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Abstract

The compressive strength of Ultra-High Performance Concrete (UHPC) is a function of the
type, property and quantities of its material constituents. Empirically capturing this relationship
often requires the utilization of intelligent algorithms, such as the Artificial Neural Network
(ANN), to derive a predictive model that fits into an experimental dataset. However, its black-box
nature prevents researchers from mathematically describing its contents. This paper attempts to
address this ambiguity by employing two deep machine learning techniques—Sequential Feature
Selection (SFS) and Neural Interpretation Diagram (NID)—to identify the critical material
constituents that affect the ANN. 110 UHPC compressive strength tests varying based on the
material quantities were compiled into a database to train the ANN. As a result, four material
constituents were selected; mainly, cement, fly ash, silica fume and water. These material
constituents were then employed into the ANN to compute more accurate predictions (1> = 80.1%
and NMSE = 0.012) than the model with all eight material constituents (1> = 21.5% and NMSE =
0.035). Finally, a nonlinear regression model based on the four selected material constituents was
developed and a parametric study was conducted. It was concluded that the utilization of ANN
with SFS and NID drastically improved the accuracy of the model, and provided valuable insights
on the ANN compressive strength predictions for different UHPC mixes.

Keywords: Compressive Strength; Ultra-High Performance Concrete; Deep Machine
Learning; Sequential Feature selection; Neural Interpretation Diagrams.

Nomenclature
X Input parameters in the form of a matrix
o A matrix composed of randomly generated weights per layer &

O(X) Vector form of predictions

g(x)  Activation function

v Vector composed of the bias units in layer &
J Jacobian matrix 2L&
aP
& Error or cost
or Solution when Jdp is orthogonal to the column space J
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i Individual number of neurons
n Total number of neurons

a Hidden neuron

SSR  Sum of squared residuals

Cov  Covariance matrix

fe Concrete compressive strength

A/B  Regression coefficients

1. Introduction:

Machine learning algorithms such as Artificial Neural Network (ANN) have been extensively
used, in different fields, to evaluate predictive outcomes that closely agree with the experiment.
However, an experiment could consist of a comprehensive test matrix with a large number of
parameters in which the majority exhibits little contribution to the test outcomes. This necessitated
computer scientists to develop novel selection algorithms based on data-driven models; thereby
identifying the most relevant independent variables and rapidly reducing the dimensionality of the
input matrix. The need for soft computing tools in predictive modeling of engineering components,
systems and materials is continuously rising; where ANN emerged as one of the most popular soft
computing paradigms that have been successfully applied in several engineering fields [1].
Generally, ANN has been implemented in the prediction and approximation of character and
pattern recognition, image processing, forecasting, classification, optimization, and control related
problems [1]. This advocated researchers to propose ANN models and solve a wide variety of civil
engineering problems [2—7]. Furthermore, extensive applications in ANN behavioral modeling of
concrete structural elements have been reported in several studies [8—15]. In recent years, research
interests have migrated towards utilizing different ANN models to solve predictive-based
challenges of building material like: steel, concrete, and composites [16-20]. The majority of
problems related to concrete characteristics like fresh and hardened properties have been
successfully addressed using ANN modeling based on collected experimental data. Moreover,
prediction of concrete compressive strength using ANN models has been an area of continuous
research in the recent years. This, in turn, motivated researchers to employ ANN computing for
evaluating compressive strength of normal weight, light weight and recycled concrete [21-25].
Other researchers investigated various predictive models to interpret the compressive strength of
high performance concrete using different machine learning techniques [26-28]. Afterwards, the
emergence of ultra-high performance concrete (UHPC) necessitated further development of ANN
modeling towards behavioral predictions.

Researchers have successfully developed ANN models to accurately simulate the performance
of UHPC [29-31], however, these black-box paradigms offer little insights on what takes place
during ANN computations. Therefore, addressing this ambiguity should be the next step in
advancing the movement of implementing intelligent algorithms when assessing the performance
of UHPC mixes, while mathematically demonstrating it. Application in deep machine learning
have shown promising works in this regard where the optimization techniques that take place
during an ANN training phase is leveraged to iteratively select the parameters that influence the
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model’s accuracy [29-31]. The selected parameters can then be employed into the ANN, or any
other intelligent regression algorithm, to improve the accuracy of the predictive model while
understanding the physical phenomenon behind these selections.

In this investigation, a deep machine learning technique based on an ANN, which employs
deep machine learning algorithms in identifying the critical parameters that influence the accuracy
of predicting the compressive strength of UHPC, is presented. A comprehensive database of
experimental results, with several parameters, is collected from published UHPC compressive
strength tests. Afterwards, a series of ANNs pertaining different architectures were iteratively
employed to consistently obtain a final model. This model is then used with SFS and NID to
systematically select the material constituents that influence the model’s predictions of UHPC
compressive strength. Finally, the previously selected material constituents are used to derive an
analytical model and perform parametric studies to investigate their relationships with the
compressive strength of UHPC.

2. UHPC and ANN: Background

The evolution of UHPC has led structural engineers to improve the compressive strength,
ductility, and durability of heavy loaded reinforced concrete structures. Several researchers have
investigated the mechanical behavior of UHPC and its applications over the last four decades [32],
where UHPC usually exhibits a compressive strength that would range from 150 MPa to 810 MPa
[33-35]. The ingredients required to produce such high compressive strength material are: (a) high
dosage of cement (up to 800 kg/m?); (b) lower water/binder ratio (lower than 0.20); (c) high-range
water-reducing (HRWR) admixture; (d) very fine powders (crushed quartzite, silica fume, and
nano-silica); and (d) steel fibers and/or polyethylene fibers [36, 37]. Other researchers aimed at
developing sustainable and economical approaches by reducing the amount of cement and silica
fume, and compensate these reductions with the addition of fly ash and sand [38—40]. However,
most of the aforementioned mixtures result in exhausting a large amount of resources and
performing tests on many batches, while barely predicting the strength of UHPC [41]. Therefore,
acquiring an analytical model that is a function of the constituents of UHPC is needed to easily
and accurately predict compressive strength values [29-31].

