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We introduce a novel measure for the quantum property of “nonstabilizerness”—commonly known as
“magic’—by considering the Rényi entropy of the probability distribution associated to a pure quantum
state given by the square of the expectation value of Pauli strings in that state. We show that this is a good
measure of nonstabilizerness from the point of view of resource theory and show bounds with other known
measures. The stabilizer Rényi entropy has the advantage of being easily computable because it does not
need a minimization procedure. We present a protocol for an experimental measurement by randomized
measurements. We show that the nonstabilizerness is intimately connected to out-of-time-order correlation
functions and that maximal levels of nonstabilizerness are necessary for quantum chaos.
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Introduction.—Quantum physics is inherently different
from classical physics and this difference comes in two
layers. First, quantum correlations are stronger than
classical correlations and do violate Bell’s inequalities
[1,2]. Classical physics can only violate Bell’s inequalities
at the expense of locality. Second, based on the assumption
that P # NP, quantum physics is exponentially harder to
simulate than classical physics [3]. The theory of quantum
computation is based on the fact that, by harnessing this
complexity, quantum computers would be exponentially
faster at solving certain computational tasks [3—7].

It is a striking fact that these two layers have a hierarchy:
entanglement can be created by means of quantum circuits
that can be efficiently simulated on a classical computer [8].
These states are called stabilizer states (STAB) and they
constitute the orbit of the Clifford group, that is, the
normalizer of the Pauli group. Therefore, starting from
states in the computational basis, quantum circuits with
gates from the Clifford group can be simulated on a
classical computer in spite of being capable of making
highly entangled states. The second layer of quantumness
thus needs non-Clifford gates. These resources are neces-
sary to unlock quantum advantage. Since there is never a
free lunch, non-Clifford resources are harder to implement
both at the experimental level and for the sake of error
correction [9-13]. Understanding nonstabilizerness in
quantum states is of fundamental importance to understand
the achievable quantum advantage in schemes of quantum
computing [14—17] or other quantum information protocols
[18,19]. Resource theory of nonstabilizerness has recently
found copious applications in magic state distillation and
non-Clifford gate synthesis [20-23], as well as classical
simulators of quantum computing architectures [23-26].

In a broader context, one would like to know what is the
bearing of this second layer of quantumness on other fields
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of physics: from black holes and quantum chaos [27,28]
to quantum many-body theory [28], entanglement theory
[29], and quantum thermodynamics [30].

Standard measures of nonstabilizerness are based on
general resource theory considerations. A good measure
must be stable under operations that send stabilizer states
into stabilizer states and faithful, that is, stabilizer states
(and only those) must return zero. Known measures of
nonstabilizerness either involve computing an extreme over
all the possible stabilizer decompositions of a state and are
therefore very hard to compute or cannot anyway be seen as
expectation values of an observable [21,22,28].

In this Letter, we define a measure of nonstabilizerness
as the Rényi entropy associated to the probability of a state
being represented by a given Pauli string. Computing this
quantity does not involve a minimization procedure. We
also present a protocol for its experimental measurement
based on randomized measurements [31-36]. We show
that, in the context of state synthesis, O(n) magic states are
necessary to prepare a Haar-random state. Then we proceed
to investigate how much stabilizer entropy a unitary
operator can achieve on average on the stabilizer states,
that is, the free resources, and finally we show that the
nonstabilizing power of a quantum evolution can be cast in
terms of out-of-time-order correlation functions (OTOCs)
and that is thus a necessary ingredient of quantum chaos.

Stabilizer Rényi entropy.—In this section, we define a
family of nonstabilizerness measures for pure states. Let P,
be the group of all n-qubit Pauli strings with phases +1 and
+i; then let P, := P,/ (+i1), the quotient group containing
all +1 phases, and define Zp(|y)) := d~'(y|P|y)? as the
squared (normalized) expectation value of P in the pure
state |y), with d = 2" the dimension of the Hilbert space

of n qubits. Note that Y pep Ep(ly)) = trly) (yw|* = 1.
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Thus, since Ep(|y)) > 0 and sum to one, {Ep(|w))} is a
probability distribution. We can see Ep(|y)) as the prob-
ability of finding P in the representation of the state [y). We
can now define the a-Rényi entropies associated to this
probability distribution as

M, (j) = (1 —a) ' log > E3(jy)) —logd, (1)
P€EP,

where we have introduced a shift of —logd for conven-
ience. Now let Z(|y)), the vector with d” entries labeled by
Ep(|w)); then we can rewrite the stabilizer a-Rényi entropy
in terms of its /, norm as

M,(lw)) = a(l — a)~" log |E(jw))|l, — logd.  (2)

