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ABSTRACT
Human development is a threat to biodiversity and conservation

organizations (COs) are purchasing land to protect areas for bio-

diversity preservation. COs have limited budgets and cannot pur-

chase all the land necessary to perfectly preserve biodiversity, and

human activities are uncertain, so exact developments are unpre-

dictable. We propose a multistage, robust optimization problem

with a data-driven hierarchical-structured uncertainty set which

captures the endogenous nature of the binary (0-1) human land use

uncertain parameters to help COs choose land parcels to purchase

to minimize the worst-case human impact on biodiversity. In the

proposed approach, the problem is formulated as a game between

COs, which choose parcels to protect with limited budgets, and the

human development, which will maximize the loss to the unpro-

tected parcels. We leverage the cellular automata model to simulate

the development based on climate data, land characteristics, and

human land use data. We use the simulation to build data-driven

uncertainty sets. We demonstrate that an equivalent formulation

of the problem can be obtained that presents exogenous uncer-

tainty only and where uncertain parameters only appear in the

objective. We leverage this reformulation to propose a conservative

𝐾-adaptability reformulation of our problem that can be solved

routinely by off-the-shelf solvers like Gurobi or CPLEX. The nu-

merical results based on real data from (Jȩdrzejewski et al. 2018)

show that the proposedmethod reduces conservation loss by 19.46%

on average compared to standard approaches used in practice for

biodiversity conservation.
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1 INTRODUCTION
Biodiversity is needed for all life to thrive on Earth. Without it,

ecosystems would crumble and humans would not have food to

eat or air to breathe. Latin America has many biodiversity-related

issues especially because of a dramatic increase in development in

the Amazon Rainforest over the last several decades. According to

the WWF, twenty percent of the Amazon biome has been lost to

human development and it is estimated that 27 percent will be lost

by 2030. The Amazon is home to about ten percent of all species on

Earth and 3/4 of those are unique to the region. Few are as notable

as the jaguar, the only big cat in the Americas and the third largest

cat in the world. Jaguars are very reclusive creatures and their pop-

ulation is threatened by human contact and development. Their

range can extend over much of Latin America but they especially

like heavily canopied areas where they can stay hidden amongst

dense rainforest and underbrush. Jaguars, as an umbrella species,

help to maintain stability in their ecosystems and are good indica-

tors of overall biodiversity (Jȩdrzejewski et al. 2018). To preserve

biodiversity, in this paper, we propose to protect jaguars. Not-for-

profits such as Panthera and other COs attempt to protect land all

over the world for the purpose of preserving species and they do

work in Latin America where they are trying to preserve jaguar

biodiversity.

Unfortunately, given limited resources, it is not possible to pro-

tect all important sites. The problem of deciding which parcels of

land to protect poses several practical challenges, which we describe

below. Typically, conservation plans and objectives set by both gov-

ernmental and non-governmental organizations extend well into

the future while funds dedicated to conservation initiatives are

limited. In addition, this limited budget is not made available im-

mediately as a lump sum. Instead, it is received progressively over

time as a series of installments (whose value is sometimes a-priori

unknown). This implies that conservation plans must take into ac-

count both biodiversity and economic considerations from the onset

to yield reserves that meet the intended long-term conservation

targets (Joseph et al. 2009, Naidoo et al. 2006). Since conservation

budgets are made available progressively over time, not all parcels

can be protected from the onset and any parcel that has not been

protected runs the risk of being lost to human degradation (e.g.,

transformed to agricultural land, to urban or suburban develop-

ments, deforested for use as lumber, or fragmented to build roads).

This in turn can interfere with the implementation of conservation

plans that do not take into account such contingencies, rendering



them suboptimal or even infeasible, see e.g., Meir et al. (2004). From

a planning perspective, it raises a significant challenge since con-

servation prioritization decisions should not only take into account

biodiversity (and economic) considerations but also the “chance”

that a land parcel will become lost to human land use.

The above highlights the need for decision-support tools to as-

sist in the budget-constrained design of inter-connected networks

of habitat reserves. Given the vast number of uncertainties that

influence the feasibility and optimality of the conservation actions,

the scarcity of data pertinent to inform these uncertainties, and the

gravity of the problem of preserving biodiversity, it is imperative

to be able to guarantee robustness of the conservation plans even

in adverse circumstances. Indeed, biodiversity management poli-

cies that fail to acknowledge and account for these uncertainties

robustly risk jeopardizing entire ecosystems forever. The uncer-

tain human land use may play adversarially to the conservation

plans. Whenever the land parcels is not protected, it runs the risk

of getting developed due to the uncertain human land use. To pre-

vent extreme loss in biodiversity due to these uncertainties, the

conservation plans should be designed against the uncertain devel-

opment in the most adverse case. Meanwhile, given the presence

of uncertainty in the projected human land use, it is imperative

for the network of habitat reserves to be able to adapt to such un-

certainties to yield conservation actions that guarantee (with high

“chance”) the protection of sites that will serve as suitable habitat in

the future, the existence of movement corridors, and the preserva-

tion of biodiversity. Although data for the biodiversity preservation

problem is scarce and noisy, any data available should be leveraged

to help build less conservative models of uncertainty.

