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1 Introduction and highlights

Emergent geometry is the general proposition that spacetime is an approximate construct
that emerges from underlying collective quantum degrees of freedom. The idea can be
made precise within the context string theory [1–4], but also arises at low energies and in
potentially unrelated settings [5–7].

Generically, interactions in a quantum mechanical system lead to entanglement be-
tween its interacting parts [8–11], a feature that is inherently non-local in character. Entan-
glement entropy is one measure of this phenomenon but it depends on various choices such
as how the physical system is sliced. One realization of the emergent geometry phenomenon
posits that, in certain regimes, quantum entanglement can acquire a geometrical flavor —
weaving together what we perceive as the fabric of spacetime. This implies that spacetime
geometry is an approximate contraption with quantum entanglement underlying it.

Gravitational holography seems to play a key role in connecting quantum entanglement
and spacetime geometry in the context of string theory. The AdS/CFT, and more gener-
ally the bulk/boundary paradigms, use holography to provide a precise dictionary between
entanglement and geometry [1]. In this work, we will instead focus on another setting
where the holographic mechanism is not obvious, yet a non-gravitational theory describes
dual gravitational physics: Matrix theories which are dual to light-cone eleven dimen-
sional supergravity. These include the original Banks-Fischler-Shenker-Susskind (BFSS)
Matrix model [12] and the newer Berenstein-Maldacena-Nastase (BMN) theory [13] — the
latter being effectively Matrix theory with an IR regulator, a ‘Matrix theory in a box’.
We will explore the idea of emergent geometry through quantum entanglement in these
Matrix theories.

Consider a two-body system, a probe and a source, in BMN theory. In the supergravity
dual picture, they interact gravitationally in a PP-wave background. The two objects can
be realized as giant gravitons or metastable stars [13, 14] — controllable classical solutions
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of BMN theory. These are spherical membranes moving in the PP-wave background, with
a large amount of light-cone momentum for the source membrane, and much smaller for
the probe. The source back-reacts on the PP-wave geometry, but, if the two objects
are far apart, the local geometry at the probe’s location can be a small perturbation
of the PP-wave background. On the BMN Matrix theory side, the interaction potential
between source and probe can be computed remarkably at weak Yang-Mills coupling at
one-loop [15–18], yet the result agrees with the supergravity expectations because of an
underlying non-renormalization theorem. This BMN computation however makes sense
only if the separation between source and probe is large: this regime renders off-diagonal
matrix modes heavy, resulting in the needed effective potential for the diagonal modes.
This is the setting we will explore to connect quantum entanglement to spacetime geometry.
The underlying quantum mechanical system is given by BMN theory, but we start from
the outset on the supergravity side with the source and probe being widely separated.

We show that in a two-body interacting system in supergravity, there is a notion of
quantum entanglement between the two bodies that is a natural local probe of geometry.
Quantum fluctuations about classical trajectories get entangled and the corresponding
entanglement entropy is non-trivially geometrical. The connection arises through local
tidal forces that the probe feels due to the presence of the source. Furthermore, this
link has an intriguing holographic character that refers to a space transverse to both the
light-cone direction and the velocity of the probe. We write an explicit relation that
connects this entanglement entropy, that can be computed directly in BMN theory, to the
local curvature scale near the probe in supergravity. We then generalize this relation —
using symmetry and guesswork — to a conjecture for a general relation between a certain
entanglement entropy of a body with its environment, and the spacetime geometry that
the body samples locally.1

The outline of the paper is as follows. In section 2.1, the mechanics of tidal acceleration
for a probe in light-cone supergravity is presented and applied to the dynamics of the
center of mass of a spherical membrane in a PP-wave background in the presence of another
spherical membrane. In section 2.2, a sketch of the one-loop BMN computation is presented,
showing the general structure of the interaction potential and the role of membrane dipole
interactions. In section 2.3, we define and compute the Von Neumann entanglement entropy
of the gravitating probe, and connect it to the local geometry sampled by the probe. In the
last section, the key insights and assumptions are summarized, and a conjecture is made
for a general relation between entanglement entropy and spacetime geometry.

2 Entanglement in a two-body system

2.1 Supergravity perspective

Consider a point particle of mass m — to function as a probe to eleven-dimensional super-
gravity. It would be described by the standard action

S = 1
2

∫
dλ

(
η−1gµν

dxµ

dλ

dxν

dλ
− ηm2

)
, (2.1)

1For a different approach, see [19].
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where η is the “vielbein” on the wordline and µ, ν = 0, 1, . . . , 10. We will work in the
light-cone frame and hence define

x± = 1√
2

(
x0 ± x10

)
. (2.2)

The particle is to carry a fixed amount of light-cone momentum. Furthermore, the back-
ground metric gµν shall be the PP-wave metric Gµν plus a perturbation hµν that arises
from a source present in this PP-wave background; we then write

gµν = Gµν + hµν (2.3)

The PP-wave background is given by [13, 17]

G++ = −Mrsx
rxs = −Mijx

ixj −Mabx
axb , G+− = 1 , Grs = δrs (2.4)

with all other components of Gµν being zero. We use the convention

i, j, . . . = 1, 2, 3 and a, b, . . . = 4, . . . , 9 (2.5)

while we reserve r, s, u, . . . = 1, . . . , 9 for all nine spatial directions. We also define

Mij = µ2

9 δij for i, j = 1, 2, 3 (2.6)

Mab = µ2

36δab for a, b = 4, . . . , 9 (2.7)

where µ is related to the 4-form flux associated with the PP-wave background. Hence,
the PP-wave breaks the SO(9) symmetry to SO(3) × SO(6). We proceed with fixing the
light-cone gauge by choosing the affine parameter λ = x+, and henceforth we use a dot to
denote derivative with respect to the light-cone time x+, i.e. ẋr ≡ dxr/dx+. The action
becomes

S = 1
2

∫
dx+

(
2 η−1ẋ− + η−1G++ + η−1(ẋr)2 − ηm2

)
+ 1

2

∫
dx+ η−1hµν ẋ

µẋν . (2.8)

We then have the momentum

p− = g−µp
µ = p+ + h−µp

µ = ∂L

∂ẋ−
= η−1 + η−1h−µẋ

µ (2.9)

which implies that η−1 differs from the light-cone momentum p+ by terms of order hµν .
The gauge fixing involves the constraint

δS

δη
= 0⇒ gµν ẋ

µẋν = −η2m2 = − m2

(p+)2 +O(h)⇒ τ̇ = m

p+ +O(h) (2.10)

which determines the relation between the proper time τ of the probe and light-come time.
This constraint can also be used to solve for ẋ− which then can be eliminated from the
action in favor of hµν and ẋr.
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The light-cone Lagrangian is defined by the Routhian

L→ p−ẋ
− − L (2.11)

so that the action takes the form

S = 1
2

∫
dx+

(
p+G++ + p+(ẋr)2 − m2

p+

)
−
∫
dx+V (x, ẋ) (2.12)

where V collects all hµν-dependent terms that are due to the source which back-reacts
on the PP-wave background — with the ẋ− dependence in V eliminated through the
constraint.2 Note also that translation in light-cone time x+ is generated by the light-cone
Hamiltonian p+.

