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Abstract: We show that the most important measures of quantum chaos, such as frame potentials,
scrambling, Loschmidt echo and out-of-time-order correlators (OTOCs), can be described by the
unified framework of the isospectral twirling, namely the Haar average of a k-fold unitary channel.
We show that such measures can then always be cast in the form of an expectation value of the
isospectral twirling. In literature, quantum chaos is investigated sometimes through the spectrum
and some other times through the eigenvectors of the Hamiltonian generating the dynamics. We show
that thanks to this technique, we can interpolate smoothly between integrable Hamiltonians and
quantum chaotic Hamiltonians. The isospectral twirling of Hamiltonians with eigenvector stabilizer
states does not possess chaotic features, unlike those Hamiltonians whose eigenvectors are taken
from the Haar measure. As an example, OTOCs obtained with Clifford resources decay to higher
values compared with universal resources. By doping Hamiltonians with non-Clifford resources,
we show a crossover in the OTOC behavior between a class of integrable models and quantum
chaos. Moreover, exploiting random matrix theory, we show that these measures of quantum chaos
clearly distinguish the finite time behavior of probes to quantum chaos corresponding to chaotic
spectra given by the Gaussian Unitary Ensemble (GUE) from the integrable spectra given by Poisson
distribution and the Gaussian Diagonal Ensemble (GDE).

Keywords: quantum chaos; information scrambling; entanglement; twirling

1. Introduction

The onset of chaotic dynamics is at the center of many important phenomena in
quantum many-body systems, from thermalization in a closed system [1-11] to scrambling
of information in quantum channels [12-17], black hole dynamics [18-21], entanglement
complexity [22,23], to pseudorandomness in quantum circuits [24-28], and finally, the com-
plexity of quantum evolutions [29-32]. Several probes of quantum chaos have been studied
in recent years [33-36]. Chaos, equilibration, thermalization and other related phenomena
are described by the behavior of entanglement growth and typicality, the Loschmidt echo,
and out-of-time-order correlation functions (OTOCs) [20,37-45]. Information scrambling
is characterized by tripartite mutual information [12,13] and its connection OTOCs. Pseu-
dorandomness is characterized by the frame potential, which describes the adherence to
moments of the Haar measure [46,47]; the complexity of entanglement is characterized by
the adherence to the random matrix theory distribution of the gaps in the entanglement
spectrum [22,23].

Random matrix theory (RMT) has been extensively studied and applied to quantum
chaos [48-53]. The quantization of classical chaotic systems has often resulted in quantum
Hamiltonians with the same level of spacing statistics of a random matrix taken from the
Gaussian Unitary Ensemble (GUE). One could take the behavior of OTOCs, entanglement,
frame potentials and other probes under a time evolution induced by a chaotic Hamiltonian,
e.g., a random Hamiltonian from GUE, and define it as the characteristic behavior of
these quantities for quantum chaos [54-56]. Though we agree with the heuristics of
this approach, it would be important to compare the time behavior of these probes in
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systems that are not characterized by a spectrum given by a random matrix, or on the
other hand, by Hamiltonians whose eigenvectors are not a random basis according to
the Haar measure, e.g., Hamiltonians with eigenvectors that, although possessing high
entanglement, do not contain any magic, that is, they are stabilizer states. Attempts at
showing the difference in behavior between chaotic and non-chaotic behavior are often
limited to specific examples [38,57]. Moreover, given the proliferation of probes to quantum
chaos, one does feel the necessity of having a unified framework to gather together all
these results.

In this paper, we set out to provide such a unifying framework and to prove that one
can clearly distinguish chaotic from non-chaotic dynamics. The framework is provided
by the isospectral twirling R\%) (U), that is, the Haar average of a k—fold channel. This
operation randomizes over the eigenstates of a unitary channel U but leaves the spec-
trum invariant. In this way, one obtains quantities that are functions of the spectrum
only. The unitary channel represents the quantum evolution induced by a Hamiltonian.
Chaotic Hamiltonians feature spectra obeying the random matrix theory, e.g., GUE, while
integrable systems possess spectra obeying other statistics [58—61]. The main results of this
paper are: (i) the isospectral twirling unifies all the fundamental probes P used to describe
quantum chaos in the form of (Pp); = tr[TOR(ZX)], where T is a rescaled permutation
operator, O characterizes the probe, (-) is the Haar average and (ii) by considering the
isospectral twirling associated to a k—doped Clifford group C(d), we show that the asymp-
totic temporal behavior of the OTOCs interpolates between a class of integrable models
and quantum chaos and does not depend on the specific spectrum of the Hamiltonian;
(iii) finally, by computing the isospectral twirling for the spectra corresponding to the
chaotic Hamiltonians in GUE and integrable ones—Poisson, Gaussian Diagonal Ensem-
ble (GDE)—the isospectral twirling can distinguish chaotic from non-chaotic behavior
in the temporal profile of the probes, though all the spectra lead to the same asymptotic
behavior—a sign of the fact that chaos is not solely determined by the spectrum of the
Hamiltonian but also by its eigenvectors.