Biodiversity conservation strategies differ in the extent to which

dynamics in conservation targets, environmental conditions and

conservation actions are recognized. Most of the literature on biodi-

versity preservation focuses on deterministic, single-stage models,

see e.g. Church et al. (1996), Cocks and Baird (1989), Kiester et al.

(1996), Polasky et al. (2001), Saetersdal et al. (1993), Snyder et al.

(1999). Only few papers have investigated formulations that capture

the multi-stage nature of the problem, see Costello and Polasky

(2004), Jafari et al. (2017), Sabbadin et al. (2007). They model the

conservation planning problem as a dynamic stochastic integer

program. While it can principally be solved by backward induction,

the approach is unfortunately plagued by the curse of dimension-
ality, see Bellman (2006). The authors thus end up having to rely

on heuristics to be able to solve even moderately sized instances.

Realizing that the spatial attributes of the reserve network are criti-

cal to species persistence and ecosystem service provision, several

authors focused on the spatially explicit reserve design problem,

see e.g., Dilkina and Gomes (2010), Dilkina et al. (2011), Le Bras et al.

(2013), Onal and Briers (2006), Toth et al. (2009), Williams and Sny-

der (2005) and the references there-in. Very recently, the dynamic

reserve design problem was extended to pay explicit attention to

the connectivity of the resulting reserve network. Specifically, Jafari

et al. (2017) model connectivity using network flows and, in each

period, require that only sites adjacent to already protected ones

be used to grow the reserve network.

Thus, most approaches fail to capture the dynamic nature of

the problem, rely on heuristics to solve it, or ignore the need for

reserve connectivity. In addition, it is generally assumed that the

distribution of the uncertain parameters in the problem can be per-

fectly estimated from data. More importantly, and to the best of our

knowledge, most existing approaches do not fully utilize the his-

torical data, such as climate and human impacts and animal range

shifts data, to understand their relations and provide guidance on

the areas of the landscape that are important to protect to help con-

serve species before they become threatened or endangered. To fill

these gaps, in this project, we study data-driven robust approaches

for preserving biodiversity. Additionally, motivated by the desider-

ata of the biodiversity preservation planning above, we propose to

model the conservation planning problem as a multi-stage robust
optimization problem whose objective is to minimize the worst-case

level of biodiversity loss to human degradation by the end of the

planning horizon. Since its advent over twenty years ago, modern

robust optimization (Ben-Tal and Nemirovski 1998, 1999, Kouvelis

and Yu 1996) has emerged as a popular alternative to stochastic

optimization for optimal decision-making under uncertainty. In con-

trast to stochastic optimization which models uncertain parameters

as random variables (see e.g., Prékopa (1995)), robust optimization

takes a deterministic view of uncertainty whereby the decision-

maker seeks a solution that is immunized against any realization of

the uncertain parameters in a given set, termed uncertainty set. The
popularity of the robust optimization paradigm has been driven by

its modeling power, broad applicability, and computational attrac-

tiveness (Bertsimas et al. 2010). We use climate, geographic, and

anthropogenic data including precipitation, temperature, canopy,

human population density, current jaguar range, protection status,

development threat index, latitude, and longitude.

This paper is organized as follows. Section 2 introduces the data

involved in this project; Section 3 describes the problem and pro-

posed method to solve it; Section 4 discusses how to construct the

uncertainty set; Section 5 provides an equivalent reformulation of

the problem which is computationally solvable ; Section 6 provides

a computationally tractable approximation approach; Section 7

shows how to implement the proposed method and benchmark it

to a Knapsack method, in which we formulate the problem as a

knapsack problem and ignore the uncertain development.

Notation. Throughout this paper, vectors (matrices) are denoted

by boldface lowercase (uppercase) letters. The 𝑘th element of a

vector 𝒙 ∈ R𝑛 (𝑘 ≤ 𝑛) is denoted by 𝑥𝑘 . Scalars are denoted by

lowercase letters, e.g., 𝛼 or 𝑢.

Contributions. In this paper, we propose a multistage robust

optimization model for conservation planning which is adaptive to

human land use. We leverage the cellular automata simulation to

construct a novel data-driven likelihood uncertainty set capturing

spatio-temporal dependencies. Though the original formulation

is decision dependent and involves objective and constraint un-

certainty, which makes the problem hard to solve, we provide an

equivalent computationally tractable exogenous reformulation with

objective uncertainty only, and we solve it by a proposed approxi-

mation approach. We perform numerical experiments based on the

real data from (Jȩdrzejewski et al. 2018) and simulation. The numer-

ical results showed that our method reduces 19.46% conservation

loss compared with the general knapsack method.



