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Abstract. A secret sharing scheme enables one party to distribute shares
of a secret to n parties and ensures that an adversary in control of t out of
n parties will learn no information about the secret. However, traditional
secret sharing schemes are often insufficient, especially for applications
in which the set of parties who hold the secret shares might change
over time. To achieve security in this setting, dynamic proactive secret
sharing (DPSS) is used. DPSS schemes proactively update the secret
shares held by the parties and allow changes to the set of parties holding
the secrets. We propose FaB-DPSS (FAst Batched DPSS) – a new and
highly optimized batched DPSS scheme. While previous work on batched
DPSS [BDLO15] focuses on a single client submitting a batch of secrets
and does not allow storing and releasing secrets independently, we al-
low multiple different clients to dynamically share and release secrets.
FaB-DPSS is the most efficient robust DPSS scheme that supports the
highest possible adversarial threshold of 1

2
. We prove FaB-DPSS secure

and implement it. All operations complete in seconds, and we outperform
a prior state-of-the-art DPSS scheme [MZW+19] by over 6×.

Additionally, we propose new applications of DPSS in the context of
blockchains. Specifically, we propose a protocol that uses blockchains
and FaB-DPSS to provide conditional secret storage. The protocol allows
parties to store secrets along with a release condition, and once a (possi-
bly different) party satisfies this release condition, the secret is privately
released to that party. This functionality is similar to extractable wit-
ness encryption. While there are numerous compelling applications (e.g.,
time-lock encryption, one-time programs, and fair multi-party computa-
tion) which rely on extractable witness encryption, there are no known
efficient constructions (or even constructions based on any well-studied
assumptions) of extractable witness encryption. However, by utilizing
blockchains and FaB-DPSS, we can easily build all those applications.
We provide an implementation of our conditional secret storage protocol
as well as several applications building on top of it.

1 Introduction

In recent years, secret sharing schemes have received considerable attention.
While traditional secret sharing is a well-known cryptographic primitive which
has been extensively used in the context of secure multi-party computation,
recently proactive secret sharing has become increasingly important. Similar to
traditional secret sharing, proactive secret sharing schemes enable one party to



distribute shares of a secret to n parties such that any t + 1 shares are enough
to reconstruct the secret, and an adversary in possession of t out of n shares
learns no information about the secret. In contrast to traditional secret sharing,
proactive secret sharing additionally considers the setting where the adversary
may eventually corrupt all participants over time, while corrupting no more than
a certain threshold at any given time. In the context of blockchains, proactive
secret sharing has proven a useful alternative to central storage for securing
secret keys (which are used to sign transactions, access cryptocurrency wallets,
etc.). As pointed out in CHURP [MZW+19], since blockchain nodes are typically
allowed to freely leave or join a system at any time, in this context it is critical to
allow for dynamic changes in the secret sharing committee. This is supported by
dynamic proactive secret sharing (DPSS) [DJ97, MZW+19, SLL08, BDLO15,
ZSVR05, WWW02] which proactively updates the secret shares held by the
parties and allows changes to the set of parties holding the secrets.

Scheme
Dynamic
setting

Adversary Threshold Network
Comm.
(amort.)

Comm.
(non-amort.)

[HJKY95] No Active t/n < 1/2 synch. O(n2) O(n2)
[CKLS02] No Active t/n < 1/3 asynch. O(n4) O(n4)
[DJ97] Yes Passive t/n < 1/3 asynch. O(n2) O(n2)
[WWW02] Yes Active t/n < 1/2 synch. exp(n) exp(n)
[ZSVR05] Yes Active t/n < 1/3 asynch. exp(n) exp(n)
[SLL08] Yes Active t/n < 1/3 asynch. O(n4) O(n4)
[BDLO15] Yes Active t/n < 1/2 − ϵ synch. O(1) O(n3)
[MZW+19] Yes Active t/n < 1/2 synch. O(n2) O(n2)

This work Yes Active t/n < 1/2 synch. O(n) O(n2)

Fig. 1: Comparison of PSS Schemes. The Comm. columns show the communication
cost/secret in a hand-off round.

We introduce FaB-DPSS (FAst Batched DPSS) – a highly optimized batched
DPSS scheme. Especially in the context of secret storage on blockchains, batch-
ing is crucial as thousands of secrets might be stored and updated in parallel
at any given time. FaB-DPSS improves over prior work in multiple dimensions.
In contrast to previous work on batched DPSS [BDLO15], which focuses on a
single client submitting a batch of secrets and does not allow storing and re-
leasing secrets independently, we allow multiple different clients to dynamically
and independently share and release secrets. Among the robust schemes which
allow the highest-possible adversarial threshold of 1

2 (see Figure 1), our protocol
has the best communication complexity. It is also the most concretely efficient
scheme – all operations complete in seconds (§8), and we outperform a prior
state-of-the-art DPSS scheme [MZW+19] by over 6×. These improvements are
possible because of our entirely new approach to the hand-off phase of the DPSS
– instead of relying on bivariate polynomials as is done in prior work [MZW+19],
we use a technique we dub “coupled sharings”.
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In addition to FaB-DPSS, we propose a number of blockchain-based DPSS
applications, thus expanding the reach of DPSS in the context of blockchains.
The most important one can be seen as a blockchain-based alternative to ex-
tractable witness encryption. Introduced by Garg et al. [GGSW13], a witness
encryption scheme is, roughly, a primitive that allows one to encrypt a message
with respect to a problem instance. Such a problem instance could be a sudoku
puzzle in a newspaper or an allegedly bug-free program, or more generally, any
NP search problem. If the decryptor knows a valid witness for the corresponding
problem instance, such as a sudoku solution or a bug in the program, she can
decrypt the ciphertext. Moreover, if a witness encryption scheme is extractable,
then an adversary able to learn any non-trivial information about the encrypted
message is also able to provide a witness for the corresponding problem instance.

Unfortunately, existing proposals for extractable witness encryption typi-
cally rely on differing-inputs obfuscation [BGI+12, ABG+13], a technique that
is computationally expensive and relies on strong cryptographic assumptions.
Responding to the lack of extractable witness encryption schemes based on stan-
dard assumptions, Garg et al. [GGHW14] suggest that it may be impossible.

Building upon blockchains and FaB-DPSS with a threshold of t/n < 1
2 , we

design eWEB – an efficient alternative to extractable witness encryption. It uses
only standard cryptographic assumptions, while respecting prior impossibility
results: Instead of resorting to expensive cryptographic machinery, it relies on
interaction with a dynamic set of nodes with an honest majority. We believe
this a favorable trade-off, as the honest majority setting has been repeatedly
used in practice, most notably in blockchains 3. For simplicity, in the following
we will use the terms “dynamic set of nodes with an honest majority” and
“blockchain” interchangeably, and the same for “nodes” and “miners”. Roughly,
we allow users to encode a secret along with a release condition. A predefined set
of n nodes jointly and securely store the encoding and later privately release the
secret to a user who demonstrably satisfies the release condition. We provide a
formal proof of security of our construction, relying on the guarantees provided
by the blockchain setting (specifically, we will assume a set of miners such that
the majority of the selected miners are honest). As pointed out by Goyal and
Goyal [GG17], one way to select such a set of miners is by selecting miners who
were responsible for mining the last n blocks (where n is large enough). While it
might seem like using secret sharing in combination with a blockchain directly
provides a solution for conditional secret sharing, achieving a formally secure
solution is subtle and requires careful design, as well as a few tricks we introduce
in Section 5.2.

We note that the combination of blockchains and witness encryption has
proven remarkably powerful. Indeed, Liu et al. [LJKW18] propose a time-lock
encryption scheme that allows one to encrypt a message such that it can only be
decrypted once a certain deadline has passed, without relying on trusted third
parties or imposing high computational overhead on the receiver. The construc-
tion of Choudhuri et al. [CGJ+17] achieves fairness in multi-party computation

3 Other instantiations are possible as well, see Section 5.1
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against a dishonest majority. Goyal and Goyal [GG17] present the first construc-
tion for one-time programs (that run only once and then “self-destruct”) that
does not use tamper-proof hardware.

