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Satellite Soil Moisture Product

Exploring the Opportunities

Peyman Abbaszadeh, Hamid Moradkhani, Keyhan Gavahi, Sujay Kumar, Christopher
Hain, Xiwu Zhan, Qingyun Duan, Christa Peters-Lidard, and Sepehr Karimiziarani

he amount (soil moisture) and state (freeze—thaw) of

the water in soil plays a pivotal role in global water,

energy, and carbon cycles. The water content of the
top few centimeters (~5 cm) of soil is typically referred to as
surface soil moisture (SSM), which defines how wet or dry
the soil is in its top layer. SSM is a key component of the
microclimate that governs the interaction of water and heat
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0.8 1200
R: 0.830

07| Biasi-0.004 . i
2 1| UBRMSE:0.07% .- 1000
o
£06
E 800
T 05¢
®
[0
L 0.4 600
@
[e]
=03t
= 400
9] oa]
o 0.2
<
= 200
D01

L
o AR ‘
0 0.2 0.4 0.6 0.8

In-situ Soil Moisture (m3/m3)

fluxes between the ground and the atmosphere, regulating
air temperature and humidity, and thus, affecting cli-
matic conditions and weather changes. Knowledge of the
temporal dynamics and spatial variability of soil moisture
is crucial in understanding many environmental processes
and their impacts on plant fertility, crop yields, droughts,
or exposure to flood hazards.

Ensemble Learning Approach
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Fig. 1. Comparison of downscaling accuracy between the proposed ensemble learning approach and the uniform disaggregation approach for the
period of April 2015—April 2020. Both SCAN and USCRN in situ networks were used in this analysis. Abbreviations are as follows: ubRMSE = unbiased
root-mean-square error; R = Pearson correlation coefficient; SMAP = Soil Moisture Active Passive.

Alabama; ZHAN—NOAA/NESDIS/STAR, College Park, Maryland; Duan—

AFFILIATIONS: ABBASZADEH, MORADKHANI, GAVAHI, AND KARIMIZIARANI—
Center for Complex Hydrosystems Research, Department of Civil, Construction
and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama;
Kumar—Hydrological Sciences Laboratory, NASA Goddard Space Flight Center,
Greenbelt, Maryland; Hain—NASA Marshall Space Flight Center, Huntsville,

CORRESPONDING AUTHOR: Peyman
Abbaszadeh, pabbaszadeh@ua.edu

DOI:10.1175/BAMS-D-21-0016.1
In final form 22 February 2021
©2021 American Meteorological Society

Hohai University, Nanjing, China; PeTers-LiparRo—Hydrosphere, Biosphere,
and Geophysics, NASA Goddard Space Flight Center, Greenbelt, Maryland

For information regarding reuse of this content and general
copyright information, consult the AMS Copyright Policy.

APRIL2021 BAMS | 309
Brought to you by UNIVERSITY OF ALABAMA | Unauthenticated | Downloaded 02/03/22 11:48 PM UTC

AMERICAN METEOROLOGICAL SOCIETY


https://www.ametsoc.org/ams/index.cfm/publications/ethical-guidelines-and-ams-policies/ams-licenses-for-journal-article-reuse/

NOWCAST ]

Recent advances in
satellite remote sensing
technologies have provided
unprecedented information
on soil moisture across spa-
tiotemporal scales, which
is logistically unachievable
from in situ observation
networks. The Soil Mois-
ture Active Passive (SMAP)
satellite was launched on 31
January 2015 by the Nation-
al Aeronautics and Space
Administration (NASA) to
provide SSM using bright-
ness temperature through
its active (radar, 3 km) and
passive (radiometer, 36
km) sensors at an interme-
diate resolution of 9 km.
Although the active sensors
(such as synthetic aper-
ture radar) provide data
relatively at a higher spatial
resolution compared to the
radiometer sensors, they
are prone to higher error/
uncertainties due to their
swath width and sensitivity
to sparse vegetation cover.
Unfortunately, due to the
failure of the SMAP radar
instrument 3 months after
the satellite’s launch, the
radiometer instrument has
been the only operational
instrument since then,
providing the soil moisture
product at the 36-km grid
cell from both ascending
(1800 LT) and descend-
ing (0600 LT) passes. In
December 2016, NASA
released a data product, the
so-called enhanced SMAP
radiometer. In this dataset,
the standard SMAP data
gridded at 36 km are inter-
polated into 9-km grid spac-
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Fig. 2. (top) MODIS Terra true color reflectance for 17 Feb and 16 Jul 2018. (middle) SMAP soil moisture data