Ghafari et al. [29] investigated the implementation of back-propagation neural network
(BPNN) and statistical mixture design in predicting the required performance of UHPC. Their
objective was to predict both the compressive strength and the consistency of UHPC with two
different types of curing, mainly, steam curing and wet curing, using both BPNN and statistical
mixture design. Fifty three concrete specimens were designed based on the design matrix of the
statistical mixture design, and the constituents that make up the mixture were taken as the
independent parameters of the BPNN model. The results indicated that BPNN was capable of
predicting the compressive strength and slump flow with higher accuracy than the statistical
mixture design. Kasperkiewicz et al. [30] used ANN to predict the optimal mix proportion of
cement, silica, superplasticizer, water, fine aggregate, and coarse aggregate of high performance
concrete (HPC), despite having data complexity, incompleteness, and incoherence. Their model
showed a significant correlation between the actual and the predicted values observed, where an
optimum mix can be approximated using an ANN model. Awodiji et al. [31] trained a series ANN
models to investigate the relationship between the compressive strength and ratio of material
quantities to curing age for different hydrated lime cement concrete mixes. As a result, the models



achieved correlation coefficients that ranged between 90.1-98.4%; indicating that the models were
successful in predicting the compressive strength for different concrete mixes. Although the
accuracy of the previously proposed ANN models [29-31] were reasonable, nevertheless, the
reduction of input parameters will simplify the ANNs architectures and enhance their models’
computational efficiency. Therefore, researchers developed robust techniques that can reveal the
contents within the ANN model by means of identifying the most influential independent
parameters that can be used to improve the accuracy of the ANN.

3. Related Works

Feature selection is an example of one of the developed techniques in which the algorithm
identifies the features contributing strongly to the prediction model by sorting the feature subsets
based on a user-imposed evaluation measure (i.e., error/performance), which scores differently for
every added feature subset. This intelligent selection process improves the performance of the
model, in terms of accuracy and precision, and facilitates a better understanding of data processing
[42, 43]. There are two types of feature selection classes; mainly filter method, which highlights
the intrinsic characteristics of the independent variables measured by means of fundamental
statistics, and wrapper method, which measures the efficiency of the independent variables based
on the regression/classification model’s performance [44—46]. This study focused primarily on
incorporating the wrapper method, Sequential Feature Selection (SFS) algorithm.

Zhou et al. [45] used the SFS paradigm within the Markov Blanket, another machine learning
technique, to select the most critical features of human motion recognition. As a result, the total
number of features was rapidly reduced where this improved the algorithm’s capabilities of
showing better recognition accuracy than traditional methods. Rodriguez-Galiano et al. [46] also
used SFS when tackling ground water quality problems where 20 parameters were extracted from
a comprehensive database. This study implemented four types of machine learning algorithms with
SFS, and located the underlying parameters impacting the performance of each machine learning
technique. As a result, the Rain Forest machine learning algorithm used with SFS showed
promising results, where only three features were necessary to predict the most accurate results.
Besides SFS learning tool, another variable importance method, termed neural interpretation
diagram (NID), was employed by Ozesmi et al. [47] to study the spatial models for habitat selection
of marsh-breeding bird species. This algorithm was incorporated within an ANN model to visually
inspect the bearing-effect of each habitat variable, with respect to the classification approach, and
successfully obtain the critical parameters from the total dataset. Afterwards, the authors employed
these candidate parameters into a new ANN model; thereby providing them a better understanding
of the mechanisms of habitat selection.

This study aims at utilizing SFS and NID within a BPNN to successfully identify the material
constituents that contribute to the compressive strength of UHPC. The machine learning tools
analyzed eight material constituents from 110 UHPC compressive strength tests, collected from a
comprehensive database [48—59], and selected the dominant and most influential features that
enhance the performance of the BPNN model. In addition, Abram’s classical model for predicting
concrete compressive strength was modified using the selected features and the regression
coefficients were derived based on a minimization algorithm through the nonlinear regression
analysis. Finally, a parametric study was conducted, using the selected features, to investigate the
behavioral impact of each material constituent on the compressive strength of UHPC.
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4. Methodology of modeling:

The investigation conducted was based on four systematic steps; mainly, data collection,
verification of BPNN, execution of SFS and NID, and analysis of selected features. Fig. 1 outlines
this approach within a flowchart where it was possible to develop a robust and accurate predictive
model. The first and second boxes (Input Data and Design/Validate BPNN Model) elucidate the
process of iteratively training the data until a BPNN structure that can make both accurate and
consistent predictions is obtained. The third box (Execute SFS/NID) highlights the employment
of deep machine learning algorithms (SFS and NID) to systematically select the material
constituents that influence the accuracy of the BPNN predictions during the training phase. The
last box (Analyze Selected Material Constituents) consists of carrying out a comprehensive
parametric study that underscores the relationship between the compressive strength and the
variations in material quantities in different UHPC mixes.

Input UHPC Data

!

Design/Validation
BPNN Model

v

Execute SFS/NID

!

Analyze Selected

material constituents

Fig. 1. Flowchart of the Deep Machine Learning Approach

Table 1 presents the common constituent materials of UHPC mixes used in different
experimental investigations [49-59] with their corresponding code names and statistical
measurements; the maximum, minimum, mean, median, and standard deviation. A detailed list of
the parameters tested during this study can be found in Appendix A (Table A.1). In addition, all
compressive strength values were measured after 28 days from casting. A nested plot composed
of the frequency distributions for each material constituent investigated in this study is presented
in Fig. 2.

Table 1: Range of input parameters for training, validation and testing

Symbol Statistical Measurements
Standard
Variable Coded Minimum  Maximum Mean Median Deviation
Cement (kg/m?) C 383 1600 879.7 786 329.8
Silicafume (kg/m®) SI 0 367.95 192.0 196 94.6



Flyash (kg/m®) FA 0 448 33.0 0 72.7
Sand (kg/m?) SA 0 1898 980.0 1107 513.8
SteelFiber (kg/m?) SF 0 470 39.0 0 74.8
QuartzPowder (kg/m?) QP 0 750 36.9 0 125.9
Water (kg/m?) w 109 334.5 197.1 1853 543
Admixture (kg/m?) A 0 185 31.9 30.1 28.2
f'c (MPa) fc 95 240 1522 1479 31.5
Admixture Cement fc
100~
75-
50-
> ._ -_L
o- — m _—-__
150 2 1000 1400
Flyash Quartz Powder Sand
100~
>
S 75-
5
g 50-
0]
= 25- -
0- __ | il L | — _
200 300 400 600 800 500 1000 1500 2000
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100-
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Fig. 2. Frequency Distribution of Experimental Data
4.1.Artificial neural network:

ANN is a machine learning paradigm that mathematically imitates the learning functions of a
human brain in the sense of analyzing different experiences registered by the neurons and locating
an accurate solution based on a trial-and-error approach. There are two types of ANN models: (1)
feed forward; and (2) feed backward. The feed forward requires that the ANN model to have an
adjusted or /earned network, by means of a back-propagating (BP) technique in order to make
predictions. The feed backward model attempts to approximate the predictor variables and uses
the true response variables to compute the cost or error between them. Afterwards, the algorithm
adjusts the weights such that the network converges on the most accurate solution. For this reason,
the BP feed-forward multilayer perceptron was extensively used in different engineering
applications [12, 22, 29].