Using our DPSS- and blockchain based eWEB scheme, practitioners can eas-
ily implement all these applications. Note that many of them [LJKW18, CGJ+17,
GG17] already rely on blockchains, implying that using eWEB does not add any
additional assumptions. We explain in detail how a number of these applications
can be achieved, and we implement and evaluate a few of them.

We also note that eWEB has already formed the basis of a follow-up work
on non-interactive MPC [GMPS21].

1.1 Our results.

As explained above, one of our main contributions is a new and highly efficient
DPSS scheme. More specifically, we achieve the following:

Theorem 1. Assuming secure point-to-point channels and assuming that the
t-SDH assumption holds, our construction satisfies the DPSS security definition
(Definition 1) for a fully malicious adversary satisfying a corruption threshold
t < 1

2n, where n is the total number of parties holding the secrets. The adver-
sary has the power to adaptively corrupt parties at any time. Our construction
achieves amortized complexity of O(n) and non-amortized complexity of O(n2).

Here, Definition 1 is a DPSS security definition which is based on an ideal
functionality, which behaves as follows:

– The functionality keeps track of the current committee.

– Upon receiving a secret storage request, the functionality stores the secret
and notifies the current committee about the storage request.

– Upon receiving a release request from more than t (the adversarial threshold)
number of parties in the current committee, the functionality either sends
the corresponding secret to the client if the release request was private, or
to the public otherwise.

Intuitively, this security definition requires that an adversary corrupting no
more than the allowed threshold of parties does not learn any information about
the secret through our protocol (secrecy) and cannot prevent an eligible party
from learning the secret (robustness).

We present and formally prove secure FaB-DPSS in §3. We note that among
the robust DPSS schemes which provide the highest-possible adversarial thresh-
old of t < 1

2n our batched construction achieves the best amortized complexity –
O(n), while the state of the art CHURP [MZW+19] achieves O(n2) (see Figure 1
for comparison). Simultaneously, we achieve the same non-amortized complexity
as CHURP – both works achieve O(n2). Our evaluation shows (see Figure 2 as
well as Section 8.1) that FaB-DPSS outperforms CHURP in practice.

Next, we propose eWEB – a new cryptographic primitive which can be seen
as a blockchain-based alternative to extractable witness encryption. We give a
formal syntax for eWEB in §4.
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Building upon FaB-DPSS and blockchains, we design and formally prove
secure an eWEB construction. For this, we assume that an adversary controls
some number of users and miners subject to the constraint that at any time the
majority of miners who are eligible to participate in the protocol are honest (we
explain how such a miner committee is chosen in §5.2). We assume that eWEB
is a core functionality for the underlying blockchain. We use blockchain also for
a PKI infrastructure and assume that each party has a unique identifier that
is known to other parties. Finally, we assume authenticated IND-CCA secure
encryption, collision-resistant hash functions and simulation extractable non-
interactive zero knowledge proofs of knowledge.

We implement and evaluate our eWEB protocol (§7).
Finally, we explain how time-lock encryption, dead-man’s switch, fair MPC,

one-time programs and proofs of receipts can be achieved using eWEB (§6). As
a more involved example, we propose an eWEB-based proof-of-concept voting
protocol (§6.1). We implement and evaluate several of these applications (§8.3).

1.2 Related work

We elaborate on the prior work of both DPSS and conditional secret release.

Prior Work on DPSS Since the introduction of proactive secret sharing
by Herzberg et al. [HJKY95], many PSS schemes have been developed. These
schemes vary in terms of security guarantees, network assumptions (synchronous
or asynchronous), communication complexity and whether they can handle dy-
namic changes in the committee membership. In Fig. 1 we provide a comparison.

Below, we compare FaB-DPSS in detail with the two constructions (Baron et
al. [BDLO15], CHURP [MZW+19]) that are most closely related to our protocol,
as they are also the most efficient robust DPSS schemes to date.

In the best case, CHURP [MZW+19] achieves communication complexity
O(n2) plus O(n) · B to refresh each secret in the hand-off phase, where n is the
number of parties and B denotes the cost of broadcasting a bit. In the worst case
(where some corrupted party deviates from the protocol), it requires O(n2) · B
communication per secret.

In the single-secret setting, our protocol achieves the same asymptotic com-
munication complexity as CHURP. However, our protocol achieves amortized
communication complexity O(n) plus O(1) · B per secret in the best case, and
O(n2) plus O(n) · B per secret in the worst case. Batching is crucially important
in eWEB since there may be thousands of secrets stored at any given time.

While CHURP uses asymmetric bivariate polynomials to refresh a secret dur-
ing hand-off, we use a modified version of a technique of Damg̊ard et al. [DN07]
to prepare a batch of random secret sharings. Generating random secret shar-
ings is much more efficient than generating bivariate polynomials. Specifically,
each bivariate polynomial requires O(n) communication per party; i.e., O(n2) in
total. On the other hand, we can prepare O(n) random sharings with the same
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communication cost as preparing one bivariate polynomial. To benefit from it,
we use an entirely different way to refresh secrets.

The work of Baron et al. [BDLO15] focuses on a slightly different setting
from ours: they consider unconditionally secure DPSS with a (1/2 − ϵ) corrup-
tion threshold, where ϵ is a constant. Their scheme has O(1) amortized com-
munication per secret. However, in the single-secret setting, it requires O(n3)
communication to refresh a secret. The authors use the party virtualization
technique where every virtual party is simulated by a set of real parties running
a maliciously secure MPC protocol. As discussed in [MZW+19], a high constant
is hidden in the big O notation. For example, if ϵ = 1/6, i.e., the scheme is only
secure with a 1/3 corruption threshold, the virtualization requires to simulate at
least 576 virtual parties with each using a set of 576 real parties running a ma-
liciously secure MPC protocol, rendering the scheme very inefficient in practice.

Baron et al. use packed secret sharing [FY92] (in contrast to our batched
secret sharing), which allows the same client to store O(n) secrets in one sharing
by encoding multiple secrets as distinct points of a single polynomial. Thus,
refreshing each sharing effectively refreshes a batch of O(n) secrets submitted
by the same client at the same time. However, this means that secrets in the
same batch come from a single client and can only be refreshed or reconstructed
together. It is unclear if merging batches submitted by different clients is possible.
Thus, even if in eWEB some secrets submitted by different clients were to be
released at the same time, Baron et al.’s scheme would not allow us to join
these secrets in one batch to profit from their low amortized communication
complexity. Our scheme has one secret per sharing: only supplementary random
sharings are generated in a batch. This allows to refresh (and release) each secret
individually.

To reach O(1) amortized communication per secret, Baron et al. need a
(1/2− ϵ) corruption threshold. Our scheme does not suffer from this corruption
threshold loss.

Extractable Witness Encryption and Conditional Secret Release The
notion of witness encryption was introduced by Garg et al. [GGSW13]. Gold-
wasser et al. [GKP+13] proposed extractable security for witness encryption. In
their work a candidate construction was introduced that requires very strong
assumptions over multilinear maps. According to Liu et al. [LJKW18], exist-
ing witness encryption schemes have no efficient extraction methods. Garg et
al. [GGHW14] suggest that it even might be impossible to achieve extractable
witness encryption with arbitrary auxiliary inputs.

Nevertheless, as mentioned in Sections 1 and 6, the notion of extractable
witness encryption has been extensively used in various cryptographic proto-
cols [CGJ+17, GG17, BH15, LJKW18], especially in conjunction with blockchains.

Concurrently to our preprint, Benhamouda et al. [BGG+20] published a
manuscript that also proposes conditionally storing secrets on a blockchain. Un-
like eWEB, their work is specific to proof-of-stake blockchains. Like us, they
design a new DPSS scheme, but they target a very specific (albeit intriguing)
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use case — in their setting, the members of a committee must remain anony-
mous, even to the previous committee. They consider a stronger adversary who
can corrupt and uncorrupt previously honest parties, but they only tolerate 25%
corruption, versus 50% for our scheme. They do not explain how to release se-
crets without revealing witnesses to the miners. This is not trivial, as one would
not want to release the secret publicly or allow an adversary to reuse an hon-
est user’s witness. Finally, they do not provide a formal security definition or
implementation. Our work closes this gap.