The stabilizer Rényi entropy is a good measure from
the point of view of resource theory. Indeed, it has the
following properties: (i) faithfulness: M,(|Jy)) =0 iff
lw) € STAB, otherwise M, (|y)) > 0; (ii) stability under
free operations C € C(H): M,(Cly)) = M,(|lw)); and
(i) additivity: M, () ® [¢)) = M(I)) + M,(|4)-
The proof can be found in [37]. We are particularly
interested in the case o = 2:

M;(Jy)) = —logd||E(|y))II3. (3)

The above quantity can be rewritten in terms of the
projector Q:=d 23" pcp P®* as M, (|y)) =—logdtr(Qly)
(w|®*). The stabilizer a-Rényi entropies are upper bounded
as M,(Jy)) <logd. The proof is elementary: from the
hierarchy of Rényi entropies we have that for any a > 0,
M, (Jy)) < So(Jy)) =log card(|y))/d and then note that
card(|w)) < d*, where card(|y)) is the number of nonzero
entries of Z(|y)). This bound is generally quite loose for
pure states. For the stabilizer 2-Rényi entropy we can
obtain a tighter bound: M, (|y)) < log(d + 1) — log 2. This
is easy to see by picking a Hermitian operator p and setting
Ei(p) =tr(p) = d" and Ep(p) = tr(Pp) = d~'(d + 1)
for all P # 1, which maximizes the 2-Rényi entropy by
keeping trp = 1 and trp? = 1, although p results being
nonpositive in general [45].

Another useful measure of nonstabilizerness is given by
the stabilizer linear entropy, defined as

My (lw)) =1 = d||E(|y))I13. (4)

which obeys the following properties: (i) faithfulness:
My, (lw)) = 0 iff |w) € STAB, otherwise My, (jy)) > 0;
(ii) stability under free operations C € C(H): My, (Cly)) =
M, (|lw)); and (iii) upper bound: M(|y)) < 1-2(d + 1)7".
The proofs are easy consequences of the previous
considerations.

Let us now show how this measure compares to
other measures: the stabilizer nullity [22,46] is defined

where  St(|y)) =

as  v(|y)) =logd —log|St(|y))l.
{P €P,|Ply) = *ly)}.
Proposition: The stabilizer a-Rényi entropies are

upper bounded by the stabilizer nullity

M(ly)) < v(lw)). (5)

The proof can be found in [37]. Notice that for @ = 1/2, the
Rényi entropy reduces to M »(|y)) = 2log D(|y)), where
D(|w)) = d™"' Y pep |tr(Plw)(w|)|is the “stabilizer norm™
defined in [20]. More generally, the @-Rényi entropies (with
a > 1/2) can be upper bounded by twice the logfree
robustness of magic [21] R(|y)) := min{||x||,||yw){w| =
> ixi0i,0; € STAB}: M, (ly)) <2log R(|y)). The proof
of this inequality follows straightforwardly from the
hierarchy of Rényi entropies and from the bound proven
in [21]: D(Jy)) < R(|w)) for any state |y).

Example: In order to understand the advantages of the
stabilizer Rényi entropy in terms of its computability, let us
now compute it for n copies of the magic state |H) =
(1/v/2)(|0) + e™/4|1)). A straightforward calculation (see
Ref.[37])yields M, (|H)®") = (1—a)~! (nlog(2'=*+1)—n).

State synthesis.—One of the most useful applications of
the resource theory of nonstabilizerness is state synthesis
[17,20-22,25]. The main idea is that, given a measure M of
nonstabilizerness and two quantum states |[A) and |B), if
M(|A)) < M(|B)) one cannot synthesize |B) starting from
|A) using stabilizer operations. In this context, we use the
stabilizer 2-Rényi entropy to obtain a lower bound on a
synthesis of a Haar-random state.

Theorem (informal): With overwhelming probability,
O(n) copies of the magic state |H) are necessary to
synthesize an n-qubit Haar-random state.

The formal statement and the formal proof can be found
in [37].

Measuring stabilizer Rényi entropy.—An important
feature of the stabilizer 2-Rényi entropy is that it is
amenable to be measured in an experiment. As the purity
can be measured via a randomized measurements protocol
[33,34,36], we show that suitable randomized measure-
ments of Clifford operators can return M,. Let |y) be the
quantum “pure” state. Randomly choose an operator C €
C(2") and operate it on the state C|y); then measure Cly)
in the computational basis {|s)} ={s =0,1}®". For a
given C, by repeated measurements one can estimate the
probability P(s|C) := |(s|C|y)|>. Define the vector of four
n-bit strings § = (s, s,,83,84) and denote the binary sum
of these strings as [|S]| =s, ® s, ® s; ® s,. Then the
stabilizer 2-Rényi entropy is equal to