The architecture of a typical ANN is composed of input neurons, hidden neurons, bias units,
wires, and output neurons. The input neurons consist of each parameter in the form of a vector
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(input by the user), the wires represent randomly generated matrices called weights that manipulate
the function’s slope or steepness, the hidden neurons map the weights variables using user-defined
activation functions, and the bias units control the output function’s shift; either upward or
downward.

Eq. (1) shows a vertorized form of the complex combinations during the analysis period for a
single-hidden layered system.

0(X) = g(6%X + b*) (1)
Where X represents the input parameters in the form of a matrix, 6 is a matrix composed of
randomly generated weights per layer & (starting from the hidden layer), O(X) is the vector form
of predictions, g(x) is the activation function and 4 is a vector composed of the bias units in layer

k.

Prior to the final output, each row was transformed within a certain domain using a user-
defined activation function. In this study, the sigmoid function was used as presented in eq. (2).

1
90 =10 )

The BP technique uses a minimization cost approach, Levenberg-Marquardt algorithm, which
is an iterative technique that locates the /ocal minimum of a multivariate function expressed as the
sum of squares of non-linear real-valued functions. The Levenberg-Marquardt algorithm uses both
the Gradient Descent Method and Gauss-Newton method to help the solution converge [60]. Eq.
(3) summarizes the iterative technique in an algebraic matrix form.

716 =1"¢ 3)

a];;P), ¢ is the error or cost (](9) = ”i R_(OX™)—Y")? ”), and
or is the solution when Jop is orthogonal to the column space J. By altering or damping the
elements in J7]J, the cost ¢ varies and Sp is calculated. Afterwards, @ is adjusted using eq. (4) and
O(X) is recalculated using eq. (1). This algorithm reiterates until € decreases leading to a reduction
in the damping rate as the solution slowly converges.

Where J is the Jacobian matrix

0, = 6o+ 6p 4)
Where 01 and 6o represent the adjusted weights and initial weights, respectively.

Fig. 3 displays the schematics of an ANN with one input layer, one hidden layer, and an
output layer. Both the subscripts and superscripts are used to identify the neuron and layer
numbers, respectively. Ultimately, the subscripts i and » are used to identify the individual and
total number of neurons, respectively, within the input layer k. Each input neuron, Xi, contains one
independent parameter and Xi+1 contains the subsequent column until #» neurons are passed into
the BPNN structure. Similarly, the subscripts j and m also denote the individual and total number
k+1

of neurons, respectively, within an arbitrary hidden layer £+1, where each hidden neuron, g;

receives weighted matrix-products from each neuron, X;, via the wires connecting between the
input and hidden layers. These wires contain weights, 8, and are responsible for transforming the
mapped sum-products into the neighboring layers.



X, i=0 j=0
Oo
Output layer
X

Input Layer k  Hidden Layer k+1

Fig. 3. ANN Architecture

4.2.Sequential Feature Selection:

Feature selection reduces the dimensionality of data by selecting a subset of measured features
and to build a simpler prediction model [61]. This machine learning algorithm is composed of two
components: the objective function, which is the criteria the algorithm tracks when selecting the
features, and the search algorithm, which is the approach the machine learning tool uses to
add/remove features from a subset. A popular search algorithm used in several studies [44-46] is
the Sequential Feature Selection (SFS), which is a function that is initialized during a predictive
model assessment and it sequentially appends variables into the model until any further addition
does not yield a sufficient change in the objective function. In this study, the objective function
used was the Normalized Mean Square Error (NMSE), and the search algorithm implemented was
SFS within a BPNN. Fig. 4 shows the algorithm SFS uses when performing a selection.

Empty Set Yo = {¢}

Y

Select the next best feature x™ =
arg max x € YrJ(Yx +x")

Y

Update Yk+1 = Yk +x*

Fig. 4. Forward Selection Algorithm



4.3.Neural Interpretation Diagram

Neural interpretation diagram (NID) is an ANN structure that demonstrates the relative
importance an independent variable has with the response variable in terms of the weights’
magnitudes and signs. The algorithm deconstructs the weights for each input node during the
analysis stage until a list of all weights is stored in a matrix. Afterwards, the matrix is equated to
each input node and scaled relative to all the other input variables, and a single value is obtained
for each input variable that describes the relationship with the response variable in the model. This
information helps users identify the type of correlation the network facilitates and notifies them
which input variables are irrelevant and suppressed by the weights. The opposite is observed for
the network whose input parameters have positive associations with the network, i.e., more
relevant. Fig. 5 shows an example of an NID diagram with one hidden layer and one output unit.
The solid blue lines represent the positive affiliation from one neuron to the neighboring neuron(s),
where the thicker lines indicate stronger associations, whereas a red line indicates negative
association of the input variable with the network and hindering the accuracy of the prediction
model.

he(X)

Output layer

Input Layer k  Hidden Layer k+1

Fig. 5. NID Diagram
4.4.Nonlinear Regression:

One of the objectives of this study is to produce an analytical model with the selected features
from the aforementioned methods, SFS and NID. The nonlinear regression is used when the
dependent and independent variables are not simultaneously linear. It estimates an arbitrary
nonlinear function such that the cost or standard error between the theoretical and experimental
results is minimized. These estimations are carried out by iteratively selecting appropriate
parameters according to the standard error; where the parameters can be multiplicative coefficients
and/or exponents. The standard error is a function of the parameters and is shown in eq. (5), where
SSR is the sum of the squared residuals, 7 is the number of data points in the dataset, and Cov(i,i)
is the i-th diagonal element in the covariance matrix.

SError(Pi) = <§l S;Sf> X COU(i, i) (5)




The parameters are initialized by the user in which poor assumptions can lead the model to
diverge from the actual result; therefore, implementing SFS and NID will reduce the independent
parameters and improve convergence during the analysis. Since Abram’s formula [62] is
applicable for predicting the compressive strength of 7-days and 28-days old concrete, it was used
as a mathematical structure during the nonlinear regression analysis, as shown in eq (6). Nonlinear
regression was carried out using IBM SPSS 23 software package.

f.=AxXB (6)
Where X is the water-to-binder ratio, and A and B are regression coefficients.
5. ANN Modeling for prediction of compressive strength of UHPC
5.1.Design of ANN

In this study, BPNN was used to make predictions and to identify the most relevant features.
The BPNN was constructed in MATLAB [61] using the Levenberg-Marquardt minimization
algorithm. The training parameters like the total epoch, learning rate, and minimum gradient were
1000 epochs, 0.001, and 1077. A total of 110 observations with eight material constituents were
used to train and test the BPNN model, where the UHPC constituents were normalized and written
as a ratio of the material constituent to cement. This helped avoid heavy fluctuations in the results
and minimized any extreme outliers in the dataset. Table 2 shows the normalized parameters range
(maximum and minimum) as a percentage of cement, and the compressive strength values
(maximum and minimum).