Recently, a preprint by Gentry et al. [GHM+20] improved the adversarial
threshold of Benhamouda et al., allowing it to tolerate 1

2 − ϵ corruptions – fewer
than eWEB. While our amortized communication complexity is O(n), the amor-
tized complexity of Gentry et al. (building upon Benhamouda et al.’s work) is
an unspecified polynomial. Their setting and focus is different from ours.

Kokoris-Kogias et al. proposed Calypso [KKAS+18], a verifiable data man-
agement solution that relies on blockchains and threshold encryption. Calypso
targets a different use case than our eWEB system: it allows verifiable sharing
of data to parties that are explicitly authorized (either by the depositor or by a
committee of authorized parties) to have access rather than specifying a general
secret release condition that allows anyone who is able to satisfy this condition
to get the data. Kokoris-Kogias et al. do not provide a formal security definition
or formal security proof of their system. The major part of their work focuses
on the static committee of parties holding the secrets; the dynamic committee
setting is only discussed very briefly.

eWEB could be seen as a special case of proactive secure multi-party compu-
tation (PMPC) [OY91, BEDLO14, EOPY18]. However, while our DPSS scheme
could be used for PMPC, eWEB targets a different use case than general PMPC.
This allows for a much more efficient and largely non-interactive construction
compared to PMPC protocols, which typically have very high round complexity.

2 Preliminaries

In this section, we introduce the DPSS security definition. In the interest of space,
we introduce further building blocks in the full version of this paper [GKM+20].

2.1 DPSS Security Definition

A dynamic proactive secret-sharing scheme (DPSS) scheme allows a client to
distribute shares of a secret to n parties, so that an adversary in control of some
threshold number of parties t learns no information about the secret. The set of
parties holding secrets is constantly changing, and the adversary can “release”
some parties (users regain control of their systems) and corrupt new ones.

A DPSS scheme consists of the following three phases.

Setup. In each setup phase, one or more independent clients secret-share a
total of m secrets to a set of n parties, known as a committee, denoted by
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C = {P1, . . . , Pn}. After each setup phase, each committee member holds one
share for each secret s distributed during this phase.

Hand-off. As the protocol runs, the hand-off phase is periodically invoked to
provide the new committee with updated shares in such a way that the adversary
cannot use information from multiple committees to learn anything about the
secret. This process reflects parties leaving and joining the committee. After
the hand-off phase, all parties in the old committee delete their shares, and all
parties in the new committee hold a sharing for each secret s. The hand-off phase
is particularly challenging, since during the hand-off a total of 2t parties may be
corrupted (t parties in the old committee and t parties in the new committee).

Reconstruction. When a client (which need not be one who stored the secret)
asks for the secret reconstruction, that client and the current committee engage
in a reconstruction process to allow the client learn the secret.

At a high-level, the security of the DPSS scheme requires that it should
always be possible to recover the secret, and an adversary should not learn
any further information about the secret beyond what has been learned before
running the protocol. We formally model the security in Idealsafe. Note that we
slightly generalize the typical DPSS definition by supporting not only private
release to a client, but also a public release of the secret. In this case, the secret
is broadcast to all parties.

Ideal Secrecy: Idealsafe

1. Idealsafe receives a list C of parties as the first committee, and a corrup-
tion threshold t. Idealsafe initializes an empty list L for the secrets.

2. Upon receiving a storage request (store, s) from a client, Idealsafe adds
the secret s to the end of list L, and sets the identifier id of the secret s
to be the number of secrets in L. Idealsafe sends id to all parties in the
current committee.

3. Upon receiving (change-committee, C′) from more than t parties in the
current committee C, Idealsafe changes the committee to the parties in
C′ and sends the identities of C′ to all the parties in C.

4. Upon receiving (release, id, client) from more than t parties in the current
committee, Idealsafe scans list L for the secret s⋆ that corresponds to the
identifier id. If such a secret does not exist, Idealsafe sets s⋆ =⊥.
– If client ̸= public, Idealsafe sends s⋆ to the client.

– Otherwise, Idealsafe broadcasts s⋆.

Definition 1. A dynamic proactive secret-sharing scheme is secure if for any
PPT adversary A and threshold t, there exists a simulator S with access to
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Idealsafe (described in Ideal Secrecy), such that the view of A interacting with S
is computationally indistinguishable from the view in the real execution.

2.2 DPSS Definition Discussion

Our definition is slightly different from the original definition of PSS [OY91]. In
that definition, there is an additional “Recovery” phase where a party infected
by a virus reboots itself to remove the virus and recovers its share jointly with all
other parties. In our definition, however, we assume that a party regains control
automatically when the adversary releases it, and such a party can use fresh
randomness afterwards. To adapt to the original definition where a reboot is
needed for a party to remove the virus, this party backs up its share and reboots
itself before the next handoff phase. The backup guarantees that an honest party
does not lose its shares during the reboot. If this party is corrupted before the
reboot, then since the handoff phase will generate a new sharing for all parties,
there is no need to recover its old share.

3 Technical Overview – FaB-DPSS

In the following section we give an overview of our FaB-DPSS scheme and secu-
rity proof. We give the entire construction in the full version of this paper.

FaB-DPSS is based on Shamir Secret Sharing [Sha79]. In the following, we
assume the corruption threshold for each committee is fixed to t. We use [x]d to
denote a degree-d sharing, i.e., (d+1)-out-of-n Shamir sharing. It requires at least
d+1 shares to reconstruct the secret, any d or fewer shares leak no information
about the secret. Note that Shamir’s scheme is additively homomorphic.

In the following, first we outline the adversarial model. Then we discuss
the hand-off phase of our scheme in the semi-honest case (§3.1) and explain
how it can be modified for the fully malicious case (§3.2). We solve the semi-
honest case through the introduction of the techique we dub “coupled sharings”
combined with the careful use of ideas from the MPC literature [DN07] and a
few additional tricks which allow us to achieve good amortized communication
complexity. For the fully malicious case, unlike in the MPC world, we must marry
these techniques with polynomial commitment schemes. We present the setup
phase (§3.3) as a special case of our hand-off phase, summarize our reconstruction
phase (§3.4), and provide intuition for our construction’s security proof (§3.5).

Adversary Model We consider a computationally bounded fully malicious
adversary A with the power to adaptively choose parties to corrupt at any time.
A can corrupt any number of clients distributing secrets and learn the secrets
held by the corrupted clients. For each committee C with a threshold t < |C|/2,
A can corrupt at most t parties in C. When a party Pi is corrupted by A, A
fully controls the behavior of Pi and can modify Pi’s memory state. Even if A
releases its control of Pi, its memory may have already been modified; e.g., Pi’s
share might have been erased.
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For a party Pi in both the old committee C and the new committee C′, if
A has the control of Pi during the hand-off phase, then Pi is considered to be
corrupted in both committees. If A releases its control before the hand-off phase
in which the secret sharing is passed from C to C′, then Pi is only considered
corrupted in the old committee C. If A only corrupts Pi after the hand-off phase,
Pi is only considered corrupted in the new committee C′.

For simplicity, in the following, we assume that there exist secure point-to-
point channels between the parties and the corruption threshold is a fixed value
t. Our protocol can be easily adapted to allow different thresholds for different
committees (see the full version of this paper).

3.1 FaB-DPSS: Semi-honest Case

We first explain the high-level idea of our protocol in the semi-honest setting;
i.e., all parties honestly follow the protocol. The foundational idea in FaB-DPSS
is the introduction of so-called coupled sharings. By this, we mean two sharings
([r]t, [r̃]t) which have the same value (r = r̃), even though the particular shares
which lead to this value are different for the two sharings. Now, imagine a coupled
sharing ([r]t, [r̃]t) of a uniformly random value r. We let [r]t be held by the old
committee, and [r̃]t be held by the new committee. Suppose the secret sharing
we want to refresh is [s]t, held by the old committee. Then the old committee
will compute the sharing [s + r]t = [s]t + [r]t and reconstruct the secret s + r.
Since r is uniformly random, s+ r does not leak any information about s. Now,
the new committee can compute [s̃]t = (s+ r)− [r̃]t. Since r̃ = r, we have s̃ = s.
This whole process is split into preparation and refresh phases:

– In the preparation phase, parties in the new committee prepare the coupled
sharing: two degree-t sharings of the same random value r(= r̃), denoted
by [r]t and [r̃]t. The old committee receives the shares of [r]t and the new
committee holds the shares of [r̃]t.

