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Stochastic quantization provides an alternate approach to the computation of quantum observables, by
stochastically sampling phase space in a path integral. Furthermore, the stochastic variational method can
provide analytical control over the strong coupling regime of a quantum field theory—provided one has a
decent qualitative guess at the form of certain observables at strong coupling. In the context of the
holographic duality, the strong coupling regime of a Yang-Mills theory can capture gravitational dynamics.
This can provide enough insight to guide a stochastic variational ansatz. We demonstrate this in the bosonic
Banks-Fischler-Shenker-Susskind matrix theory. We compute a two-point function at all values of the
coupling using the variational method showing agreement with lattice numerical computations and
capturing the confinement-deconfinement phase transition at strong coupling. This opens up a new realm of
possibilities for exploring the holographic duality and emergent geometry.
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I. INTRODUCTION AND HIGHLIGHTS

In the context of holographic dualities [1-5], one can use
a nongravitational theory—typically a Yang-Mills theory
of rank N and effective coupling A, to describe gravita-
tional dynamics in a regime where N is large and 1 > 1.
While large N can simplify the treatment, the strong
coupling problem of gravitational holography is a signifi-
cant obstacle to our understanding of both gravity and the
holographic map. In practice, usually the best one can do
is to utilize symmetry to study constrained or protected
observables, or to use numerical lattice techniques to access
the strong coupling regime of the nongravitational theory.

In this work, we take a first step in tackling this strong
coupling problem with a different approach. For concrete-
ness, we focus on the Banks-Fischler-Shenker-Susskind
(BFSS) matrix theory [1], which describes M-theory
through a matrix model that is the dimensional reduction
of 10D N =1 Super Yang-Mills (SYM). In particular,
at low energies, eleven-dimensional supergravity in the
light-cone frame can be described by (0 + 1)-dimensional
SU(N) matrix quantum mechanics in the regime where the
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effective coupling and N are large.1 This quantum mechan-
ics arises from the dynamics of DO branes and involves a
super-renormalizable interaction with coupling ¢ that
carries units of energy cubed. At large N, the effective 't
Hooft coupling at energy scale E is 1= ¢°N/E3. The
bosonic version of this theory, studied numerically at finite
temperature, is known to exhibit a confinement/de-confine-
ment phase transition that occurs at A ~ 1 [8,9].2 This phase
transition is absent in the supersymmetric version of the
theory. Our goal is to reproduce the numerical results from
the bosonic BFSS theory using new analytical techniques
that allow us to directly access strongly coupled dynamics.

Stochastic quantization [12,13] is a well-established
approach that has been studied for decades. It allows
one to think about the phase space explored by a system
inside a quantum path integral as a stochastic evolution of
the Langevin type. The fields are made to evolve stochas-
tically in such a way that equilibrium is achieved at the
saddle point of the action; as a result, statistical fluctuations
at equilibrium explore the relevant phase space that
dominates the quantum path integral. It has been shown
in various settings, from scalar field theories to non-Abelian
gauge theories [14], that this approach can be used to
compute quantum vacuum expectation values (vevs) of
operators perturbatively using statistical averaging in a
stochastic ensemble. Much more interestingly, stochastic

'"The correspondence can also be extended to finite N and
discrete light-cone quantized (DLCQ) M-theory [6,7].
See also key earlier work on numerical BFSS in [10,11].
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quantization offers in addition a variational approach to
computing such observables [15-18], one that can be
applied analytically in strongly coupled regimes. The
key to the variational approach is to have a good ansatz
for an observable. In traditional quantum field theories,
this can be a very difficult task. However, in holographic
dualities, due to knowledge of the dual gravitational side,
good guesses can be constructed. For example, BFSS
theory is known to be chaotic and, at strong coupling,
can be described by random matrices with a coupling-
dependent effective mass. We will use this knowledge
to employ a robust ansatz and access strong coupling
dynamics.

