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he amount (soil moisture) and state (freeze–thaw) of 
the water in soil plays a pivotal role in global water, 
energy, and carbon cycles. The water content of the 

top few centimeters (~5 cm) of soil is typically referred to as 
surface soil moisture (SSM), which defines how wet or dry 
the soil is in its top layer. SSM is a key component of the 
microclimate that governs the interaction of water and heat 

fluxes between the ground and the atmosphere, regulating 
air temperature and humidity, and thus, affecting cli-
matic conditions and weather changes. Knowledge of the 
temporal dynamics and spatial variability of soil moisture 
is crucial in understanding many environmental processes 
and their impacts on plant fertility, crop yields, droughts, 
or exposure to flood hazards.
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Fig. 1. Comparison of downscaling accuracy between the proposed ensemble learning approach and the uniform disaggregation approach for the 
period of April 2015–April 2020. Both SCAN and USCRN in situ networks were used in this analysis. Abbreviations are as follows: ubRMSE = unbiased 
root-mean-square error; R = Pearson correlation coefficient; SMAP = Soil Moisture Active Passive.
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Recent advances in 
satellite remote sensing 
technologies have provided 
unprecedented information 
on soil moisture across spa-
tiotemporal scales, which 
is logistically unachievable 
from in situ observation 
networks. The Soil Mois-
ture Active Passive (SMAP) 
satellite was launched on 31 
January 2015 by the Nation-
al Aeronautics and Space 
Administration (NASA) to 
provide SSM using bright-
ness temperature through 
its active (radar, 3 km) and 
passive (radiometer, 36 
km) sensors at an interme-
diate resolution of 9 km. 
Although the active sensors 
(such as synthetic aper-
ture radar) provide data 
relatively at a higher spatial 
resolution compared to the 
radiometer sensors, they 
are prone to higher error/
uncertainties due to their 
swath width and sensitivity 
to sparse vegetation cover. 
Unfortunately, due to the 
failure of the SMAP radar 
instrument 3 months after 
the satellite’s launch, the 
radiometer instrument has 
been the only operational 
instrument since then, 
providing the soil moisture 
product at the 36-km grid 
cell from both ascending 
(1800 LT) and descend-
ing (0600 LT) passes. In 
December 2016, NASA 
released a data product, the 
so-called enhanced SMAP 
radiometer. In this dataset, 
the standard SMAP data 
gridded at 36 km are inter-
polated into 9-km grid spac-
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Fig. 2. (top) MODIS Terra true color reflectance for 17 Feb and 16 Jul 2018. (middle) SMAP soil moisture data  
at 1-km spatial resolution on the same days. The dark square (Biggs station 222) and circle (Gerber South station 
244) markers display the nonirrigated and irrigated sites, respectively. (bottom) The 1-km SMAP SM at the 
irrigated and nonirrigated sites. Planting and harvest windows are in green and red colors, respectively, and were 
acquired from USDA NASS reports.
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ing using the Backus–Gilbert optimal interpolation 
algorithm. Later in October 2018, Das and colleagues 
used Sentinel-1A and Sentinel-1B data in the SMAP 
active–passive algorithm to generate disaggregated 
brightness temperature and soil moisture at a finer 
resolution of 3 km. The assessment of this product 
has been performed using the soil moisture cali-
bration and validation sites and the results showed 
reasonable accuracy of ~0.05 m3 m–3.

Although this $1 billion NASA satellite provides 
valuable information for global- and continen-
tal-scale applications, the coarse spatial resolution 
is inadequate for regional or local studies, such as 
agricultural drought monitoring, irrigation manage-
ment and planning, flood forecasting, crop produc-
tion, and water resources management. To address 
this need, we have developed a machine learning 
(ML) framework based on an ensemble learning ap-
proach to rescale SMAP soil moisture from its native 
resolution (36 km) to a finer resolution (1 km) while 
using atmospheric and geophysical information 
acquired from high-resolution remote sensing data 
and ground-based observations. For more informa-
tion about the proposed downscaling algorithm and 
its validation, we refer readers to the 2019 research 
of Abbaszadeh et al. (see For Further Reading). 
The downscaled SMAP soil moisture product was 
generated and released in May 2018 when the SMAP 
soil moisture data were only accessible on descend-
ing overpass. Recently, the original SMAP data 
have not only become available on both ascending 
and descending overpasses, but their interpolated 
version at 9-km spatial resolution has been developed 
and released to the public. Hence, we utilized these 
advancements to further postprocess the downscaled 
soil moisture dataset at 1-km spatial resolution and 
provide a more accurate and reliable product. In this 
excerpt, we show the usefulness of the postprocessed 
high-resolution soil moisture data through a com-
prehensive validation analysis based on in situ soil 
moisture networks operating across the conterminous 
United States (CONUS) and list the benefits of the 
product in several hydrometeorological applications.