– In the refresh phase, the old committee reconstructs the sharing [s]t + [r]t
and publishes the result. The new committee sets [s̃]t = (s+ r)− [r̃]t.

The rest of our protocol builds around this idea. We need to solve the following
challenges:

– How can committees prepare the coupled sharings?

– How can this preparation step be done as efficiently as possible?

– How can these sharings be used efficiently during the refresh step?

We start by answering the first two questions. In the following, let C denote
the old committee and C′ denote the new committee. Intuitively, the straw man
solution which allows to obtain one coupled sharing is the following:

1. Each party P ′
i ∈ C′ prepares a coupled sharing ([u(i)]t, [ũ

(i)]t) of a random

value and distributes [u(i)]t to the old committee and [ũ(i)]t to the new
committee.

2. All parties in the old committee compute [r]t =
∑︁n

i=1[u
(i)]t. All parties in

the new committee compute [r̃]t =
∑︁n

i=1[ũ
(i)]t.
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Since for each i, u(i) = ũ(i), we have r = r̃.
Unfortunately, this way of preparing coupled sharings is wasteful since at

least (n − t) coupled sharings are generated by honest parties, which appear
uniformly random to corrupted parties. In order to get (n− t) random coupled
sharings instead of just 1, we borrow an idea from Damg̊ard and Nielsen [DN07].

In their work, parties need to prepare a batch of random sharings which will
be used in an MPC protocol. All parties first agree on a fixed and public Vander-
monde matrix MT of size n× (n− t). An important property of a Vandermonde
matrix is that any (n − t) × (n − t) submatrix of MT is invertible. To prepare
a batch of random sharings, each party Pi generates and distributes a random
sharing [u(i)]t. Next, all parties compute

([r(1)]t, [r
(2)]t, . . . , [r

(n−t)]t)
T = M([u(1)]t, [u

(2)]t, . . . , [u
(n)]t)

T,

and take [r(1)]t, [r
(2)]t, . . . , [r

(n−t)]t as output. Since any (n−t)×(n−t) submatrix
of M is invertible, given the sharings provided by corrupted parties, there is a
one-to-one map from the output sharings to the sharings distributed by honest
parties. Since the input sharings of the honest parties are uniformly random,
the one-to-one map ensures that the output sharings are uniformly random as
well [DN07].

Note that any linear combination of a set of coupled sharings is also a
valid coupled sharing. Thus, in our protocol, instead of computing ([r]t, [r̃]t) =∑︁n

i=1([u
(i)]t, [ũ

(i)]t), parties in the old committee can compute

([r(1)]t, [r
(2)]t, . . . , [r

(n−t)]t)
T = M([u(1)]t, [u

(2)]t, . . . , [u
(n)]t)

T

and parties in the new committee can compute

([r̃(1)]t, [r̃
(2)]t, . . . , [r̃

(n−t)]t)
T = M([ũ(1)]t, [ũ

(2)]t, . . . , [ũ
(n)]t)

T

Now all parties get (n− t) random coupled sharings. The amortized commu-
nication cost per such sharing is O(n).

We now describe the refresh phase. For each sharing [s]t of a client secret
which needs to be refreshed, one random coupled sharing ([r]t, [r̃]t) is consumed.
Parties in the old committee first select a special party Pking. To reconstruct
[s]t+[r]t, parties in the old committee locally compute their shares of [s]t+[r]t,
and then send the shares to Pking. Then, Pking uses these shares to reconstruct
s+r and publishes the result. Finally, parties in the new committee can compute
[s̃]t = (s+ r)− [r̃]t.

3.2 Moving to a Fully-Malicious Setting

In a fully-malicious setting, three problems might arise.

– During preparation, a party distributes an inconsistent degree-t sharing or
incorrect coupled sharing.

– During refresh, a party provides an incorrect share to Pking, causing a re-
construction failure.
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– Pking provides an incorrectly reconstructed value.

We address these problems by checking the correctness of coupled sharings
in the preparation phase and relying on polynomial commitments to transform
a plain Shamir secret sharing into a verifiable one.
Checking the Correctness of Coupled Sharings. While it is possible to
check the correctness of each coupled sharing separately, we can increase effi-
ciency by utilizing the following trick: check if all of them are correct by check-
ing their random linear combination. It works since any linear combination of
coupled sharings is also a valid coupled sharing.

Note that in the process we need to to protect the privacy of every coupled
sharing ([u(i)]t, [ũ

(i)]t) generated by a party P ′
i . We achieve it by having P ′

i

generate one additional random coupled sharing as a random mask, which is
denoted by ([µ(i)]t, [µ̃

(i)]t).
Consider the following two sharings of polynomials of degree-(2n− 1):

[F (X)]t =
∑︁n

i=1([µ
(i)]t + [u(i)]t ·X)X2(i−1),

[F̃ (X)]t =
∑︁n

i=1([µ̃
(i)]t + [ũ(i)]t ·X)X2(i−1).

These two sharings have the following benefitial properties:

1. If all coupled sharings are correct, then ([F (λ)]t, [F̃ (λ)]t) is also a coupled
sharing for any λ. Otherwise, the number of λ such that ([F (λ)]t, [F̃ (λ)]t)
is a coupled sharing is bounded by 2n − 1. Thus, in order to test whether
all sharings are correct, it is sufficient to test ([F (λ)]t, [F̃ (λ)]t) at a random
evaluation point λ.

2. The coupled sharing ([u(i)]t, [ũ
(i)]t) generated by P ′

i is masked by a random

coupled sharing ([µ(i)]t, [µ̃
(i)]t) which is also generated by P ′

i . Thus, the

secrecy of ([u(i)]t, [ũ
(i)]t) is preserved during the check of ([F (λ)]t, [F̃ (λ)]t).

Therefore, we first let all parties generate a random challenge λ. Parties in
the old committee compute [F (λ)]t and publish their shares. Parties in the new
committee compute [F̃ (λ)]t and publish their shares. Finally, all parties check
whether ([F (λ)]t, [F̃ (λ)]t) is a valid coupled sharing.

If the check fails (not all sharings are correct), we need to pinpoint parties who
distributed incorrect coupled sharings. Since each coupled sharing ([u(i)]t, [ũ

(i)]t)
is masked by ([µ(i)]t, [µ̃

(i)]t), it is safe to open the whole sharing ([µ(i)]t+[u(i)]t ·
λ, [µ̃(i)]t + [ũ(i)]t · λ) and check whether it is a valid coupled sharing. Since
([F (λ)]t, [F̃ (λ)]t) is a linear combination of the coupled sharings {([µ(i)]t+[u(i)]t ·
λ, [µ̃(i)]t+[ũ(i)]t·λ)}ni=1, at least one coupled sharing of {([µ(i)]t+[u(i)]t·λ, [µ̃(i)]t+

[ũ(i)]t ·λ)}ni=1 is inconsistent. In fact, we can find all inconsistent coupled sharings
with overwhelming probability with the help of polynomial commitments intro-
duced later. For each i, parties in the old committee compute [µ(i)]t+[u(i)]t·λ and
publish their shares, and parties in the new committee compute [µ̃(i)]t+[ũ(i)]t ·λ
and publish their shares. This way, we can tell which coupled sharings are in-
consistent. This inconsistency in the coupled sharing distributed by some party
P ′
i (in the following, dealer) has two possible causes:

– The dealer P ′
i distributed an invalid coupled sharing (either the secrets were

not the same or one of the degree-t sharings was invalid).
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– Some corrupted party Pj ∈ C ∪ C ′ provided an incorrect share during the
verification of the sharing distributed by the dealer P ′

i .

The first case implies that the dealer is a corrupted party. To distinguish the
first case from the second, we will rely on polynomial commitments, which can
be used to transform a plain Shamir secret sharing into a verifiable one so that
an incorrect share (e.g., in case 2) can be identified and rejected by all parties.
Relying on Polynomial Commitments. A degree-t Shamir secret sharing
corresponds to a degree-t polynomial f(·) such that: (a) the secret is f(0),
and (b) the i-th share is f(i). Thus, each dealer can commit to f by using a
polynomial commitment scheme to add verifiability.