The equations of motion that follow from (2.12) take the form(
δrs + 1

p+ δrδsV

)
ẍs = 1

p+ (−∂rV + ∂sδrV ẋ
s)−Mrsx

s

⇒ ẍr ' 1
p+ (−∂rV + ∂sδrV ẋ

s)−Musx
s
(
δru −

1
p+ δrδuV

)
(2.13)

where we define the shorthands

δrV ≡
∂V

∂ẋr
, ∂rV ≡

∂V

∂xr
. (2.14)

We will consider the dynamics to linear order in the metric perturbation, hµν ; this means
that we can drop powers of the potential V greater than one, which we have done on
the second line of (2.13): the back-reaction of the source on the PP-wave geometry is a
perturbation, since we will locate the source at the origin of the coordinates and place the
probe at a distance far away from it so that the local metric near the probe is close to the
PP-wave background’s. We can also drop the δrδuV in the last term, δδV � (p+)2. The
equations of motion become

ẍr ' 1
p+ (−∂rV + ∂sδrV ẋ

s)−Mrsx
s . (2.15)

This last step is more subtle: we will see later on that the entanglement entropy we are
interested goes as ∼ V/Mrs; this implies that any V -dependent factor that dresses Mrs

would be sub-leading. Note that this is acceleration in light-cone time. For m 6= 0, we can
relate this to covariant acceleration aµ by

ẍr ' ar m2

(p+)2 (2.16)

to linear order in h, where ar = d2xr/dτ2 = dur/dτ . We will see shortly that this level
of approximation is suitable. For a massless probe, m = 0, the affine parameter can be
chosen to be x+, so that one can just write ẍr → ar.

2V is also averaged over the x− direction as we will only consider interactions that do not involve
light-cone momentum exchange.
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We next want to introduce a measure of the tidal forces experienced by the probe. To
do so, we first define a space-like vector ξµ that is transverse to velocity. We choose ξ+ = 0
and write

gµνξ
µuν = 0⇒ gµνξ

µẋν = 0 (2.17)

for both massive and massless probes. This then gives

ξ−
(
1 + h−−ẋ

− + h−+ + h−rẋ
r)+ ξrẋr + hrsξ

rẋs = 0 . (2.18)

We can then solve for ξ− as needed. Because we have

gµνξ
µξν = h−−ξ

−ξ− + ξrξr + hrsξ
rξs > 0 , (2.19)

ξµ is a space-like vector and ξr defines a 11 − 2 = 9 dimensional transverse space to the
probe’s velocity.

We denote tidal acceleration by Ar to distinguish it from the probe’s covariant accel-
eration aµ. Tidal acceleration is generally defined by [20, 21]

Ar = ξν∇ν

(
d2xr

dτ2

)
. (2.20)

From this, we are inspired to define tidal light-cone frame acceleration in the PP-wave
background as

ArPP ≡ ξν∇ν (ẍr +Mrsx
s) . (2.21)

We have (a) shifted the acceleration by the effect of the PP-wave background so that this
quantity measures exclusively the tidal acceleration from the back-reaction of the source
on the PP-wave background; and (b) APP is acceleration with respect to light-cone time,
not proper time, as the dot represents derivative with respect to x+. This means that the
expression in the parenthesis is already of order hµν or equivalently V . We can then write

ArPP ≡ ξν∇ν (ẍr +Mrsx
s) = 1

p+ ξ
ν∇ν (−∂rV + ∂sδrV ẋ

s)

' 1
p+ ξ

ν∂ν (−∂rV + ∂sδrV ẋ
s) = 1

p+ ξ
u (−∂u∂rV + ∂u∂sδrV ẋ

s)

≡ − 1
p+ ξ

uKur (2.22)

where we have once again focused on linear order terms in V . From this, we can see that,
for m 6= 0, ArPP ' Arm2/(p+)2 to leading order in V , where Ar is defined once again as
the tidal acceleration due to the source only, but measured with respect to proper time.
For m = 0, we simply have ArPP ≡ Ar by choice.

We have now established a relation between the supergravity potential V due to the
source and the tidal acceleration Ar experienced by the probe only due to the source with
respect to proper time

Ar = − p
+

m2 ξ
sKrs → −ξsKrs for m 6= 0 , (2.23)

Ar = − 1
p+ ξ

sKrs → −ξsKrs for m = 0 . (2.24)
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to linear order in the perturbation due to the source, with

Krs = ∂r∂sV − ∂s∂uδrV ẋu ; (2.25)

and where we have conveniently normalized ξs to get rid of the multiplicative factor. We
will later show that this tensor Krs also determines the quantum entanglement between
source and probe.

The probes we want to focus on shall be the spherical membranes of BMN theory, and
we want to track the center of mass motion of such spheres. In supergravity language, the
membrane action with worldvolume coordinates x+, θ, ϕ is given by [16]

L=
∫
dθdϕ

[
p+

8π sinθẊrẊr− p
+

8π sinθMrsX
rXs− 1

4πp+ sinθ (∂θXr∂ϕX
s−∂θXs∂ϕX

r)2

+ 1
2π

µ

3 εijk
(
∂θX

i
)(
∂ϕX

j
)
Xk−V (X,∂X)

]
(2.26)

evaluated in the pure PP-wave background. We write

Xi = xi + Y i , Xa = xa (2.27)

with
Y 1 = R sin θ cosϕ , Y 2 = R sin θ cosϕ , Y 3 = R cos θ (2.28)

which describes a spherical configuration of radius R. Two special radii result in stable
and metastable spherical membranes:

R = µ p+

6 , m = 0 (Giant graviton) (2.29)

R = µ p+

12 , m = (p+)2µ2

72 (Metastable star) (2.30)

We only consider these cases. Cross terms between x and Y then integrate to zero so that
the center of mass dynamics decouples. We are left with the action

L = p+

2 (ẋr)2 − p+

2 µ2
((
xi
)2

9 + (xa)2

36

)
− m2

p+ − V (x, ẋ) (2.31)

where in the last step we added the perturbation of the PP-wave background by a source
through the addition of a potential V . We see that our prior analysis is validated with two
possible values of the mass m, zero or (p+)2µ2/72. However, V now includes interactions
due to membrane charge in addition to gravitational forces. In the regime of interest where
the spherical membranes are much smaller than the distance between them, one can still
have forces arising from membrane dipole-dipole interaction. Each spherical membrane
would have zero net membrane charge, yet would carry a dipole that leads to a force
due to the non-uniform four-form flux from the other. Note however that the flux from
the background PP-wave does not impact the center of mass dynamics of the membranes
because this flux is uniform. Hence, V includes gravitational and membrane-dipole effects,
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while PP-wave background effects are absent from V and arise only in the middle µ-
dependent terms of (2.31).