Figure 1 illustrates the original SMAP soil mois-
ture data and our downscaled product against Soil 
Climate Analysis Network (SCAN) and U.S. Climate 
Reference Network (USCRN) datasets. USCRN in-
struments are scattered uniformly across the United 
States mainly to represent the annual temperature 

Fig. 3. (top) Original SMAP soil moisture at ~36-km spatial resolution. (middle) 
Enhanced SMAP soil moisture at 9-km spatial resolution. (bottom) Downscaled 
SMAP soil moisture at 1-km spatial resolution. The dark square and circle mark-
ers display the nonirrigated and irrigated sites, respectively. Please note that the 
images in this figure are from the same dates as Fig. 2.
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and precipitation variance, while SCAN stations are 
installed in agricultural areas to accommodate specific 
research needs. When remotely sensed soil moisture 
estimates are compared against in situ observations, it 
is recommended that the disparity of spatial scale along 
with the sensing depths are accounted for. Although in 
some studies it is seen that the bias is removed between 
the remotely sensed and in situ soil moisture observations 
due to scale differences, it is usually common to compare 
in situ observations without scale adjustment even when 
only one observation is available per pixel. In this study, 
the postprocessed downscaled soil moisture estimates 
are compared against in situ observations without bias 
correction or upscaling. More than 300 SCAN and USCRN 
stations were active during the period of study (April 
2015–April 2019) providing daily soil moisture at different 
soil depths and other meteorological observations such as 
precipitation and soil temperature. Figure 1 shows the soil 
moisture observations that were collected at ≤2-in. (~5-cm) 
depth consistent with the sensing depth of the SMAP sat-
ellite. Also, Fig. 1 displays the overall statistics of the disag-
gregated remotely sensed surface soil moisture compared 
with the SCAN and USCRN observations over the CONUS. 
Compared to the standard disaggregation method, the 
proposed ensemble learning approach can provide more 
accurate soil moisture data at a spatial resolution of 1 km. 
This newly developed product offers useful data to not only 
the academic community for further research but also the 
variety of sectors that are beneficiaries of these data.

Figure 2 shows that the SMAP soil moisture at 1-km 
spatial resolution is capable of detecting the irrigation 
signal in the Northern California Central Valley (CCV) that 
encompasses rice fields. This figure demonstrates how the 
landscape from Moderate Resolution Imaging Spectrora-
diometer (MODIS) Terra imagery has been changed from 
the wet season (17 February 2018) to the dry season (16 
July 2018). The green areas turn brown by July except the 
regions where irrigated rice and forests cover the lands. 
These contrasts are distinguishable from the fine reso-
lution SMAP soil moisture maps. Our dataset shows the 
region in February uniformly wet (on average >0.3 m3 m–3). 
However, according to our produced soil moisture map, 
the entire area is almost dry in July, except the regions 
covered by irrigated rice and forest that generally indicate 
much higher soil moisture levels. According to the U.S. 
Department of Agriculture National Agricultural Statistical 
Service (USDA NASS), the rice farmlands are flooded and 
seeded each year from late April through May. Harvest 
begins in September and ends in November. While the soil 
moisture at both irrigated and nonirrigated sites follows 
the temporal variation of precipitation closely, it behaves 
differently in irrigated sites where the field is flooded for 
planting in mid-April. The timing is corroborated with the 
2018 crop report of the USDA NASS. In the growing season, 
the irrigated site is kept wet through early September when 
the harvesting begins. This pattern is discernible by the 
fine-resolution soil moisture data. Note that a similar set 
of comparisons for these dates presented by Lawston and 

]

Fig. 4. (a) Land cover distribution over the western United States, (b) original SMAP soil moisture at ~36-km spatial resolution, and (c) downscaled 
SMAP soil moisture at 1-km spatial resolution for 1 Apr 2018.
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colleagues in 2017 using the enhanced SMAP data (at 9 
km resolution) does not represent the underlying spatial 
heterogeneity, which is evident in the maps of Fig. 2.

Figure 3 compares the downscaled soil moisture at 
1-km spatial resolution against the original SMAP soil 
moisture and its interpolated version which are available at 
36- and 9-km spatial resolutions, respectively. Please note 
that the images in Fig. 3 are from the same dates as Fig. 2. 
To balance the sharp edges at the grid border, we applied 
an interpolation method similar to that proposed by 
Montzka and colleagues in 2018 on the downscaled 1-km 
soil moisture image and generated a dataset with no patch 
effect that better represents spatial heterogeneity of soil 
characteristics, vegetation types, and climatic conditions. 
Further investigation (please see Fig. 1) also revealed that 
the interpolation approach does not affect the accuracy of 
the downscaled soil moisture data.