A polynomial commitment scheme allows the dealer to open one evaluation of
f (which corresponds to one share of the Shamir secret sharing) and the receiver
can verify the correctness of this evaluation value. Essentially, whenever a dealer
distributes a share it also provides a witness which can be used to verify this
share. Informally, a polynomial commitment scheme satisfies three properties:

– Polynomial Binding: A commitment cannot be opened to two different poly-
nomials.

– Evaluation Binding: A commitment cannot be opened to two different values
at the same evaluation point.

– Hiding: A commitment should not leak any information about the committed
polynomial.

We use polynomial commitments as follows: in the beginning, each dealer
first commits to the sharings it generated and opens the shares to corresponding
parties. To ensure that each party is satisfied with the shares it received, there
is a following accusation-and-response phase:

1. Each party publishes (accuse, P ′
i ) if the share received from P ′

i does not
pass the verification algorithm.

2. For each accusation made by Pj , P
′
i opens the j-th share to all parties, and

Pj uses the new share published by P ′
i if it passes the verification. Otherwise,

P ′
i is regarded as a corrupted party by everyone else.

Note that an honest party will never accuse another honest party. Also, if a
malicious party accuses an honest party, no more information is revealed to the
adversary than what the adversary knew already. Thus, it is safe to reveal the
share sent from P ′

i to Pj . After this step, all parties should always be able to
provide valid witnesses for their shares.

Recall that parties need to do various linear operations on the shares. In
FaB-DPSS we use the KZG commitment scheme [KZG10], which is linearly
homomorphic. Thus, even if a share is a result of a number of linear operations,
it is still possible for a party to compute the witness for this share. From now
on, each time a party sends or publishes a share, this party also provides the
associated witness to allow other parties verify the correctness of the share.
Since honest parties will always provide shares with valid witnesses and there
are at least n − t ≥ t + 1 honest parties, all parties will only use shares that
pass verification. Intuitively, this solves the problem of incorrect shares provided
by corrupted parties since corrupted parties cannot provide valid witnesses for
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those shares. Similarly, it should solve the problem of a malicious Pking, since he
cannot provide a valid witness for the incorrectly reconstructed value. However,
due to a subtle limitation of the KZG commitment scheme, we actually need to
add an additional minor verification step (see [GKM+20] for details).

See [GKM+20] for a complete description of the hand-off process.

3.3 FaB-DPSS Setup Phase

The setup phase uses a similar approach to the hand-off phase. First, the com-
mittee prepares random sharings. As in the hand-off phase, the validity of the
distributed shares is verified using the KZG commitment scheme. For each se-
cret s distributed by a client, one random sharing [r]t is consumed. The client
receives the whole sharing [r]t from the committee and reconstructs the value r.
Finally, the client publishes s+r. The committee then computes [s]t = s+r−[r]t.
See [GKM+20] for details.

3.4 FaB-DPSS Reconstruction Phase

When a client asks for the reconstruction of some secret s⋆, all parties in the
current committee simply send their shares of [s⋆]t and the associated witnesses
to the client. The client then reconstructs the secret using the first t+ 1 shares
that pass the verification checks. See [GKM+20] for details.

3.5 Security of Our Construction

We give a high-level idea of our proof. The goal is to construct a simulator to
simulate the behaviour of honest parties. For each sharing, corrupted parties
receive at most t shares, which are independent of the secret. Thus, when an
honest party needs to distribute a random sharing, the simulator can send ran-
dom elements to corrupted parties as their shares without fixing the shares of
honest parties. Since we use the perfectly hiding variant of the KZG commit-
ment, the commitment is independent of the secret, and can be generated using
the trapdoor of the KZG scheme. Furthermore, we can adaptively open t shares
chosen by the adversary after the commitment is generated. This makes our
scheme secure against adaptive corruptions. We present the full formal security
proof of our scheme in [GKM+20].

4 DPSS Applications – eWEB Primitive

Our next goal is to expand the reach of DPSS. We ask the following question:

Is it possible to let users store secrets and specify release conditions for these
secrets in a way that allows (other) users to retrieve these secrets later on if

and only if they are able to satisfy the release condition?
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Our goal is to achieve this without relying on trusted third parties. Instead,
we imagine a distributed storage of secrets which would allow for a high adver-
sarial threshold. We refine our question as follows:

Is it possible to let users store secrets with some group of parties and specify
release conditions for these secrets in a way that allows (other) users to

retrieve these secrets later on if and only if they are able to satisfy the release
condition? Furthermore, is it possible to achieve this if the adversary is able to

corrupt up to t < 1
2n number of parties storing the secrets?

We are able to answer these questions positively by utilizing DPSS and a
dynamic set with honest majority, PKI, and authenticated broadcast. We utilize
blockchains as a real-world system which provides the latter three primitives.
While we emphasize that technically our solution can be based on any other set
of parties with honest majority (supplemented with a PKI and authenticated
broadcast), for ease of exposition, in the following we will use “dynamic set with
honest majority” and “blockchains” interchangeably.

We now formally introduce the extractable witness encryption on a blockchain
(eWEB) primitive. We distinguish between users who deposit secrets (deposi-
tors), users who request that a secret be released (requesters), and a changing
set of blockchain nodes (miners) who are executing these requests.

An eWEB system consists of the following, possibly randomized and inter-
active, subroutines:

SecretStore(M,F )→ (id, {frag1, .., fragn}, F ): A depositor stores a secret M
which can be released to a requester who knows a witness w s.t. F (w) is true.
After interacting with the depositor, each of the n miners obtains a “fragment”,
frag i, of the secret that is associated with the secret storage request with the
identifier id.

SecretsHandoff ({frag11, .., frag
1
n}, .., {frag

m
1 , .., fragmn })→

({˜︁frag11, .., ˜︁frag
1
n}, .., {˜︂frag

m
1 , ..,˜︂fragmn }): Miners periodically execute this function

to hand over all m stored secrets from the old committee to the new committee.
Each miner i of the old committee possesses m fragments (one for each secret)
frag1i , .., frag

m
i at the start of the hand-off protocol. Each miner i of the new

committee possesses m fragments (one for each secret) ˜︁frag1i , ..,˜︂frag
m
i at the end

of the protocol.

SecretRelease(id, w)→M or ⊥ : A requester uses this function to request the
release of the secret with the identifier id. The requester specifies the witness
w to the release condition. Miners check whether the requester holds a valid
witness and if so, as a result of the interaction with the miners, the requester
obtains the secret M . Otherwise the function returns ⊥ (i.e., attempt failed).

Security Definition We provide a formal game-based secrecy definition in
[GKM+20]. Practically, this definition states that if an adversary is able to dis-
tinguish between the protocol executed with secretM0 and the protocol executed
with secret M1, then we can extract a valid witness for the release condition F
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using this adversary. Intuitively, this notion is quite similar to the extractable
security of witness encryption, which states that if an adversary can distinguish
between two ciphertexts, then he can also extract a witness from the corre-
sponding problem instance. For robustness, intuitively we require that it is al-
ways possible for an honest requester to reconstruct a secret dealt by an honest
depositor.

Remark 1. We also propose a variant of eWEB with a slightly relaxed security
notion we dub Public Witness security. Here, the secret is made public after a
single successful secret release. As we show in Section 6, this notion proves quite
useful in a number of applications.

5 Our eWEB Protocol Design

Before we introduce our eWEB construction, we provide an overview of the
assumptions that we rely on in our scheme (§5.1).

5.1 Assumptions

Adversary model. We rely on blockchains and assume that eWEB is a core
functionality, which allows us to focus on the fundamental construction with-
out worrying about selfish mining or bribery attacks. The adversary is able
to control a polynomial number of users and miners, subject to the constraint
that the blockchain has (n2 + 1, n)-chain quality, meaning that for each n or
more continuous blocks mined in the system, more than half were mined by
honest parties. As noted by [GG17], for proof of work blockchains, where the
probability of successful mining is proportional to the amount of computa-
tional power, this assumption follows from the assumption that honest min-
ers possess the majority of the computational power in the system. We as-
sume this majority is “significant enough” (to, for example, defeat selfish min-
ing attacks [ES14] that would threaten Bitcoin’s security). For proof of stake
blockchains, where the probability of successful mining is proportional to the
amount of coins possessed by the miner, it follows from the assumption that
honest miners possess the majority of stake in the system. In practice, we pick
an n that is big enough to provide this property with only a very small error
probability. Honest majority assumptions are very common in the blockchain
space [GG17, CGJ+17, MZW+19, GHM+17, KKAS+18], especially in permis-
sioned blockchains, which often rely on BFT replication protocols, which in
turn usually assume an honest supermajority [ABB+18]. We assume that the
blockchain is an append-only log, and it is hard to modify or erase its contents.

