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Random Clifford circuits doped with non Clifford gates exhibit transitions to universal entanglement
spectrum statistics [1] and quantum chaotic behavior. In [2] we proved that the injection of €(n) non
Clifford gates into a n-qubit Clifford circuit drives the transition towards the universal value of the purity
fluctuations. In this paper, we show that doping a Clifford circuit with Q(n) single qubit non Clifford
measurements is both necessary and sufficient to drive the transition to universal fluctuations of the
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1. Introduction

Random unitary operators [3] are frequently used, in many-
body physics, to model quantum chaotic behavior of highly com-
plex Hamiltonians. For example, in the context of black holes [4,5],
they have been used to model the fast scrambling behavior [6]
through the fast decay of the out-of-time order correlators [7-9].
Random quantum circuits are also employed in many quantum in-
formation protocols, a famous example is provided by the random-
ized benchmarking protocol [10-12], which attempts to estimate
the error rate of quantum unitary operations. The simulation of
random unitary operators on a classical computer requires expo-
nential resources, while, thanks to the Gottesman-Knill theorem
[13], unitary operators belongings to a subgroup of the unitary
group, the Clifford group, can be efficiently implemented on a clas-
sical computer. This result opens the question of whether the Clif-
ford group is enough to simulate the average behavior of the uni-
tary group and naturally leads to the concept of t-designs [14-16],
i.e. ensembles of unitary operators able to reproduce up to the t
moment of the Haar distribution over the full Unitary group /(d).
For a formal definition of t—design (see Appendix A). It has been
proven that the multiqubit Clifford group forms a 3-design [17,18]
and thus, while it can reproduce the universal average value of
the purity in a subsystem, the Clifford group does not reproduce
the universal purity fluctuations. This reflects the presence of a
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complexity gap [19]: while the output state of a Clifford circuit, ex-
hibiting a nearly maximal entanglement entropy, can be efficiently
disentangled [20], the output state of a universal circuit cannot.
Classes of entanglement complexity can be defined as the adher-
ence to different universal features of entanglement. A first class
corresponds to that of the average entanglement in the Hilbert
space, which is well known to be close to that of the maximally
entangled state [21,22]. A second class corresponds to the univer-
sal behavior of the entanglement spectrum statistics (ESS), which
contains richer information than just the entanglement entropy.
Universal purity fluctuations, reproduced at least by a 4-design, are
probes to a third class of entanglement complexity, which is also a
mark of quantum chaos: the simulation of quantum chaos requires
at least a unitary 4-design [23,24]. The hierarchy of these differ-
ent classes is an open problem: for instance, it is not known if
possessing universal ESS implies universal fluctuations of the en-
tanglement entropy. Starting from recent works [1,25], in [2] we
proved that Q(n) non Clifford gates randomly inserted in a Clif-
ford circuit are both necessary and sufficient to obtain a 4-design
with an exponentially small error and thus to drive the transition
towards the third class of entanglement complexity.

In this paper, we ask the question of whether one can obtain
a similar transition by measurements. This paper shows that dop-
ing a Clifford circuit with one shot projective measurements drives
the transition in entanglement complexity: while measurements in
the Clifford basis, i.e. any basis obtained from the computational
basis by Clifford rotations, are not able to drive any transition,
measurements on a non-Clifford basis are. To detect the transition
in entanglement complexity we look at the scaling of the purity


https://doi.org/10.1016/j.physleta.2021.127721
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2021.127721&domain=pdf
mailto:s.oliviero001@umb.edu
https://doi.org/10.1016/j.physleta.2021.127721

S.EE. Oliviero, L. Leone and A. Hamma

Fig. 1. Scheme of a Random Measurements Doped Clifford circuit.

fluctuations in a given bipartition of the Hilbert space, because,
as explained above, the value of purity fluctuations discriminates
between a 3—design and a 4—design. We compute the average pu-
rity and its fluctuations in a Random Measurements Doped Clifford
(RMDC) circuit and show that the ensemble purity fluctuations, be-
ing Q(d~1) for Clifford, attain the full unitary group value 2(d—2)
after Q(n) single qubit measurements. These results, together with
the Gottesman-Knill theorem, are telling us, once again, that quan-
tum chaos cannot be efficiently simulated classically, even when
we have access to measurements. We also remark that collecting
the outcomes from repeated measurements cannot drive any tran-
sition in the resulting mixed state: we analyze the protocol with
repeated measurements, showing that after €(n) measurements,
the output state behaves like the completely mixed state up to an
arbitrarily small error scaling like ~d=¢.

2. Random Measurements Doped Clifford circuits

Let us consider system of n qubits with Hilbert space H =
&' (CJ?, of dimension d = dim# = 2" and ¥ € B(H) an initial
reference pure state; throughout the paper B(H) denotes the lin-
ear space of linear bounded operator on . Let P, be the group
of all n—qubit Pauli strings with phases +1 and =i. Then, the
Clifford group C(d) is the group of unitary operators which trans-
forms Pauli strings in Pauli strings, i.e. for any C € C(d) one has
CPCT e P, for all P €P,. Let us describe the architecture of a
Random Measurements Doped Clifford (RMDC) circuit sketched in
Fig. 1: layers of random Clifford circuits are interleaved with sin-
gle qubit one shot measurements described by local projector P;
applied on the i-th qubit. We denote by k the number of layers in
the circuit. As we will see, the positioning i of the measurements
will not play any role. More precisely, let us first evolve ¢ with a
Clifford circuit Co € C(d):

¥ > Yo = CoyrC) (1)

then apply a single qubit one measurement on the i;-th qubit:
let B;, = span{|¢1);, . |¢2);,} be a single qubit basis on the i;-
th qubit, where |¢1);, and |¢2);, are kets in Cizl. Let Pi(y) =
ly) (D |; ® 10, with y = 1,2, where 10 € B(HD) and H =
(9] it (CJZ.. The effect of a measurement on g followed by another
Clifford evolution C1 € C(d) is given by the following map:

P e, PV ]
tr(P" yrc,)

Being one shot measurements, the outcome y; comes random
with probability tr(Pfly')l//cO). Then applying k Clifford circuits Cy
interleaved by k projective measurements in the basis B;, on the
qubit iy, fora=1,...,k:

Yor> Y = (2)
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P oMoyl el P ]

= (3)
tr(P™ . P Cop P Cl - PV

For a given sequence of outcomes 1, ..., ¥, we refer to the state
Y as the output state after a sample of an RMDC circuit. As we
pointed out in the introduction we are interested in computing the
purity of the output state iy in a given bipartition of the Hilbert
space.