In the spirit of treating our action as that of a probe, the source (henceforth referred to
as object 2) is to be ‘heavy’ compared to the ‘probe’ (referred to as object 1). In light-cone
frame language, this implies the light-cone momentum of the source, p+

2 , should be much
larger than light-cone momentum of the source, p+

1

p+
2 � p+

1 . (2.32)

We place the source at the origin xr2 = 0 of the PP-wave background coordinates, and we
can see from the equations of motion (2.15) that the motion of the source would be negligible
in relation to that of the probe. We place the probe a distance far away xr = xr1 − xr2.
We can then use all the relations for the point probe we presented and apply them to the
membrane probe’s center of mass motion, with p+

1 → p+ and xr1 → xr. The light-cone
momentum of the source, p+

2 , would then only appear in the potential V .

2.2 Computing V in BMN theory

In this section, we sketch the derivation of the effective potential V discussed in the previous
section, but from the perspective of the dual BMN theory. The computation is already done
in the literature at one-loop level [16–18, 22, 23] so we will only present an abbreviated
version. However, we will include new terms that account for couplings to membrane
dipole charge that have not been presented. These new terms are interesting for us as
they extend the map between geometry and entanglement entropy, as we shall see. While
the BMN computation is done at weak coupling, the results are expected to carry over to
strong coupling and hence match with the supergravity potential due to a renormalization
theorem. Indeed, it has been shown that the one-loop potential from BMN theory agrees
with the supergravity expectations in several settings.3

BMN theory is 0 + 1 dimensional U(N) Super Yang-Mills (SYM) theory that is pur-
ported to be dual to light-cone gauge M-theory in a PP-wave background. The rank of the
gauge group N maps onto light-cone momentum in M-theory. Our starting point is the
Matrix theory action in the background field gauge4

S=
∫
dtTr

[ 1
2RDtX

rDtX
r+R

4 [Xr,Xs]2+ΨαDtΨα+iRΨαΓrαβ [Xr,Ψβ ]

− 1
2R

µ2

9 X
iXi− 1

2R
µ2

36X
aXa− iµ3 εijkX

iXjXk−µ4 ΨαΓ123
αβ Ψβ

− 1
2(∂tA+i[Xr

bg,X
r])2+ i

2∂tG(∂tG−i [A,G])− 1
2G[Xr

bg, [Xr,G]]
]
. (2.33)

Dt ≡ ∂t− i [A, ·]. We use units such that the eleven dimensional Planck length is set to one
`P = 1. All fields are in the adjoint of U(N), and the spinor fields Ψα are 10 dimensional
Majorana-Weyl. The background field gauge condition requires [25]

∂tA+ i[Xr
bg, X

r] = 0 , (2.34)
3Note however than terms that depends on membrane charge have not been compared.
4We will try to follow, as much as possible, the notation and conventions used in [22] and [24].
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and G is a matrix of Faddeev-Popov ghosts. R is the radius of the M-theory light-cone
circle. It functions as the Yang-Mills coupling of the theory. We take the background as

Xr
bg =

(
Xr

1(t) 0
0 Xr

2(t)

)
(2.35)

with all other fields vanishing. This is a block diagonal configuration with Xi
1 being an

N1 × N1 matrix, and Xi
2 being an N2 × N2 matrix; we have N = N1 + N2. In M-theory

language, Xi
1 is to represent an object that carries N1 units of light-cone momentum —

such as a giant graviton with p+
1 = N1/R; while Xi

2 represents another object with N2
units of light-cone momentum. At the end, we will choose Xi

1 and Xi
2 to describe spherical

membranes, giant gravitons or metastable stars.
To perform the path integrals, we use the Euclidian form with t→ i τ and A→ −i A.

We also rescale our parameters as follows: t→ t/R, A→ AR, µ→ µR.
We then want to write down an effective action by perturbing this background by

A0 =
(
a1(t) a(t)
a(t) a2(t)

)
Xr = Xr

bg +
(
xr1(t) xr(t)
xr †(t) xr2(t)

)
Ψα =

(
ψ1α(t) ψα(t)
ψ†α(t) ψ2α(t)

)
. (2.36)

We henceforth refer to a1, a2, xr1, xr2, ψ1α and ψ2α as diagonal fluctuations or modes;
while the other fluctuations are said to be off-diagonal. The centers of mass of the two
background objects are given by

xr1,2 ≡
TrXr

1,2
N1,2

, (2.37)

where we use the bar notation to denote variables which are not matrices; while the size
of each object might naturally be represented by the second moments

R2
1,2 ≡

Tr (Xr
1,2)2

N1,2
− (xr1,2)2 . (2.38)

We assume that the two background objects are widely separated from each other. In this
regime, the off-diagonal perturbations in (2.36) are heavy or high frequency modes. One
can then integrate them out and derive the effective potential for the background variables
Xr

1 and Xr
2 .

To be more precise, we substitute (2.36) into (2.33) and expand in the small pertur-
bations about the background. We then note the following:

• At quadratic order in the perturbations, there are no couplings between off-diagonal
and diagonal perturbations; the two sectors decouple.

• The full action is quadratic in the fermions and, along with the previous obser-
vation, this implies that there are no couplings between off-diagonal and diagonal
fermionic perturbations at any order. Hence, fermions on the diagonal do not talk
to off-diagonal fermions, except at higher orders through interactions with bosonic
perturbations.

– 8 –
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• The diagonal perturbations do not involve any couplings between the two objects,
i.e. no x1x2 terms arise. This implies that the leading contribution to the effective
potential between the two objects does not get a contribution from fluctuations on
the diagonals.

• The frequency of off-diagonal modes scale with Tr(Kr)2 where

Kr ≡ Xr
1 ⊗ 1N2×N2 − 1N1×N1 ⊗ (Xr

2)T (2.39)

which can be deemed as a matrix distance between the two background objects.

These observations allow us to set the diagonal perturbations to zero, and integrate
out the off-diagonal modes — expanded to quadratic order in a regime where they are
heavy, i.e. when the timescale of evolution of the background matrices is much longer than
the timescale of oscillations from the off-diagonal perturbations. This yields the one-loop
effective potential for the background matrix configuration. The off-diagonal perturbations
consist of 10N1N2 bosonic modes with frequency squared matrix Mb, 16N1N2 fermionic
modes with frequency squared matrix Mf , and 2N1N2 ghosts with Mg. The effective
action then becomes

V = −
∫
dt

(
Tr
√
Mb −

1
2Tr

√
Mf − 2Tr

√
Mg

)
. (2.40)

We writeMb =M0b +M1b andMf =M0f +M1f with

M0b =
∑
r

Kr 2 ⊗ 110×10

M1b =


0 2i∂tKj 2i∂tKb

−2i∂tKi 2[Ki,Kj ] + µ2

9 δ
ij − iµεijkKk 2[Ki,Kb]

−2i∂tKa 2[Ka,Kj ] 2[Ka,Kb] + µ2

36 δ
ab


M0f =

∑
r

Kr 2 ⊗ 116×16

M1f = ∂tK
r ⊗ Γr + 1

2 [Kr,Ks]⊗ Γrs − 1
4 iµε

ijkKi ⊗ Γjk + µ2

16
and

Mg =
∑
r

Kr 2 . (2.41)

where Kr was defined above in (2.39). We then use the integral representation for the
square root of a matrix using a Dyson series, e.g.