We consider the BFSS matrix model without the
fermions using only the N X N matrix bosonic fields
X'(z),...,XP(z) in the adjoint of SU(N)—where D <9,
and considering also the addition of a mass term for these
fields to lift flat directions that arise from commuting
matrix configurations. We measure the effective coupling
of the theory at the scale of this mass. In this work, we
develop the stochastic quantization of this matrix theory in
detail. First, we employ a perturbative approach in the
effective coupling, deriving stochastic Feynman diagrams
to compute any observable. We use this perturbative
approach to compute the vev of R? = TrX?/N, which is
a gauge invariant operator measuring the size of the matrix
configuration in the vacuum. This operator is known from
earlier numerical computations to signal phase transition
that cannot be seen perturbatively. Next, we proceed to
developing the variational approach of the stochastic
quantization of bosonic BFSS theory to access the strong
coupling regime. We compute again, using analytical
methods, the expectation value of R> and show how it
interpolates smoothly between weak and strong coupling,
and signals the phase transition in a manner consistent with
previous numerical methods.’ Our computation is however
much more concise and is analytic up to the last step where
one needs to find the roots of a polynomial. The technique
is a demonstration of the power and promise of stochastic
quantization as applied to BFSS matrix theory, as well as
to other settings involving holographic duality. At the end
of Sec. VI we comment on how this technique can be
generalized to cases involving fermions and supersym-
metry, as well as other holographic settings—specially
when they exhibit chaotic dynamics at strong coupling.
We also review alternate numerical techniques based on
stochastic quantization that can be used for computing zero
temperature dynamics.

In Sec. II we develop the theory of stochastic quantiza-
tion of the bosonic BFSS matrix theory. In Sec. III we

This phase transition is rather challenging to quantify. The
order of the transition for low dimension D is believed to be first,
but becomes second order at higher dimensions. (See [19-22] for
details.) Our analysis is not precise enough to distinguish
between the two cases.

compute the vev of R? perturbatively using stochastic
Feynman diagrams. In Sec. IV we develop the variational
approach and compute the same quantity at all effective
couplings, identifying the confinement/deconfinement phase
transition. In Sec. V we present a numerical technique
inspired from stochastic quantization. Finally, in Sec. VI
we summarize the results and suggest directions for the
future.

II. STOCHASTIC QUANTIZATION
OF MATRIX THEORY

Consider the bosonic BFSS matrix theory [1,23,24] with
an added mass term, described by the Lagrangian

1 . 7o u, .
Sg = /drTr(— (D, X")? —=[X', X/]? +—(X’)2>. (1)
2 4 2
The X*’s are N x N matrices in the adjoint of SU(N) with
i=1,...D,where D <9. The mass term y is needed to lift
the flat directions that arise from commuting matrix
configurations. This allows for stable lumps of energy
centered at the origin. The coupling is denoted by g, which
has units of energy cubed. At large N, the effective
coupling is A= ¢>N/E® where E is the energy scale of
interest. We are working with the Euclidean form of the
action using Euclidean time 7 and the covariant derivative
defined as

D, X' = 0,X' — ig[A, X1, (2)

with A(z) being the gauge field.* We want to study the
quantum mechanics of this system through stochastic
quantization [13], a technique that will give us access to
the strong coupling regime.

In stochastic quantization, we think of the fields as being
dependent on an additional ‘time’ variable we call Langevin
time ¢

A7) = A(r, 1), Xi(7) = X(z,1), (3)
and arrange for a stochastic evolution in this time direction
given by the Langevin equations

axi,  8Sp
— = ' (7,1), 4
dt 5X;m+’7ab(r ) ( )
dA,,  OSg
= — 1). 5
dt 5Aba + nab(T’ ) ( )

Here, 7' (¢) and 7(t) are Gaussian random noise variables in
the adjoint of SU(N) with statistical moments

*From the standard Minkowski action, we change to t — —ift,
A — iA with the Minkowski and Euclidean actions related by
S = iSg as usual.
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(M) = 0. (1) =0, (6)

(1l (7 Oy (7, 1)) = 28,4484c878(z = )8t = 1), (7)
(Map (7. )1ca(7' 1)) = 284a6p.:0(z = 7')5(t = '), (8)
(1 (7. Onca(7 1)) = 0. 9)

The system then evolves in such a way so as to reach
equilibrium at t— co when &S;/6X' = 6S;/5A = 0.
At this equilibrium, the fields fluctuate about the classi-
cal configuration, exploring randomly the phase space
in a manner that mimics quantum fluctuations. This
allows one to capture—through stochastic fluctuations at
equilibrium—the phase space that dominates the quantum
path integral of the system. As a result, we can compute the
vev of any operator O(7) using

(0(x)) = 1im(O(z. 1)),

_ [ DnO(z, t) exp[—1 [ drdiTrn?(z, 1))
~ % [Dyexpl-1 [dediTen’(z.1)]

(10)

One of the advantages of the stochastic quantization
scheme when applied to a gauge theory arises from the fact
that gauge fixing is not necessary when computing expect-
ation values of gauge invariant operators [12,14]. Yet, it is
often still computationally helpful to implement ‘stochastic
gauge fixing’ that adds a frictional term to the stochastic
evolution equations to drive the evolution dynamically
towards a gauge slice of interest. This is done through a
t-dependent gauge transformation. In general, the gauge
transformations of our BFSS system are given by