Consider a bipartition H = Ha ® Hp of the system of qubits,
let ¥4 = trgy be the marginal state on H4, then the purity of ¥4
is defined as:

Pur yra = tr(y2) (4)

Let Sy € B(’H%Z) be the swap operator on two copies of H 4, then
define Sy =54 ® ]l?z, it is straightforward to verify

Pur ¢4 = tr(Sa®?) (5)

For our scopes, the actual bipartition chosen is unimportant
[2] and thus, without loss of generality, we pick once and for all
the bipartition corresponding to d4 = dg = ~/d. Nevertheless the
proofs of the main results are written in the general case and the
case of dg = 0(1) and dg = 0(d) is analyzed in Appendix B.4.
We intend to compute the average purity over the ensemble of
RMDC circuits by computing the average purity and its fluctuations
over the Clifford operators C, € C(d), @« =1, ...k, cfr. Eq. (3). We
adopt a lighter notation for this average: (Puryy, A>C0
(Pur vy a)c-

First, let us recall how the purity behaves for universal circuits
and for Clifford circuits: if one takes ¥y = Uy UT to be the out-
put state of a universal circuit U € U(d), the values of the average
purity and the fluctuations of purity are given by [2]:

,,,,, CeeCd) =

(Purvru,a)y cpyq) = % =Qd'?) (6)
Ayeu@ Puryy a = 20— 1*
d+1)2(d+2)d+3)
=Qd?) (7)
where we define:
AyexPuryy 4= (PUFZ 1/fU,A>U€x — (Pur vaAﬁ]ex (8)

the ensemble purity fluctuations with respect to the ensemble of
unitaries x. For ¥ = CyCT being the output state of a Clifford
circuit, one gets [2]:

2/d
(Puryrc.a)cce = 1= Q' 9)
d—1)>2
Acec@ Puryc a = m =Q@d™") (10)

While the average purity remains the same, the scaling of the pu-
rity fluctuations differs between a universal circuit and a Clifford
one. As argued in [2] a detection of the transition towards the uni-
versal behavior is given by the scaling in d of the fluctuations of
purity, from Q(d~1) to €(d~2). To the aim of understanding how
measurements can drive the transition towards the universal be-
havior of the purity fluctuations in RDMC circuits, let us introduce
two families of basis: the Clifford basis and the Bgy-basis:

Definition 1. Let B, :=span{|0), |1)} be the single qubit computa-
tional basis, then a Clifford basis B¢ is:
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B¢ :=CB, (11)
where C € C(2).

Definition 2. Let 0 € [0, 7/2], then define the single qubit basis
By :=span {|0) + ¢ [1),]0) — e |1)}.

While Clifford bases are all the bases obtained from the com-
putational one with the application of the single qubit Clifford
group, the single qubit basis By is obtained from the compu-
tational basis B¢ with the action of the Hadamard gate H and
the Ky-gate, namely By = KyHB.. The Ky-gate, defined as Ky =
|0) (0] + e |1) (1] is a Clifford operator iff 6 =0, 7 /2.

In the next section, we prove two results: (i) k = Q(n) single
qubit one shot measurements in the Bg-basis, for 6 # 0, /2, are
both necessary and sufficient to drive the transition towards the
universal behavior of the fluctuations of purity and (ii) there is no
transition if the measurements are made in any Clifford basis.

2.1. Main results

Here we present the main results of this paper: in Theorem 1
we compute the average purity for RMDC circuits and prove that
it remains the same up to a negligible error, in Theorem 2 we
compute the purity fluctuations for RMDC circuits.

Theorem 1. Let the initial state ¥ = |0) (0|®" and d4 = dg = +/d, then
the average purity for RMDC circuits in Fig. 1 and measurements made
in the basis By reads:

2+/d

(Puryiale = 707

Qkd—3/?) (12)

See Appendix B.1 for the proof. The above result is sufficient to
our scopes: although the average purity for RMDC circuits equals
the universal value, see (6), up to an error which becomes sig-
nificant for k = Q(d), we just need the number measurements k
to scale as ©2(logd), as the next theorem shows, to get the purity
fluctuations scaling as (d—2) and thus to observe the transition
from the Clifford behavior to the universal one.

Theorem 2. Let the initial state 1 = |0) (0|®" and dp = dg = +/d, then
the fluctuations of the purity for RMDC circuits and measurements made
in the basis By read:

7 40)\*
AcPurm,A=Q<(+c%(9)) d—1+pa—2) (13)

where p = Q(1).
The proof is given in Appendix B.2.

Remark 1. The result of Theorem 2 does not depend on which
of the projector of the basis By we select at each layer k. In-
deed Z(|0) + €' |1)) = |0) — €' |1) and trivially Z € C(2). For the
left/right invariance of the Haar measure, the average over the
Clifford group is preserved. Thus we consider, without loss of gen-
erality, a given sequence of outcomes, namely y, =1 for any «,
and drop the superscript on P; in the rest of the paper.

Corollary 1. For any 6 # 0, Z; iff k = Q(logd), then:

AcPuryy 4 =Q(d?) (14)
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Density-Plot of the purity fluctuations for d = 22 and dy = 2° and dp = 2°

=
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Fig. 2. Density plot of the logarithm of the purity fluctuations (see Eq. (13)) as func-
tion of the angle 6 of the By —basis and the number of layers k, in the case d = 212
and d4 = dp = 25. (For interpretation of the colors in the figure, the reader is re-
ferred to the web version of this article.)