Figure 1: 1757 Parcels in Latin America. The Area of Each
Parcel is 12321 km2

2 DATA
In this paper, we are using different kinds of natural and anthro-

pogenic data.We need data that will help identify good habitat areas

for jaguars as well as data to help us model human development.

Fortunately, climate data in raster, or image based, form is available

online as well as all of the anthropogenic data we need, also in

raster form. These rasters allow us to extract data at specific points

which is what we do to get data for all of the parcels we are con-

cerned with. The first thing we do is creating a grid of equal-sized

parcels in Latin America using a geographical information system

software called QGIS. Each parcel is one degree of latitude by one

degree of longitude. This totaled to 1757 parcels. To represent each

parcel for data extraction, we place a point in the center of each

parcel from which we will extract the data we need. Figure 1 shows

a representation of these parcels on a map where each parcel has a

point in the middle which will be used for extracting data for the

parcel.

The climate and geographical datasets used in this paper are

mean temperature, mean precipitation, canopy, latutude, and lon-

gitude. All of these datasets came from (Jȩdrzejewski et al. 2018)

Figure 2(a) shows a visualization of the canopy dataset and Fig-

ure 2(b) shows the average preciptation. The darker the area in the

map, the more canopy exists in that area. This is important because

jaguars are more likely to be found in areas with more canopy as

they use trees for hunting as well as for shelter (Jȩdrzejewski et al.

2018). All of these climate-related datasets are important because

jaguars have a specific habitat and we use the climate data to make

better conservation decisions.

Some of the other data we use is development threat index data

from NASA SEDAC (Socioeconomic Data and Applications Center)

(Oakleaf et al. 2015). This data is an estimate of the potential for

human development in the future. This is the best data available

for predicting development patterns so it allows us to figure out

what areas to prioritize based on what could be developed sooner.

Figure 3(a) shows a visualization of this dataset on a map. The

lighter areas represent a lower development threat while the darker

areas represent a higher threat.

(a) Canopy Map

(b) Precipitation Map

Figure 2: Geographical Data

We also use protection status and current jaguar range from

(Jȩdrzejewski et al. 2018). Protection status allow us to determine

areas that are already protected and that will not be developed by

humans. We throw out any parcels that had already been protected

because they are not of concern for our conservation problem. We

also threw out any parcels that do not fall in the jaguar’s range

as we have no interest in protecting parcels if they do not have

jaguars living in. This range is visualized in Figure 4 where any of

the areas with color lie within the jaguar’s range while the white

areas do not.

One important part of the data is to figure out the value of pro-

tecting each parcel as well as the cost of protecting each parcel. We

calculate the cost in USD for each parcel using land cost estimation

techniques used in (Balmford et al. 2003) and (Kark et al. 2009). We

gather our data for land area, purchasing parity power, and GNI

from the World Bank (https://www.worldbank.org/). This helps us

determine whether or not the purchase of the parcel is worth it

given the value of the parcel and gives us a way to directly compare



(a) Development Threat Index Map

(b) Cost Map

Figure 3: Threat Index and Cost

the cost of parcels to one another. Figure 3(b) is a visualization of

the cost where the darker points represent more expensive parcels

and the lighter points represent less expensive parcels.

The best estimation of value is the adjusted jaguar density from

(Jȩdrzejewski et al. 2018). We decide that jaguar density will be the

best indicator of value as we want to protect as many jaguars as pos-

sible with our efforts. Figure 4 shows a geographic representation

of jaguar density.

We choose to use all of this data because they all tie back to

the uncertain nature of human activities which we are examining.

The data including precipitation, canopy, temperature, and current

jaguar range is used because they are some of the best indicators

of jaguar presence according to (Jȩdrzejewski et al. 2018). They are

also indicative of areas that would likely be developed by humans

for deforestation, as much of the Amazon Rainforest is threatened

by human activity, which is why we also use human population den-

sity because in places of higher population density, there would be

more human activity and development. We also used development

Figure 4: Jaguar Population Map

threat index because it is our best way of predicting future human

development. While the climate variables are helpful in predicting

what areas might be developed, we want something that directly

shows future development potential and development threat in-

dex is the best indicator. Another important part of biodiversity

planning is interconnection of the land parcels used to preserve

biodiversity. According to (Dilkina et al. 2017), a systems of isolated

protected areas would be insufficient to preserve biodiversity and

the protected areas instead need to have some connectivity in order

to be effective. This is why we use latitude and longitude as part of

our data because we want to make sure that geography is a factor

as well as all of the other kinds of data.