A- UAU+LUTOU, X = UXU. (11)
g

We then choose a transformation U(7) that depends on the
Langevin time #, and write a new transformed set of fields
as [14]
B=UAU+ UGU, Y =UXU (12)
g

We then define A(z) through

dU dA

—=g—U, 13

a Var (13)
and choose

dA

— = —i0,B, 14

=D, (14)

which drives the stochastic evolution towards the Lorentz
gauge condition

0,B = 0. (15)

We then write the modified stochastic equations

dY‘b oSk ) dA
—a — = ! (Tt Y, —| , 16
=yt vl
dBah 5SE . dA
— == t Dg|— ) , 17
It 5Bba+’7ab(f )+ B(dt>ab (17)
with
- dA )
Yi,=—| = —ig]Y',8.B), 18
o G| = -iaiv' 0.8 (18)
dA
iDg (dt) = 0?B —ig|B, 0,B], (19)
where we also note that
n— UU, (20)

which does not change the moments (6)—(9). The additional
terms in (16) and (17) effectively add corrections that
typically would arise from the Faddeev-Popov method in
traditional quantization, but no ghost fields are needed.
As a result of all this, our system is described by the new
Langevin equations

dy’

o = O =Y 4 @Y YL Y]]+ 2ig(0, Y, B]
—2¢°[B.[Y'. B]] + /(v 1), (21)
B o . ‘
‘fi—t = 02B — igld,Y', Y] = 2¢* [Y',[B. Y]]

—ig[B,0.B] + n(z,1), (22)

where we have used Eq. (1). The new gauge-fixing terms
relax the stochastic evolution of the fields towards the
0,.B = 0 gauge slice. Solving these differential equations
and taking ¢t — oo allows one to compute the quantum
expectation value of any operator using statistical averages
of the stochastically fluctuating fields at equilibrium.
We will focus on computing a particular gauge invariant
observable

R> = % (TrYi?), (23)

where R can be thought of as the physical size of the
configuration in the D dimensional target space. We will do
this computation in three different ways; first, perturba-
tively in g, then using a variational approach that works at
strong coupling, and finally, using numerical techniques
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inspired from stochastic quantization that can also be
extended to the strong coupling regime.

III. WEAK COUPLING

We then split the action into the free part Sg)) and the
interaction part Sg) [13]

' (0) (1)
dyL(Q oS oS A
We start by introducing color indices dE ) == 5Y" ‘(EQ) - 5YT ‘(EQ) +1a(Q. 1), (27)
Yi=YiTe, B =B,T°, 24
@ « (24) dB,(Q)  55(00), 55y @D, (8)
where the T%’s are the generators of SU(N) dt 0B, (Q) 8B,(Q) 7
1 where the variation of the free part is
TeTeTP = 26%,  [T*TP) = if,5T".  (25)
2
5sY) .
We also Fourier transform in the direction of real time 7 % (Q) = (Qz + ;42)Y5,(Q), (29)
1 ,
B,(z,1) = —/dea(a), t)e'?, 58
V2 E_ = Q2B,(Q). 30
Z ) = LBl (30)
Yi(z,t) = —/da)Yf,(a), t)e'r. (26)
V2rx The interaction part yields
|
5Se _ 20 [ 4 e i Q
SYL(Q) Vo 1dw)Qf 4, B, (01)Y j(@2)8(w) + w; — Q)
2
g i
+ " / dw\dw,dosf g, f e Ys(01)
X (Yi(@) Yy(03) = Be(2)By(@3))5(w) + 03 + 03 — Q), (31)
ssy) ig i ,. ,
5B.(Q) ~ Vor dwdwy, f op, (Y(@01) Y} (02) + iB(@1) B, (02))d(w; + @y — Q)
2
g i i
+ Z/ dw dwydws f o, [ s5e,Bs(@01)Yp(@2) Y (@3)0(01 + w3 + 03 — Q), (32)
|
using (1), (21), and (22). Note that these variations of Sg» where the Green functions must satisfy
and Sg) include the gauge fixing dissipative terms from
(16) and (17); in particular, this is the origin of the kinetic w = —(Q +12)G(Q, 1) + 5(1),
term for B arising in (30). Furthermore, the dissipative dt
terms appear only in the variation of the action and do not dGp(Q,1) o2
have a representation in the action. dt = —Q°Gy(Q.1) +6(1), (35)