Proof. From Eq. (13), we have:

2k
Q((%) ):Q(d_]) > k=Q(ogd) o (15)

In the next corollary we show how measurements in Clifford
basis cannot drive any transition to universal behavior of the fluc-
tuations of purity:

Corollary 2. For any k, the fluctuations of purity for RMDC circuits with
measurements made in a Clifford basis read:

AcPuryp a =Q(d™") (16)

Proof. Starting from Eq. (13) for By, we have AcPuryy s =
Q(d~1); this result holds for any Clifford basis B¢ because of the
left/right invariance of the Haar measure over the Clifford group
[2627]. O

Remark 2. The minimum value of the scaling factor 7 + cos(46) in
Eq. (13) is achieved for 6 = 77 /4, that is, for By obtained from the
computational basis applying the Hadamard-gate and the T-gate.
Note that in [2] we found a similar behavior for Clifford circuits
interleaved by T gates. (See Fig. 2.)

3. Repeated measurements

In previous sections we showed how one shot measurements
in a Clifford circuit could drive the transition to a universal behav-
ior. At this point, a natural question arises: what if we collect the
outcome of a measurement many times? In the following, we show
how collecting the outcomes of repeated measurements affects the
evolution through the circuit. Consider a n-qubits reference state
and let ¥ undergo a Clifford evolution Cp:

¥ = Yo = CoyrC) (17)
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then applying the measurements in the basis B; = span{|¢1)i,
|¢2)i} on a random qubit i; followed by another Clifford evolu-
tion Cq:

Yor> Y1 =

recall that the collection of many outcomes of a measurement
returns a mixed state obtained by the action of the dephasing su-
peroperator Dgl. [28], in the basis B;,, defined as:

C1Dg,(Cop ! (18)

Dp, () == (1)1 (d11; ® 1)) (Ib1); (1] ® 17)
+ (I¢2)i (2l ® 1DV () (2l @ 1D) (19)

Iterating the process k times, the output state v reads:
Vi = CDs, (- C1Dg, (CoyCHCT--)Cf (20)

we thus have linear Completely Positive Trace Preserving (CPTP)
maps Dp, interleaved with global Clifford operators Cq, for o =

., k. To compare this protocol with RMDC circuits discussed in
Sec. 2, we compute the average purity and its fluctuations for the
output state v, by averaging over all the Clifford operators. Let us
now define:

Definition 3. Let M be a linear CPTP map, O, € B(H®2) and
O4 € B(H®*), then the (M, Cy)-fold channels of order 2 and 4
are defined:

% 00 (02 = (CEM(...CP2M(C§? 0 CT®2))> (21)
O 00 (O = (CEM(...CFM(C§? 04 CT®4))> L@

where Cq,...,Cy € C(d) are Clifford operator and the average is
taken according to the Haar measure over groups.

Thanks to the left/right invariance of the Haar measure over
the Clifford group, the average purity and its fluctuations do not
depend on which qubit we measure at each step; thus without loss
of generality we can take measurements always on the same qubit
i1, DB,.a = DB,.] for any «. Therefore, we can express the average
purity and its fluctuations in terms of (Dg, Cy)-fold channels:

(Pur i a)e = tr(Sa®(p, o, (%) (23)
— (A) 4) 4

ADB,Ck (02) = tr(T(lZ)(34)q>(Dg Cr) (w® )
— r(Sa®(D, o) (W5 (24)

where we adopted the lighter notation Dp = DB,.]. Before spe-
cializing our calculations for the dephasing superoperator Dg, we
can give a general theorem regarding the fold channels of order 2
and 4:

Theorem 3. Let M a linear CPTP quantum map. Let O, € B(H®2) and
O4 € B(H®*) two linear operaztors on H®? and 7;{@’4 respectively. Then
the (M, Cy)-fold channels @M’Ck(oz) and q’S\/)t,ck(O@' of order 2
and 4, read:

%) 0 (0= aP(©O)T, (25)
PES2
where
a3 (0 =Y (E4,005 (0.
o€esy

=
=)

po =D Woett(M(T)T,)

KESy
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and EX is the k-th matrix power of &, while

;) (0) =Y Wptr(OTy),

KESy

with W . the Weingarten functions defined in (A.2) and

o) 0 (0= (0)Q +by (©O)T, (26)
PES4

where the coefficients cp)(O4) and b< )((”)4) obey to the following re-
currence relations:

O =Y (Mpecs™(On) + Npobs ™ (04)) (27)
0€Sy

Y (On) =Y (0p0cy™"(Os) + Ppobs ™ (O4)) (28)
o€Sy

with the following initial conditions:

) =) Wi tr(04QTe) — Wy, tr(0sQ 1 To) (29)
0€Sy

by = > W, tr(04Q To) (30)
O0€Sy

where Wi are the generalized Weingarten functions defined in (A.4)
and:

Mep= Y (Wh tr(M®H(QT,)QTo)
o€Sy
Wo tl(M®HQTp) Q' To))
Nep= D (WS tr(M®(T,)QTy))
0€Sy
W tr(MEH(T,) QL Ty)
Owp= Y Watr(M®H(QT,)Q*Ty) (31)
0€Sy
Pep= Y W ttM®(Tp)Q " Ty)
0€Sy

The proof is given in Appendix C.1. In the following section
we use this general theorem to answer the question posed at the
beginning and conclude that collecting the outcomes of repeated
measurements in a Clifford circuit behave very differently with re-
spect to one shot ones: (i) collecting the outcomes of repeated
measurements does not drive the transition towards the univer-
sal behavior of purity fluctuations and (ii) it does not discriminate
between Clifford and non Clifford basis, as one shot measurements
do.

3.1. Subsystem purity

Equipped with Theorem 3, we can compute the average purity
and its fluctuations for the mixed state obtained by the collection
of many outcomes and thus use the general result of Theorem 3
for M = Dp, defined in Eq. (19). In Proposition 1 we compute the
(Dg, C)-fold channels for ¢®2 and ®* while in the subsequent
corollaries we compute the average purity and its fluctuations ac-
cording to Eqgs. (23) and (24).