3 PROBLEM STATEMENT
This problem is multifaceted and involves several challenges. First,

there are long planning horizons and very limited budgets avail-

able for use, which can vary from year to year. Secondly, there is

uncertainty in how humans will use land in the future. Not every

parcel can be protected at the same time, so we must find a way

to prioritize parcels based on a combination of features, including

development potential, so that important parcels can be protected

before they are used for other purposes such as logging. If a parcel

is not protected, then the potential adversarial human land use may

develop it and the jaguars inhabitating there will be lost. Finally,

we have access to limited data and must make good use of what we

have available to us.

Because of uncertain and complex nature of this problem, we

must make our model robust so that it can hold up to such uncer-

tainty. Also, the parcels we choose must be able to sustain biodiver-

sity into the future, even if there are changes in climate factors and

in human land use. We must also leverage the data available to us in

order to build this model, even though the data is somewhat scarce

and noisy. Lastly, our solution must be scalable to large instances.

Biodiversity conservation problems involve large amounts of land

over massive time horizons. We must take this into account when

building our model.



Given all of the aspects of this problem listed above, we are mod-

eling this problem as a multi-stage robust optimization problem

whose objective is to minimize the worst case level of biodiversity

loss to human degradation by the end of the planning horizon. Ro-

bust optimization takes a deterministic view of uncertainty where

the decision-maker seeks a solution that is against any realization

of the uncertain parameters in a given set, which is called the un-

certainty set. Basically, by formulating the conservation problem

as a robust optimization, conservation plans and the human devel-

opment can be regarded as two agents who play against each other.

To be specific, human development will play adversarially by maxi-

mizing the loss in jaguars in those parcels which are not protected

based on the rules determined by the uncertainty set, while the

conservation plans need to protect parcels so as to minimize such

loss. Next is a description of how we formulated the problem.

We consider the problem faced by a conservation planner, such

as Panthera, charged with protecting a site that consists of |I |
land parcels indexed in the set I over the finite planning horizon

T := {1, . . . ,𝑇 }. At the beginning of each period (usually each year)

𝑡 ∈ T , the conservation planner is allocated a conservation budget

𝑏𝑡 ∈ R+ which can be used to protect land parcels from the site (e.g.,

by purchasing them). We let 𝑐𝑖 ∈ R+ denote the cost of introducing

parcel 𝑖 in the reserve (usually corresponding to the purchasing

cost). Note that if a parcel is purchased at time t it will remain part

of the reserve in the future. We assume that the sequence of funds

{𝑏𝑡 }𝑡 ∈T that will be made available to the conservation planner

throughout the planning horizon along with the corresponding se-

quence of parcel protection costs {𝑐𝑖 }𝑖∈I are both perfectly known

at the beginning of the planning horizon. Associated with each

parcel 𝑖 is its conservation value 𝑣𝑖 ∈ R+, which encodes the rich-

ness of its genetic and ecological biodiversity which is assumed

known and fixed. Between consecutive periods, each land parcel

risks becoming developed (i.e., being lost to human degradation),

in which case its conservation value vanishes, representing the fact

that all genetic and ecological biodiversity present in the parcel is

lost. We let 𝜉𝑖𝑡 ∈ {0, 1} represent the status of land parcel 𝑖 at time

𝑡 . Thus, 𝜉𝑖𝑡 = 1 if and only if land parcel 𝑖 has been developed on

or before time 𝑡 . For notational convenience, we let 𝝃𝑡 := {𝜉𝑖𝑡 }𝑖∈I
collect the (uncertain) statuses of all parcels at time 𝑡 . In the spirit of

robust optimization, we propose to model the uncertain parameters

in our problem as deterministic variables that are constrained to lie

in an uncertainty set, which we denote by U ⊆ {0, 1} |I |×|T |
. This

set reflects fundamental known properties that the original random

quantities would satisfy with high probability in the absence of

the conservation planner’s intervention. As an illustrative example,

U will capture the requirement that if a parcel 𝑖 is developed at

time 𝑡 ∈ T , then it remains developed at time 𝑡 + 1 by means of

the constraint 𝜉𝑖,𝑡+1 ≥ 𝜉𝑖𝑡 . We will introduce our uncertainty set

U in the next section. Throughout this paper, we will make the

assumption thatU is polyhedral. We argue that polyhedral sets are

already rich enough to capture many of the dynamics of interest.

The decision variable, which is denoted by 𝑥𝑖𝑡 ∈ {0, 1}, is 1 if
and only if the land parcel 𝑖 has been protected on or before time 𝑡 .