The solution to the stochastic equations (27) and (28) is
then given by

Yi(Q, 1) = ld’GQ -7 Q.1 —75&(51)
Q1) = t =) i (Q,f : ;
a(2.1) A ( )<’7( ) 513(52,t’>>

(33)

B, (Q = td /G Qt—t Q l/ - 7(”
, 1 t , 1 t Ny s s
a( ) / B( )( ( ) SB(I(Q, l/)>

(34)

with boundary condition G = Gz = 0 for ¢ < 0, with the
stochastic evolution starting with random initial conditions
at t = 0. These are easily solved and yield [13]

G(Q, t— t/) — e—(QZJWZ)(t—z’)e([ _ l/>, (36)

Gp(Q.1—1) = e =9(t - 7). (37)
Equations (33) and (34) can now be solved iteratively as an
expansion in g. To one-loop order, we substitute (31) and
(32)in (33) and (34) expanding to order ¢?; this can then be
substituted in
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(Ya(@)Ya(e')) (38)

to compute R? using (6)—(9) at one-loop order. The process
can be organized diagrammatically, using so-called sto-
chastic Feynman diagrams. Figure 1 depicts all Feynman
diagrams at play at one-loop order in computing R?. We
write the result as

(Yi(0)Yi(@)) = C96(w + @) + QQZC(’)(S((U + o),
i
(39)
where

D N?
@* +p

D N?

cla) =
? + p?

(1= e 2@ H0)) 5. (40)

comes from the zeroth-order diagram in Fig. 1(a), after

taking the ¢t — co limit. The C\/)’s are organized in terms
of five contributions, with I € {b,c,d,e, f}. The first

(2)

(b) (©

AXA
(d)
(e ®

FIG. 1. Stochastic Feynman diagrams for the computation of
R? at one loop. Solid lines represent the propagator G while
dashed lines represent Gyz. The ‘X’ represents insertion of a
random noise. Three-pronged vertices come with a power of g,
while four-pronged ones come with g>. The Feynman rules are
summarized in Appendix.

nontrivial diagrams are the tadpoles with the gauge field
in the loop as shown in Fig. 1(b). One gets

c® =0 (41)

which arises through a cancellation in an expression of the
form

e —21(1)%

o 1 1
lim do da), 5 < 3

2
t—oo [_ 1\ +u

> -0. (42)

) 2 2
(0] _a)]+ﬂ

Figure 1(c) leads to the first nonzero contribution

4 [o DN(N? -1

C(C):__/ dw, — 2(2 > )22
m)w (07 +p7)(0f +4%)
4DN(N?*-1

S Lt )} @)
uo (@ +p7)
where we used

fa/}yfaﬁy:N(NZ_l)' (44)

Another set of related diagrams shown in Fig. 1(d) give

2 _ 2 2 2
C(d):DNU;] l)f‘” (2“’ + 3p u+w2—3,u2>,
p(@” + o)t \\/30? + 42
(45)
while the diagrams in Fig. 1(e) give
DN(N? = 1)a?(20?* + 34>

(@? + 1?)*\/ 30 + 4u?

Finally, from Fig. 1(f), the IR divergences are subtracted in
the ¢ — oo limit as follows’:

lim © dw,dw 1
i
A (@? + u?)? + (0 + 24?0} + of

e—ZIm%
(0 +12)* = o}

(/42 + w2)3 /32 —&-4#2’
and we get

(47)

>This can be seen by adding an IR cutoff to the integrands and
expanding in this cutoff. The subtlety has to do with the exchange
of the order of two limits, that of taking the cutoff to zero and that
of taking 7 to infinity.
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2_ 2 DN N2_1 2
C) =DN(N>—1) (wz ”23+ W=Uw”
2u(@” +p%) (@4 pu?)3 /3w + 4>
(48)

Putting things together, we arrive at the one-loop result

o DN? PN
Valo)¥ita) = 2ot on) 1+
(L=
2 @+t p(e? +pP)?

2
u
+ . 49
(@? + u?)/30? —|—4,u2>] )
Fourier transforming back to z space, we obtain

1

R? = N <Y£1(T)Yfz(r)>
_ Dﬂ_N B_%(NZ - 1)(6\/§+57I)} (50)

writing the one-loop correction in terms of the effective
coupling ¢’ N/u?, measured at the scale of the mass term
|

p—which functions as an IR cutoff or the inverse size of a
box in which we put the configuration. We will next
compute R? at any value of the effective coupling, includ-
ing in the nonperturbative regime, using a powerful
technique available in the stochastic quantization scheme
known as the variational method [15-18].