at 1-km spatial resolution on the same days. The dark square (Biggs station 222) and circle (Gerber South station

244) markers display the nonirrigated and irrigated sites, respectively. (bottom) The 1-km SMAP SM at the
irrigated and nonirrigated sites. Planting and harvest windows are in green and red colors, respectively, and were

acquired from USDA NASS reports.
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Fig. 3. (top) Original SMAP soil moisture at ~36-km spatial resolution. (middle)
Enhanced SMAP soil moisture at 9-km spatial resolution. (bottom) Downscaled
SMAP soil moisture at 1-km spatial resolution. The dark square and circle mark-
ers display the nonirrigated and irrigated sites, respectively. Please note that the
images in this figure are from the same dates as Fig. 2.
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ing using the Backus—Gilbert optimal interpolation
algorithm. Later in October 2018, Das and colleagues
used Sentinel-1A and Sentinel-1B data in the SMAP
active—passive algorithm to generate disaggregated
brightness temperature and soil moisture at a finer
resolution of 3 km. The assessment of this product
has been performed using the soil moisture cali-
bration and validation sites and the results showed
reasonable accuracy of ~0.05 m*> m™.

Although this $1 billion NASA satellite provides
valuable information for global- and continen-
tal-scale applications, the coarse spatial resolution
is inadequate for regional or local studies, such as
agricultural drought monitoring, irrigation manage-
ment and planning, flood forecasting, crop produc-
tion, and water resources management. To address
this need, we have developed a machine learning
(ML) framework based on an ensemble learning ap-
proach to rescale SMAP soil moisture from its native
resolution (36 km) to a finer resolution (1 km) while
using atmospheric and geophysical information
acquired from high-resolution remote sensing data
and ground-based observations. For more informa-
tion about the proposed downscaling algorithm and
its validation, we refer readers to the 2019 research
of Abbaszadeh et al. (see For Further Reading).

The downscaled SMAP soil moisture product was
generated and released in May 2018 when the SMAP
soil moisture data were only accessible on descend-
ing overpass. Recently, the original SMAP data

have not only become available on both ascending
and descending overpasses, but their interpolated
version at 9-km spatial resolution has been developed
and released to the public. Hence, we utilized these
advancements to further postprocess the downscaled
soil moisture dataset at 1-km spatial resolution and
provide a more accurate and reliable product. In this
excerpt, we show the usefulness of the postprocessed
high-resolution soil moisture data through a com-
prehensive validation analysis based on in situ soil
moisture networks operating across the conterminous
United States (CONUS) and list the benefits of the
product in several hydrometeorological applications.

Figure 1 illustrates the original SMAP soil mois-
ture data and our downscaled product against Soil
Climate Analysis Network (SCAN) and U.S. Climate
Reference Network (USCRN) datasets. USCRN in-
struments are scattered uniformly across the United
States mainly to represent the annual temperature
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and precipitation variance, while SCAN stations are
installed in agricultural areas to accommodate specific
research needs. When remotely sensed soil moisture
estimates are compared against in situ observations, it

is recommended that the disparity of spatial scale along
with the sensing depths are accounted for. Although in
some studies it is seen that the bias is removed between
the remotely sensed and in situ soil moisture observations
due to scale differences, it is usually common to compare
in situ observations without scale adjustment even when
only one ohservation is available per pixel. In this study,
the postprocessed downscaled soil moisture estimates