M (ly)) = —log Z(—2)'”§” Q(s) —logd.  (6)

where Q(S) = EcP(s|C)P(s,|C)P(s3|C)P(s4]C) is the
expectation value over the randomized measurements of
the Clifford operator C. For a proof, see Ref. [37].
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Extension to mixed states.—The stabilizer Rényi entropy
can be extended to mixed states. We define the free
resources as the states of the form y=d!'(1+
> pec ¢pP) with G C P, a subset of the Pauli group with
0 <|G| £d—1. Then, we define the stabilizer 2-Rényi
entropy of the mixed state p as

My(p) = M>(p) — S2(p). (7)

with S,(p) being the 2-Rényi entropy of p and M,(p) =
—log dtr(Qp®*). This quantity is again faithful as it is zero
only on the free resources, is invariant under Clifford
operations C € C(d) then M,(CpC") = M,(p), and has
additivity: M,(p ® o) = M,(p) + M,(c). As a corollary,
if y is a stabilizer state then M,(p ® y) = M,(p). The
proof is to be found in [37]. Numerical evidence also
suggests that M, is nonincreasing under partial trace. The
same randomized protocol can also be employed to
measure M, (p).

Nonstabilizing power.—In this section, we want to
address the problem of how much nonstabilizerness can
be produced by a unitary operator, e.g., a quantum circuit.
We therefore restrict our attention to pure states. We define
the nonstabilizing power of a unitary operator U as

1

M(U) 3=|STTB|

Y MUW)). (8)

ly)ESTAB

where M (|y)) is one of the entropic measures introduced in
the previous section, i.e., one of the stabilizer a-Rényi
entropy M, (|y)) or the stabilizer linear entropy My;,(|w)).
Also the nonstabilizing power is (i) invariant under free
operations, that is, M(U) = M(C,U) = M(UGC,) =
M(C,UC,), with C,C, € C(d), and (ii) is faithful, that
is, M(U) =0 for the free operations U € C(d) and is
greater than zero otherwise. A proof of these properties is
in [37].

The relationship between the 2-Rényi nonstabilizing
power and the linear nonstabilizing power follows easily
from the Jensen inequality

M, (U) > —log[l — My, (U)]. )

The linear nonstabilizing power can be computed explicitly
by averaging the fourth tensor power of the Clifford group:
Miin(U)=1-4(4+d)"'~d(4+d)~' DT tr(US* QU Ty ),
with Ty, = (1/4!) 3 s, T, the projector onto the com-
pletely symmetric subspace of the permutation group Sy,
Q=d?Y ,P® and D, =tr(Qlly,)=(d+1)(d+2)/6.
The proof can be found in [37]. This result, through Eq. (9),
also gives a lower bound to the 2-Rényi nonstabilizing
power. In the following, we provide some useful results
on the linear nonstabilizing power (and, through lower
bounds, for the 2-Rényi nonstabilizing power). First of all,

we provide a characterization of those unitaries that have
zero power: the linear nonstabilizing power M, (U) = 0
if and only if [QTl,,, U®* = 0; see [37] for the proof.
A second interesting result is a characterization of
this quantity in terms of the operator AQIl,, =
U'®* QI U®* — QI that is, the difference between
the operator QIL,, after and before unitary evolution
through U®*. We have M,;,(U) = d27'D7!||AQ 13,
which follows straightforwardly from [[AQTL,||3 =
2D, — 2t (UP*QU®* QIl,,,,). Then again one can apply
the bound Eq. (9)in this form.

After having characterized the nonstabilizing power of a
unitary U, we are interested in knowing what is the average
value that this quantity attains over the unitary group U(d).
We obtain

Ey[Mi(U)] = 1-4(d +3)™! (10)

and consequently the 2-Rényi nonstabilizing power is
lower bounded by E;[M,(U)] > log(d + 3) —log4. The
proof can be found in [37]. This average is also typical. The
linear nonstabilizing power indeed shows strong typicality
with respect to U € U(d):

Pr(| My (U) = Ey[Min(U)]] 2 €) <4e™C4 (1)

where C = O(1). In other words, the overwhelming
majority of unitaries attains a nearly maximum value of
M, (U)=1-0(d™"). For a proof, see [37]. As a corollary,
the average 2-Rényi nonstabilizing power over the full
unitary group U(d) saturates the bound up to an exponen-
tially small error. Note that, because of the left and right
invariance of the Haar measure over groups, the average
stabilizer 2-Rényi entropy over all the set of pure states is
equal to the average 2-Rényi nonstabilizing power over
the unitary group, namely E,,[M,(|w))] = Ey[M,(U)].
To conclude this section, let us show how the nonstabilizing
power lower bounds the “T count” ¢(U), i.e., the minimum
number of T gates needed in addition to Clifford resources
to obtain a given unitary operator [46]:

1(U) = —logy(d — (4 + d)My,) + logy(d +3) = 2. (12)

The proof can be found in [37]. According to the typicality
result, for a generic U € U(d), with overwhelming prob-
ability, one obtains #(U) 2 ©(n).