IV. VARIATIONAL TECHNIQUE AND
STRONG COUPLING

The variational method [13,18] relies on guessing an
approximate form for the solution to (21) and (22), then
minimizing a certain positive-definite quantity with respect
to the parameters that describe the guess. If the guess is a
good one, this method gives access to nonperturbative
regimes. In the BFSS matrix theory, we know that the
chaotic nature of the dynamics at strong coupling arising
from the quartic interaction in (1) leads to an effective
action of the form [8]

o2

= [arme 3R+ TR 6

where ¢ = o(g) is an effective mass that is dependent on
the coupling g. We then start with the ansatz

¥i(Q, 1) — / dG(olQ 1 — O (Q. 1), BL(Q 1) = / A0 Gy( Q1 — 10, (Q 1), (52)
where we define
G(o|Q,t —1) = e @+)=g(r — 1), Gp(Qt—1)=e X0t - 7). (53)
This implies that
1 . _ SN ND
— (Y (0, )Y, (o, 1)) = ) ! R?=—, 54
N< w0, )Yo(o', 1)) P (0 +a) = NG (54)

meaning that the system is effectively described by a free theory with a new effective mass o. We then define the variational

potential as [18]

V)= o

[Se]

where

Yi(Q, 1) = /tdt’G(Q, t—1) <nf,(£2, t)
0

: / ® dQ((V(~ . 1)  Vi(~Q. ) (Vi 1) = Vi@ 1)), (55)

(1)
5s\
~ e 56
5Y51(Q,t’)> G6)

Minimizing V(o) with respect to ¢ identifies the effective mass 6 = o, for any value of the coupling. Computing this

potential analytically, we arrive at the expression

B 1 2v2 )\ /1 @(N*=1) (D-1) (4(D-2)D*+ D +3)
vir= (14 = 2) (G- e o -0 )
e (D*(6N? —5) — 5N? +6) 1o), (57)

7*N2D
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with

1

I(c) =

1

/_oo dpdp (P> + D)(p* +0)2V/oV2fr+ fi +60+2+ fr+ f1 + 56 +1)

: ) (58)

- ((f1 Ao T 6012 4velfs 1 40)

fl = (p‘l'p/)z’

where we used (6)—(9) to compute the expectation value
using stochastic averaging. In this expression, we have
applied a rescaling of z and the fields so that u = 1;
equivalently, we measure the coupling in units of mass’ u
through the effective coupling A = ¢?N/u>. The expression
given in (57) is exact—no perturbative expansion has been
used in arriving at this expression. It is worthwhile noting
that the computation involves the same IR divergences
encountered in the perturbative treatment. However, with
the same pattern encountered in the previous section, all
divergence get cancelled in the limit of infinite Langevin
time t — oo. The general scheme of these cancellations is
as follows: for every IR divergent term which we write
qualitatively as

9(p)
f(p)’ (60)

where f(p) > 0 vanishes for zero energy p = 0 but g(p)
remains finite, we find a term of the form

_g(p)e? (61)

f(p)

In the limit t — oo, we write e™/(P) ~ 1 near f(p) =0,
canceling the paired IR divergent term. More interestingly,
the g(p) in both expressions might be different but always
matches near f(p) = 0 as needed. Physically, the reason
for this cancellation can be understood as follows: The IR
divergence arises from the soft gluon running in loops; this
is the nonphysical gluon that has been made dynamical
through stochastic gauge fixing. But in the t — oo limit, the
Langevin evolution has frictional terms that drive things to
a gauge slice, freezing the unphysical gluon. So, one should
expect that the IR divergences cancel only in the t — oo,
which is what we find. As is typical in quantum field
theory, the cancellation of these infinities is somewhat
delicate and subtle.

®Note that the rescaling 7 = 7/a, B’ = aB, and Y =Y \/a
gives ¢”> = ¢?a’ and p'> = p*a’*; choose a = 1/u, we can set the
mass parameter to one, measuring the effective coupling in units
of u.

2= p*+ 2 (59)

The task is then to find the minimum of (57) with
respect to o, solving V'(¢) =0. This is not a trivial
problem, but there are several ways one can tackle the
challenge. For example, in [16] a large N expansion is
developed that allows one to compute strong coupling
corrections as an expansion in 1/N. In our case, it is a
rather straightforward task to analyze V(o) directly.
Figure 2 shows plots of V(o) for varied values of N,
4, and D. We see that a clear unique minimum can be
identified in all cases. The general shape remains the
same for all values of N. We note in particular that the
minimum o, becomes large with N. This means that
large N is also large o,. We have verified this monotonic
relation by finding the minimum of the potential numeri-
cally; 6y o« N* for some positive a.