Tr
√
M0b +M1b = − 1

2
√
π
Tr
∫ ∞

0

dτ

τ3/2 e
−τ(M0b+M1b)

= − 1
2
√
π
Tr
(∫ ∞

0

dτ1

τ
3/2
1

e−τ1M0bTrL(1)−
∫ ∞

0

∫ ∞
0

dτ1dτ2
(τ1 + τ2)3/2 e

−(τ1+τ2)M0bTrL(M1b(τ2))

+
∫ ∞

0

∫ ∞
0

∫ ∞
0

dτ1dτ2dτ3
(τ1 + τ2τ3)3/2 e

−(τ1+τ2+τ3)M0bTrL(M1b(τ2 + τ3)M1b(τ3)) + . . .

)
(2.42)
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where we defined
M1(τ) ≡ eτM0M1 e

−τM0 . (2.43)

TrL involves tracing over Lorentz space, while Tr refers to tracing over group space. We
keep terms up to third order in this Dyson series. We evaluate the Dyson integrals in
the regime where the distance between the center of masses of the two objects, related to
(Kr)2, is large so that the small τ region of the integrands dominates [22]).

At zeroth order, the zero point energies cancel as expected: 10N1N2−(1/2)(16N1N2)−
2N1N2 = 0. At first order, the cancellation continues

Tr(M1b)−
1
2Tr(M1f ) = µ2

2 −
µ2

2 = 0 . (2.44)

At second order, one gets the first nonzero term

Tr(M1bM1b)−
1
2Tr(M1fM1f ) = µ4

96 (2.45)

And at third order the expression grows considerably

Tr(M1bM1bM1b)−
1
2Tr(M1fM1fM1f ) =−7

6µ
2F 2

0a−
1
6µ

2F 2
0i−

5
12µ

2F 2
ab+

1
6µ

2F 2
ai+

7
12µ

2F 2
ij

+ 7
12µ

3εijkKiFjk+ 7
24µ

4K2
i + 95

41472µ
6 (2.46)

where we have defined F0r = ∂tKr and Frs = i[Kr,Ks] to make things concise.
Putting things together, we obtain the general expression

V =Tr
[
− 1

768R3
µ4

x3−
1

16R3
µ2

x5

(7
6F

2
0a+ 1

6F
2
0i

)
+ 7

384R3
µ4

x5K
2
i

− 1
16R

µ2

x5

( 5
12F

2
ab−

1
6F

2
ai−

7
12F

2
ij

)
+ 7

192R2
µ3

x5 εijkKiFjk+ 95
663552R5

µ6

x5

]
(2.47)

where we have restored the factors of R to undo the rescaling of time and µ. This expression
is then written in units where `P = 1, as was the original action (2.33). The first line
matches with the result of [18]. The terms on the second line of (2.47) include commutators
of the matrices which are non-zero when the size and shape of each object is taken into
account. These terms have not been presented in the literature for BMN theory to our
knowledge and involve effects from coupling to membrane charge. To be more specific, we
next substitute for spherical membrane configurations

Xi
1 = xi1 + µ

3J
i
1

Xa
1 = xa1

Xi
2 = xi2 + µ

3J
i
2

Xa
2 = xa2

where the SU(2) generators are written as [J i, J j ] = iεijkJ
k with Casimir Tr(J2

i ) =
N(N2 − 1)/4. We are considering the stable giant gravitons as an example. We then
have

Ki = xi1N1×N1 ⊗ 1N2×N2 + µ

3J
i
1 ⊗ 1N2×N2 −

µ

3 1N1×N1 ⊗ (J i2)T (2.48)
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Ka = xa1N1×N1 ⊗ 1N2×N2 (2.49)

where
xr ≡ xr1 − xr2 (2.50)

is the distance between the center of masses. Tracing over the color space, we get an
effective potential between giant gravitons given by

V = − µ4

768R3
N1N2
x3 − µ2

96R3
N1N2
x5

(
(ẋi)2 + 7 (ẋa)2

)
+ 7µ4

384R3
N1N2
x5 (xi)2

+ 61µ6

1990656R5
N1N2
x5 + 7µ6

124416R5
N1N2(N2

1 +N2
2 )

x5 . (2.51)

Once again, the second line includes contributions from the commutators of objects and
hence incorporate their mutual interaction through dipole membrane charge.5

To relate this expression to the potential in (2.31), we identify the light-cone momenta
p+

1,2 = N1,2/R, and we take the probe limit where N1 � N2, object 1 being the probe and
object 2 being the source, along (2.32). We then have

V = p+
1 p

+
2

[
− µ4

768R
1
x3 −

µ2

96R
1
x5

(
(ẋi)2 + 7 (ẋa)2

)
+ 7µ4

384R
(xi)2

x5

+ 61µ6

1990656R3
1
x5 + 7µ6 (p+

2 )2

124416R
1
x5

]
. (2.52)

We will comment later on the significance of the non-zero contribution from dipole mem-
brane interactions appearing on the second line. Restoring the Planck length, the first
line is multiplied by `9P , while the second one involves `15

P , with the eleven dimensional
gravitational constant given by κ2

11 = 16π5`9P . With the tension of the membrane scaling
as T2 ∼ 1/`3P , this corresponds to κ4

11 T2.

2.3 Entanglement between two interacting objects

We consider two objects interacting with a translationally and rotationally invariant poten-
tial, and we want to compute a certain measure of quantum entanglement entropy between
them due to their interaction. The computation is quite general, but we will gradually
narrow it down to the case at hand: a probe moving far away from a source in light-cone
PP-wave background.

The light-cone action for the two body system is given by

SPP =
∫
dx+

(
p+

1
2 ẋ1 · ẋ1 + p+

2
2 ẋ2 · ẋ2

− p+
1
2 x1 ·M · x1 −

p+
2
2 x2 ·M · x2 − V (x1 − x2, ẋ1 − ẋ2)

)
(2.53)

5We note that there can in principle be higher order terms that mix with the terms shown at this
order. We can see this in the third term already where what naively appears as an x−5 order term in
the large distance expansion can actually contribute at the x−3 order. This pattern continues in the large
x expansion.
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with x · x ≡ xrxr where r = 1, . . . , 9. Once again, time and the dot notation refer to light-
cone time x+. M will be related to the matrix encountered in equations (2.6) and (2.7)
from the PP-wave background. We next note the following about the system of interest:

• V is the effective potential that arises from supergravity or, equivalently, BMN the-
ory. By symmetry, it depends only on the relative coordinates xr ≡ xr1 − xr2 and
ẋr = ẋr1 − ẋr2, and is rotationally invariant. Furthermore, V is even in ẋ because of
time reversal symmetry.

• The action is written in the light-cone frame, with Lorentz symmetry broken to
Galilean symmetry as expected.

• Given the symmetries, the structural form of V is

V → V (ẋ · ẋ, ẋ · x, x · x) . (2.54)

• We will assume that the two objects are separated by large enough distances that
the potential V is a small perturbation to their dynamics.

• M is present to reproduce the effect of the PP-wave background.