Let us consider single qubit measurements in the basis By =
span{|0) +e' [1)}, defined in Definition 2, with the following
lighter notation: Dp, = Ds.
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Proposition 1. The (Dy, Cy)-fold channels of ®? and v ®* read:

k
P W)=Y a)) W®HT, (32)
PES2

where the coefficients for any 6 are given by:

(k)(¢®2) hk
2 dZ(d+ 1)
0 y®2) — h*
(12)(‘/f ) = diz(d Y (33)
and
o W™= [P WeHa +bP WEHIT, (34)

PES,

where the coefficients cg‘), bf(f) for 6 = /2 are explicitly calculated in
Appendix C.2.2.
Moreover for k — oo we obtain:

NN PV
Jim @5, ¢ V) =" (35)
1@4
Jim @%‘) ) W = o (36)

The proof can be found in Appendix C.2.

Corollary 3. The average purity for any 6 and d4 = dg = +/d reads:

ffd—1D+@d+1

37
Vdd+1) G7)

<Pur 1/’/{ A)Dg Ck

where f = and for k — oo we have (Pur i a)p, c d-1/2,

8(d2 1)

Proof. From Eq. (23) the proof is a straightforward application of
Proposition 1. O

Corollary 4. The fluctuations of purity for 6 = /2 and dy =dp = Vd
read:

_d=-Dd=4 4 3d-1),
ADH/Z»Ck Purl/fA_d(d—{-l)(d—i—Z) d(d+])
S 2d-1) @d-12% 5
dd+n’ “aarnz! %)
where:
_@-8 @ -4 (@ -2
Syan Tae-n "Taeen %Y

while for k — oo we have Ap, , ¢, Puryrqa — 0.

Proof. From Eq. (24), the proof is a straightforward application of
Proposition 1. O

In the next Proposition, we prove that after Q(n) steps the pu-
rity reaches its minimum value d—1/2, and its fluctuations can be
set arbitrary small, meaning that the state i is getting more and
more mixed towards the completely mixed state.

Proposition 2. For k = an with o > 0, the average purity for any 6
equals d=/2 up to an error (d=*'°%2 1), while the purity fluctuations
for & = 1 /2 can be set to be Q2(d—* 10821,
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Proof. Set k = an, then from Eq. (37), since 0 < f < 1, we have:

1 _
(PUTY ) Dy, com) = 5 + 2@ alog2 Iy, (40)

and from Eq. (38), and for any k > 0 we have the following bound:

A, .0 Purya < ht (41)

where h is defined in Eq. (C.36). Since 0 < h < 1, we have that if
k > an, where o > 0

Ay .0 PUrya <d™ logz h (42)

this concludes the proof. O

In Proposition 1 we computed the fold channel of order 4 just
for 6 = /2 and in Proposition 2 we showed that the purity fluc-
tuations can be set arbitrary small with k = Q(n) iterations; these
two striking results do not depend on the fact that By, is a Clif-
ford basis (cfr. Definition 2). In the next Lemma we show that, for
0 = 1 /4, both the asymptotic value of the (Dy4,Cy)-fold chan-

4) ®4 . .
(D(DNM,C,()(‘” ) and the convergence rate coincide with the

ones for § = /2. We thus conclude that, contrary to the case of
one shot measurements, here 77 /2 is not a special, fine-tuned case:
repeated measurements do not discriminate between Clifford and
non Clifford basis, giving in both cases the completely mixed state
Yoo 1.

nel

Lemma 1. For 6 = 1t /4, the following results hold:

N— o4, _ 1%
kllnolo ®(Dn/4vck) W= d4 (43)
and for k = an with o > 0 the fluctuations of the purity can be set to be
Q(dfollogz h).

The proof can be found in Appendix C.3.

Conclusions and outlook. In this paper, we showed that €(n) one
shot measurements in a non Clifford basis in a n-qubit random
Clifford circuit drive the transition to the third class of entangle-
ment complexity, defined by the adherence to the universal value
of the ensemble purity fluctuations. We also analyze the case of
multiple measurements, showing that it is not suitable to drive the
complexity transition: after 2(n) measurements the output mixed
state ¢ looks like the completely mixed state.

In perspective, there are several open questions. One could gen-
eralize these results by considering multiple qubit measurements:
on the one hand is clear that measuring all the qubit at once can-
not drive any transition because this would result in completely
factorizing the state; on the other hand, increasing the density of
measurements, it would be interesting to investigate if there is a
threshold from which there are no complexity transitions. A re-
lated question is that of whether 2(n) measurements are enough
to reproduce the full ESS. More generally, we find it important to
address the question of the classification of entanglement com-
plexity classes. Finally, given a finite number of non-Clifford re-
sources, one could ask what is the most efficient placement of
non-Clifford gates and measurements to achieve the desired uni-
versal features.
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Appendix A. Mathematical preliminaries
A.l. Haar measure over groups

Here we give a review on the Haar average over the full unitary
group and the Clifford group.

A.1.1. Unitary group average
Given O € B(H®') a bounded operator on t-copies of H the
Haar average reads

(Ovveu) = / duut®oy®t
Ud)

Y Wpotr(OTe)T,
p,0€St

(A1)

where T, is the permutation operator standing for the permuta-
tion p € S¢, the symmetric group of order t! and W, the Wein-
garten functions defined as

d? o
Wpo_z @ x"(pa) *(po)

O D, (A2)

At

where A label the irreducible representations of S; with dimen-
sions d;, Dy = tr(pt) with l'[A the projectors on the irreducible
representations of S;, and x (,00) are the characters of the ir-
reducible representations A of S;. For more details on the Haar
average, see [26,27].