Table 2: Training and Testing Normalized Data

Symbol Range
Variable Symbols Minimum Maximum
Cement C 1 1

Silica fume SI 0 0.333
Fly ash FA 0 1.01
Sand S 0 4.70
Steel Fiber SF 0 0.448
Quartz Powder QP 0 0.938
Water W 0.1084 0.515
Admixture A 0 0.282
f'c (MPa) fc 95 240

5.2.Verification of ANN

There are two types of verification strategies to be employed within the BPNN; mainly, the
numerical solver verification and the over fitting verification. The numerical solver verification is
the process in which the number of neurons is iteratively increased with each BP analysis. During
each run, the error is stored in a vector and plotted versus the corresponding number of neurons.
The over-fitting verification is used to ensure that the BPNN does not memorize how to interpret
a specific range of inputs such that it can be implemented to predict results using a newly collected
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database. For the first type of verification, the BPNN’s numerical solver, Levenberg-Marquardt,
was verified by testing an arbitrary range of neurons and measuring the performance of the model
per neuron using NMSE as indicator. In this study, the increment started from one neuron and
ended with 15 neurons, where the model was analyzed 10 times for each neuron. Therefore, for
each neuron trained, ten NMSE values were evaluated and stored in a matrix while the mean and
95% confidence interval were calculated for each column vector (neuron) and represented as a
dashed line and a shaded region, respectively, versus the number of neuron(s). Fig. 6 shows the
plot of all the trained analyses with the minimum average NMSE point circled at 11 neurons, and
the upper and lower confidence interval shown in the light blue shaded area. While implementing
the first verification process, the second verification process was implemented in which the data
was randomly split into three sets; 70% for the training set, 15% for the validation set, and 15%
for the testing set. By combining both processes, the verification strategies resembled that of a k-
fold cross-validation approach where the model’s input parameters were randomly divided into
segregated sets and trained multiple times until the best performing ANN was constructed. Fig. 7
shows the verified ANN architecture where the neurons inscribed with the letters ‘I’ and ‘H’
followed by a number are the input and hidden neurons with their corresponding number of units,
respectively, and the neurons with the letters ‘B’ and ‘O’ followed by numbers are the bias and
output units, respectively. A published article has shown that a double-layered ANN is sufficient
enough to simulate the nonlinear behavior of UHPC [36]. Therefore, seven neurons were used in
the first hidden layer and three neurons were used in the second hidden layer.
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Fig. 6. Verification Plot for ANN
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6. Variable importance methods
6.1.Execution of SF'S

The SFS algorithm was executed 200 times to capture all possible combinations of independent
features when using a BPNN. Fig. 8 shows a bar plot representing the percentage of features that
were used during the 200 trials. Based on the results of these trials and the most dominant
combination during the analysis, a threshold of 20% was imposed as the lower bound for selecting
the variables that have the largest contribution. The reason for selecting 20% was dependent on
the shape of the bar chart, whereby a pattern was shown when observing the small percentage
difference between the four variables that have contributed more than 20% of trials. Therefore, the
four variables; Cement, Silica Fume, Flyash, and Water were selected as the most relevant features
within the prediction model. While preparation techniques and curing regimes have been regarded
as significant factors for enhancing the performance of UHPC [32], it has also encouraged on-
going investigations in the effect that the material constituents exhibit on the compressive strength
of UHPC [38]. Furthermore, researchers have conducted experimental investigations using these
exact material constituents to individually monitor the performance of UHPC in terms of
compressive strength [57].
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Fig. 8. Bar Plot of the Percentage of Features that Contributed to the Model

6.2.Execution of NID

The NID [47] was used to verify the selected parameters in the SFS method where it was
plotted within the verified ANN to visually inspect the features during the analysis. Since the
weights dictate the relative influence of information that is processed in the network, a positive
association with the response is represented with a solid blue line and a negative association with
the response is represented with a red line as previously indicated in Fig. 5. The NID was plotted
using the statistical programming package, R [47]. Fig. 9 shows the NID diagram using the
previously verified ANN model. It is clearly observed that C, SI, FA, and W demonstrate strong
positive association during the analysis, where SI and W show the most dominant positive
associations with their neighboring hidden units similar to the bar plot in Fig. 8. This was visually
measured according to the thickness, color and number of blue wires shown in Fig. 9 where most
of these wires consisted of positive large weighted values that indicate their influential
characteristics in the BPNN model. As a result, the selected constituents in this section match with
the material constituents selected from the previous section; hence, the utilization of both SFS and
NID have shown consistency in identifying features within a predictive model. This proves that
the existence of large databases, like the one in this study, enabled the use of advanced machine
learning algorithms to successfully identify the influential parameters of the function and thus gave
room for the incorporation of statistical toolboxes (i.e., nonlinear regression) to develop a simple

robust model for approximating the compressive strength of UHPC without inclusion of other
parameters.
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7. Results and discussions
7.1. ANN results

The selected features, i.e., influential parameters, were employed into a new BPNN model to
study their performance. As a result, the trained ANN that used the selected features showed
stronger agreement with the experimental results in contrast with the ANN prior to the selection.
Table 3 shows the statistical measurements calculated for both cases in which the coefficient of
multiple determination (r?) was used to measure the variation between the prediction model’s data
and its mean compared to that of the experimental results. The NMSE was used to measure the
overall variation between the predicted and experimental results. It was observed that the r* value
before and after selection was 21.5% and 80.1%, respectively, and the NMSE before and after
selection was 0.035 and 0.012, respectively.

Table 3: Statistical Measurement using ANN Before and After SFS/NID

Statistics Measurements Before Selection After Selection
r? 0.215 0.801
NMSE 0.035 0.012

Furthermore, correlation plots between the predicted and experimental results were generated
for both the trained ANN models, as shown in Fig. 10, where the red line represents a perfect fit
to the data and the dotted lines represent the percent deviation (£15%) from the perfect fit. As a
result, the ANN with the selected features was able to make 80.1% of its predictions within the
+15% threshold whereas the ANN with all the features was able to make 61% of its predictions
within the same threshold. This concluded that the model with the selected features outperformed
the model with all the features.
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Fig. 11 summarizes the predicted-to-experimental compressive strength ratio for both ANN
models, where the model with the selected features demonstrated better performance with higher
percentage of values (89.1%) ranging between 0.8 and 1.2 than the ANN with all features, (65.4%).
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Fig. 11. Ratios of Experimental and Predicted for Both ANN Models

7.2. Developed Model based on Nonlinear Regression Analysis:

Abram’s formula, given in eq. (6), was rewritten by explicitly expanding X to a water-to-binder
form as given in eq. (7) and initiated within a nonlinear regression analysis using IBM SPSS 23.
The material constituents; W, C, SI, and FA were written in kg/m>. As a result, the regression
coefficient values with the statistical measurements are tabulated in Table 4 where the proposed
model’s r* and NSME values were 71.6% and 0.0645, respectively.