This two-body system has classical solutions given by Xr(t) for given initial conditions;
and we consider perturbing such a solution

xr1,2 = Xr
1,2 + εr1,2 (2.55)

and write the corresponding potential expanded to quadratic order

V = V (X, Ẋ) + 1
2 (εr1 − εr2) (εs1 − εs2) ∂r∂sV

+ 1
2 (ε̇r1 − ε̇r2) (ε̇s1 − ε̇s2) δrδsV + (εr1 − εr2) (ε̇s1 − ε̇s2) ∂rδsV (2.56)

where Xr ≡ Xr
1 −Xr

2 . Note that X here is not a matrix, as it was in the previous section.
Given that we are perturbing around a solution to the equations of motion, the linear terms
cancel. All derivatives of V are to be evaluated at the classical time-dependent solution.
We write ε ≡ ε1 − ε2 and rearrange the last term as follows

εrε̇s∂rδsV = −1
2ε

rεsẊα∂r∂αδsV −
1
2 ε̇

rεs (∂rδsV − ∂sδrV ) . (2.57)

We then define antisymmetric tensor

Brs ≡ ∂rδsV − ∂sδrV . (2.58)

Note that, given the expected form of V from above, nonzero contributions to B must take
the form

Brs ∝ XrẊs −XsẊr (2.59)
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which consist of the angular momenta of the classical solution. We next define

Krs ≡ ∂r∂sV − Ẋα∂α∂rδsV (2.60)

which is the same expression encountered in (2.25). We then write the potential as

V → 1
2 (εr1−εr2)(εs1−εs2)Krs+

1
2 (ε̇r1−ε̇r2)(ε̇s1−ε̇s2)δrδsV −

1
2 (εr1−εr2)(ε̇s1−ε̇s2)Brs (2.61)

dropping constant terms. Putting things back together, the Lagrangian of the perturbed
system becomes

L = p+
1
2 ε̇1 · ε̇1 + p+

2
2 ε̇2 · ε̇2 −

1
2(ε̇r1 − ε̇r2)(ε̇s1 − ε̇s2) δrδsV

− p+
1
2 ε1 ·M · ε1 −

p+
2
2 ε2 ·M · ε2 −

1
2(εr1 − εr2)(εs1 − εs2)Krs

+ 1
2 (εr1 − εr2) (ε̇s1 − ε̇s2)Brs (2.62)

We can diagonalize the kinetic terms perturbatively given that the potential V is small

εr1 = εr1 − εs2
1

p+
1 − p

+
2
δrδsV , εr2 = εr2 + εs1

1
p+

1 − p
+
2
δrδsV (2.63)

yielding

L = 1
2
(
p+

1 δrs − δrδsV
)
ε̇r1ε̇

s
1 + 1

2
(
p+

2 δrs − δrδsV
)
ε̇r2ε̇

s
2

− 1
2Mrs

(
p+

1 ε
r
1ε
s
1 + p+

2 ε
r
2ε
s
2

)
+ 1

2Krs (εr1εs2 + εs1ε
r
2)− 1

2 (εr1ε̇s2 + εr2ε̇
s
1)Brs . (2.64)

Several assumptions underly this last expression. First, we have dropped time derivatives of
the potential in relation to time derivatives of the perturbations — assuming an adiabatic
regime where the time scale of evolution of the perturbations is much shorter than the
time scale associated with the classical trajectories which determine the evolution of the
potential. At the end of this section, we will revisit this issue and justify this approximation.
We have also assumed that the potential V is small — treating the back-reaction from
the source onto the PP-wave background small. This justifies the diagonalization of the
kinetic terms to leading linear order in V ; and also dropping Krs and Brs in relation to
Mrs that arises in expressions that couple object 1 to itself and object 2 to itself. The latter
step is somewhat subtle: given that Krs and Brs are evaluated at a classical solution, and
considering sources and probes that conform to the SO(3)×SO(6) symmetry of the PP-wave
background — such as giant gravitons and metastable stars, the relevant perturbations for
the computation of entanglement will lie either in SO(3) or SO(6), as we shall soon see;
this means that Mrs is effectively proportional to the identity. As a result, terms like
p+

1 Mrs + Krs can be approximated consistently as just p+
1 Mrs: simply diagonalize Krs,

drop the eigenvalues in relation to the PP-wave background, then retransform back —
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leaving Mrs unchanged. All this brings us to the expression above. We now note that we
can also drop the δrδsV in relation to the δrs for the same reasons outlined in section 2.1.
Finally, we rescale the perturbation variables conveniently as

zr1,2 ≡ εr1,2
√
p+

1,2 (2.65)

so that the Lagrangian takes the more canonical form

L ' 1
2 ż

2
1 + 1

2 ż
2
2 −

1
2Mrs (zr1zs1 + zr2z

s
2) + 1

2
Krs√
p+

1 p
+
2

(zr1zs2 + zs1z
r
2)

− 1
2

Brs√
p+

1 p
+
2

(zr1 żs2 + zr2 ż
s
1) . (2.66)

z1 and z2 are the perturbations of the classical solution and they describe, to this order of
the treatment, quadratic oscillators. Note however that the frequencies involved depend
on the classical trajectory and hence are in general time dependent. However, as alluded
to above, in a proper adiabatic regime where the time scale of evolution of the oscillators
is much shorter than the time scale associated with the classical trajectories, the quantum
state for the z1-z2 system should be taken to be the ground state of the simple harmonic
oscillators. This ground state will in general involve entanglement between z1 and z2, and
it is the entropy associated with this entanglement that we want to next compute as a
measure of entanglement between objects 1 and 2. At the end, we will also come back to
analyze the validity of the assumed adiabatic regime.

To go further, we treat two different scenarios separately: one where Brs = 0, and
then a more general case.

Radial motion. We first consider boundary conditions for the classical trajectories such
that all angular momenta vanish; that is, we consider radial motion. We then have

Brs = 0 for zero angular momentum (2.67)

Note also that, given the expected SO(3)×SO(6) symmetry of the system we will eventually
map onto, this radial motion will live either in SO(3) or SO(6), and not the more general
SO(9). The Lagrangian can then be written in direct product matrix form as

L = 1
2 ż · ż −

1
2z · κ̂ · z (2.68)

where
zr = (zr1, zr2) ; (2.69)

and we define
κ̂ = Mrs ⊗

(
1 0
0 1

)
+ Krs√

p+
1 p

+
2

⊗
(

0 −1
−1 0

)
(2.70)

The ground state wavefunction for the system is then a gaussian given by [8]

ψ(z1, z2) =
(
det Ω̂

π

)1/4

exp
[
−1

2z
T · Ω̂ · z

]
(2.71)
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where
Ω̂ =

√
κ ≡

(
(Ω11)rs (Ω12)rs
(Ω21)rs (Ω22)rs

)
. (2.72)

To compute the quantum entanglement between the two bodies in this quantum state, we
write the reduced density matrix [8]

ρ1(z1, z
′
1) = Tr2 [ρ] =

√
det1− Ĉ

π
e−

1
2Z1·Z1e−

1
2Z
′
1·Z
′
1e

1
4 (Z1+Z′1)·Ĉ·(Z1+Z′1) (2.73)

where
Zr1 = (Ω̂1/2

11 )rszs1 (2.74)

and
Ĉ ≡ Ω̂−1/2

11 · Ω̂12 · Ω̂−1
22 · Ω̂21 · Ω̂−1/2

11 (2.75)

Note that the latter is a 9 by 9 matrix living in the space transverse to the relative motion.
The Von Neumann entropy of interest is then given by [8]

Sent = Tr

ln
1− Ĉ/2 +

√
1− Ĉ

1− Ĉ +
√

1− Ĉ
− Ĉ

2

ln Ĉ

2−Ĉ+2
√

1−Ĉ

1− Ĉ +
√

1− Ĉ


' −Tr

(
Ĉ

4 ln Ĉ4

)
, (2.76)

where the simpler form on the second line is valid when the eigenvalues of Ĉ are much
smaller than one, as will be the case for us.