A.1.2. Clifford group average
Given O € B(H®?), the integration formula for the Clifford
group reads

(Oc)e = / dcct®4oc®4
c(d)
= Y W, tr(0QT,)QT,

p,0E€Sy

+ W tr(0Q " Tp)Q Ty

(A3)

where Q = ;—z Y peP@) P® and Q1 =1%* - Q, T, are permu-
tation operators standing for the permutation o € S4, while Wpi(7
are the generalized Weingarten functions, defined as

& x*(po)
+ _ A
W= @z (A4)
A4
DF#0

as for the Haar average on the unitary group A labels the irre-
ducible representations of the symmetric group S4, and x*(po)
are the characters of Sy, d;\ is the dimension of the irreducible
representation A, while D _tr(Ql'[ ) and D; = tr(QJ-H ). More
details in [2,29].
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A.2. Unitary t-design

In this section, we provide the formal definition of unitary t-
design, more details can be in [16-18]. Let us consider a system
of n-qubit with Hilbert space H = ®',-1:1 (CJZ-. Given an ensemble of

unitaries with a fixed probability distribution & = {p;, U;}, £ is a
unitary t—design iff
> PP pU = / duu® pu'e (AS5)

i U

for all the quantum states p € H®". If this condition is satisfied the
ensemble £ is able to reproduce the statistics of at least t moments
of the uniform distribution over the unitary group.

A.3. Average of a ratio

Let x, y two stochastic dependent variables. Here we want give
an approximation of two quantities:

X X x\\?
rx,y):= <—> X,y := <<— — <—>) > (A.6)
y y y
and bound the error. First r(x, y). Let us Taylor-expand % around
(y):
1 1 1
= —_(y— A7
y o ( (y)* v <y>)> A7
then:
r(x )—<i>+9<i< oy >)) (A8)
=\ 2 Y '
_x Lo (((X— (X))(J; - (y>)))
") (y)
For ry(x, y)
2
r2(x,y) = <i _ W +E>
y
(-5
={|-—-— +€ (A.9)
y
X (x)
21 2 - 22
" <<y <y>>>€
From Eq. (A.9) we have
<(i_@>>=e (A10)
y
Thus:
2
rx,y) = <i — ﬂ) + 3¢ (A11)
y
Just like above, let us expand % around the mean %
X (x) ( 1 (x) )
—=—4Q—&x- - —=(y - Al12
Y=o + ) (x—(x)) (y)z(y () (A12)

then

(Lﬂ)z _ Q<L<x—<x>>—ﬂ< iy >>)2 (A13)
vy w) 1\ p2? Y '

After some algebra we find that:
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((x—(x1)?)
)= +
20 9) ( ()2 )

2<(><— XNy —

(A14)

Appendix B. Main theorems
B.1. Proof of Theorem 1
In order to prove Theorem 1 we need to compute the average

purity over RMDC circuits. Taking the average over the Clifford op-
erators Cy, « =1, ...,k and from Eq. (5) we have:

(Pur i a), = tr(Sa (w,;@)C) (B.1)
First, we define the non-normalized output state:
Uk = CkPy - -- C1 P1Coy Ch Pl - Py (B.2)
The average purity then
Pur i 4
(Pur i ). = <T‘ (B.3)
k c
where N = tr(1/}®2). We make the following approximation:
< ) <PU1‘ \&k,A>C
Puryy a), = ——= +¢€ (B.4)
¢ (Nk)e

and compute the error €:

(PUI” 1/7k,ANl<>C - <PUF &k,A)C (Ni)e

€e=Q 3
(Nk)c

(B.5)

see Appendix A.3 for the derivation of the error €. We have defined
A¢Nig=(N? ) — (Ni)&. First, from Egs. (B.12) and (B.14) we obtain:

urdin) 2
(N T d+1

Then from Egs. (B.12), (B.14), (B.23), (B.27) we compute the error
for the basis By, using Eq. (B.29)

(B.6)

2k
(cos(40)+7)
20k + 24 — 24 (XD
(15 + cos(40))

2k
4cos(46) <7k -2 (1 - ((COS(%M) <>>

(15 + cos(46))

B k cos(86) )i
(15 + cos(40))

€ = 2csc?(20)

(B.7)

Taking the asymptotic behavior for large k, we get € = Q(kd—3/2).
This concludes the proof. O

B.2. Proof of Theorem 2

From the definition of purity fluctuations AcPuryy a :=
(Pur? Y a), — (Pur Wk,A% and from Eq. (A.14) in Appendix A.3, we
have:
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Ac Pur ,ﬁk,A AcNg (Pur l/fk,A)C
(N©)2 I\

AcPuryy s =Q

Pur v N> <PurA )
< Yk, aNk c Yk, A B

-2 B.8
(Ni)2 (B8)
. 2<PUF 1//1<,A>C (Nk>c<PUF 1//1<,A>C
(N)S

It is sufficient to plug Eqgs. (B.12), (B.14), (B.23), (B.25), (B.27) and
(B.29) to obtain the desired result. O

B.3. Calculations for the non-normalized output state tﬁk of RMDC
circuits

In this section, we develop the calculations regarding the non-
normalized output state - labeled as v/ - obtained after k one shot
measurements of the initial state . For the aim of our calculations
we need to estimate the averages of {/®2 and /®* and their appli-
cations to the subsystem purity, given a bipartition H = Hs ® Hp,
with dy =dg = +/d. Let us set a notation we use throughout these
proofs: let s = 2,4, we denote as A € B(C*®), an operator A
whose support is on s copies of the i-th qubit Hilbert space (Ciz,

while B® e B(HD®5) an operator B whose support is on s copies
2
of HO = X4 Cj-

B.3.1. Calculations for <1/A/,§’2)C
Let B :=span{|¢1);.|¢2);} be a single qubit basis, then let P®)

be either |$1); (¢1]; or |¢2); (¢2]; and P; = PD @ 1D, The first Clif-
ford average gives us
R . My
o2 ®2CT®2> E( ®2> _ 2
<0W 0 /e 1/foctrl"lz
where I, = J(1%2 + S), with S the swap operator between two

copies of H. Applying the first projector P;, on the i{-th qubit, we
obtain

(v2), — PE? <¢7®2> P2 (B9)
_ (i1) (i1) p®2
= ter 2N TV Ty PE
PES2

pine2 g (v
trll,
where we used the fact that T, = Tg‘) ® T;F) for any p € S, and
l'[gi” =1 (]1®2 + 5@))' Taking another Clifford average

e e, = )