The integral I(s) can be evaluated numerically.
Furthermore, in the regime where N is large, the numerical
results show a clear robust asymptotic behavior

1 1 1 1 J A
0.001 0.010 0.100 1 10 100

FIG.2. £=R?/DN as a function of effective coupling 1. The
dashed red line is the perturbative result from the previous
section. The two real roots of (65) are the predictions from the
variational approach at asymptotically large N, depicted as solid
lines (red and blue). The upper line (blue) is a false root. The dot-
dashed black line is the result of finding the minimum of the full
variational potential. We see the latter smoothly interpolates
between weak and strong coupling. For this plot, we have D =9,
u=1,and N = 30.
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I(6) = (eo) Large N (62)

where e is the Euler number. Taking the large N and o
regime of (57), we get

V(e) =

2 2
_#(6D*=5) (HL_

NZ)

& &n*D Vo /o
12 22 (4(D-2)D*+ D +3)
(3 -0+ 5 $D |

(63)

To find the minimum 6, we need to solve V’(¢) = 0; and
we have from (54)

_ D>N? 1

Uo—wzréz, (64)

where we defined & = R?/D N for convenience. Finding R?
then amounts to solving a sixth order polynomial in &
given by

28(2vV2 ~ 1)(4(D = 2)D? + D + 3)2¢°
_ 12(48D + &*7*(4(D = 2)D* + D + 3) - 40)

edn? £
+8(2=4v2)D(D = 1)A& + 6D(D — 1)A£2
D D

We have then distilled the problem of determining R* at
strong coupling to an algebraic problem. Solving (65)
can be done numerically, and one finds two real roots
for £ Figure 2 shows the results. We collect several
plots on the same graph: (1) The two real roots of (65)
are shown as solid curves; (2) We show the one-loop
perturbative result from the previous section as a
dashed line at weak coupling; (3) We also show the
result of finding the minimum of (57) numerically,
without taking a large N limit first—and this is shown
as a dot-dashed line that smoothly interpolates between
weak coupling and one of the roots at strong coupling.
We see that the variational approach can capture
decently the entire range of effective couplings A, from
small to large.

Of the two large-N asymptotic curves shown in
the figure, the lower one (in red) that the dot-dashed
curve hugs obviously describes the correct vacuum. To
verify this further, we numerically compare the shape
of the variational potentials before and after the large-N
asymptotic expansion, and one can verify that the
upper curve in Fig. 2 corresponds to a maximum in
the large-N potential—an extremum that does not exist

in the general expression of the potential.7 Yet another
supporting argument for dropping the upper curve
goes as follows: The vev of the action is proportional
to Rz—using the virial theorem for the vacuum; hence,
lower R?> would be preferred, corresponding to the lower
of the two asymptotic curves.

In conclusion, our main result consist of the lower
asymptotic curve (red) of Fig. 2 described implicitly by
equation (65), and the interpolating dot-dashed curve
obtained from the minimum of the variational potential
(57) directly. These agree very well with the results from
numerical Hamiltonian Monte Carlo (HMC) computations
in the literature [8,9].8 The variational approach, with the
ansatz we have employed, seems to capture the strong
coupling physics well—in addition to providing for a
smooth interpolation from weak to strong coupling.
There are variations of the ansatz one could have explored
to improve the results, but we see that there is no need for
this; the simplest ansatz works very well. This is a
remarkable result; we have been able to get an unprec-
edented level of control over the strong coupling regime of
bosonic matrix theory.

V. NUMERICAL APPROACHES

Yet another approach to accessing the strongly coupled
regime of a theory through stochastic quantization involves
the direct numerical integration of the stochastic differential
equations (21) and (22) [25]. This technique is closely
related to the state of the art in lattice QCD computations,
the so-called HMC method [9,26-32]; albeit that the
connection is not rigorously established.

The HMC technique has been developed thoroughly for
the BFSS matrix model at finite temperature in [8,9].
In these examples, the gauge field is given a nontrivial
holonomy along the 7 circle whose period is interpreted as
inverse temperature. Then the HMC method is applied for
efficiently sampling the fields in the quantum path integral

"The large N asymptotic curve does not work well for small
effective coupling 4 < 0.1, whereas the full variational potential
does much better. We should not expect that the variational ansatz
captures the physics at small coupling well. The surprising aspect
here might be that the full form of the variational potential still
works decently at weak coupling: this is because the variational
ansatz is designed to also work exactly at zero effective coupling
and, involving a smooth function, has to somehow interpolate in-
between weak and strong. Taking the large N limit drops the
anchor of the ansatz at zero coupling, exposing more clearly that
the variational ansatz’s success at very small coupling is not to be
taken very seriously.