Working to leading order in Krs as compared to the background Mrs, we can take the
square root of κ perturbatively in Krs. Radial motion must lie in the i, j, . . . plane or the
a, b, . . . plane because of the SO(3) × SO(6) symmetry of the background. Krs, Mrs, and
Crs are then 3× 3 or 6× 6; and M is proportional to the identity matrix. We then have

Ω̂ '
(√

M 0
0
√
M

)
·

1 +

 0 − Krs

M
√
p+

1 p
+
2

− Krs

M
√
p+

1 p
+
2

0




1/2

'


√
M − Krs

2
√
M p+

1 p
+
2

− Krs

2
√
M p+

1 p
+
2

√
M

 (2.77)

where M is either µ2/9 or µ2/36 given by (2.6) or (2.7). We have also dropped K̂ in
relation to M̂ in the first matrix: to see this, first diagonalize K̂, noting that M̂ does not
change since it is proportional to the identity; then drop eigenvalues of K̂ in relation to M̂
and retransform back. We then arrive at the Ĉ matrix

Crs = 1
4M2

KruKus

p+
1 p

+
2

(2.78)

where
M = µ2

9 or µ2

36 . (2.79)
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Along with (2.76), this gives us a measure of entanglement entropy between the two objects
expressed in terms of the derivatives of the potential between them. M comes from the
PP-wave background and seem to function like a sort of ‘regulator’.

Noting that, for radial motion, we must have

Ẋr ∝ Xr , (2.80)

and looking at (2.58) and (2.60), we see that only fluctuations parallel to the relative
velocity Ẋr contribute to the entanglement computation. Due to the spherical symmetry,
the K̂ and Ĉ matrices are effectively one by one. We take object 2 as the source and object
1 as the probe, in a regime where P+ ≡ p+

2 � p+
1 ≡ p+. And using spherical coordinates

where ρ is the radial coordinate along the relative displacement vector between the two
objects, i.e. ρ2 = XrXr, we have Kρρ ≡ K with

K = ∂ρ∂ρV − ∂ρ∂ρδρV Ẋρ = −Aρ . (2.81)

In the last step, we identified K with the radial tidal acceleration as defined in (2.23)
or (2.24). We then have

C = K2

4M2 p+P+ � 1 (2.82)

since K �M . The Von Neumann entropy becomes

Sent ' −
(

K2

16M2 p+P+ ln K2

16M2 p+P+

)
, (2.83)

connecting quantum entanglement to the potential between the two bodies. In the next
section, we will map K onto supergravity geometry, completing the dictionary between
entanglement and geometry through local tidal forces.

To conclude, we also use the potential given by (2.52) to write an explicit equation for
the entropy

K = ∂ρ∂ρV −ρ̇∂ρ∂ρ∂ρ̇V =

= p+P+


13µ4

64R
1
ρ5 + 5µ2

16R
1
ρ7 ρ̇

2+ 35µ6

20736R
(P+)2

ρ7 + 305µ6

331776R3
1
ρ7 Motion in SO(3)

− µ4

64R
1
ρ5 + 35µ2

16R
1
ρ7 ρ̇

2+ 35µ6

20736R
(P+)2

ρ7 + 305µ6

331776R3
1
ρ7 Motion in SO(6)

. (2.84)

Here ρ2 = (xi)2 or ρ2 = (xa)2 depending on the case. The last two terms in each case
arise from dipole membrane charge. Note that M = µ2

9 for SO(3) and M = µ2

36 for SO(6)
so that both cases are divided by µ2 in (2.83). As an example, for the SO(3) case, the
entanglement between probe and source is, to leading order,

χ ≡ K

4M
√
p+P+ ' −

135µ2

256R

√
p+P+

ρ5 ⇒ Sent ' −χ2 lnχ2 . (2.85)

The entanglement then decreases with larger distances between source and probe. Note
that χ scales with the parameters of the BMN theory as µ2/R2.
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Adiabatic regime. Before expanding the computation to the case with non-zero angu-
lar momentum, let us revisit a key assumption — that the oscillator frequencies for the
perturbations can be taken as time independent, i.e. we have quantum harmonic oscillators
in an adiabatic regime. The adiabatic condition for a harmonic oscillator translates to

Ω̇� Ω2 (2.86)

where Ω is the frequency of the oscillator. Looking back at the case of radial motion
and (2.77), we see that

√
Tr Ω̇2 ∼ K̇√

M p+
1 p

+
2

and TrΩ2 ∼M . (2.87)

This means that the condition (2.86) can be satisfied provided we arrange that

K̇

M
�
√
M p+

1 p
+
2 . (2.88)

Given the timescale of evolution in the PP-wave background would be set by the curvature
scale

√
M ∼ µ, equation (2.88) becomes

K

M
�
√
p+

1 p
+
2 (2.89)

which is satisfied when the probe is far enough away from the source. The adiabatic
condition is then equivalent to the approximation scheme we have employed throughout
— that the source’s back-reaction on the PP-wave background near the location of the
probe is small. The case with non-zero angular momentum that we will treat next will not
change this conclusion: we will see that adding the Brs couplings does not change things
as the new relevant terms are damping terms. The general conclusion is that, given the
way the Krs and Brs couplings arise in (2.66), parametric resonance is avoided and the
adiabatic regime holds as long as the probe is far enough from the source initially so that
K �M

√
p+

1 p
+
2 .

Non-zero angular momentum. Consider next a probe moving around the source in
a fixed two-dimensional plane which we denote as the a-b plane, where a and b are fixed
arbitrarily. Note that, given the SO(3) × SO(6) symmetry of the background, we would
expect both a and b to lie in SO(3) or SO(6), but not straddle across. Furthermore, for
the regime of interest, the distance between the source and the probe Xr is to be large and
hence the relative velocity would be small Ẋr. In this scenario, we have all components of
Brs = 0 except

Bab 6= 0 For motion in a-b plane (2.90)

Given that the classical trajectories lie in a plane a-b and the general form of the potential
is given by (2.52), we see that both Krs and Brs are non-zero only in the a-b subspace.
The problem of finding the ground state of the perturbations in (2.66) then becomes that
of a charged particle in a magnetic field with an additional quadratic potential. The
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path integral is still gaussian and leads to a ground state wavefunction in z that is that of
simple harmonic oscillators — except that the frequencies would be shifted by the magnetic
field [26]. All matrices K̂, B̂, and Ĉ are now four by four, two for the two particles times
two from the planar motion, i.e the problem lives in the space of za,b1,2. We divide this space
into a direct product of the 1-2 particle space and a-b Lorentz space. Going to Fourier
space, with ω representing the Fourier frequency dual to the light-cone time and using a
tilde as in z̃ to denote Fourier modes, we write the Lagrangian as