As we discussed earlier, the produced 1-km SMAP soil 
moisture data correlate well with the in situ observations 
over different geographical locations with different land–
atmosphere regimes. In addition to this, our study also con-
firms that there is a spatial consistency between the coarse- 
and fine-resolution soil moisture maps. For example, as 
seen in Figs. 4a and 4c, the downscaled product provides 
more detailed soil moisture information consistent with the 
spatial heterogeneity of soil characteristics and vegetation 
types. The soil moisture spatial pattern is dependent on the 
heterogeneity of soil parameters (e.g., soil texture, vege-
tation, and topography) that are generally not distributed 

homogenously in the area. This results in an uncertainty in 
the soil moisture retrievals. Our downscaled soil moisture 
map could fill this gap through decreasing the discrepancy 
between the spatial variability of soil parameters and soil 
moistures. Moreover, the following example shows that the 
downscaled soil moisture spatial pattern closely follows the 
climate pattern and weather conditions.

In the state of Texas near Houston, the soil moisture 
conditions generated by the SMAP satellite before (Figs. 
5a,b, 21 August 2017) and after (Figs. 5c,d, 26 August 2017) 
the landfall of Hurricane Harvey revealed that this dataset 
is a reliable source in studying the changing soil wetness 
condition due to heavy rainfall associated with the tropical 
cyclone. Similar to the original SMAP observation (Fig. 5a), 
the downscaled soil moisture (Fig. 5b) also indicates that 
the soil surface was already very wet a few days before the 
onset of torrential rainfall. This is also consistent with the 
report of the Southeast Regional Climate Center (SERCC) 
that Texas, Louisiana, and other southern states have had 
one of their wettest months on the record before the landfall 
of Hurricane Harvey (please see https://earthobservatory.nasa 
.gov/images/90864/soil-moisture-satellite-observes-harveys-wrath). 
This saturated soil surface decreased the infiltration capac-
ity and therefore escalated the likelihood of flooding. As 
seen in Figs. 5a and 5c, both SMAP images at 36- and 1-km 
spatial resolutions confirm that the southwest regions of 
Houston became exceptionally wet on 26 August 2017, as 
corroborated by the observed torrential rainfall and wide-
spread flooding. According to the Figs. 5b and 5d, the 1-km 

Fig. 5. (a), (b) The soil moisture condition at 36- and 1-km spatial resolutions, respectively, on 21 Aug 2017, before the landfall of Hurricane Harvey 
over the state of Texas. (c), (d) The soil moisture condition at 36- and 1-km spatial resolutions, respectively, on 26 Aug 2017, after the termination of 
Hurricane Harvey. The polygons shown in (b) and (d) illustrate Lake Livingston.
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soil moisture maps demonstrate the increase of inundated 
area near the upstream and downstream areas of Lake 
Livingston during Harvey’s rainfall. This information is in 
accordance with several reports showing that the flooded 
regions around Lake Livingston caused severe damage to 
roads and properties due to its overflowing (for more infor-
mation, we refer the readers to www.khou.com/article/weather 
/hurricane/harvey/nhc-harvey-caused-125-billion-in-damage-68 
-deaths-in-texas/285-511430188). Lake Livingston is a reservoir 
built for water-supply purposes with no flood-control or 
storage capability. During such an extreme event, knowl-
edge of the soil moisture condition at fine spatial resolution 
is critical as it can be used to update the antecedent mois-
ture conditions in flood forecasting models. For example, in 
one of our recent studies, we explored the benefit of using 
the downscaled SMAP soil moisture product to enhance 
the Weather Research and Forecasting Hydrological Model 
(WRF-Hydro) flood forecasting skill. The results showed 
that assimilating the 1-km soil moisture data into WRF-Hy-
dro significantly improves its ability to accurately predict 
the onset of Hurricane Harvey flooding.

Unlike in situ networks, land surface models are able 
to estimate the soil moisture at different spatial scales 
and continuously over time. The quality of such mod-
el estimates is most often limited due to the inaccurate 
representation of model physics, model parameters, and 
forcing data. Such uncertainties can be accounted for by 
constraining the model predictions with high-resolution 

and near-surface soil moisture observations, such as the 
dataset provided here. These data are also important for ef-
fective irrigation scheduling, crop yield modeling, and the 
accurate initialization of climate prediction models, which 
leads to more reliable climate forecasts. Soil moisture 
interacts with several hydroclimate variables including 
evapotranspiration, precipitation, land surface tempera-
ture, and albedo. Therefore, such data at fine resolution 
enable better understanding of the processes of the climate 
system at regional or local scales. The developed soil 
moisture product at 1-km spatial resolution can be used to 
identify, assess, and monitor the extent of (flash) drought, 
especially for agricultural practices. It can also play a key 
role in operational fire prediction and its risk assessment 
and management. Our downscaled SMAP soil moisture 
product has recently been successfully used in few hydro-
climate studies. This dataset is currently available over the 
CONUS from April 2015 to the present and can be accessed 
via www.moradkhani.net/data/smap-data/.
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