15



w -B
::A X ( ) 7
Je (C+SI+FA) @
Table 4: LSG Coefficients
Regression Coefficients Coefficients Values 12 NMSE
A 93

0.716 0.0645

B 0.35

Fig. 12 summarizes the performance of the proposed model and the correlation between the
predicted and experimental compressive strength results.
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Fig. 12. Summary of the Proposed Model’s Performance

Although the ANN model developed in this investigation predicted the concrete strength with
high level of accurately, however, the accuracy of the ANN prediction model and its limitation in
predicting concrete strength is bounded by the boundaries of the input parameters used in training
the ANN which are the maximum and minimum values of the nine parameters given in Table 1.
For input values outside the domain of boundary values, the accuracy of the predicted concrete
strength cannot be confidently assured.

8. Parametric studies and sensitivity analysis:

Since the proposed ANN model was capable of predicting results that agree well with the
experimental data, a parametric study was conducted to investigate the influence of the selected
parameters on the compressive strength of UHPC. Plots were generated, where some of the
independent parameters were held constant while the others were varied according to their
practical range of values. The final ANN model is appended to this paper (see Supplementary
material 1) where the model can be loaded into the MATLAB environment to carry out the
parametric study. A sample of the parametric study can be found in Supplementary Material 2. It
is worth mentioning that the material constituents should be normalized against cement, as
explained in section Design of ANN, before executing the parametric study.
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8.1.Design of the Parametric Study

Prior to performing the parametric study, the trend and distribution of data were analyzed such
that practical ranges were imposed within the upper and lower boundaries of the input parameters
within the ANN. Additional information regarding these statistical measurements is found in Table
1. During data collection, each experiment (row) within the data demonstrated an underlying
relationship in terms of its corresponding material constituents. For instance, the increase in
cement was accompanied by an increase in fly ash, silica fume and water; meaning, there existed
a certain ratio between these material constituents. Therefore, when designing the matrix for
parametric study the material constituents that were maintained had their ratios fixed throughout
each parametric study. Table 5 summarizes the parametric study conducted in this investigation
where some ratios were fixed while the remaining parameters were varied during each study.

Table 5: Summary of Parametric Study

Parametric Study Constant ratios Varying Parameters (kg/m?)
Effect of fly ash at selected quantities of Lo o Fly ash (0-200)
silica fume water/cement ratio = 12.5% | qini fiime (20, 40, 60, 80)
Effect of silica fume at selected quantities Silica fume (0-200)

water/cement ratio = 12.5%

of fly ash Fly ash (40, 80, 120, 160)
Effect of water at selected quantities of fly cement/silica fume ratio = water (100-350)
ash 25% Fly ash (40, 80, 120, 160)

Effect of water at selected quantities of
silica fume

water (100-350)

10 = 0,
cement/fly ash ratio = 25% Silica fume (20, 40, 60, 80)

8.2. Effect of fly ash at varying quantities of silica fume

Fig. 13 shows the effect of fly ash on the compressive strength of UHPC at selected quantities
of silica fume (20, 40, 60, 80 kg/m?) and at constant water/cement ratio of 12.5%. It was observed
from Fig. 13(a) and (b) that each individual curve demonstrated an inverse relationship between
the compressive strength (response variable) and the fly ash (independent variable), for all
quantities of silica fume. Moreover, both mixes shown in Fig. 13(a) and (b) exhibited maximum
compressive strength values when the quantities of fly ash and silica fume were maintained at
values of 0 kg/m? and 20 kg/m>, respectively. This behavior took place despite the large difference
in the quantities of cement. The curve, then, experienced a slightly linear reduction in compressive
strength with the continuous addition of; hence, the presence of both fly ash and silica fume
weakened the mechanical performance of UHPC. However, an increase in the compressive
strength was observed when the quantities of cement and water were increased by 50% without
change in water cement ratio. For example, when silica fume ranges between 20 kg/m?® and 80
kg/m?, the UHPC mix exhibited a large reduction in compressive strength from 235.8 MPa to
155.6 MPa, at 0 kg/m® of fly ash as depicted in Fig. 13(a). On the other hand, when similar
additions of silica fume were made, the mix showed less reduction in compressive strength, i.e.,
from 236.1 to 210.4 MPa, at 0 kg/m?> of fly ash as shown in Fig. 13(b). Therefore, the increase of
the quantities of cement and water of a UHPC mix tends to suppress the tendencies of reduction
of UHPC’s compressive strength due to increase in fly ash and silica fume. Furthermore, a
substantial change in the behavior of both curves is observed when silica fume was increased — a
downward concave curve, at a silica fume of 20 kg/m?, and an upward concave curve, at a silica
fume of 80 kg/m® are observed as shown in Fig. 13(a). However, when the quantities of cement
and water were increase to 1200 kg/m? and 150 kg/m?, all curves are downward concave curves
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despite the changes in silica fume from 20 kg/m® to 80 kg/m®, as shown in Fig. 13(b). This
indicated that the presence of silica fume at high quantities of cement and water provide downward
concave profile (Fig. 13(b)), which allows the UHPC to utilize more compressive strength
compared to the mix with low quantities of cement and water, shown in Fig. 13(a). In summary,
the following observations can be made: (a) The compressive strength of UHPC decreases with
the increase in fly ash; (b) maximum compressive strength is achieved at 0 kg/m? of fly ash; (c)
reduction in compressive strength shifts within the inverse profiles due to the addition of both
cement and water; (d) lower tendencies of developing inflection points was apparent when
increasing the amount of cement and water, despite extreme changes in the quantities of silica
fume. Fig. 13(c) and (d) show surface plots of the aforementioned 2D plots in generalized contour

plots.
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8.3. Effect of silica fume at varying quantities of fly ash