We assume that once an adversary corrupts a party it remains corrupted. The
adversary cannot adaptively corrupt previously honest parties. When a party is
corrupted by the adversary, the adversary fully controls this party’s behaviour
and internal memory state. We do not distinguish between adversarial and honest
parties who behave maliciously unintentionally; e.g., those who have connection
issues and cannot access the blockchain to participate.
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Infrastructure model. It is common for public keys to be known in blockchains.
We require that additionally each party pi has a unique identifier, denoted by
pidi, that is known to all other parties. In practice, this identifier can be the
hash of the party’s public key. For simplicity, we present the scheme as if there
were authenticated channels between all parties in the system. In practice, these
channels can be realized using standard techniques such as signatures.

Communication model.Our DPSS scheme assumes secure point-to-point com-
munication channels. In the decentralized blockchain setting of eWEB we prefer
not to make such an assumption, since using point-to-point channels could com-
promise nodes’ anonymity and lead to targeted attacks [MZW+19]. Instead, we
assume that parties communicate via an existing blockchain. We distinguish be-
tween posting a message on the blockchain (expensive) and using the blockchain’s
peer-to-peer network for broadcast (cheap). Point-to-point channels can be sim-
ulated using IND-CCA secure encryption and broadcasting the ciphertexts.

Storage. We assume that, in addition to parties’ internal storage, there ex-
ists some publicly accessible off-chain storage that is cheaper than on-chain one.
Thus, we store data off-chain and save only data hashes on-chain. Our system’s
robustness depends on the robustness of the off-chain storage. Thus, storage
systems with a reputation for high availability should be chosen. However ma-
licious off-chain storage does not impact the secrecy properties of our system
(see [GKM+20]. Alternatively, at a higher cost, we can use on-chain storage for
everything.

Cryptographic assumptions. In addition to the assumptions outlined above,
we assume IND-CCA secure encryption, collision-resistant hash functions, simu-
lation extractable non-interactive zero knowledge proofs of knowledge, and (for
DPSS) the t-SDH assumption.

Blockchain setting. eWEB can be built atop of any node set with honest
majority supplemented by a PKI. We present eWEB in the blockchain setting
simply because it is a system which already exists in practice (and because
multiple applications which rely on extractable witness encryption and which
we try to achieve already rely on blockchains [LJKW18, CGJ+17, GG17]).

We note that miners that behave honestly w.r.t. the blockchain protocol
might need further incentivization to behave honestly w.r.t. eWEB; otherwise
they might try to disrupt the execution of the eWEB protocol or leak their secret
shares. Our DPSS scheme has numerous checks that identify parties disrupting
correct protocol execution (see §3.2), which could translate to economic disin-
centivization. Traitor-tracing secret sharing [GSS21] as well as trusted hardware
that can verify correct share deletion could be used as mechanisms that en-
sure that miners are punished for leaking secrets entrusted to them. We leave
exploring these directions for future work.

5.2 Our eWEB Construction

We now describe our eWEB scheme. Its key building block is a DPSS scheme
used in a black-box way. The initial committee are miners who mined the most
recent n blocks in the underlying blockchains.
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Given a secret message M and a release condition F , the depositor stores the
release condition F on the blockchain and secret-shares M among the miners
using the secret storage (setup) algorithm of the DPSS scheme.

During the protocol’s periodically executed hand-off phase, the secrets are
passed from the miners of the old committee to the miners of the new committee
using the DPSS hand-off algorithm. The new committee consists of the miners
who mined the most recent n blocks. This keeps the size of the committee con-
stant and allows all parties to determine the current committee by looking at
the blockchain state. It is possible that some committee members receive more
information about the secrets than others — roughly, if a party mined m out
of the last n blocks, this party receives m

n of all the shares. This reflects the
distribution of the computing power (for POW blockchains) or stake (for POS
blockchains) in the system [GG17].

To retrieve a stored secret, a requester U needs to prove that they are eligible
to do so. This poses a challenge. An insecure solution is to just send a valid
witness w (F (w) = true) to the miners. One obvious problem with this solution
is that a malicious miner can use the provided witness to construct a new secret
release request and retrieve the secret himself. To solve this problem, instead
of sending the witness in clear, the user proves that they know a valid witness.
Thus, while the committee members are able to check the validity of the request
and privately release the secret to U , the witness remains hidden. In our scheme
we rely on non-interactive zero knowledge proofs (NIZKs) [BFM88]. Such proofs
allow one party (the prover) to prove validity of some statement to another
party (the verifier), such that nothing except for the validity of the statement is
revealed. In eWEB we specifically use simulation extractable non-interactive zero
knowledge proofs of knowledge, which allow the prover convince the verifier that
they know a witness to some statement. Note that extractability can be added to
any NIZK [ARS20, KZM+15]. We use NIZKs for relation R = {(pk,w) | F (w) =
true and pk = pk}, where F (·) is the release condition specified by the depositor
and pk is the public key of user U and is used to identify the user eligible to
receive the secret. After the miners verify the validity of the request, they engage
in the DPSS’s secret reconstruction with requester U to release the secret to U .

We provide the full secret storage protocol in Figure 3. The hand-off protocol
is given in Figure 4. The secret release protocol is in Figure 5. Note that the
asymptotics of eWEB match those of our underlying DPSS scheme. Below, we
elaborate on additional details of our construction.

Subtleties of Point-to-Point Channels As mentioned in §5.1, while FaB-
DPSS assumes secure point-to-point channels, we do not make such an assump-
tion in eWEB. Instead, we rely on authenticated encryption and Protocols 1 and
2, executed whenever a message needs to be securely sent from one party to an-
other. It is used for all messages exchanged in eWEB, including the underlying
DPSS protocol. Whenever a party receives an encrypted message, it performs
an authentication check to ensure that a ciphertext received from some party
was generated by that party. This prevents the following malleability issue - a
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malicious user desiring to learn a secret with the identifier id could generate
a new secret storage request with a function F̃ for which he knows a witness,
copy the DPSS messages sent by the user who created the storage request id to
the miners and later on prove his knowledge of a witness for F̃ to release the
corresponding secret. Without the authentication check, our scheme would be
insecure, and our security proof (see [GKM+20]) would not go through.

Protocol 1 MessagePreparation

1. For a message m to be sent by party Ps to party Pr, Ps computes the
ciphertext c← Encpkr (m|pids), where pkr is the public key of Pr and pids
is the party identifier of Ps.

2. Ps prepends the storage identifier id of his request and sends the tuple (id, c)
to Pr.

Protocol 2 AuthenticatedDecryption

1. Upon receiving a tuple (id, c) from party Ps over an authenticated chan-
nel, the receiving party Pr decrypts c using its secret key sk to obtain
m← Decsk(c).

2. Pr verifies that m is of the form m′|pids for some message m′, where pids is
the identifier of party Ps.

3. If the verification check fails, Pr stops processing c and outputs an error
message.

Storage Identifiers Each storage request has a unique identifier id. This can
be, e.g., the address of this particular transaction in the blockchain. It is used
for practical reasons, and is not relevant for the security of our construction.

Handling Large Secrets Since the secret itself might be very large, it is also
possible to first encrypt the secret using a symmetric encryption scheme, store
the ciphertext publicly off chain and then secret-share the symmetric key instead.
Also, we store request parameters (such as release conditions or proofs) off-chain,
saving only the hash of the message on-chain.

5.3 Security Proof Intuition

We provide a formal proof of security in [GKM+20], showing that our scheme
satisfies the security definition for eWEB given in [GKM+20]. In this proof,
we rely on the zero-knowledge and simulation-sound extractability properties
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Protocol 3 SecretStore

1. The depositor executes NIZK’s KeyGen protocol to obtain a CRS: σ ←
KeyGen(1k).

2. The depositor computes hash requestHash ← H(F |σ), and publishes
requestHash on the blockchain. Let id be the storage identifier of the pub-
lished request.