It is taken after the history of parcel development statuses 𝝃 𝑡−1 :=
{𝝃1, . . . , 𝝃𝑡−1} has been revealed but before future developments

{𝝃𝜏 }𝜏≥𝑡 are observed. This motivates us to model the decision 𝑥𝑖𝑡

to protect parcel 𝑖 at time 𝑡 as a function that maps the history of

observations 𝝃 𝑡−1 to conservation actions, i.e., 𝑥𝑖𝑡 : {0, 1} |I | →
{0, 1}. Thus, 𝑥𝑖𝑡 is modeled as a binary adaptive decision variable or

decision rule. The requirement that 𝑥𝑖𝑡 only depends on the history

of observations reflects the causal nature of decisions is referred

to as non-anticipativity in the stochastic-programming literature.

For convenience, we let N denote the space of all non-anticipative

decision rules. Explicitly,

N :=

{
𝑥𝑖𝑡 (·) : 𝑥𝑖𝑡 ∈ {0, 1} |I | → {0, 1}

and 𝑥 is adaptive to 𝝃 𝑡−1 ∀𝑖 ∈ I, 𝑡 ∈ T

}
.

We always assume that at the beginning, all the parcels have not

been developed or protected, which means 𝜉𝑖0 = 0, ∀𝑖 ∈ I and

𝑥𝑖0 (𝝃 0) = 0 ∀𝝃 ∈ U, ∀𝑖 ∈ I. Also, we hope that the planner

can make decision at first time stage before the nature develops

parcels, so we set 𝜉𝑖0 = 0 ∀𝑖 ∈ I. Crucially, the only motivation

for the conservation planner to protect a land parcel is that it will

preclude it from becoming developed in the future. Thus, by suitably

deciding which parcels to protect, the conservation planner is able

to strategically influence or modify the uncertainty set U. He is

then faced with a new policy-dependent uncertainty set Ξ : N →
{0, 1} |I |×|T |

, expressible as:

Ξ(𝒙) = {𝝃 ∈ U : 𝜉𝑖𝑡 ≤ 1 − 𝑥𝑖𝑡 (𝝃 𝑡−1),∀𝑖 ∈ I, 𝑡 ∈ T }. (1)

Relative to U, Ξ(𝒙) involves one additional constraint for each

parcel-time-period pair. This constraints stipulates that if a parcel

is protected at time 𝑡 − 1, then it can no longer be lost to human

degradation at time 𝑡 . In particular Ξ(𝒙) ⊆ U for all 𝒙 . This model

affords an intuitive interpretation: by making strategic conserva-

tion plans, the decision-maker (conservation planner) can reduce

uncertainty by precluding undesirable scenarios from materializ-

ing. The objective of the conservation planner is to minimize the

worst-case conservation value lost to human land-use across the

entire site. Mathematically, the robust biodiversity conservation

problem affected by human land use uncertainty is expressible as

minimize sup

𝝃 ∈Ξ(𝒙)

∑︁
𝑖∈I

𝑣𝑖𝜉𝑖𝑇

subject to 𝒙 ∈ N∑︁
𝑖∈I

𝑐𝑖 [𝑥𝑖𝑡 (𝝃 𝑡−1) − 𝒙𝑖,𝑡−1 (𝝃 𝑡−2)] ≤ 𝑏𝑡

𝑥𝑖𝑡 (𝝃 𝑡−1) − 𝑥𝑖,𝑡−1 (𝝃 𝑡−2) ≤ 1 − 𝜉𝑖,𝑡−1
𝑥𝑖𝑡 (𝝃 𝑡−1) ≥ 𝑥𝑖,𝑡−1 (𝝃 𝑡−2)
𝑥𝑖𝑡 (𝝃 𝑡−1) ∈ {0, 1}

 ∀𝑖 ∈ I


∀𝑡 ∈ T ,
𝝃 ∈ Ξ(𝒙) .

(2)

The objective function of the problem corresponds to the worst-case

loss in conservation value achieved by an adaptive conservation

strategy 𝒙 when “nature” can select parcels to develop from the

policy-dependent uncertainty set Ξ(𝒙), i.e., from those parcels that

are not yet protected. The first constraint corresponds to a budget

constraint. The second constraint stipulates that if a site has already

been lost to human degradation, it can no longer be introduced in

the reserve. The third constraint captures the requirement that if

a parcel 𝑖 is protected at time 𝑡 ∈ T , then it remains protected at

time 𝑡 + 1. All constraints are enforced robustly, i.e, for all possi-

ble realizations of 𝝃 in the policy dependent uncertainty set Ξ(𝒙).



Problem (2) is a multi-stage adaptive optimization problem involv-

ing high-dimensional binary (0-1) randomness and an endogenous

uncertainty set affected by the conservation policy of the planner.

