0 320 37.37 144.7 
34 1600 320 0 292 154.0422 0 320 38.37 162.4 
35 820 273 0 702 157 0 219 65 108 
36 820 273 0 624 157 0 219 65 95 
37 1040 310 0 800 0 0 240 46.944 140 
38 1040 310 0 800 0 0 240 46.944 165 
39 1040 310 0 800 47.8 0 240 46.944 195 
40 1040 310 0 800 47.8 0 240 46.944 230 
41 1040 310 0 800 0 0 240 46.944 140 
42 1040 310 0 800 47.8 0 240 46.944 165 
43 1040 310 0 800 47.8 0 240 46.944 210 
44 510 65 0 1700 0 0 140 46.944 175 
45 510 65 0 1700 11.95 0 140 46.944 195 
46 510 65 0 1700 11.95 0 140 46.944 240 
47 450 50 0 1720 11.95 0 140 46.944 145 
48 450 50 0 1720 11.95 0 140 46.944 175 
49 710 230 0 1020 156 210 110 30 119 
50 967 251 0 675 430 0 244 35 128 
51 711 85.32 0 0 0 0 137.2 10.665 115 
52 1115 367.95 0 0 0 0 334.5 88.085 210 
53 833 199.92 0 0 0 0 195.755 33.32 162 
54 550 82.5 0 0 0 0 137 16.5 142 
55 1107 343.17 0 0 0 0 195 61.992 217 
56 715 157.3 0 0 0 0 167 30.745 178 
57 800 150 0 0 20 750 230 25 119 
58 1327.8 332 0 0 0 332 254.4 47.8 171 



26 
 

59 1050 275 0 0 470 730 190 35 175 
60 657 119 0 1051 157 418 185 185 150.56 
61 657 119 0 1051 0 418 185 185 121.32 
62 813 203.3 0 1157 0 203.3 160.1 29.3 204 
63 775 194 0 1220 0 0 165 10 170 
64 845 76.1 0 0 12.6 0 175.45 0 188 
65 815 65.2 0 0 8.15 0 163 0 194 
66 446 32.6 0 1838 0 0 126 7.4 162 
67 443 0 448 1717 0 0 228 0.4 171 
68 450 0 0 1800 0 0 126 14 175 
69 432 29.7 132 1636 0 0 160.2 7.9 178 
70 408 39 0 1520 0 0 190 5.6 178 
71 406 40.6 0 1558 0 0 185 4.3 180 
72 900 135 0 1293.6 0 0 252 0 185 
73 383 67.5 0 1800 0 0 125 14 187 
74 775 116.3 0 1297 0 0 209.3 0 192 
75 900 135 0 1189 0 0 252 0 195 
76 412 41 0 1898 0 0 127 13 198 
77 550 0 0 1603 0 0 151 21 199 
78 398 0 185 1734.6 0 0 145 7.3 100 
79 712 231 0 1231 0 0 109 30.7 101 
80 786 256 0 1353 0 0 190 33 103 
81 664 142 142 1231 0 0 144 56 104 
82 784 256 0 1353 0 0 190 36 110 
83 420 60 120 1650 0 0 138 9 110 
84 786 256 0 1356 57.3 0 227 33 112 
85 900 157.5 0 1030 0 0 207 0 114 
86 900 157.5 0 1029.3 1.84 0 216 0 115 
87 900 157.5 0 1028 2.76 0 216 0 116 
88 731 239 0 1353 0 0 190 31 120 
89 784 256 0 1253 0 0 190 33 123 
90 800 261 0 1381 60.7 0 247 34 124 
91 900 157.5 0 1017.7 11.9 0 216 0 130 
92 712 231 0 1231 46.4 0 113.2 32 132 
93 784 256 0 1353 0 0 190 33 134 
94 800 261 0 1381 60.7 0 247 34 138 
95 710 230 0 1231 47.9 0 150 13.4 138 
96 1040 310 0 800 0 0 240 20.8 140 
97 917 229.2 0 1443 55.8 0 202 0 145 
98 784 256 0 1353 57 0 190 33 149 
99 1033 258 0 1136.7 0 0 155 16.5 150 

100 917 229.2 0 1443 111.6 0 202 0 153 
101 786 256 0 1356 58.2 0 227 33 154 
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102 790 198 192 1141 37.4 0 141 28.4 155 
103 665 200 0 1019 0 285 178 25 155 
104 609 183 0 1334 0 263 163 21 155 
105 900 220 0 1005 46.7 0 162 40 160 
106 1040 310 0 800 48.2 0 240 20.8 165 
107 917 229 0 1443 167.5 0 202 0 165 
108 1050 275 0 730 137.5 0 190 35 169 
109 775 194 0 1220 23.6 0 165 10 178 
110 959 239.8 0 1055 52.3 0 163 15 200 
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Supplementary Material 1 

Code to use ANN model:     

load('nn_UHPC_8_3.mat')    % Load final ANN model into MATLAB   environment 

fc_UHPC = net_UHPC_8_3(x); % 'fc_UHPC' is the predicted compressive 
                           % strength of UHPC and 'x' is the material 
                           % constituents. Size of 'fc_UHPC' and 'x' is 1 x n 
                           % and m x n, where n is the number of 
                           % observations (110) and m is the number of 
                           % parameters ranked from C, SI, FA, and W.  