3. The depositor stores the tuple (id, F |σ) offchain.
4. The depositor and the current members of the miner committee engage in

the DPSS Setup Phase.

5. Each committee member retrieves requestHash from the blockchain, F |σ from
the offchain storage, and verifies that requestHash is indeed the hash of F |σ:

requestHash
?
= H(F |σ)

If this is not the case, the committee member aborts.

6. Ci stores (id, dpss-datai) internally, where dpss-datai is the data obtained
from the DPSS Setup Phase.

Protocol 4 SecretsHandoff

1. For each secret storage identifier id, the miners of the old and the new com-
mittee engage in the DPSS Handoff Phase for the corresponding secret.
Let dpss-dataidi denote the resulting DPSS data corresponding to the storage
identifier id of party Ci of the new committee after the handoff phase.

2. For each secret storage identifier id, each miner of the new committee stores
(id, dpss-dataidi ) internally.

of the NIZK scheme to switch from providing honest proofs to using simulated
proofs. Next, we rely on the collision-resistance of the hash function to show
that any modification of the data stored offchain will be detected. Then, we rely
on the multi-message IND-CCA security of the encryption scheme to change all
encrypted messages exchanged between honest parties to encryptions of zero.
Finally, we rely on the security of our DPSS scheme to switch from honestly
executing the DPSS protocol to using a DPSS simulator. At this point, we can
show that either the adversary was able to provide a valid secret release request
for the challenge’s secret-release function, in which case we are able to extract a
witness from the provided NIZK proof (relying on the NIZK’s proof-of-knowledge
property), or the adversary did not provide a valid secret release request and in
this case we are able to “forget” the secret altogether, since it is never used.
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Protocol 5 SecretRelease

1. To request the release of a secret with identifier id, the requester retrieves
requestHash from the blockchain, F |σ from off-chain storage, and verifies
that requestHash is indeed the hash of F |σ:

requestHash
?
= H(F |σ)

If this is not the case, the requester aborts.

2. The requester computes a NIZK proof of knowledge of the witness for F and
his identifier pid:

π ← P (σ, pid, w),

3. The requester computes hash of the storage identifier, his identifier and the
proof to obtain requestHash∗ ← H(id|pid|π) and publishes requestHash∗ on
blockchain. Let id∗ be the identifier of the published request.

4. The requester stores (id∗, id|pid|π) offchain.
5. Each committee member retrieves requestHash∗ from the blockchain request

with the identifier id∗, id|pid|π from the offchain storage, and verifies that:

requestHash∗
?
= H(id|pid|π)

If not, the committee member aborts.

6. Each committee member retrieves requestHash from the blockchain request
with the identifier id, F |σ from the offchain storage, and verifies that:

requestHash
?
= H(F |σ)

If not, the committee member aborts.

7. Each committee member Ci retrieves its share of the secret, dpss-datai, from
its internal storage.

8. Each committee member Ci checks if π is a valid proof using the NIZK’s
verification algorithm V :

V (σ, pid, π)
?
= true

If so, Ci and party pid engage in the DPSSReconstruction using dpss-datai.

6 Application Examples

In this section, we present some motivational application examples and briefly
explain the key ideas behind implementing each of them using our construction.
Time-lock Encryption. Time-lock encryption, related to timed-release encryp-
tion introduced by Rivest et al. [RSW96], allows one to encrypt a message such
that it can only be decrypted after a certain deadline has passed. Time-lock en-
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cryption must satisfy a number of properties [LJKW18], such as the encrypter
needs not be available for decryption and trusted parties are not allowed. Time-
lock encryption can be easily implemented using the PublicWitness scheme
(see [GKM+20]). Using this scheme, the encrypter executes SecretStore with a
secret release condition F specifying the time t when the data can be released.
Once the time has passed, a user who wishes to see the message submits a
SecretRelease request with the witness “The deadline has passed”. Miners check
whether the time is indeed past t and if so, release their fragments of the secret.
With a slight modification to our scheme, it is also possible to enable automatic
decryption - upon receiving a secret storage request with an “automatic” tag,
miners would place the identifier in a list and periodically check whether the
release condition holds for any request in this list.

Note that we evade the issue that some time-lock schemes [LJKW18] have:
even if the adversary becomes computationally more powerful, it does not allow
him to receive the secret message earlier. Additionally, we avoid the computa-
tional waste of timed-release encryption schemes [RSW96], which often require
the decrypter to, say, compute a long series of repeated modular squarings.

Dead-man’s Switch. A dead-man’s switch is designed to be activated when
the human operator becomes incapacitated. Software versions of the dead-man’s
switch typically trigger a process such as making public (or deleting) some secret
data. The triggering event, for centralized software versions, can be a user failing
to log in for three days, a GPS-enabled mobile phone that does not move for a
period of time, or a user failing to respond to an automated email. A dead-man’s
switch can be seen as insurance for journalists and whistleblowers.

A dead-man’s switch can use our PublicWitness protocol as follows: the
user who wishes to setup the switch generates a SecretStore request with
the desired release condition. Such condition can be failing to post a signed
message on the blockchain for several days or anything publicly verifiable. As in
the time-lock example, we can either use the standard scheme where a person
(e.g., a relative or a friend) proves to the miners that the release condition has
been satisfied or define an “automatic” request where the miners periodically
check the release condition.

Fairness. eWEB can be used to support fair exchange, which ensures that two
parties receive each other’s inputs atomically. Using eWEB, Alice specifies a
release condition that requires a signature from her and from Bob, while Bob’s
release condition requires only a signature from Bob. Once both secrets are
posted, Alice verifies Bob’s release condition and posts her signature. When Bob
posts his signature, the committee releases both their secrets atomically. Fair
exchange can be used to build fair MPC [Yao82, GHY87].

Multi-party computation (MPC) is considered fair if it ensures that either
all parties receive the output of the protocol, or none. In the standard model,
fair MPC was proven to be impossible to achieve for general functions when
a majority of the parties are dishonest [Cle86]. However, we can achieve it by
simply adapting the construction of Choudhuri et al. [CGJ+17] to use our eWEB
protocol, instead of traditional witness encryption. Conveniently, Choudhuri et
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al.’s scheme relies on a public bulletin board, which is most readily realized in
practice via a blockchain-based ledger. Thus, by replacing witness encryption
with our blockchain-based scheme, we do not add any extra assumptions to
Choudhuri et al.’s construction.
One-time Programs. A one-time program, introduced by Goldwasser et al.
[GKR08], is a program that runs only once and then “self-destructs”. In the
same work they presented a proof of concept construction that relies on tamper-
proof hardware. Considerable work on one-time programs followed [GIS+10,
BHR12, AIKW15, DDKZ13], but all such schemes relied on tamper-proof hard-
ware. Goyal and Goyal [GG17], however, present the first construction for one-
time programs that does not rely on tamper-proof hardware (but does rely on
extractable witness encryption). As with fair MPC and Choudhuri et al.’s con-
struction, by replacing the witness encryption scheme with our eWEB protocol
in the Goyal and Goyal’s one-time program construction with public inputs, we
are not adding any extra assumptions since they already rely on blockchains.
Since eWEB reveals whether a secret was retrieved, additional mechanisms are
needed when the inputs submitted to the one-time program must be kept private.
Non-repudiation/Proof of Receipt. A protocol allows repudiation if one of
the entities involved can deny participating in all or part of the communication.
With eWEB, it is easy to provide a proof that a person received certain data. In
this case, the user providing the data stores it using the SecretStore protocol.
To satisfy the release condition F , a user with public identifier pid publishes a
signed message “User pid requests the message”. The miners then securely release
a secret to the user pid as specified by SecretRelease. The publicly verifiable
signature on the message “User pid requests the message” then serves as a proof
that party pid indeed received the data.

6.1 Voting Protocol

As a more detailed example, we show how eWEB can support a “yes-no”
voting application. Specifically, using eWEB, each voter can independently and
asynchronously cast their vote by secret sharing a −1 for a “no” or a 1 for a
“yes” (note that (0, 1) voting can be supported as well). When voting closes, the
miners release an aggregate of the votes. The vote of any specific client must be
kept private (guaranteed by eWEB’s secrecy), and no client should be able to
manipulate the result more than with his own vote.