Fig. 14 shows the effect of silica fume on the compressive strength of UHPC at selected
quantities of fly ash (40, 80, 120, 160 kg/m?) and at constant water/cement ratio of 12.5%. Two
type of relationships observed in Fig. 14. Fig. 14(a) showed a parabolic decrease in compressive
strength until a local minimum value is reached and a sudden increase in compressive strength
were observed with the addition of silica fume. Whereas Fig. 14(b) demonstrated an inverse
parabolic profile until a local minimum value is reached, followed by a slight increase in the
compressive strength with the addition of silica fume. An underlying difference in characteristics,
in terms of both the slope and horizontal shift, is clearly shown when observing both figures. For
example, in Fig. 14(a), the addition of fly ash (40 kg/m? to 160 kg/m?) to the mix achieved
maximum compressive strength values that ranged from 234.4 MPa to 225.1 MPa at 0 kg/m’ silica
fume, whereas the mix in Fig. 14(b) demonstrated a lesser variation in compressive strength, 236.3
MPa to 234.2 MPa, despite similar additions in the quantities of fly ash. It is clear that the increase
in silica fume resulted in a decrease in the compressive strength of the UHPC until a local
minimum value is reached and then its effect is reversed to an increase in compressive strength as
shown in Fig. 14(a) and (b). This phenomenon was accompanied with a horizontal shift of the
minimum values of the compressive strength, however, the addition of cement and water did not
significantly impact the magnitude of the minimum compressive strength. Nevertheless, the
increase in water and cement resulted in reduction in slope with the increase of silica fume as
shown in Fig. 14(b). This indicated that such mix can sustain more strength than a mix similar to
that shown in Fig. 14(a) in which a sudden drop is observed in the compressive strength with the
addition of silica fume. This reduction in slope also impacted the scale of the amount of silica fume
necessary to approximately arrive at similar minimum compressive. In summary, the following
observations can be made: (a) the compressive strength of UHPC shows a semi-inverse parabolic
curves and decreases with the increase in silica fume to reach distinctive local minimum; (b)
maximum compressive strength is achieved at 0 kg/m> despite the 50% increase in cement and
water; (c) at certain values of silica fume the compressive strength is not influenced by the amount
of fly ash; (d) the addition of fly ash caused the minimum compressive values to exhibit horizontal
shifts; (e) the increase in cement and water affected the slope of the profiles in which the
compressive strength values did not vary significantly with the addition of fly ash. Fig. 14(c) and
(d) show surface plots of the aforementioned 2D plots in generalized contour plots of the
aforementioned 2D plots in generalized contour plots.
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Fig. 14. Effect of silica fume at varying quantities of fly ash

8.4. Effect of water at varying quantities of fly ash

Fig. 15 shows the effect of water on the compressive strength of UHPC at selected quantities
of fly ash (40, 80, 120, 160 kg/m?) and at constant silica fume/cement ratio of 25%. The curves in
both Fig. 15(a) and (b) demonstrated a positive parabolic relationship between the compressive
strength and water. It is observed that both figures demonstrated relatively a small variation in
compressive strength throughout the increase in the quantities of water. Fig. 15(a) displayed curves
with a maximum and a minimum whereas the maximum compressive strength ranged between
183-186 MPa that took place at 125 kg/m? of water and a minimum compressive strength ranged
between 135-138.4 MPa that took place at 263.3 kg/m® of water. The effect of fly ash on
compressive strength becomes more apparent as water quantity exceeds the threshold correspond
to the minimum values. On the other hand, Fig. 15(b) exhibited curves with a maximum
compressive strength ranged between 183 - 186 MPa that was reached at 175 kg/m?® of water. As
shown in Fig. 15(a), the effect of fly ash on the compressive strength is slightly effective between
100 kg/m? and 150 kg/m? of water, but becomes negligible from 160 kg/m? to 270 kg/m® of water
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followed by a more noticeable effect after 300 kg/m> of water. Similarly, increasing the cement
and silica fume by 50% did not affect the maximum compressive strength, however, it shifted its
location. Furthermore, the mix curves shown in Fig. 15(b) required additional quantities of water
to reach the same maximum compressive strength as that of Fig. 15(a). In summary, the following
observations can be made: (a) Fly ash has minimum effect on the compressive strength for large
range of water quantities; (b) For low quantities of cement and silica fume, fly ash has more
influence on the compressive strength at large quantities of water; (c) The maximum compressive
strength is not affected by the increase in the quantity of cement and silica fume. Fig. 15(c) and
(d) show surface plots of the aforementioned 2D plots in generalized contour plots.
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Fig. 15. Effect of water at varying quantities of fly ash

7.5 Effect of water at varying quantities of silica fume

Fig. 16 shows the effect of water on the compressive strength of UHPC at selected quantities
of silica fume (20, 40, 60, 80 kg/m?) and at constant fly ash/cement ratio of 25%. As shown in Fig.
16(a), for a given quantity of silica fume, the compressive strength of UHPC increases with the
increase in water quantity until a certain compressive strength. This compressive strength shows

21



clear decays as silica fume increases from 2060 kg/m>. However, when silica fume continues to
increase, the model exhibits a plateau in compressive strength wherein additional amounts of water
is required to facilitate a significant increase in compressive strength. For instance, the mix with
the smallest quantity of silica fume (40 kg/m?) has the maximum compressive strength of 224 MPa
reached at water quantity of 175 kg/m® while the mix with largest silica fume (160 kg/m?) has the
minimum compressive strength of 176 MPa reached at water quantity of 200 kg/m? as shown in
Fig. 16(a). At around 200 kg/m® of water, all mixes with different silica fume quantities, converged
to the same compressive strength of around 176 MPa after which the behavior reversed, i.e., mixes
with large quantities of silica fume exhibited larger compressive strength with continuous rise with
increase in water quantity. Fig. 16(b) shows similar behavior to that of Fig. 16(a), however,
additional quantities of water were needed for the mixes to reach their maximum compressive
strength. Similarly, all mixes shown in Fig. 16(b) converged at the same compressive strength of
172 MPa, however, at a larger quantity of water 340 kg/m® compared to the mixes of Fig. 16(a).
In summary, the following observations can be made: (a) The curves exhibited negative vertical
shifts in compressive strength similar to the inverse relationship shown in Fig. 14(a) and (b). (b)
The curves showed horizontal shifts in the quantities of silica fume due to the sequential addition
of fly ash; (c) The curves of different silica fume quantities showed different maximum
compressive strength values at different quantities of water; (d) Curves with large quantities of
silica fume required more water quantities to reach their maximum compressive strength. Fig.
16(c) and (d) show surface plots of the aforementioned 2D plots in generalized contour plots.
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Fig. 16. Effect of water at varying quantities of silica fume
9. Summary and conclusion

This investigation was conducted to predict the compressive strength of UHPC using ANN
with the most influential parameters of the concrete mix. The investigation consisted of four major
steps: (1) employment of the SFS and NID machine learning tools for identifying and selecting
the most influential features or parameters; (2) analysis of selected features using BPNN; (3)
modification and calibration of Abram’s classical model using nonlinear regression; and (4)
conduction of a sensitivity analysis to study the effect of each selected feature in the properties
and behavior of UHPC. The outcomes of this study are:

e The incorporation of BPNN with SFS and NID was capable of rapidly reducing the
dimensionality of the database; making it simpler for the prediction model to evaluate
compressive strength values.

e The BPNN model with the four selected features predicted the results more accurately
(r? = 80.1%; NMSE = 0.012) than the model which all eight parameters (1> = 21.5%;
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NMSE = 0.035). Furthermore 80.1% of the values predicted using the four selected
parameters are within £15% deviation boundary limit compared to only 61% of values
predicted using all eight parameters.