2. Isospectral Twirling

Let H ~ C“ be a d—dimensional Hilbert space and let U € U(#) with spectral
resolution U = ¥ e~ 'Ex*TT;, where IT; are orthogonal projectors on . We can think of the
Sp(H) = {Ek}zzl as the spectrum of a Hamiltonian H. Through H we can generate an
isospectral family of unitaries £y = {Ug(H)}¢ := {GT exp{—iHt}G, G € U(H)}. Define
isospectral twirling as the 2k—fold Haar channel of the operator U®FF = Uk @ U@ by

R0 () ::/dG G‘r®2k(u®k,k)G®2k (1)

where dG represents the Haar measure over U/ (). This object has been previously used to
demonstrate convergence to equilibrium under a random Hamiltonian [62] or the behavior
of random quantum batteries [63]. Under the action of (1), the spectrum of U is preserved.
A general way to compute the above average is to use the Weingarten functions [64].
We obtain:

ﬁ(Zk)(u) — Z(O_l)natr( ~7(T2k) U®k’k)T§2k) (2)

o

where T7(Tzk) = T7(T2k) / dg? k), 7,0 € Sy are (rescaled) permutation operators of order 2k,
4% = T and QO Vo = [tr(ﬂ(TZk) T§2k>)}—1 are rescaled Weingarten functions. Notice

that, through U, the isospectral twirling is a function of the time ¢.

3. The Integrability-Chaos Transition

The Hamiltonian generating the unitary temporal evolution in a closed quantum
system can be written in its spectral resolution H = }; E;I1;, showing explicitly that
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the dynamics are contained both in the eigenvalues and the eigenvectors of H. We now
show that information about the asymptotic temporal behavior is contained in the way

we pick the eigenvectors of H. To this end, consider a system of N qubits, H = c?”,

and a Hamiltonian diagonal in the computational basis {|) }fjl, namely H = ) ; E;I1; with
IT; = |i)(i|] orthogonal projectors. Define then the average asymptotic unitary
———=P(E
ue2? .= jim gezz 3)
t—o0

where the average is taken over a Schwartzian probability distribution of spectra. The isospec-
tral twirling of UZ*? thus does not depend on the distribution of the eigenvalues P(E;).

We now map these projectors by IT; — CIT;CT with C € C(d) the Clifford group.
These projectors are not typical in the Hilbert space and they cannot be clearly associated
with chaotic behavior, for instance, it is not clear whether they feature ETH. They would
possess typical entanglement, but its fluctuations obtained by the Haar measure on the
unitary group are not the same. Define the CI—Isospectral twirling for US> as

RE) (Uw) = /C o dCCTHUC @)

A general way to compute the Clifford average of order four is to use the generalized
Weingarten functions formula, which is a rearrangement of the formula shown in [65]:

RE) (U) = L Wi (70)tr(UZ22QT,) QT
o
+ W, (mo)tr (US> Q Tr) Q' T (5)
where Q = dl—z Lpep(aN) P4, QL = 1% — Qand P € P(2V) elements of the Pauli group
on N-qubits, while

43 xM(mo)
+
@2 D:

ng (o) := ) (6)

A| DY #0

here A labels the irreducible representations of the symmetric group Sy, x* (7o) are the
characters of S4 depending on the irreducible representations A, d, is the dimension
of the irreducible representations A, Df = tr(QP,) and D, = tr(QLP,) where P, are
the projectors onto the irreducible representations of S4, and finally, T, are permutation
operators corresponding to the permutation o € Sy.