are compared against in situ observations without bias
correction or upscaling. More than 300 SCAN and USCRN
stations were active during the period of study (April
2015-April 2019) providing daily soil moisture at different
soil depths and other meteorological observations such as
precipitation and soil temperature. Figure 1 shows the soil
moisture observations that were collected at <2-in. (~5-cm)
depth consistent with the sensing depth of the SMAP sat-
ellite. Also, Fig. 1 displays the overall statistics of the disag-
gregated remotely sensed surface soil moisture compared
with the SCAN and USCRN observations over the CONUS.
Compared to the standard disaggregation method, the
proposed ensemble learning approach can provide more
accurate soil moisture data at a spatial resolution of 1 km.
This newly developed product offers useful data to not only
the academic community for further research but also the
variety of sectors that are beneficiaries of these data.

0 100200 © 404
T |

Figure 2 shows that the SMAP soil moisture at 1-km
spatial resolution is capable of detecting the irrigation
signal in the Northern California Central Valley (CCV) that
encompasses rice fields. This figure demonstrates how the
landscape from Moderate Resolution Imaging Spectrora-
diometer (MODIS) Terra imagery has been changed from
the wet season (17 February 2018) to the dry season (16
July 2018). The green areas turn brown by July except the
regions where irrigated rice and forests cover the lands.
These contrasts are distinguishable from the fine reso-
lution SMAP soil moisture maps. Our dataset shows the
region in February uniformly wet (on average >0.3 m> m~).
However, according to our produced soil moisture map,
the entire area is almost dry in July, except the regions
covered by irrigated rice and forest that generally indicate
much higher soil moisture levels. According to the U.S.
Department of Agriculture National Agricultural Statistical
Service (USDA NASS), the rice farmlands are flooded and
seeded each year from late April through May. Harvest
begins in September and ends in November. While the soil
moisture at both irrigated and nonirrigated sites follows
the temporal variation of precipitation closely, it behaves
differently in irrigated sites where the field is flooded for
planting in mid-April. The timing is corroborated with the
2018 crop report of the USDA NASS. In the growing season,
the irrigated site is kept wet through early September when
the harvesting begins. This pattern is discernible by the
fine-resolution soil moisture data. Note that a similar set
of comparisons for these dates presented by Lawston and

Fig. 4. (a) Land cover distribution over the western United States, (b) original SMAP soil moisture at ~36-km spatial resolution, and (c) downscaled

SMAP soil moisture at 1-km spatial resolution for 1 Apr 2018.
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colleagues in 2017 using the enhanced SMAP data (at 9
km resolution) does not represent the underlying spatial
heterogeneity, which is evident in the maps of Fig. 2.

Figure 3 compares the downscaled soil moisture at
1-km spatial resolution against the original SMAP soil
moisture and its interpolated version which are available at
36- and 9-km spatial resolutions, respectively. Please note
that the images in Fig. 3 are from the same dates as Fig. 2.
To balance the sharp edges at the grid border, we applied
an interpolation method similar to that proposed by
Montzka and colleagues in 2018 on the downscaled 1-km
soil moisture image and generated a dataset with no patch
effect that better represents spatial heterogeneity of soil
characteristics, vegetation types, and climatic conditions.
Further investigation (please see Fig. 1) also revealed that
the interpolation approach does not affect the accuracy of
the downscaled soil moisture data.

As we discussed earlier, the produced 1-km SMAP soil
moisture data correlate well with the in situ observations
over different geographical locations with different land—
atmosphere regimes. In addition to this, our study also con-
firms that there is a spatial consistency between the coarse-
and fine-resolution soil moisture maps. For example, as
seen in Figs. 4a and 4c, the downscaled product provides
more detailed soil moisture information consistent with the
spatial heterogeneity of soil characteristics and vegetation
types. The soil moisture spatial pattern is dependent on the
heterogeneity of soil parameters (e.g., soil texture, vege-
tation, and topography) that are generally not distributed
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homogenously in the area. This results in an uncertainty in
the soil moisture retrievals. Our downscaled soil moisture
map could fill this gap through decreasing the discrepancy
between the spatial variability of soil parameters and soil
moistures. Moreover, the following example shows that the
downscaled soil moisture spatial pattern closely follows the
climate pattern and weather conditions.