L = −ω
2

2 z̃∗ · z̃ − 1
2 z̃
∗ · κ̂ · z̃ − i ω

2 z̃∗ · B̂ · z̃ (2.91)

where z̃ are the Fourier modes. Diagonalize Kab so that

Kab →
(
k 0
0 k′

)
(2.92)

and
Bab →

(
0 B′

−B′ 0

)
(2.93)

while M is unchanged since it is proportional to the identity matrix in the a-b space (in
SO(3), we have M = µ2/9, and in SO(6), M = µ2/36). We also have absorbed a factor of
1/
√
p+

1 p
+
2 in B′, k, k′ to keep the notation clean. We then write

B̂ =
(

0 B′ab
−B′ab 0

)
⊗
(

0 −1
−1 0

)
(2.94)

and
κ̂ = M ⊗

(
1 0
0 1

)
+
(
k 0
0 k′

)
⊗
(

0 −1
−1 0

)
(2.95)

The general solution involves diagonalization of a four by four matrix

L = −1
2 z̃
∗ ·


ω2 +M −k 0 −iωB′

−k ω2 +M −iωB′ 0
0 iωB′ ω2 +M −k′

iωB′ 0 −k′ ω2 +M

 · z̃ . (2.96)

For a giant graviton or metastable star back-reacting on the PP-wave geometry, the a-b
subspace is necessarily isotropic and hence k = k′; the matrix is then easily diagonalized
in terms of

ỹ1 = (z̃b1 + z̃b2) + i(z̃a1 + z̃a2) , ỹ2 = −(z̃b1 − z̃b2) + i(z̃a1 − z̃a2)
ỹ3 = (z̃b1 + z̃b2)− i(z̃a1 + z̃a2) , ỹ4 = −(z̃b1 − z̃b2)− i(z̃a1 − z̃a2) (2.97)

with eigenvalues ω2 ± ωB′ +M ±′ k, or written more suggestively(
ω − 1

2

(
±B′ −

√
B′2 ±′ 4 k − 4M

))(
ω − 1

2

(
±B′ +

√
B′2 ±′ 4 k − 4M

))
'
(
ω ± B′

2 ±
′ i

2
k√
M
− i
√
M

)(
ω ± B′

2 ∓
′ i

2
k√
M

+ i
√
M

)
, (2.98)

– 18 –



J
H
E
P
0
8
(
2
0
2
1
)
0
7
2

where in the second line we expanded for k,B′ �M to leading order. The important point
is that the eigenvectors are independent of B′. This leads to a diagonalized action of the
form

1
2

[(
−i∂+ −

B′

2 + i

2
k√
M
− i
√
M

)
y1

] [(
i∂+ −

B′

2 −
i

2
k√
M

+ i
√
M

)
y1

]
+ · · · (2.99)

with the dots denoting three additional terms for the eigenvectors y2, y3, and y4 correspond-
ing to flipping the signs of B′ and k independently. This implies that, in constructing the
Ω̂ matrix in (2.72) — after transforming back to the z basis using (2.97), B′ will appear
only at quadratic order — which is sub-leading and must be dropped for consistency (the
cross terms with B′ in (2.99) cancel). The Ĉ matrix in (2.75) from which the entanglement
entropy is constructed will then not have dependence on B′. The relation we found for the
radial scenario earlier is hence unchanged. The reason this is interesting is twofold: (1)
The entropy-potential relation given by (2.76) and (2.78) then holds irrespective whether
the two entangled objects are orbiting each other or falling radially; (2) We have not been
able to map Brs from (2.58) onto an obvious geometrical quantity in supergravity, unlike
Krs as we shall soon see. If Brs was to appear in the entanglement entropy, it would seem
to imply a ‘non-geometrical’ component to the entanglement entropy — which apparently
does not happen.

3 A covariant form

In this section, we want to try to rewrite the relation established between entropy and
potential by (2.76), (2.78), and (2.79) into a covariant form that relates entropy and ge-
ometry directly. The key link we used to map entropy onto interaction potential involved
the tidal acceleration. In general, if a probe is moving in some background geometry, the
tidal acceleration it experiences is given by [20, 21, 27]

Aµ = uν∇ν (uρ∇ρξµ) = −R µ
ρνλ uρuλξν + ξν∇ν (aµ) (3.1)

where uµ is the probe’s velocity, and ξ is a space-like vector transverse to this velocity
ξµuµ = 0. aµ is the probe’s acceleration and would be zero if it was subject to only
gravitational forces — aµ = 0 is simply the geodesic equation; but aµ 6= 0 for example due
to additional forces arising from membrane dipole charge. Note that the tidal acceleration
is related to the second characteristic form of the geometry and hence to the rate at which
areas transverse to the motion are shrinking, expanding, and twisting.6 In our previous

6For a congruence of geodesics with velocity uµ, the second characteristic form is given by

Bµν = ∇µuν .

Bµν describes how a transverse area to the velocity squeezes, rotates, and twists as you move along the
geodesic. Correspondingly, tidal acceleration is

aµ = uν∇ν
(
Bµρξ

ρ
)

where ξµuµ = 0.
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discussion, we encountered the tidal acceleration given by

Ar = −Ksrξ
s . (3.2)

Note that Ar includes subtracting the effect of the background PP-wave geometry. The
non-zero components of the Riemann tensor of the PP-wave background are given by
RPP

+r+s = Mrs. Using a minimal prescription to generalize these equations to covariant
form, we have

Krs = (Rµsνr −RPP
µsνr)uµuν −∇sar . (3.3)

Note the dependence on the probe’s velocity: this makes intuitive sense as this is entan-
glement seen from the perspective of the probe. We then write

Crs = 1
4β2KruKus (3.4)

with S(C) given by (2.76)

Sent ' −Tr
(
Ĉ

4 ln Ĉ4

)
. (3.5)

and defining
β2 = (RPP

µvνwu
µuν)2 (3.6)

One key observation of this relation is that this entanglement entropy, constructed from
C, is necessarily aware of the effects of all supergravity fields, metric and 4-form flux, as
can be seen from the second term on the right side of equation (3.3). Note also that in the
absence of the source, Krs → 0 ⇒ Sent → 0 as needed. We also note that this entropy is
very small — which is a reflection of the fact that the local curvature scale at the probe
is to be much less than that of the background PP-wave curvature scale. In the flat space
case treated in [28], the dimensionless Ĉ relates to the ratio of the local curvature scale to
the Planck scale. So, generically this entropy is to be very small as a statement that gravity
is a weak force. It is however particularly interesting to explore emergence of spacetime
from entropy in regimes where gravity is strong. This, however, is beyond the regime of
validity of our computations.

4 Conclusion

Entanglement entropy for a physical system can be defined in a myriad of ways — and most
importantly depends on how one slices the physical system. We have shown that there is
a certain measure of entanglement between two interacting objects that lends itself to a
geometrical interpretation. The proposal is particularly interesting and unique because it
connects a physical quantity that is inherently non-local, entanglement, to local spacetime
geometry. If it is general, it underscores the emergent geometry paradigm— that spacetime
geometry is an approximate emergent phenomenon arising from quantum entanglement.