Let the unitary evolution be generated by a I —doped Hamiltonian H; = C(O* HyC()
where

c =T]clk, @)
r

In the equation above, every C, € C(d) is an element of the Clifford group, while K; is
a single qubit gate not belonging to the Clifford group. In this way, we have doped the
Clifford Hamiltonian with non-Clifford resources. Notice that, for I = 0, the Hamiltonian
is the sum of commuting Pauli strings, and it is therefore integrable. We want to show
that by inserting the gates K,, we obtain a transition to quantum chaotic behavior. This
result would also show that integrability can be deformed in a “smooth” way and attain
a crossover to quantum chaos. To this end, we use a particular probe to quantum chaos
given by the OTOCs, as we shall see in the next section.

4. OTOCs

Scrambling of information can be measured by two quantities, the OTOCs [33] and the
tripartite mutual information (TMI) [13]; namely, the decay of the OTOC implies the decay
of the TMI [12,13]. In this section, we show how the OTOCs are described by the isospectral
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twirling. Consider 2k local, non-overlapping operators A;, B;, ¥ € [1,k|. The infinite
temperature 4k—point OTOC is defined as

OTOCy(t) = d 'tr(AT(t)BY--- Al(t)Bf
X Aq(t)By--- Ax(t)By) ®)

where A,(t) = ¢! Aje='H!. Define A; := Al ® A and similarly for 8.

Proposition 1. The isospectral twirling of the 4k—point OTOC is given by
(0TOCk (1) ¢ = (T (@fs A oy BRI () ©)
See Appendix A for the proof. For k = 1, we obtain the 4-point OTOC, see Appendix A.2:
(OTOC4(#)) ¢ = tr(Tj1a3) (A ® BYRW (1)) (10)

With the above formula, we compute the asymptotic value of the 4—point OTOC:
(OTOCy)¢(00) =Y Wy (70)tr (U™ QT
o

X tI'(T(1423) (A X B)QTH)
+W, (o)t (USQHT,)
x tr(T(1403) (A © B)Q* Ty (11)

Proposition 2. By setting in (10) A and B as non-overlapping Pauli operators on qubits, the
asymptotic value of the Cl—Isospectral twirling of the 4—point OTOC reads

(OTOCy) ¢y (00) = (diz) (12)

See Appendix B for the proof. This value has to be compared with the asymptotic
value for the isospectral twirling obtained by averaging the full unitary group:

1

(d+1)(d+3) (13)

(OTOCy)(00) =
showing a clear separation in the asymptotic decay of the OTOCs between the full Unitary
and Clifford cases. For example, this shows that one cannot obtain the same asymptotic
behavior by using only Clifford resources in a random quantum circuit.

Now we consider [ —doped Hamiltonians by doping with T —gates, without loss of
generality. Using the technique in [66], a lengthy but straightforward calculation gives the
following theorem.

Theorem 1. The asymptotic value of the averaged 4—point OTOC for an | —doped Hamiltonian reads:

T 3\'2 1 B
lim {OTOC, (7)), ' = <4) St +0d) (14)

As we can see, this result interpolates between the Clifford and Haar cases of Equations (12) and (13).

The above equation shows a crossover between integrable and quantum chaotic
behavior. The first term shows the integrable scaling of the OTOCs, while the second term
shows the universal Haar chaotic behavior, see Proposition 2 above. The integrable term
is exponentially suppressed in the doping parameter /. As a corollary, we obtain that iff
I = Q(n), |—doped stabilizer Hamiltonians attain the same scaling of Haar Hamiltonians
for the infinite time 4—OTOCs.
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5. Finite Time Behavior

From now on, we are concerned with finite-time behavior. Such behavior is ruled by
spectral properties, while the eigenvectors are being chosen to be Haar-like, that is, we
use the Haar-isospectral twirling (1). We will see that, insofar only the properties of the
spectrum of the Hamiltonian H are concerned, different ensembles of spectra associated
with different RMT distinguish the temporal profile of the chaos probes in the transient
before the onset of the asymptotic behavior, which is the same for all the ensembles of
spectra with a Schwartzian probability distribution [67]. By averaging over the unitary
group in Equation (1), we have, on the one hand, effectively erased any information coming
from the eigenstates of the Hamiltonian, and on the other hand, already introduced some
of the properties of chaotic or ergodic Hamiltonians. For instance, these eigenvectors
typically obey the eigenstate thermalization hypothesis [1,2,4,68]. In fact, it is striking that
the spectra should have any effect at all once we use random eigenvectors. In order to
examine the spectral properties revealed in the finite time behavior, we need to consider
the spectral form factors.