In the state of Texas near Houston, the soil moisture
conditions generated by the SMAP satellite before (Figs.
5a,b, 21 August 2017) and after (Figs. 5c,d, 26 August 2017)
the landfall of Hurricane Harvey revealed that this dataset
is a reliable source in studying the changing soil wetness
condition due to heavy rainfall associated with the tropical
cyclone. Similar to the original SMAP observation (Fig. 5a),
the downscaled soil moisture (Fig. 5b) also indicates that
the soil surface was already very wet a few days before the
onset of torrential rainfall. This is also consistent with the
report of the Southeast Regional Climate Center (SERCC)
that Texas, Louisiana, and other southern states have had
one of their wettest months on the record before the landfall
of Hurricane Harvey (please see https://earthobservatory.nasa
.gov/images/90864/soil-moisture-satellite-observes-harveys-wrath).
This saturated soil surface decreased the infiltration capac-
ity and therefore escalated the likelihood of flooding. As
seen in Figs. 5a and 5c, both SMAP images at 36- and 1-km
spatial resolutions confirm that the southwest regions of
Houston became exceptionally wet on 26 August 2017, as
corroborated by the observed torrential rainfall and wide-
spread flooding. According to the Figs. 5b and 5d, the 1-km
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Fig. 5. (a), (b) The soil moisture condition at 36- and 1-km spatial resolutions, respectively, on 21 Aug 2017, before the landfall of Hurricane Harvey
over the state of Texas. (c), (d) The soil moisture condition at 36- and 1-km spatial resolutions, respectively, on 26 Aug 2017, after the termination of
Hurricane Harvey. The polygons shown in (b) and (d) illustrate Lake Livingston.
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soil moisture maps demonstrate the increase of inundated
area near the upstream and downstream areas of Lake
Livingston during Harvey’s rainfall. This information is in
accordance with several reports showing that the flooded
regions around Lake Livingston caused severe damage to
roads and properties due to its overflowing (for more infor-
mation, we refer the readers to www.khou.com/article/weather
/hurricane/harvey/nhc-harvey-caused-125-billion-in-damage-68
-deaths-in-texas/285-511430188). Lake Livingston is a reservoir
built for water-supply purposes with no flood-control or
storage capability. During such an extreme event, knowl-
edge of the soil moisture condition at fine spatial resolution
is critical as it can be used to update the antecedent mois-
ture conditions in flood forecasting models. For example, in
one of our recent studies, we explored the benefit of using
the downscaled SMAP soil moisture product to enhance
the Weather Research and Forecasting Hydrological Model
(WRF-Hydro) flood forecasting skill. The results showed
that assimilating the 1-km soil moisture data into WRF-Hy-
dro significantly improves its ability to accurately predict
the onset of Hurricane Harvey flooding.

Unlike in situ networks, land surface models are able
to estimate the soil moisture at different spatial scales
and continuously over time. The quality of such mod-
el estimates is most often limited due to the inaccurate
representation of model physics, model parameters, and
forcing data. Such uncertainties can be accounted for by
constraining the model predictions with high-resolution
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and near-surface soil moisture observations, such as the
dataset provided here. These data are also important for ef-
fective irrigation scheduling, crop yield modeling, and the
accurate initialization of climate prediction models, which
leads to more reliable climate forecasts. Soil moisture
interacts with several hydroclimate variables including
evapotranspiration, precipitation, land surface tempera-
ture, and albedo. Therefore, such data at fine resolution
enable better understanding of the processes of the climate
system at regional or local scales. The developed soil
moisture product at 1-km spatial resolution can be used to
identify, assess, and monitor the extent of (flash) drought,
especially for agricultural practices. It can also play a key
role in operational fire prediction and its risk assessment
and management. Our downscaled SMAP soil moisture
product has recently been successfully used in few hydro-
climate studies. This dataset is currently available over the
CONUS from April 2015 to the present and can be accessed
via www.moradkhani.net/data/smap-datal.
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