4 DESCRIPTION OF THE UNCERTAINTY SET
In this section, we construct the the uncertainty set U in our ro-

bust model in Section 3, based on the data that we have at our

disposal. In real world applications, the neighboring interaction

plays an important role in parcel development. This means that

rather than independent random development among parcels, a

parcel is more likely to be developed if more of its neighboring

parcels have been developed. This motivates the use of the cellular

automata, a commonly-used model in land use change literature.

In the cellular automata model, each parcel can be classified as

developed or undeveloped. In each iteration, the probability of get-

ting developed of each parcel is calculated based on both the threat

index and the status of the neighboring parcels, i.e.

𝑝𝑟𝑜𝑏𝑡𝑖 =
𝑇 𝐼𝑖

10

·
1 +∑

𝑗 ∈Ω𝑖
1{ 𝑗 is developed}

1 + |Ω𝑖 |
, (3)

where 𝑇 𝐼𝑖 is the threat index of parcel 𝑖 and Ω𝑖 is the set of the

neighbors of parcels 𝑖 . To emphasize the importance of connectivity

of protected parcels as discussed in Section 2 and motivated by the

fact that parcels with similar geographical characteristics tend to

develop (or not develop) together, we divide the whole area into 9

clusters based on the threat index and geographical features, such as

location and average temperature. Then, we define the neighbors of

a parcel as the adjacent parcels which are in the same cluster. After

the probability of getting developed is calculated, the development

of the parcel 𝑖 is considered follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝑟𝑜𝑏𝑖 ). Thus, we
use the cellular automata model to simulate the development of

each parcel for different time stages, and the development risk of

each parcel is calculated as the proportion of development in the

simulation. The development risk 𝑝𝑡
𝑖
is regarded as the probability

of getting developed for parcel 𝑖 at time stage 𝑡 . The uncertainty set

is constructed to only allow the realizations of development whose

likelihood is beyond an user-input parameter 𝝀, which controls the

robustness of the model. The uncertainty set is as follows.

U =


𝝃 ∈ {0, 1} |I |×|T |

:

𝜉𝑖𝑡 ≥ 𝜉𝑖,𝑡−1 ∀𝑖 ∈ I, 𝑡 ∈ T∏
𝑖∈I (𝑝𝑡𝑖 )

𝜉𝑖𝑡 · (1 − 𝑝𝑡
𝑖
) (1−𝜉𝑖𝑡 ) ≥ 𝜆𝑡 ∀𝑡 ∈ T


.

5 EQUIVALENT REFORMULATION
Problem (2) is a multistage endogenous robust optimization prob-

lem. Due to the large size of parcels and the rolling horizons, it is

impractical to solve Problem (2) directly. We need an equivalent

reformulation which is easier to handle. The following theorems

provide an equivalent formulation in which we get rid of the con-

straints uncertainty and the uncertainty set is independent to the

solution 𝒙 .
Equivalent Reformulation with Deterministic Constraints.

We introduce a variant of Problem (2) from which we eliminate the

second constraint to obtain

minimize sup

𝝃 ∈Ξ(𝒙)

∑︁
𝑖∈I

𝑣𝑖

∑︁
𝑡 ∈T

[𝜉𝑖𝑡 − 𝜉𝑖,𝑡−1]
[
1 − 𝑥𝑖𝑡 (𝝃 𝑡−1)

]
subject to 𝒙 ∈ N∑︁

𝑖∈I
𝑐𝑖𝑡 [𝑥𝑖𝑡 (𝝃 𝑡−1) − 𝒙𝑖,𝑡−1 (𝝃 𝑡−2)] ≤ 𝑏𝑡

𝑥𝑖𝑡 (𝝃 𝑡−1) ≥ 𝑥𝑖,𝑡−1 (𝝃 𝑡−2)
𝑥𝑖𝑡 (𝝃 𝑡−1) ∈ {0, 1}

}
∀𝑖 ∈ I


∀𝑡 ∈ T ,

𝝃 ∈ Ξ(𝒙) .

(4)

Theorem 5.1. The robust biodiversity conservation Problem (2) is
equivalent to Problem (4).

Equivalent Reformulation with Exogenous Uncertainty
Set. We introduce the problem

minimize sup

𝝃 ∈U

∑︁
𝑖∈I

𝑣𝑖

∑︁
𝑡 ∈T

[𝜉𝑖𝑡 − 𝜉𝑖,𝑡−1]
[
1 − 𝑥𝑖𝑡 (𝝃 𝑡−1)

]
subject to 𝒙 ∈ N∑︁

𝑖∈I
𝑐𝑖𝑡 [𝑥𝑖𝑡 (𝝃 𝑡−1) − 𝒙𝑖,𝑡−1 (𝝃 𝑡−2)] ≤ 𝑏𝑡

𝑥𝑖𝑡 (𝝃 𝑡−1) ≥ 𝑥𝑖,𝑡−1 (𝝃 𝑡−1)
𝑥𝑖𝑡 (𝝃 𝑡−1) ∈ {0, 1}

}
∀𝑖 ∈ I


∀𝑡 ∈ T ,

𝝃 ∈ U .