Taking the trace of Equation (1), one obtains the 2k—point spectral form factors:
tr(R)(U)) = [tr(U)|* = (d + Q(t))¥, which follows easily from the cyclic property of
the trace and the fact that [ dG = 1. The object Q(t) = }_;+j cos[(E; — E;)t] [63] is related to
the quantum advantage of the performance of random quantum batteries. For k = 1,2 these
spectral form factors read |tr(U)[* = Yij eEi=Ei)t and ltr(U)|* = Yk ol (Bt Ej—E=Ep)t
More generally, consider the coefficients ngk) u) = tr(TfTZk) U®KK). After the twirling, all
the information about the spectrum of the Hamiltonian H is encoded in the ESTZ ) (U). We see
that the 2k—point spectral form factors come from the identity permutation 7t = e, such that

Tg(2k) = 1% Fork = 2 and the permutation T7(r4) = T((fﬁ)@)@) = T((g), we instead obtain an-
other spectral form factor, namely 5%‘11;) (U) =d3uw(U) (Ut =d 3y, el CE—E=Et,

which we will be needing later. Spectral form factors only depend on the spectrum of U.
In particular, those we listed only depend on the gaps in the spectrum of H. For k = 2, we

set up this lighter notation for objects that we will be frequently using: 552) =0y, 554) =0y,
523) = ¢3. From now on, we will omit the order of permutations T;. The operators

R (U) for k = 1,2 are evaluated explicitly in [67].
In the following, we consider scalar functions P that depend on Ug = ¢
The isospectral twirling of P is given by (P(t)); = [dG P(G'UG). As we shall see, if Pp
is characterized by a bounded operator O € B(H®?f), we obtain expressions of the form
(Po(t))g = tr[T,OR)(t)], where T, is a normalized permutation operator, o € Sy.
The average (Pp(t)); only depends on the spectrum of the generating Hamiltonian
H. One can then average the value of (P (t)); over the spectra of an ensemble of Hamil-

—iGYHGt

tonians E. We denote such average as (P@(f))GE. One can observe that the average over
the unitary group and average over the ensemble of Hamiltonians return a quantity that
depends on the same eigenvector statistics but different eigenvalue statistics. In this pro-
cedure, we are neglecting the possible connection between the eigenvector statistics and
the eigenvalue statistics, as suggested in the following papers [69,70]; this has been to
highlight the role of how the spectrum is enough to distinguish the finite-time case. In the
following, we are going to look at the following ensembles of Hamiltonians E = GUE,
E = GDE or E = P, where the first is a class of chaotic Hamiltonians, and the others are
classes of integrable Hamiltonians. It is important to remark that GUE is not the only a
class of chaotic Hamiltonians; in random matrix theory, there are also two other classes
of chaotic Hamiltonians: the Gaussian Orthogonal Ensemble (GOE) and the Gaussian
Symplectic Ensemble (GSE) [50]. In the paper, we avoided considering these two classes

of chaotic Hamiltonians since the behavior of the spectral coefficients & () and &4(t)

for GOE and GSE is not qualitatively different from the behavior of the coefficients for

GUE [71]. Since the information about the spectrum of H is contained in the 55121() u,
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- ————E
computing (Po(t)>GE requires the knowledge of &\ (U) . The details of the random

matrix calculations necessary to compute these quantities can be found in [67]. We present

here in Figure 1 the temporal evolution of é4(¢) ', which is the most important factor for
our goals. The 4—point spectral form factor &, is able to distinguish the chaotic (GUE)
and the integrable (GDE, Poisson) regime via the system-size scaling 4. Both GUE and

Poisson reach the first minimum c”4(t‘)E = O(d?) in a time t = O(1), while GDE reaches

the asymptotic value lim¢_,o0 G4 (1) PF d=3(2d — 1) ina time t = O(y/logd). We observe
that GUE and Poisson present a quite different temporal profile: dropping below the

asymptotic value, GUE reaches the dip ¢4(t) vE O(d73) in a time t = O(d'/?) and

——GUE
then it rises to the asymptotic value lim;_,0 &4(t) = d3(2d — 1) in a time O(d~!); on

the other hand, Poisson never goes below lim;_; 54(t)P = d=3(2d — 1) reaching it in a
time O(d'/2).