Abram’s classical model was modified using nonlinear regression and a final model
was proposed. It yielded results that closely agreed with that of the experimental results
with r? = 71.6% and the NMSE = 0.0645.

It is observed that the maximum compressive strength of UHPC was achieved without
the presence of silica fume, and the minimum compressive strength was achieved with
additional silica fume until a specific amount of silica fume was reached.

It was also observed that, the increase of fly ash showed a decrease in the compressive
strength of UHPC. This decrease was accompanied with a horizontal shift; indicating
sustainable compressive strength throughout the addition of silica fume.

A parabolic relationship was reported when the compressive strength was plotted
against the water content. Essentially, at a typical amount of fly ash and increasing
quantities of silica fume, the mix requires additional water to facilitate a significant
increase in compressive strength. This relationship shifts to the right when quantities
of fly ash are increased, indicating larger demands of water for the additional binders
(fly ash and silica fume).

The curves developed in this study can be utilized to predict the compressive strength
of UHPC mixes and to understand the underlying relationships between the
compressive strength of UHPC and design mix material constituents.

In spite of the accuracy of the ANN model developed in this investigation, it is
important to emphasize that there are limitations to this accuracy. Such limitations are
greatly influenced by whether the input parameters are within the domain of the
applicable boundary values used in training the ANN model.

Appendix A
Table A.1: Collected database.

No. | Cement | Silicafume Flyash Sand | SteelFiber | QuartzPowder | Water | Admixture fc
(kg/m3) | (kg/m3) | (kg/m3) | (kg/m3) | (kg/m3) (kg/m3) (kg/m3) | (kg/m3) MPa

1 750 115 125 1104 0 0 180 25 125
2 712 115 125 1142 0 0 180 25 125
3 675 115 125 1179 0 0 180 25 118
4 637 115 125 1217 0 0 180 25 118
5 750 115 125 1104 0 0 180 25 128
6 750 115 125 1103 0 0 180 25 124
7 750 115 125 1111 0 0 180 25 116
8 675 115 125 1178 0 0 180 25 128
9 637 115 125 1224 0 0 180 25 110
10 807 225 0 972 0 243 196 13 204
11 712 231 0 1020 156 211 109 30.7 138
12 778 194 189 1166 0 0 185.61 28 185
13 753 188 183 1129 0 0 170.88 27 166
14 745 186 181 1118 0 0 178.94 27 162
15 740 185 180 1110 0 0 173.19 27 200

[\
N




16 778 194 189 1167 0 0 171.35 28 181
17 758 190 184 1138 0 0 170.2 28 155
18 745 186 181 1118 0 0 178.94 27 159
19 1365 151.6 0 647 0 0 151.6 30.26 136.4
20 1365 149 0 647 51.7652 0 149 30.26 137.9
21 1365 273 0 647 103.5304 0 273 30.26 140.8
22 1365 273 0 647 155.2956 0 273 30.26 155.3
23 1600 273 0 310 0 0 273 38.22 135
24 1600 273 0 310 51.7844 0 273 38.22 135.9
25 1600 320 0 310 103.6088 0 320 38.22 143.2
26 1600 320 0 310 155.4732 0 320 38.22 145.7
27 1600 320 0 310 0 0 320 77.22 124.1
28 1600 320 0 310 52.5444 0 320 77.22 128.3
29 1600 320 0 310 105.0888 0 320 77.22 127.6
30 1600 320 0 310 157.6332 0 320 78.22 144.1
31 1600 320 0 292 0 0 320 35.37 135.5
32 1600 320 0 292 51.3474 0 320 36.37 146.8
33 1600 320 0 292 102.6948 0 320 37.37 144.7
34 1600 320 0 292 154.0422 0 320 38.37 162.4
35 820 273 0 702 157 0 219 65 108
36 820 273 0 624 157 0 219 65 95
37 1040 310 0 800 0 0 240 46.944 140
38 1040 310 0 800 0 0 240 46.944 165
39 1040 310 0 800 47.8 0 240 46.944 195
40 1040 310 0 800 47.8 0 240 46.944 230
41 1040 310 0 800 0 0 240 46.944 140
42 1040 310 0 800 47.8 0 240 46.944 165
43 1040 310 0 800 47.8 0 240 46.944 210
44 510 65 0 1700 0 0 140 46.944 175
45 510 65 0 1700 11.95 0 140 46.944 195
46 510 65 0 1700 11.95 0 140 46.944 240
47 450 50 0 1720 11.95 0 140 46.944 145
48 450 50 0 1720 11.95 0 140 46.944 175
49 710 230 0 1020 156 210 110 30 119
50 967 251 0 675 430 0 244 35 128
51 711 85.32 0 0 0 0 137.2 10.665 115
52 1115 367.95 0 0 0 0 334.5 88.085 210
53 833 199.92 0 0 0 0 195.755 33.32 162
54 550 82.5 0 0 0 0 137 16.5 142
55 1107 343.17 0 0 0 0 195 61.992 217
56 715 157.3 0 0 0 0 167 30.745 178
57 800 150 0 0 20 750 230 25 119
58 | 1327.8 332 0 0 0 332 254.4 47.8 171