(5)

Theorem 5.2. Problem (5) is a conservative approximation of the
robust biodiversity conservation Problem (2). If the constraints in
the uncertainty setU except the non-decreasing constraints can be
written in the form 𝒇𝑇 𝝃𝑡 ≤ 𝑔, where all the components of 𝒇 are
non-negative, then the robust biodiversity conservation Problem (2) is
equivalent to Problem (5).

Remark 5.1. Note that when the uncertainty setU does not satisfy
the condition in Theorem 5.2, we cannot claim that Problem (2) is
not equivalent to Problem (5). Here is an counterexample: consider
a single stage problem with two parcels, i.e. |I | = 2, |T | = 2. When
𝑣1 = 𝑣2 = 1, 𝑐11 = 10, 𝑐21 = 1, 𝑏1 = 2 and the uncertainty set
U =

{
𝝃 ∈ {0, 1}2 : 𝜉11 − 𝜉21 ≤ 0

}
, the optimal objective value to

Problem (2) is 0, while the optimal objective value to Problem (5) is 1.

Remark 5.2. Problem (5) has exogenous uncertainty only, binary
adaptive variables, and uncertainty in the objective only and thus can
be solved with off the shelf techniques from the literature (Bertsimas
and Georghiou 2015, 2017, Hanasusanto et al. 2016, Subramanyam
et al. 2019, Vayanos et al. 2011). In section 7, we show the performance
of a static (i.e. conservative) approximation to the Problem (5), which
is sufficient to illustrate the benefits of incorporating uncertainty
directly in the model.



6 APPROXIMATION APPROACH
The scenario-based extensive form of Problem (5) is as follows

minimize 𝜏

subject to 𝜏 ∈ R

𝜏 ≥
∑︁
𝑖∈I

𝑣𝑖

∑︁
𝑡 ∈T

(𝜉𝑖𝑡 − 𝜉𝑖,𝑡−1) (1 − 𝑥𝝃
𝑡

𝑖,𝑡−1)∑︁
𝑖∈I

𝑐𝑖𝑡 (𝑥𝝃
𝑡

𝑖𝑡
− 𝒙𝝃

𝑡

𝑖,𝑡−1) ≤ 𝑏𝑡

𝑥
𝝃 𝑡

𝑖𝑡
≥ 𝑥𝝃

𝑡

𝑖,𝑡−1

𝑥
𝝃 𝑡

𝑖𝑡
∈ {0, 1}

 ∀𝑖 ∈ I


∀𝑡 ∈ T


∀𝝃 ∈ U

(6)

Given that the huge number of scenarios in the uncertainty set U
makes the problem computationally intractable, we approximate

the optimal solution of Problem (6) by solving the following static

problem

minimize 𝜏

subject to 𝜏 ∈ R

𝜏 ≥
∑︁
𝑖∈I

𝑣𝑖

∑︁
𝑡 ∈T

(𝜉𝑖𝑡 − 𝜉𝑖,𝑡−1) (1 − 𝑥𝑖,𝑡−1) ∀𝝃 ∈ U∑︁
𝑖∈I

𝑐𝑖𝑡 (𝑥𝑖𝑡 − 𝒙𝑖,𝑡−1) ≤ 𝑏𝑡

𝑥𝑖𝑡 ≥ 𝑥𝑖,𝑡−1
𝑥𝑖𝑡 ∈ {0, 1}

}
∀𝑖 ∈ I

 ∀𝑡 ∈ T .

(7)

In Problem (7), all decision variables are here and now. In other

words, it is a one-stage optimization problem and we call it Stati-

cApprox. This problem then can be solved by constraint generation

algorithm, in which the problem is initialized with an empty uncer-

tainty set and scenarios in the uncertainty set are added progres-

sively when the solution is not optimal. In Section 7, we compare the

performance of StaticApprox with the following knapsack problem.

maximize

∑︁
𝑖∈I

𝑣𝑖𝑥𝑖

subject to

∑︁
𝑖∈I

𝑐𝑖𝑥𝑖 ≤ 𝑏1

𝑥𝑖 ∈ {0, 1} ∀𝑖 ∈ I .