In [54], the authors defined the twirling of the operator U***, where U € EFVE :=
{e~'H!| H € GUE}, i.e., Pecu (U®KK) = [ dH U®** with dH the unitarily invariant mea-
sure over the GUE ensemble of Hamiltonians. From dH = d(WTHW), with W € U(H),
taking the Haar average over W, one easily obtains: ® £GUE (U®t) = [dHREO(U),ie., the
ensemble average of the isospectral twirling of Equation (1) over the GUE ensemble. This
approach presents some limits of applicability; unlike the isospectral twirling, it only works
for a unitarily invariant distribution of Hamiltonians. In particular, it would not allow us
to distinguish GUE from the integrable distributions.

4-Spectral form factor for Poisson,GDE and GUE with d = 2!2
1=

—— Poisson

0.001 GDE |

GUE 1

1()—0 L
W

1079

10712

10 50 100 500
t

o
—
ot

Figure 1. Log-log plot of the spectral form factor 54(13)E for different ensembles E = P, E = GDE and
E = GUE for d = 2!2. The starting value is 1, while the asymptotic value is (24 — 1)d 3.

We now apply the isospectral twirling to probe quantum chaos. Let us first study the
finite time behavior of the OTOCs.
By setting in (10) A and B to be non-overlapping Pauli operators on qubits, one
finds [67]:
(OTOC, (1)) = E4(t) —d 2+ 0(d™%) (15)

As this result shows, the 4—point OTOCs distinguish chaotic from integrable behav-
ior through the timescales dictated by &, see Figure 1. In a previous work [54], it was
found (OTOC4(t))gue =~ @(t); we instead remark the importance of the offset d 2.

Indeed, in [67], it is shown that after a time O(d'/3) the 4—point spectral form factor:

—G
a(t) - O(d~2), which makes the two terms in Equation (15) comparable.

6. Randomness of the Ensemble £y

A chaotic Hamiltonian should generate a random unitary according to the Haar
measure. To this end, we ask how random the ensemble £y generated by H is, i.e., how
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much the unitaries G'UG replicate the Haar distribution. We quantify randomness by
computing the k-th frame potential of the ensemble £y [46,47], defined as

2k
FE = / 4G1dG, ]tr(GI U'GiGUG ) ‘ . (16)
We have the following proposition:

Proposition 3. The frame potential of Ey is the square Schatten 2—norm of the isospectral twirling
Equation (1):
k A ~ A A
FU = IR W) = tr Ty (RT) 0 RE) ) (17)

where Ty (5 is the swap operator between the first 2k copies of H and the second 2k copies.

See Appendix C.1 for the proof. The Haar value }—Ig(a)ar

this quantity [47], that is, F, p(gar
less randomness.

= k! is a lower bound to

< F g;) so a larger value of the frame potential means

Proposition 4. The frame potential of £ obeys the following lower bound:

FE > a e (u)* (18)

H =

The above result is useful to see if an ensemble deviates from the Haar distribution, see
Appendix C.2 for the proof. Taking the infinite time average E7(-) = im0 T~ fOT(~)dt
of the rh.s., we can calculate a lower bound for the asymptotic value of the frame potential.

Proposition 5. If the spectrum of H is generic:
Er [d~Her(W)[*] = (2K) +0(d ) (19)

As we can see, it is far from the Haar value k!. The request for the spectrum being
generic is a stronger form of non-resonance; see Appendix C.3 for the definition of generic
spectrum and Appendix C.4 for the proof. The infinite time average shows that the
asymptotic value is the same for GUE and GDE. On the other hand, the frame potential

F g;) is non-trivial in its time evolution. For k = 1, we have [67]:

(d%e4(t) — 265(t) + 1) (20)

n _
Feu = (d2 1)

where of course the coefficients ¢ (f) do depend on the spectrum of H. We can now take the

ensemble average F gl) of this quantity. The results are plotted in Figure 2. We can see that
the behavior of the Poisson and GDE spectra is quite distinct from that of the GUE. Indeed,
for the first two ensembles, the frame potential never goes below the asymptotic value
3+ 0(d~1), so it always stays away from the Haar value 1. On the other hand, the frame

potential, corresponding to GUE, equals the Haar value 1 in the whole temporal interval
t € [0(d"/3),0(d)].
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1-Frame Potential for Poisson,GDE and GUE with d = 2*2