Nonstabilizerness and chaos.—Having defined a mea-
sure of nonstabilizing power, we now use it to investigate
some important questions in many-body quantum physics
and quantum chaos theory. In [27], it was shown that, in
order to obtain the typical behavior of the eight-point
out-of-time-order correlation functions (8-OTOC) for uni-
versal unitaries, a number of 7' gates of order ®(N) was
both necessary and sufficient. The universal behavior
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of 8-OTOC is a mark of the onset of quantum chaos [27].
Since the T gates are non-Clifford resources, this raises the
more general question of what is the amount of non-
stabilizerness necessary to drive a quantum system toward
quantum chaos. In [27], the setting is that of a Clifford
circuit doped by k layers of non-Clifford one qubit gates,
e.g., the O-phase gates, what we call k-doped random
quantum Clifford circuit [27,29,47,48]. We start addressing
the question of what is the nonstabilizing power associated
to such circuits. We can show the following.
Proposition: The nonstabilizing power is monotone
under a k-doped random quantum circuit and it is given by

Ec,[Min(U)] = 1= (3 +d)7(4+ (d-1)f(0)). (13)

with f(0)={[7d*-3d+d(d+3)cos(40)-8]/[8(d*~1)]}<1.
The proof can be found in [37]. Note that iff k = @(n)
then Ec [M;,(U)] = Ey[Myiy(U)], unless, of course,
6 = x/2, in which case the phase gate is in the Clifford
group and f = 1. This proposition shows how nonstabi-
lizerness increases with non-Clifford doping. We notice
that nonstabilizerness will converge exponentially fast to
the universal maximal value with the number k of non-
Clifford gates used. This is the same type of behavior
shown by the 8-OTOCs [27].

At this point, we are ready to show a direct connection
between the stabilizer Rényi entropy and the OTOCs. We
have the following.

Theorem: The linear nonstabilizing power is equal to
the fourth power of the 2-OTOC of the Pauli operators P,
P, averaged over all the initial states with the Haar measure
and over the Pauli group, that is,

Min(U)=1-4(4+d)' —d*(d+3)47 1 (d+4)7!
X [E\y/>[<OTOC2(1317P2,V’>4>P1.P2]’ (14)

where (-)p, p, is the average over the Pauli group P,,, E|,,)[]
is the Haar average over set of pure states, and
OTOC, (P, P,.y) := (w|P,P,|y), where P, =U'P,U.
The proof can be found in [37]. As a corollary, we can
bound the 2-Rényi nonstabilizing power through the linear
nonstabilizing power.

As we can see, the average fourth power of the 2-OTOC
is related to the same moment of the Haar distribution of
the following averaged eight-point out-of-time-order cor-
relation function: (OTOCg) := (d~'tr(P| P,P3P,P P,P, x
PsP,P,PsPsP,P,P¢P5)), where the average () is taken
over all the Pauli operators P; for i = 1,...,6. One can
therefore show that the linear nonstabilizing power is
related to the 8-OTOC as follows.

Theorem: The linear nonstabilizing power can be
expressed as an eight-point OTOC up to an exponentially
small error in d:

My, (U) = 1 — 4 (1 _dz(d+3)

@+ 9 ) <OTOC8)>.
The proof can be found in [37] and it relies on the fact that
the 2-OTOCs have strong typicality with respect to |y). We
can comment on this last result: in order for the 8-OTOCs to
attain the Haar value, ~d—* associated to quantum chaotic
behavior (cf. [37]), then the nonstabilizing power of U
needs to be My, (U) ~1-4/d for large dimension d. So
only unitaries with maximal nonstabilizing power (up to an
exponentially small error) can be chaotic.

Conclusions.—Harnessing the power of quantum phys-
ics to obtain an advantage over classical information
processing is at the heart of the efforts to build a quantum
computer and finding quantum algorithms. Quantumness
beyond classical simulability is quantified in terms of how
many non-Clifford resources are necessary (nonstabilizer-
ness), and this notion has been colloquially dubbed “magic.”
This information-theoretic notion is also involved—beyond
quantum computation—in physical processes like thermal-
ization, quantum thermodynamics, black holes dynamics,
and the onset of quantum chaotic behavior [27,28,49,50]. In
this Letter, we have shown a new measure of nonstabilizer-
ness in terms of the Rényi entropies of a probability
distribution associated to the (squared) expectation values
of Pauli strings and show that this is a good measure from the
point of view of resource theory. This quantity can be
measured experimentally through a randomized measure-
ment protocol. Thanks to this new measure, we can define
the notion of nonstabilizing power of a unitary evolution and
show that the onset of quantum chaos requires a maximal
amount of the stabilizer Rényi entropy.
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