25




59 1050 275 0 0 470 730 190 35 175
60 657 119 0 1051 157 418 185 185 150.56
61 657 119 0 1051 0 418 185 185 121.32
62 813 203.3 0 1157 0 203.3 160.1 29.3 204
63 775 194 0 1220 0 0 165 10 170
64 845 76.1 0 0 12.6 0 175.45 0 188
65 815 65.2 0 0 8.15 0 163 0 194
66 446 32.6 0 1838 0 0 126 7.4 162
67 443 0 448 1717 0 0 228 0.4 171
68 450 0 0 1800 0 0 126 14 175
69 432 29.7 132 1636 0 0 160.2 7.9 178
70 408 39 0 1520 0 0 190 5.6 178
71 406 40.6 0 1558 0 0 185 4.3 180
72 900 135 0 1293.6 0 0 252 0 185
73 383 67.5 0 1800 0 0 125 14 187
74 775 116.3 0 1297 0 0 209.3 0 192
75 900 135 0 1189 0 0 252 0 195
76 412 41 0 1898 0 0 127 13 198
77 550 0 0 1603 0 0 151 21 199
78 398 0 185 1734.6 0 0 145 7.3 100
79 712 231 0 1231 0 0 109 30.7 101
80 786 256 0 1353 0 0 190 33 103
81 664 142 142 1231 0 0 144 56 104
82 784 256 0 1353 0 0 190 36 110
&3 420 60 120 1650 0 0 138 9 110
84 786 256 0 1356 57.3 0 227 33 112
85 900 157.5 0 1030 0 0 207 0 114
86 900 157.5 0 1029.3 1.84 0 216 0 115
87 900 157.5 0 1028 2.76 0 216 0 116
88 731 239 0 1353 0 0 190 31 120
89 784 256 0 1253 0 0 190 33 123
90 800 261 0 1381 60.7 0 247 34 124
91 900 157.5 0 1017.7 11.9 0 216 0 130
92 712 231 0 1231 46.4 0 113.2 32 132
93 784 256 0 1353 0 0 190 33 134
94 800 261 0 1381 60.7 0 247 34 138
95 710 230 0 1231 47.9 0 150 13.4 138
96 1040 310 0 800 0 0 240 20.8 140
97 917 229.2 0 1443 55.8 0 202 0 145
98 784 256 0 1353 57 0 190 33 149
99 1033 258 0 1136.7 0 0 155 16.5 150
100 917 229.2 0 1443 111.6 0 202 0 153
101 786 256 0 1356 58.2 0 227 33 154

26




102 790 198 192 1141 374 0 141 28.4 155
103 665 200 0 1019 0 285 178 25 155
104 609 183 0 1334 0 263 163 21 155
105 900 220 0 1005 46.7 0 162 40 160
106 1040 310 0 800 48.2 0 240 20.8 165
107 917 229 0 1443 167.5 0 202 0 165
108 1050 275 0 730 137.5 0 190 35 169
109 775 194 0 1220 23.6 0 165 10 178
110 959 239.8 0 1055 52.3 0 163 15 200
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Code to use ANN model:

Supplementary Material 1

load('nn UHPC 8 3.mat'")
fc_UHPC = net UHPC 8 3(x);

o

Load final ANN model into MATLABR environment
'fc UHPC' is the predicted compressive
strength of UHPC and 'x' is the material
constituents. Size of 'fc UHPC' and 'x'
and m x n, where n is the number of
observations (110) and m is the number of
parameters ranked from C, SI, FA, and W.

o° oo

o

is 1 x n

o° oo

o\

Code for Effect of fly ash

Supplementary Material 2

at varying quantities of silica fume 2-D plot.

clear;clc;

load('nn UHPC 8 3.mat'")

const = 100;

C = 800;

W = const/C;

FA = linspace(0,200,150)./C
xplot = linspace (0,200,150)
figurel = figure;

axesl = axes('Parent', figur

, 'YGrid', 'on'
'XGrid', 'on', 'GridAlpha

o\°

Load ANN model.
Quantity kept constant.
Quantity of C.
W normalized against C.

o oe

o

o

Variation of FA normalized against C.
Values to be viewed on
xXx—-axis.

’

o

’

o\

o

Open plot.
el...

[

'GridLineStyle', '-=", ...

'FontSmoothing', 'off', .
'FontSize',12, ...
'FontName', 'Times"') ;
box (axesl, 'on');
hold (axesl, 'on'");

X _param = ones (150,4);
X param(:, 3) FA;
X param(:,4) W;
count = 1;
for delta 20:20:80
SI delta/C;
X param(:,2) = SI;
pred(count) .plot

oo

Create Parametric Variable Array, where the

$ first, second, third, and four columns
% contain C, SI, FA, and W, respectively.
% Plot line for every mix, i.e., SI ranging

oo

from 20-80 kg/m”3, normalized against C.

o\°

Calculate predictions.

net UHPC 8 3(x param');

plotl (count) = plot (xpl
pred(count) .plot, 'L

hold on
count
end

count + 1;

ot, ...
ineWidth', 2);
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oe

set (plotl(l), 'DisplayName'. ..
,'SI = 20 kg/m"3', ... %
'MarkerSize',1);

set (plotl (2), 'DisplayName'. ..
,'SI = 40 kg/m"3', ...
'LineStyle','--");

set (plotl(3), 'DisplayName'. ..

Change name of plots for labels in
legend.

;"SI = 60 kg/m”3');
set (plotl (4), 'DisplayName'. ..
,'SI = 80 kg/m"3'...
, 'LineStyle','-=-");
xlabel ('"FA (kg/m”3)"', ... % Create x and y labels.

'FontWeight', 'bold");
y1lim([100,240])
ylabel ("f'' ¢ (MPa)',...
'FontWeight', 'bold') ;
legendl = legend(axesl, 'show');
set (legendl, '"FontSize',12);

Code for Effect of fly ash at varying quantities of silica fume 3-D plot.

clear;clc;

o©

Load ANN model.
Quantity kept constant.
Quantity of C.
W normalized against C.

load('nn UHPC 8 3.mat')
const = 100;

C = 800;

W = const/C;

o° oo

o\

FA = linspace(0,200,150)./C;
xplot = linspace(0,200,150);

o\°

Variation of FA normalized against C.
Values to be viewed on

o\

% x-axis.
figurel = figure; % Open plot.
colormap('jet');
axesl = axes('Parent',...

figurel, 'GridAlpha',1, ...
'GridLineStyle', '-=", ...

'FontSize',12, ...
'FontName', 'Times"') ;
view (axesl, [-37.5 30]);
grid(axesl, 'on'");
hold (axesl, 'on'");

o\°

X _param = ones (150,4); Create Parametric Variable Array, where the
£

x param(:,3) = FA; $ first, second, third, and four columns

x param(:,4) = W; % contain C, SI, FA, and W, respectively.

count = 1;

for delta = 20:20:80 % Plot line for every mix, i.e., SI ranging
SI = delta/C; % from 20-80 kg/m"3, normalized against C.
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X param(:,2) = SI;
pred(count,1:150,1) = ... s Calculate predictions.
net UHPC 8 3(x param');

\O

y3d (count) = delta;

count = count + 1;
end
x3d = xplot; % Mesh 3D contour plot.
z3d = pred;

mesh (x3d, y3d, z3d)

xlabel ('"FA (kg/m”"3)", ... % Create x, y, and z labels.
'FontWeight', 'bold', ...
'FontSize',12);

x1im ([0, 200])

ylabel ("SI (kg/m"3)"'...
, 'FontWeight', 'bold’', ...
'FontSize',12);

zlabel ('f'' c(MPa)', ...
'FontWeight', 'bold', ...
'FontSize',12);

z1lim([100,2501])

o)

colorbar ('peer', ... % Create color bar.
axesl, 'Color', [0 0 01);
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