Cq

(B.10)

trl'[g”
o trlltrIly

Note that the above result is independent from the qubit i; on
which the projector P;, acts and from the basis state on which

P;, projects onto. Indeed trl'[;a) =d(d+2)/4 just depends on how
many qubits we are not measuring. If we iterate the process we
obtain:

—\ k
(]// > trl'[(zll) I,
kife™ trll, trll,

(B.11)
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Defining Ny =tr (&,;@2), the average of Ni, can be easily derived
from the previous results and we obtain
—\ k

(i1)
trIT,
tril,

(Ni)e = (B.12)

It is possible to calculate the subsystem purity for the non-
normalized output state, that reads

(Pur i), =tr (507, )

—\ k
s\ tr(Sally)

trll, trll,

(B13)

—\ k
tl‘l_[g]) da+dp
trll, dadpg +1

which can be easily derived noting that S = S4Sg, recalling that
Sa=S4®1%? and similarly for Sg.

B.3.2. Calculations for <1/},§’4

Let By be the single qubit basis defined in Definition 2, then let
P® be one of the projector on By and P; = P® @ 10, We study
first the average of w,fg"‘, for the first step we have [2]:

®4.7 @4 T®4
(CO V6 >C

E(%g“)c =col4Q + boTly (B.14)
0

where Q is defined in Appendix A.1.2 and IT4 = (4)~! 25654 Ty.

Given ¢ = |0) (0|®" then
o=t (L] ! (B.15)
°=4\b; "D_) D_ '

1 1
bo=(1—-)— B.16
o=(1-3) o (816)

where Dy =tr(QIl4) and D_ = tr(I14) — tr(Q I14). Applying the
first projector P, on the ij-th qubit to <g@6®4>c we obtain

PE(UY), P2t = P (collaQ +bolla) PE*
I o (7
— cotr (PVBQ ) et g Q(“)Hg )
- n
+b0p<n>®4®n<‘) (B17)

where we used that Q = Q@ @ Q@ as proved in [2] and
T, T(“) ® T(”) and T(“)P(”) = P and we defined l'[“ =

(4!)_] Za €Sa

tain:
<@;®4>C= 3 W;gcotr(ﬁ(i”mQ(“))
p,0€Sy

x tr (1301)@4 ® Q(@ HSH) QT0‘> QTy

+ 3 W;JCOtr(,aan@sz(in)

p,0€S,

x tr (13“'1)@4 ® Q(H> HSH)QLTU> Q*T,

To ) Applying another Clifford operator C; we ob-

(B.18)
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Z Wb tr(P(“)®4®H( )QTU> QT,

p,0€S8,

+ Y Wy, botr (P('1)®4 ® 1'[( )Q T(,) QiT,
P,0€E€Sy
— — — — i
defining Dﬁ[l) =tr (HS‘)Q(“)) and Dfl”) =tr <H£ 1>) after some
algebra we obtain:

2

11)®4q(11) D

<1/}{®4> cotr (B.19)

(o) oo,
1

+ —C tr(p(11)®4Q(11)) Dgrl QJ‘I_I4

_ _C tr( 11)®4Q(11)) D tr (p(11)®4q(11))

il
+_b tr (ll)®4Q(ll)> Dgr])QI—L;

+Eb°( (r) tr(p(ll)®4Q(H)) ()) 01,

The above equation can be rearranged as

co4\ I J\(¢Co
(i), = (emy ) ( ! L) (bo) (B.20)
where the coefficients I, J, K and L are defined as
(F)y (st o) (g (3ot
I=D tr(p 1)®4Q(11)) _tr<P(11)®4Q(n))
1 o .
- 1_tr<p(11)®4 (11)))
5= ( Q
Iy ()
=_tr (p(ll)®4 (H)) D
J D, Q i
1 i o . i
-5 (pﬁ ) (Pivsiq) DS )> (B.21)
i
K=—* tr(ﬁ<i1>®4Q<m) (1 _tr([a(h)®4Q(i1)))
1 il - . i
L= 5- <D§1) Ctr (p(11)®4Q(n)) D£1)>
Reiterating this procedure one obtains at the end
k
o4\ _ I ] o
<ch >C—(QH4 H4)<K L) <b0> (B.22)

Obtained the average of the fourth moment of the non-normalized
output state we can calculate the fluctuations of Ny, the fluctu-
ations of the subsystem purity, and the covariance between the
purity and Ny. The fluctuations of Nj are

AcNp = (tr (1/7,?4)>C — (NK)&

= (D, D4)(11< {>k <;2>

2k

(B.23)

(@)
trIT,
trll,
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while the fluctuations of the subsystem purity are defined as
N 3 .~ \2

AcPuryy 4= (Pur wk’A>c — <Pur ‘ﬁk,A)

—“(T(12>(34>(1//k )
B dA—i—dB 2 (rm{V
dAd3+1 trIly
Co
:(D+ DPur K L bO

trn(ll)
trll,

(B.24)

da +d3 2
dadp +1

where Dpy; reads
A
Drur = tr (T{3) 344

— (24)7 (df\dgz(ii\dg +4d3dy + 4d3dg

(B.25)

+ 10d5d3 + 2dadp + d})
The covariance between the purity and Ny is given by
Cov(Pur . a, Ni) = <Pur x@k,ANk>C - <Pur %,A>C (Ni)e

(isad i),
- <tr (Sa) 1/}1?2>C <tr (1/}’?2>>C
— (D+(12) D4(12)) <II< {>k (ZZ)

2k

(B.26)

()
trIT,
trll,

_ da+ds
dadg +1

where:

Z tl‘(T(A)) Q(A)T(A))tr(Q(B)T(B))
,0654

A A
D4z = I 3 (T T (1Y)
" peSy

Diay =
(B.27)