*In the literature, the computations are done at finite temper-
ature: one scans over the effective coupling by changing the
temperature at fixed coupling g. In our case, we perform the
computation at zero temperature but by varying g while meas-
uring the effective coupling at the mass scale. The two ap-
proaches are equivalent, resulting in scanning over the effective
coupling 4 in a similar way and identifying the phase transition at
A~1.
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(a) Failure of convergence of the Langevin evolution when using the SOSRI2 numerical integration, with 4 ~ 1.0. We are

viewing the Euclidean action versus Langevin time; for larger Langevin times (not shown), the action diverges exponentially; (b) The
MALA algorithm with 1~ 1 demonstrating quick and stable convergence. We have N = 10 and ¢ = 1 for both graphs.

at finite temperature. In our case, we want to work at
zero temperature with trivial holonomy in the gauge field,
yet imposing periodic boundary conditions along z, for
convenience, with a large enough period to implement
the zero temperature limit. Furthermore, we will imple-
ment numerical techniques while using the stochastic
gauge fixing approach that we introduced earlier—an
approach that has not been explored in the matrix theory
literature. With these two new ingredients, zero temper-
ature computation, and stochastic gauge fixing, we will
present two different numerical methods—alternatives to
traditional HMC—and compare them: (1) Employing
direct integration of the BFSS stochastic differential
equations using the SOSRI2 algorithmg; (2) An imple-
mentation of the integration algorithm with an added
Monté Carlo step after each small time step of integration
—this is known as MALA (Metropolis-adjusted Langevin
algorithm), a variant of HMC [34,35] that is more
rigorously related to the stochastic quantization problem.

First, using direct integration through SOSRI2, we find
that we are able to integrate the differential equations (21)
and (22) for small enough effective coupling. However,
Fig. 3(a) shows the divergence of the method at strong
effective coupling by plotting the Euclidean action as a
function of Langevin time. After an initial exponential
convergence from random initial conditions, the action

*We use the Julia programming language [julialang.org] for
high performance and parallelization over four CPU cores. The
SOSRI2 algorithm is implemented in the differential equations
package [33]. It is a stability-optimized adaptive strong order 1.5
and weak order 2.0 Ito solver.

starts to grow to inﬁnity.10 Hence, direct numerical
integration of the stochastic differential equations does
not work well. It would be interesting to look into the
reasons for this as the direct integration method can be
very useful as a check on other techniques.

We then implement the MALA variant. Figure 3(b)
shows how this method leads to robust convergence.
Indeed, the algorithm is extremely fast, with each
evolution with N = 10 taking a fraction of a second
on a regular laptop. Using MALA, we computed the
effective mass o as a function of effective coupling: We
generated ten or so evolutions per value of coupling to
get an ensemble of field configurations with decent
statistics; then we computed the correlation function

(TrYi(z)Y(0)) & %7,  (for z small enough)  (66)
which allowed us to extract o using a fit at small times
7. The reason for using small 7z only is that our
implementation has the z living on a circle with a large
enough period so as to reproduce zero temperature
physics. We computed the correlation function using
the standard fast Fourier transform method; Fig. 4 shows
the result from all this. We use (54) to compute R? since
the computation of an effective mass assumes an effective
action of the form given by (51). Note that this is true

"In [36], it has been suggested that a phenomenon similar to
this is to be attributed to the physical emergence of three large
space dimensions out of the total of nine. We do not necessarily
see room for this interpretation in our case as we do not have
enough statistics to draw this conclusion.
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FIG. 4. R?’/DN as a function of effective coupling 1, along

with error bars. The dots show the simulation data using MALA.
The curves are predictions from the variational approach. We
have y =1, N =10, D = 3. The dashed lines are the two
asymptotic variational results for large N. The data and curves
for A < 1 should not be relied on quantitatively.