The question is then how general is our treatment. We tried to present the narrative
starting with broad strokes, but then gradually narrowing onto the specific scenario of
two giant gravitons or metastable stars in eleven dimensional supergravity in a PP-wave
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background; one object was to be much larger than the other, and the smaller one was
far enough away to function as a probe. This more specific setup was necessary to make
the computation tractable. However, there were also a series of assumptions that were
critical to the map between entanglement and geometry, to delineating the regime in which
quantum entanglement acquires a geometrical character:

• We needed that the distance between source and probe be large enough so that the
source back-reacts weakly on the PP-wave background at the location of the probe.
This allowed us to employ a perturbative expansion, and, at first, seems to be for
computational convenience only. However, in BMN language, this regime allows us
to integrate out off-diagonal matrix modes, correlating with the off-diagonal modes
being heavy. This is a key benchmark for the emergence of geometry from matrix
quantum degrees of freedom. If all matrix degrees of freedom in BMN theory are
to participate in the dynamics, we expect no dual geometrical picture; only in the
regime where off-diagonal modes get frozen can we expect the emergence of the
geometrical picture — the imprint of which in the matrices lies in the dynamics of
the diagonal modes.

• We needed to employ an adiabatic regime, where the classical evolution of the two
interacting objects happens on a time scale that is much longer than that of small
fluctuations from the classical paths. We demonstrated however that this regime is
equivalent to the previous one: large enough distances between source and probe.

• We used a source that conforms to SO(3) × SO(6) symmetry of the PP-wave back-
ground — a giant graviton or a metastable star. This is needed to control the
computation, to make the equations more symmetric. It is not clear whether this
assumption plays a fundamental role, or if it is just a technical convenience as is
typical in physics when one harnesses the benefits of symmetry.

• The setup was implemented in a PP-wave background, corresponding to BMN theory
on the dual side. This allowed us to use stable or metastable matrix configurations
for the interacting bodies and avoid potential red herrings. This also appears to have
served as a sort of ‘regulator’ in the final entropy expression. However, a similar
map between entanglement and geometry was already worked out in [22] for Matrix
theory in flat-space, without the PP-wave background. This suggests that the PP-
wave setting was mostly a computational convenience.

• Working in the Light-cone frame seems to have played an important role, as we shall
argue below. The setting allows us to define a natural D−2-dimensional local space-
like subspace transverse to the probe’s velocity, where D is spacetime dimension. In
a sense, this leads to a kind of holography where the role of a ‘holographic screen’
is played by this transverse space — transverse to the light-cone direction and the
velocity of a local probe.

Before we try to generalize the entropy-geometry relation, let us emphasize a few of
the non-trivial aspects of the specific relation we arrived at:
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• The connection between geometry and entanglement through tidal acceleration was
presented from the gravity side of the duality. At first, it might seem strange that
the entropy-geometry relation can be made entirely in the supergravity context. But
we must remember that the computation of the entanglement could be performed
entirely in a non-gravitational framework, in BMN Matrix theory, with the same
results, since the gravitational framework is dual to BMN theory. Indeed, in [28],
this was done in the case of the BFSS Matrix theory. Presenting the computation
from the dual gravity perspective underscores how generic is the phenomenon: as long
as a Matrix theory computation lies in a realm where a gravitational dual description
is valid, the map between entanglement and geometry holds. The map can break down
only in a regime of Matrix theory that does not have a well-defined dual gravitational
description. In such a regime, the entanglement entropy would still be an observable,
but it would not have a geometrical character.

• The relation seems to be independent of the relative motion between probe and
source. And a problematic non-geometrical piece that we called Brs dropped out
from the final result. This is a testament to the robustness of the treatment.

• The entanglement entropy we computed included contributions from non-gravitational
interactions in supergravity — membrane dipole interactions. Generally, we would
expect that the full supergravity field content can participate in the ‘geometrization’
of the entanglement entropy.

How general can the relation for the cases of two interacting spherical objects in a
PP-wave background in eleven dimensional supergravity be? To answer this question, we
will need to engage in a certain level of speculation — albeit guided by symmetries and the
results we have. Let us imagine that we do not have the PP-wave background, but we start
in flat space light-cone supergravity. Then the key ingredient from which the entanglement
between two interacting objects can be built from the tensor

rrs = 1
2β (Rµsνr −RPP

µsνr)uµuν → Rµsνrp
µpν . (4.1)

This is dimensionless, replacing the scale µ (hidden in β) for the case of a PP-wave back-
ground with pµ which represents the momentum of the probe — the only relevant scale
when in flat space. For simplicity, we also dropped interactions due to membrane charge.
This rrs tensor is the central building block and lives in D−2 = 9 dimensional space trans-
verse to the momentum of the probe. In cosmology, there is a convenient 1 + 3 covariant
description of general relativity where one defines [29]

hµν = gµν + uµuν (4.2)

which allows a unique decomposition of every spacetime quantity into its irreducible time-
like and space-like components — along the velocity and transverse to it. We want to do
something similar, however specialize to the light-cone framework we are working with. In
the light-cone frame of supergravity we are considering, all objects carry fixed longitudinal
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momenta along the light-cone direction. Transverse means transverse to the light-cone
direction and the velocity of the probe. We then define the projector

ξµr = δµr −
pr
p−
δµ− ⇒ ξ+

r = 0 (4.3)

where r = 1, . . . , D − 2. We can then write

rrs = ξαr ξ
β
sRµβναp

µpν . (4.4)

This object references only the local geometry seen by the probe and its momentum. From
this, we are to construct tensor

Crs = rrurus (4.5)

which we will call suggestively the ‘c-tensor’. Then we conjecture that there is a certain
entanglement entropy between probe and environment that is related to local geometry
experienced by the probe, and it is given by

Sent = −Tr
(
Ĉ

4 ln Ĉ4

)
. (4.6)

Beside being closely guided by the example of gravitating giant gravitons in BMN theory,
there is something peculiar about this relation: the trace of rrs is related to the energy-
momentum measured by the probe locally, and this energy-momentum is responsible for the
local curvature through Einstein’s equations. Equation (4.5) looks reminiscent of an OPE
of two energy-momenta tensors relating to a central charge in a conformal theory — with
ξ playing the role of distance between nearby geodesics. And the entropy relation (4.6) is
itself suggestive of entanglement entropy with Ĉ being a sort of central charge. Of course,
there is no obvious conformal field theory here, and these similarities are just heuristic —
but they do suggest that the entanglement entropy relation we derived in BMN theory
might be part of a more general holographic relation.

Our conjecture needs to be tested further in two main directions. First, can one
find other computationally accessible settings in Matrix theories where this entanglement
entropy can be computed, with the suggested relation to geometry verified or falsified?
Second, if the general relation holds, it might be possible to extract gravitational dynamics
from the quantum mechanics of interacting matrix degrees of freedom; that is, can one use
knowledge of the general properties of entanglement entropy to arrive at constraints on the
Riemann tensor of the emergent geometry that amount to the Einstein equations, as in for
example [5]?
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