(8)

We can think of the reserve selection problem in a knapsack

problem framework, which is described as follows. At each time

stage the conservation planner is given a certain amount of budget

which the planner can use to purchase some parcels to protect. The

objective is to maximize the value of parcels protected in the final

time stage. This problem can be modeled as the following integer

linear programming problem.

maximize

∑︁
𝑖∈I

𝑣𝑖𝑥𝑖𝑇

subject to

∑︁
𝑖∈I

𝑐𝑖 [𝑥𝑖𝑡 − 𝑥𝑖,𝑡−1] ≤ 𝑏𝑡 ∀𝑡 ∈ T

𝑥𝑖𝑡 ≥ 𝑥𝑖,𝑡−1
𝑥𝑖𝑡 ∈ {0, 1}

}
∀𝑖 ∈ I, ∀𝑡 ∈ T .

(9)

In Section 7, we will compare the solution given by the StaticApprox

to Problem (5) with the solution given by the knapsack problem

(denoted as Knapsack).

Note that when the robustness level
1

𝝀 is larger than a certain

threshold, if we keep increasing Γ, the performance of StaticApprox

will be getting similar to the knapsack problem. Intuitively, when

the uncertainty set is large enough, all the parcels which have

not been protected will be developed immediately. In this case,

minimizing the loss is equivalent to maximizing the protected value,

which is what the knapsack problem optimizes for. We summarize

this in the following proposition.

Proposition 6.1. For sufficient small 𝝀, particularly, the uncer-
tainty set U contains non-decreasing constraints only, the following
two statements are true.

(a) Given any optimal solution 𝒙 to Problem (2), there is an optimal
solution 𝒙̃ to Problem (8) s. t. {𝑥𝑖 }𝑖∈I = {𝑥𝑖1}𝑖∈I .

(b) Given any optimal solution 𝒙̃ to Problem (8), there is an optimal
solution 𝒙 to Problem (2) s. t. {𝑥𝑖1}𝑖∈I = {𝑥𝑖 }𝑖∈I .

7 NUMERICAL EXPERIMENTS
Data Preprocessing.We cleaned up the data by erasing any points

with missing values and were left with 1678 data points to use. After

that, we removed parcels which are already protected according

to (Jȩdrzejewski et al. 2018). From there, we were left with 1310

available points. We narrowed our data down further by excluding

any points outside of the jaguar’s current natural range, which was

also from (Jȩdrzejewski et al. 2018), since there would be benefit in

protecting an area where we know jaguars do not live. This left us

with 692 parcels. Figure 5 shows the protection status data and the

parcels left after data cleaning.

To calibrate the uncertainty set, we used the threat index and K-

Means clustering to create a hierarchy of four groups. The highest

level group is all of Latin America and includes all of our points.

To get the next level, we use the development threat data to divide

all parcels into four clusters. We did this because we want to pri-

oritize development threat as a factor in our decisions to protect

parcels. The development threat data we used came from NASA

SEDAC (Oakleaf et al. 2015) put every area of land on a 1-4 scale

of threat with 1 being the least threatened and 4 being the most

threatened. The third level was to create the subclusters within

each initial cluster. We used K-Means clustering on that group and

got nine clusters. We decided on the number of clusters to use

in each clustering based on an R function called NbClust (Char-

rad et al. 2014). The parameters we used to generate these initial

clusters were latitude, longitude, precipitation, mean temperature,

canopy, and human population density. The reasons for using these



Figure 5: Protection Status
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Figure 6: Nine Initial Clusters

specific datasets is discussed in Section 2. All of these values were

normalized. Figure 6 shows what these nine clusters look like.

Results. In the numerical experiment, we consider a single-stage

problem, which can be solved to optimality within 10 minutes. We

benchmark our proposed approach against the knapsack approach.

Figure 7 shows the performance of the proposed approach and

knapsack approach in terms of the value of protected parcels and

the average value of lost parcels for different budgets. The red curve

is the proposed approach and the blue one is the knapsack approach.

The shaded area is the range between the maximal lost and minimal

lost in the 1000 simulated samples. Although in Figure 7(a) on the

left, knapsack approach has a better performance in terms of the

value of protected parcels, in real world applications, however, what

we truly want is to decrease the loss due to development. So in

terms of the number of lost jaguars, which is shown in Figure 7(b),

the proposed approach can prevent more jaguar loss. Actually, the

proposed approach can decrease the loss by 19.46 percentage in

average.
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Figure 7: Performance of proposed approach and of knapsack
method in terms of Jaguars preserved/in conserved areas

8 CONCLUSIONS AND FUTURE RESEARCH
This paper formulated the biodiversity conservation problem as

a game between the conservation organizations and human de-

velopment. It proposed a multistage robust optimization model to

minimize the value of loss due to the development.We constructed a

likelihood uncertainty set based on the data from (Jȩdrzejewski et al.

2018), and reformulate the robust optimization problem with en-

dogenous constraint uncertainty into a robust optimization problem

with exogenous objective uncertainty, which is computationally

tractable. We used a proposed StaticApprox method to approxi-

mately solve the problem. The numerical results suggest that the

StaticApprox method outperforms the general knapsack method.
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