Poisson
GDE
- GUE

Asymptotic

100 -

0.01 0.10 1 10 100 1000 104
t

——E
Figure 2. Log-log plot of the ensemble average of F, g{)(t) for E= GUE, E = GDEand E =P
for d = 212, The dashed lines represent the Haar value F, (1)

Hear = 1 and the asymptotic value of

———E
lim; 0 F, &) (t) =3+0(d"). Note that at late times t = O(d), él) distances from the Haar
value [54] and reaches the asymptotic value.

Proposition 6. The ensemble average of the frame potential for E = GDE satisfies:

(i CE .
Fe = @k1+0@d) (21)

showing that the GDE ensemble is always different from the Haar value.

See Appendix C.5 for the details of the proof.

7. Loschmidt Echo and OTOC

The Loschmidt Echo (LE) is a quantity that captures the sensitivity of the dynamics
to small perturbations. In [72,73], it was found that under suitable conditions, the OTOC
and LE are quantitatively equivalent. Our aim in this section is to give another insight in
that direction, showing that, using the isospectral twirling, the LE assumes the form of an
OTOC-like quantity. The LE is defined as the fidelity between quantum states [74-76]; for
an infinite temperature state, we have that the LE is £(t) = d—2|tr(eHte—(H+0H)t) |2,

Proposition 7. Let A € U(H) be a unitary operator, provided that Sp(H) = Sp(H + 6H) the
isospectral twirling of the LE is given by:

A

(L)) = tr(T(14)(23)A®2R(4)(U)) (22)

where A := AT ® A. See Appendix D.1 for the proof. If one sets A to be a Pauli operator on qubits,
one obtains [67]:
(L(t) = a(t) +d 2 +0(d™) (23)

In conclusion, we can say that both LE and OTOC are proportional to the 4—point
spectral form factor in this setting. We can conclude that also the LE is a probe of scrambling;
we thus find an agreement with the statement of [54]. Indeed, in proving Equation (22), we
give an expression of the LE in terms of the 2—point auto-correlation function |tr(At(t)A)|%;
in [54], it was proved that the decay of the averaged 2—point autocorrelation function
implies the decay of the TMI, i.e., implies scrambling [12,13].

8. Entanglement

We now move on to showing how the isospectral twirling also describes the evolution
of entanglement under a random Hamiltonian with a given spectrum. Consider the unitary
time evolution of a state € B(H 4 ® Hp) by ¢ — 1y = UpUT. The entanglement of i in
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the given bipartition is computed by the 2—Rényi entropy Sy = — log tr(y4(t)?), where
l/JA(l‘) 1= trpys.

Proposition 8. The isospectral twirling of the 2—Renyi entropy is lower bounded by:
(S2)g = —log tr(T(13)(24)7A3(4) (W) ® T(A)) (24)
where T4y = Ta ® ]1%<>2 and T4 is the swap operator on H 4.
See Appendix E.1 for the proof. If one sets d 4 = dp = \/d, one obtains [67]:

(S2) = —log 24712 + &y(1) (tr(y?) —2471/2)
+0(1/d) o

As the temporal behavior of (S;) is dictated by ¢,(f), one expects that entanglement
dynamics can also distinguish between chaotic and non-chaotic behavior. The complete
analysis of these dynamics is found in [67].

9. Tripartite Mutual Information

The TMI is defined as [12,13] 3(A: C: D) :=I(A: C)+I(A: D) — I(A : CD) where
A, B and C, D are fixed bipartitions of past and future time slices of the quantum system
after a unitary evolution U; I(A : C) is the mutual information defined through the Von
Neumann entropy. Here, we work with the TMI using the 2-Rényi entropy as measure
of entropy and denote it by I3 ,, (U) = logd + logtrp? - + log trp% 1y; see Appendix F.2.
Here, p4c(ap) = tr'ap(B0) (pu), where py; is the Choi state [77] of the unitary evolution
U = exp{—iHt} and H a random Hamiltonian with a given spectrum. Set A = C and
B = D, then, by defining T(Lé) = U®2T(C) ute?, I3, can be written as (see Appendix F.3):

I3 ,,)=—3logd + log tr(T(lé) T(c)) +1og tr(T(lé) Tip)) (26)

The second term of Equation (26) is similar to the entanglement of quantum evolutions
defined in [78].