Thus we proved that to compute the average output state to the
fourth tensor power (¢k®4 , we just need to evaluate four coeffi-
cients I, J, K, L in Eq. (B.21) and take the k-th matrix power, cfr.
(B.22). Similarly to the case of (1//,?2

the positioning of the measured qubit i, at each iteration. We thus
compute these coefficients for P; being one of the projectors of the
basis By, introduced in Definition 2:

tr (,3(1'1)@4(201)) _ 7+ cos(40)
16

note that this result is independent of the projector of the basis
By we choose; the reason behind it is explained in Remark 1. The
four coefficients read:

(7 + cos(40))(7d%> + 21d — 64 + d(d + 3) cos(46))
1024(d% — 1)
_3d(d — 1) +d(d + 3) cos(40)
o 64(d2 — 1)

), the result is independent of

(B.28)

[ =

(B.29)
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125 + 4 cos(40) — cos(89)

K=
512(d? — 1)
_ ([d+7)(d—1)—cos(40)
- 16(d2 —1)

From here, one can easily compute <¢/,®4

uate Egs. (B.23), (B.25) and (B.27). O

> and consequently eval-

B.4. The caseds = 0(1)

In this section, we compute the average purity and purity fluc-
tuations when d4 = O (1) and dg = O (d). For sake of completeness,
we insert the values of the average purity and purity fluctuations
for the Clifford group and the full unitary group:

da+dp
(Pur(Yu) alyeu@ = (Pur(¥c)adceca = dads 1+ 1
2(d* —d%)d3 - 1) ,
A Pur = -
ua PUDA= G @+ o)
(4 —1) (@~ )
Acq) Pur =4 4l —ed™! B.30
c@ Pur(¥rc)a A+ 17d+ 2 a (B.30)
The purity for the measurement doped circuits is equal to:
dp+dp 1
p B.31
(Pur i ale = 5o = + Okdad) ™) (B31)

while its purity fluctuation scales like:

d2—1 /7 40)\ % dz —1
Ac Pur wk A= Q A + COS( ) d_l + A pd_z
’ d4 8 d3

(B.32)
where p is a constant independent from k. Looking at the above
scalings, it is clear that we do not have loss of generality consider-
ing just the case dy = dp = +/d.

Appendix C. Other proofs
C.1. Proof of Theorem 3

C11. (M, Cy)-fold channel of order 2
Let O, € B(H®?) be a linear operator on H®2. Act on it with a

global Clifford circuit ng’z and take the average over Cy
Yo=Y ap(O)T, (c1)
PES?2

where a,(0) = Zaesz W o To. Apply the map M on (Oz)¢,

MP2(02)¢) = Y ap(O)IM®*(Tp)
PES2

(C2)

then apply another Clifford operator C {@2

Z Eoplp(0O2)Ts

p,0€S,

and take the average

(M (0nc), = (C3)

where Ejo = Y, Wotr(M®2(T,)T). At the k-th iteration one
gets the desired result

q>£22;<(02)= Z (Ek)apap(oz)Ta

P,0E€Sy

(C4)
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C1.2. (M, Cy)-fold channel of order 4
Let O4 € B(H®%). Act with a Clifford circuit C§* and take the
average on Cop:

®4 T®4
(CO OaCo >c

Y (€Y (©nQ +by (©)T,

p,0€S,

@
P (M.Co)

(C5)

0

the proof of Eq. (C.6) can be found in [2] and cfoo)((’)4) and bE)O)(Ozl)
are shown in Eq. (30). Let M be a CPTP quantum map, the action

of M®* on (O4), reads
M ((Oa)cy) = Y € (OMPHQT))
p,0€S4
+ 3 b (O MOA(T,) (C6)
p,0€S4
Act with another Clifford operator C{e’d‘ and take the average:
(4) _ 4
O en = (M (Oncy)) (€7)
= Y (€ (09)Q +by (0T,
p,0€Sy
O =Y Wi (Ot (MPHQT,)QTs)
p,0E€Sy
+ Y WEDY (Ot (M (T,)QT,) (C.8)
pP,0E€Sy
> Wil (0t M®4(QT,)Q To)
p,0€S,
Y Wo by (Ontr(MB4(T)Q*To)
p,0€S,
b (On)= Y W (Ontr(M®*(QT,) Q" To)
p,0€S,
+ Y Wo b (0)tr(MOH(T,)Q T,) (C9)
p,0€S,
Therefore, let us define the following 24 x 24 matrices:
Mep= Y (W tr(M®H(QT,)QT,)
0€Sy
W5 tr(M®4H(QT,)Q To))
Nip= D (W tr(M®(T,)QTy))
0€Sy
W5 tr(M(Tp)Q ™ Ty)
Owp= Y W, tiM®H(QTp) Q" To) (C.10)
0€Sy
Pep=Y W ttM®(T)Q "' To)
0€Sy
Then Eq. (C.8) and Eq. (C.9) read:
(08 =Y Mypc (O4) + Nepbly (O4) (C11)
PES4
b (O) = 0pCs (O4) + Pipbly (Os) (C12)
PES4

The latter are recurrence relations which can be easily generalized
to k iterations:

10
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(08 = > Mepch ™ (©O4) + Nipby ™ (O4) (C13)
PES4
b (Oa) = 0ipch ™V (Oa) + Picpby ™" (Oa) (C14)
PESy
with:
Sy = Y. 5(O)QT,+by (ONT, (C.15)
p,0€Sy

To solve the recurrence relation, define the column vectors ¢ and
b with components cfok) and bg‘) p=1,...,24 respectively, and

write the above relations in matrix form

¢® — pek=1 4 Npk-D (C.16)
b® — 0ck-D 4 ppk-1 (€17)
Then define C¥ = (c(k))
(k) k7 c(0)
w (€ M N c
¢ (b(k)) (o P) \bo (C18)

This concludes the proof. O
C.2. Proof of Proposition 1

C2.1. (Dg, Cy)-fold channel of v ®2
From Theorem 3 we need to compute the matrix E, whose
components read E,, = Zaesz WUKtr(M®2(Tp)T,() for M =