To prevent improper votes, the committee must verify the correctness of the
secrets shared by the clients; i.e., that each s ∈ {−1, 1}. Our key idea is to let
each client first commit to its secret and then prove its correctness to the miners.
However, this requires the client to prove that the committed value is the same
as the value the client shared to the committee. To avoid this expensive check,
committee members instead compute the necessary commitment using the secret
shares they receive from the client (guaranteeing consistency by construction).

In [GKM+20], we show that the committee members can prepare Pedersen
commitments [Ped92] for all of the clients with constant amortized cost. For a
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client’s secret s, the resulting commitment is of the form c = gshz, where z is a
random value (known to the client) and g, h are publicly known generators with
h = gβ for some unknown β.

With such a commitment, the user can prove s ∈ {−1, 1} by proving s2 = 1.

To prove that s2 = 1, the client (who knows s and z) computes w = g2szhz2

and
publishes w to all parties. To check that s2 = 1, anyone can check that:

e(c, c) = e(g, g) · e(h,w).

Correctness. To show correctness, note that

LHS = e(gs+βz, gs+βz) = e(g, g)s
2+2βsz+β2z2

RHS = e(g, g) · e(gβ , g2sz+βz2

) = e(g, g)1+2βsz+β2z2

.

If the equation holds, then s2 = 1 and thus the client’s vote is valid.
To compute the voting result the committee computes the sharing of the

result relying on the linear homomorphism of KZG commitments and Shamir’s
secret sharing, and then follows the usual SecretRelease procedure.

7 Implementation

We implement both FaB-DPSS and our eWEB scheme in about 2000 lines of
Python code. To perform the underlying field and curve operations, we add
Python wrappers around the C++ code of the Ate-Pairings library [Shi10]. For
networking, we rely on gRPC [gRP], and for hashing, we use SHA256. For our
NIZK scheme, we currently use Schnorr’s proof of knowledge [Sch90]. We make it
non-interactive via the Fiat-Shamir heuristic [FS86], thus simultaneously making
it simulation extractable [FKMV12].

Polynomial arithmetic is done over the polynomial ring Fp[X] for a 254-bit
prime p. For the KZG commitment scheme [KZG10], we use an ate pairing over
Barreto-Naehrig curves of the form y2 = x3+b for constant b over Fp with a 254-
bit prime p. We implement polynomial interpolation for polynomials of degree
n in time O(n log2 n) using an algorithm presented by Aho et al. [AHU74].

8 Experimental Evaluation

We evaluate FaB-DPSS and eWEB and show that:

1. FaB-DPSS outperforms the state-of-the-art (§8.1).
2. eWEB’s performance is dominated by FaB-DPSS.

3. Our eWEB prototype’s performance matches the expected asymptotics with
small constants (§8.2), making it practical to integrate with existing blockchains.

We discuss microbenchmarks in [GKM+20].
Setup. We run experiments using CloudLab [DRM+19], an NSF-sponsored
testbed that provides compute nodes along with a configurable networking sub-
strate. We run experiments in both a LAN setting (∼0.2 ms ping) to focus on the

24



22 23 24 25 26

1

2

3

4

Total Nodes

T
im

e
(s
)

DPSS LAN
CHURP LAN
DPSS WAN
CHURP WAN

Fig. 2: Handoff Times for our DPSS vs. CHURP. Error bars represent 95%
confidence interval.

CPU overhead of our cryptography and a WAN setting (∼40 ms ping) to demon-
strate the networking overhead. In the LAN setting we use up to 128 machines
each with 8-core 2.00GHz CPUs and 4 GB RAM. In the WAN setting we use
up to 128 machines split between Salt Lake City, Utah and Madison, Wisconsin.
These machines have 8–10 cores and 2.00–2.4GHz CPUs with 2–4GB RAM.

Since eWEB is compatible with a wide range of blockchains, we abstract
away the blockchain and simulate it via a single trusted node. In practice, writes
to the blockchain will incur additional blockchain-specific latency.

8.1 DPSS Comparison

As §1.2 discusses, the most efficient prior DPSS schemes are CHURP [MZW+19]
and that of Baron et al. [BDLO15]. Since CHURP reports [MZW+19, §6.3] that
their performance dominates that of Baron et al., we focus on CHURP.

In our experiment, we measure the time required for each scheme to handoff
secrets to a new committee in the optimistic case where parties behave honestly.
Both schemes have a fallback path for when malfeasance is detected; it adds an
O(n) factor to both schemes.

Figure 2 summarizes the average time for 50 runs. As expected from our
asymptotic analysis, FaB-DPSS increasingly out-performs CHURP as the num-
ber of nodes increases, to the point where our scheme is ∼7× faster than CHURP
with 64 nodes. The absolute difference will increase as committee sizes grow.

Note that the additional networking overhead in the WAN setting (∼40 ms
latency) only significantly affects the end-to-end latency for committees with
less than 8 members for both FaB-DPSS and CHURP. For larger committees,
computation dominates networking costs even with realistic latencies.

8.2 eWEB Performance

Wemeasure the costs of eWEB’s top-level operations (SecretStore, SecretsHandoff ,
and SecretRelease) for the minimal Schnorr identification application over an in-
creasing number of committee members. In particular, given a public key, com-
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Fig. 3: Time required for high-level eWEB steps on a LAN. Non-DPSS operations
are too small to see.

mittee members release the secret if a client proves (in zero-knowledge) that they
possess the associated secret key.

Figure 3 summarizes the average time for 150 runs (note the log-log scale).
Each bar shows the split between eWEB operations (e.g., preparing the NIZK
proof) and the underlying DPSS operations. Note that the time for SecretsHandoff
includes the amortized cost for the preparation phase that produces coupled
sharings of random value used during the refresh phase. Similiarly the time for
SecretStore includes the amortized cost for the preparation phase that produces
sharings for random values used to distribute the initial secret.

The DPSS costs dominate, to the point where the time for eWEB opera-
tions cannot be seen. The performance results match our expectation of linear
asymptotic growth, and concretely costs ∼7.3 milliseconds/node, ∼10.7 millisec-
onds/node, and ∼3.0 milliseconds/node for the store, refresh, and release secret
operations respectively. This suggests if CloudLab allowed us to scale beyond 64
nodes per committee, we would expect eWEB to store, refresh, release secrets
in 7.3 s, 10.7 s, and 3.0 s respectively, even with a 1000-node committee.

8.3 Applications

We implement several applications on top of our eWEB protocol in order
to demonstrate practicality and efficiency for common use cases. As a baseline
we implement the minimal Schorr identification application: Given a public key,
committee members release a secret when provided a (zero-knowledge) proof that
a client possess the associated private key. Because the Schnorr identification
protocol only requires a few additional group operations for both the client and
committee members, this gives us the best view of eWEB’s core operational cost.

We additionally implement time-lock encryption and dead-man’s switch as
described in §6. In both applications, a claim that the prescribed amount of time
has passed is treated as the “witness”. In the latter application, we additionally
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implement an update functionality that allows an operator to extend the secret-
release timeout if they provide a valid signature.

We implement the fair exchange (§6), where given valid signatures from two
clients, the committee releases both their secrets atomically.

Table 1 outlines the cost of eWEB applications for various committee sizes.

Committee Size

4 8 16 32 64

Schnorr Identification 0.15 s 0.22 s 0.37 s 0.67 s 1.22 s
Time Lock Encryption 0.15 s 0.22 s 0.36 s 0.66 s 1.25 s
Dead-man’s Switch 0.15 s 0.23 s 0.37 s 0.68 s 1.23 s
Fair Exchange 0.19 s 0.27 s 0.44 s 0.78 s 1.45 s

Table 1: Cost of eWEB applications. End-to-end latency including secret store,
a single handoff, and secret release. (50 trials)

9 Conclusion

We have introduced a new and highly efficient batched DPSS protocol – FaB-
DPSS. We also proposed eWEB – a new cryptographic primitive which allows
the blockchain to store and release secrets. We designed a proof of concept eWEB
protocol based on FaB-DPSS and implemented it. Additionally, we implemented
and evaluated several applications atop eWEB.
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