only at large effective coupling; hence, the numerical data
for small 1 should not be relied upon quantitatively. We
see the transition between small and large effective
coupling, which agrees with results from the literature
using HMC. We also overlay on this data the results from
the variational approach of the previous section. The solid
curve is the result of finding the minimum of the
variational potential numerically. The two dashed curves
are the two real roots of the polynomial (65), valid if N
and o are very large. We note again that it is not
surprising that, at small effective coupling, the variational
approach does not work well since the effective mass
model is not a good description of the dynamics at weak
coupling. So, in this figure, both MALA and the
variational curves should be viewed only qualitatively
at weak coupling. The variational approach however is
reliable and very good at strong coupling (as compared to
HMC techniques from the literature). We note however
that MALA seems to oscillate between the two roots, the
true vacuum at strong coupling and the false one. This is
an interesting observation, perhaps suggesting the exist-
ence of a long-lived metastable vacuum at strong cou-
pling at large N—at least long-lived enough for the
stochastic evolution to get trapped in. Comparing with [9]
where a traditional HMC numerical approach is used, we

find that the HMC algorithm does better than MALA in
that it tracks the variational asymptotic curve. MALA, as
a very fast algorithm, can still be good for quickly
exploring the parameter space, perhaps helping guide the
construction of a variational ansatz. Quantitively however,
it does not seem to work well enough. The state of the art
HMC is still the most reliable numerical approach.

VI. CONCLUSION AND OUTLOOK

In this work, we developed the stochastic quantization of
the bosonic BFSS matrix theory. The primary motivation
was to access strong coupling computations more effi-
ciently, and we have indeed demonstrated this. We captured
the phase transition in the bosonic BFSS system that arises
at large effective coupling. This transition, along with the
behavior of the system in the strongly coupled phase, were
determined using a variational technique, and the results
agree with the numerical results in the literature that use
HMC simulations. The variational technique however is
more concise and stays analytical until the last step that
involves finding the roots of a high order polynomial.
It allows for much easier exploration of the parameter
space of the theory, in addition to extracting asymptotic
behaviors.

To develop these ideas further, one needs to extend the
variational technique with two additional ingredients:
the addition of fermions, and the use of the background
field method to the compute effective actions. The first
is needed to study the supersymmetric BFSS theory; and
we know that supersymmetry plays a critical role in
mapping the matrix theory to eleven dimensional light-
cone gravitational dynamics. The second is useful for
computing various other observables that can help us
understand the emergence of spacetime geometry from
matrices.

Fortunately, the inclusion of fermions in stochastic
quantization has already been explored in the literature
[37]. Extending this to the BFSS matrix theory would be
straightforward. The best approach is not to integrate the
fermions, as is often done in the literature, but to instead
evolve the fermionic variables in Langevin time as
Grassmanian numbers. The background field method
has also been explored in the context of stochastic
quantization [38]. Adapting this to the BFSS matrix
model should also be possible. Variational methods in
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the context of stochastic quantization hold the potential
for significant progress in our understanding of the BFSS
conjecture and of emergent spacetime geometry. We hope
to report on these directions shortly [39]. Other holo-
graphic dualities can benefit from this technology too.
For example, in the AdS/CFT scenario, knowing the vev
of operators from the gravitational computation gives us
ways to develop robust ansatz for direct strong coupling
computations using the variational technique. This can
then be used to check the correspondence and compute
systematically high curvature corrections to gravity. More
generally, gravitational theories that often exhibit fast
scrambling and chaotic dynamics offer certain simplifi-
cations for developing variational ansatz in the compu-
tation of vevs of operators in the dual strongly coupled
theory.

On the numerical front, we presented two directions:
(1) We showed that the direct integration of the stochastic
equations does not work very well at strong coupling.
If the direct integration algorithm can be refined without
resorting to Monte Carlo sampling, this would provide a
new numerical technique for accessing strongly coupled
dynamics that comes at the problem from a somewhat
different angle than traditional techniques like HMC. This
is challenging work that will remain for the future.
(2) We demonstrated the use of the MALA algorithm
in bosonic BFSS matrix theory; it is computationally
faster than HMC, but we also saw that it can be more
prone to sampling errors. The MALA approach can be
used to quickly explore the parameter space. Our view-
point is that there is room for pursuing new numerical
approaches beyond HMC—within the context of stochas-
tic quantization—to complement the variational method
that we showcased.
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APPENDIX: STOCHASTIC FEYNMAN RULES
FOR BFSS MATRIX THEORY
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These stochastic Feynman diagrams can be obtained from
(31) and (32). Solid lines represent Y fields (G propagator),
dashed lines represent the gauge field B (G propagator).
Color indices are Greek letters as in the text. A cross
represents an insertion of a noise #, which are then Wick-
contracted while computing averages.  represents the
momentum on a corresponding line. Note that stochastic
diagrams have a distinguishing input line—the line that
comes in from the left. The rules of building diagrams from
these are similar to the usual Feynman diagrams except for
the insertion of noise crosses onto any propagator.
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