Dy = (’) ® 19, First the following factorization holds:

tr(DS(T ) Ty) = tr(ﬁg@z(Tg))T,ii))tr(Tg)T,Ei)) (C.19)
then we find:
U @
g= (0 @D ) (C.20)
2(d2—l)

the coefficients a;,O)(l//‘g’z) =
the k-th coefficients read:

m. Taking the k-th matrix power,

hk
(k) (w ®2)
d2 S d2d+1)
k
a® 2
(]2)(¢® )=t dz(d+1) (CZ])
the asymptotic value for k — oo
(OO) (w®2) —
Etlvg)) (1/,®2) — (C.22)
Thus the asymptotic state reads:
]l®2
; (2 2
klina;lo qD’De,Ck (w® )= d—Z (C.23)

C2.2. (Dy, Cy)-fold channel of y®*

From Theorem 3, we need to compute the four 24 x 24 ma-
trices in Eq. (32) with M = Dy. Looking at Eq. (32) we need to
evaluate tr(M®4(Q Tp)QT,) and similar terms. As proved in [2],
the following factorization holds:

tr(ME4(QT)QTo) = tr(PFQPTH)Q DT
where Q@ = 1(1®% +

gle qubit Pauli matrices and

(C.24)
X®4 4+ Y®4 4 784 [ X,Y,Z are the sin-
+()
Qp

o= tr(Tg)QG)T((,")). After some
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straightforward, but long algebra one could compute the 4 matri-
ces M, N, O, P for M = Dy. Then, for ¥ = |0) (0|®" we have [2]:

0 (e 1T o1y 1
W) = <D+ + D_) D (C.25)
1\ 1
b (y®h) = (1 - 5) o (C.26)

From here we can formally calculate the coefficients c(k) (¥v®%) and

bgo(w@“) through Eq. (C.18). For the case 6§ = /2, we can explic-
itly calculate these coefficients:

(d* + 4d? + 192) f* + (6d° + 29d? + 126d + 168)hk

C((?k) _

(AdHd+1)d+2)d +4)
3(d? +28)g" 3
T 4ddd+1)(d+2)  4d4 (€27
o _ (@ +12gt (d* +16) f*
@) " 4d3(d +1)(d+2) 2d3(d+1)(d+2)(d+4)
hk
T 2d3d+1) (C.28)
b= " (C.29)
@) ™ 4(d +1)(d +2)(d +4) '
W d-12g" (3d> —16) fk
C(abed) = ABA+1)(d+2) 2d83d+1)(d+2)d+4)
hk
METECEY) (C30)
R0 1 1, (5d> — 16) fk
Cabyea) = d4(d+1)(d+2)(d+4)
( — Dt —7(d —2)g*
4d4(d +1) (3D
® _ l B 7hk N 28gk
©" g4 did+1)  dAd+1d+2)
64 fk
- 32
d4(d+1)(d+2)(d +4) (€.32)
W _ 16X B 6g*
@ dBd+1)d+2)d+4)  Bd+1)d+2)
hk
+ Bd+1) (€33)
plo _pto 8
(abe) ™ Z(ab)(ed) T q2(d 4 1)(d + 2)
4fk
— C34
d2(d+1)(d +2)(d+4) (€34)
(k) f*
Pantd = Ga DA+ D@+ D (€33)

here (ab), (abc), ...
fined the followings:

d?—8 d?>—4 d? -2
8(d2—-1)’ 4(d? -1)’ 2(d?2 -1)
Taking the limit for k — oo of the coefficients, one finds that the
only non-zero ones are:

label the conjugacy classes of S4 and we de-

f= g= h= (C.36)

1 1
(00) _ (00) (c0) (00)
—3C  =Ca2p4 =Ca3)ey =0y = 174 (C37)
3 4d
1
b = (C.38)

d4
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Thus the asymptotic state reads:

. 4) 4 Q
kl_l)m ‘I’D,, Ck(I/f@’ )= 4d4( 3194 + T(12)34)
1@4
+ Ta3ya) + T14y23) + vr
]]_®4

Where we have used the fact that Q = T(12)(34Q = T(14)23)Q =
T(13)24)Q.

C.3. Proof of Lemma 1

For & = /4 we cannot explicitly calculate the coefficients in
(28), we rather can find their asymptotic value for k — oco. Define:

M N
89::<o P)

for 6 = /2, /4 we find, by inspection, that Sy is diagonalizable
having just one eigenvalue equal to 1, while the others are less
then 1. Then, let Py be the 48 x 48 projector onto the eigenspace
with eigenvalue 1 of Sy, we find that Py 2 = Py /4 = P, that reads:

(C.40)

1 /p@ pb
P= (P(C) p<d>> (cA1)
where P@ p® p© p@ are four 24 x 24 blocks:
1 =3tr(QTs), p=e
Ppo = 1 1(QTa). o= (ii)kD (C42)
0, Vp#e, (ij)kD)
1 =3tr(Ts), p=e
b .
Ppo =5 1 1(Te). p = (ij)(k) (C43)
0, Vp#e, (ij)kD)
T =
P;)c;= tr(QTs), p=e (C.44)
0, Vp#e
T =
ngg_ tr(Ts), p=e (C.45)
0, Vp#e
Taking the limit for k — oo
lim S 2= 11m /4 =P (C.46)
k—o00

In order to find the asymptotic value for the coefficient we just
need to project the initial coefficients given in Eq. (C.26):

(0 0
(bﬁp;”)) N P<b§0)> (47
From here we conclude that:
]l ®4
Jim q>§§)ﬂ QW®H = lim @%{T QW =— (C.48)

the convergence rate of S:kr /4 towards P is given by the subdom-

inant eigenvalue hy,4 of Sy 4: by inspection we find that the

subdominant eigenvalue hy 4 =hy ) = 2((dd2 it

the convergence rate is the same for 6 = 7 /2, w /4, which con-
cludes the proof. O

this implies that
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