 

Supplementary Material 2 

Code for Effect of fly ash at varying quantities of silica fume 2-D plot. 

clear;clc; 

  
load('nn_UHPC_8_3.mat')         % Load ANN model. 
const = 100;                    % Quantity kept constant. 
C = 800;                        % Quantity of C. 
W = const/C;                    % W normalized against C. 

  
FA = linspace(0,200,150)./C;    % Variation of FA normalized against C. 
xplot = linspace(0,200,150);    % Values to be viewed on 
                                % x-axis. 

  
figure1 = figure;               % Open plot.            
axes1 = axes('Parent',figure1... 
    ,'YGrid','on',... 
    'XGrid','on','GridAlpha',1,... 
    'GridLineStyle','--',... 
    'FontSmoothing','off',... 
    'FontSize',12,... 
    'FontName','Times'); 
box(axes1,'on'); 
hold(axes1,'on'); 

  
x_param = ones(150,4);          % Create Parametric Variable Array, where the 
x_param(:,3) = FA;              % first, second, third, and four columns  
x_param(:,4) = W;     % contain C, SI, FA, and W, respectively. 
count = 1; 
for delta = 20:20:80            % Plot line for every mix, i.e., SI ranging 
    SI = delta/C;               % from 20-80 kg/m^3, normalized against C. 
    x_param(:,2) = SI; 
    pred(count).plot = ...      % Calculate predictions. 
        net_UHPC_8_3(x_param'); 

     
    plot1(count) = plot(xplot,... 
        pred(count).plot,'LineWidth',2); 

     
    hold on 
    count = count + 1; 
end 
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set(plot1(1),'DisplayName'...   % Change name of plots for labels in 
    ,'SI = 20 kg/m^3',...       % legend. 
    'MarkerSize',1); 
set(plot1(2),'DisplayName'... 
    ,'SI = 40 kg/m^3',... 
    'LineStyle','--'); 
set(plot1(3),'DisplayName'... 
    ,'SI = 60 kg/m^3'); 
set(plot1(4),'DisplayName'... 
    ,'SI = 80 kg/m^3'... 
    ,'LineStyle','--'); 

  

  
xlabel('FA (kg/m^3)',...        % Create x and y labels. 
    'FontWeight','bold'); 
ylim([100,240]) 
ylabel('f''_c (MPa)',... 
    'FontWeight','bold'); 
legend1 = legend(axes1,'show'); 
set(legend1,'FontSize',12); 

 
Code for Effect of fly ash at varying quantities of silica fume 3-D plot. 

clear;clc; 

  
load('nn_UHPC_8_3.mat')         % Load ANN model. 
const = 100;                    % Quantity kept constant. 
C = 800;                        % Quantity of C. 
W = const/C;                    % W normalized against C. 

  
FA = linspace(0,200,150)./C;    % Variation of FA normalized against C. 
xplot = linspace(0,200,150);    % Values to be viewed on 
                                % x-axis. 

                                 
figure1 = figure;               % Open plot. 
colormap('jet'); 
axes1 = axes('Parent',... 
    figure1,'GridAlpha',1,... 
    'GridLineStyle','--',... 
    'FontSize',12,... 
    'FontName','Times'); 
view(axes1,[-37.5 30]); 
grid(axes1,'on'); 
hold(axes1,'on'); 

  
x_param = ones(150,4);          % Create Parametric Variable Array, where the 
x_param(:,3) = FA;              % first, second, third, and four columns  
x_param(:,4) = W;     % contain C, SI, FA, and W, respectively. 
count = 1; 

  
for delta = 20:20:80            % Plot line for every mix, i.e., SI ranging 
    SI = delta/C;               % from 20-80 kg/m^3, normalized against C. 
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    x_param(:,2) = SI; 
    pred(count,1:150,1) = ...   % Calculate predictions. 
         net_UHPC_8_3(x_param'); 

     
    y3d(count) = delta; 

    
    count = count + 1; 
end 

  
x3d = xplot;                    % Mesh 3D contour plot. 
z3d = pred; 

  
mesh(x3d,y3d,z3d) 

  
xlabel('FA (kg/m^3)',...        % Create x, y, and z labels. 
    'FontWeight','bold',... 
    'FontSize',12); 
xlim([0,200]) 
ylabel('SI (kg/m^3)'... 
    ,'FontWeight','bold',... 
    'FontSize',12); 
zlabel('f''_c(MPa)',... 
    'FontWeight','bold',... 
    'FontSize',12); 
zlim([100,250]) 

  
colorbar('peer',...             % Create color bar. 
    axes1,'Color',[0 0 0]); 
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