Proposition 9. The isospectral twirling of I3 , is upper bounded by:
() <logd +log tr(Tira) 2 R (W)TE)

+log tr(T(13)0 RY (U) T(c) @ T(p)) (27)

Since the TMI is a negative-definite quantity, the decay of the r.h.s. of Equation (27)

implies scrambling, i.e., the Lh.s. drops closer to its minimum value. The tightness of this
bound deserves further investigations. By explicitly computing Equation (27), one has [67]:

<13(2) (t)>G <log,(2 — 3¢4(t) + 2Rec3(t)) (28)
+log, (G4 (t) + (2 —&(t)d 1) +0(d?)
——F
We can now compute < I3 @ > c over the spectra GUE, GDE and Poisson. We set dc = dim(H¢)
E

and dp = dimHp and dc = dp = V/d. The time evolution of <13(2> >G depends on the
spectral form factors. We can see in Figure 3 how the chaotic and integrable behaviors
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are clearly different. The salient timescales of I3, (t) depend on the timescales of ¢4(t)[67].
The plateau values of Equation (28) are, for large d:

— —E
lim <13(2) (t)>G =2—log,d+0(d 1) (29)

t—o00

2-Renyi TMI for Poisson, GDE and GUE with d = 2'6

—— Poisson
GDE

S GUE
-10

B A/\/\
4 YA
0 10 20 30

40 50

t

———E
Figure 3. Plot of the upper bound for <13(2) (t)>G , see r.h.s of Equation (27), for E =P, E = GUE

and E = GDE with dc = dp = d'/? and d = 2'°. GUE and Poisson reveal oscillations before the
plateau whose amplitude and damp time increases with the system size d, see Equations (29) and (30),
respectively. For GDE there are no oscillations: the plateau is reached in O(,/logd).

One thing to note is that the fluctuations of GUE and Poisson decay in time
Huet = & + Blogd (30)

where the parameters «, § for the different ensembles are GUE: « = —3.9, B = 0.8 Poisson
x=—-16.3,8=23.2.

10. Conclusions and Outlook

Chaos is an important subject in quantum many-body physics, and the understanding
of its appearance is of fundamental importance for a number of situations ranging from
quantum information algorithms to black hole physics. In this paper, we unified the
plethora of probes to quantum chaos in the notion of isospectral twirling. Since this
quantity depends explicitly on the spectrum of the Hamiltonian, one can compare its
behavior for different spectra characterizing chaotic and non-chaotic behavior, which we
did by using random matrix theory. We demonstrate how different temporal features
depend on the interplay between spectrum and eigenvectors of the Hamiltonian. Random
eigenvectors obtained with Clifford resources result in markedly different asymptotic
values of the OTOCs. Moreover, a doping of Clifford circuits with non-Clifford resources
interpolates the long time scaling of the OTOCs between a class of integrable models and
quantum chaos.

In perspective, there are several open questions. First and foremost, we want to extend
the results of the crossover to more structural aspects of the dynamics with the goal of
obtaining a quantum KAM theorem. Second, one could systematically study how different
spectra behave together with different ensembles of eigenvectors, for instance, interpolating
between Clifford and universal resources in a random quantum circuit [79], by doping
a stabilizer Hamiltonian with non-Clifford resources such as the T—gates [66]. Another
important aspect is that of the locality of the interactions. In this work, we did not take into
account the locality of interactions. Locality might result in even more striking differences
in the onset of quantum chaotic behavior. In this paper, we have treated the spectrum
and the eigenvectors of the Hamiltonian separately, showing how they both contribute to
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quantum chaotic features. This is possible because in the spectral resolution, spectrum and
eigenvectors are distinct. However, in realistic systems, we often find that both spectra and
eigenvectors possess quantum chaotic features; this should depend on the fact that we deal
with local Hamiltonians. Through the connections found with entanglement and quantum
thermodynamics, one also hopes to exploit these findings to design more efficient quantum
batteries. Finally, the notion of isospectral twirling could be generalized to non-unitary
quantum channels and used to study chaotic behavior in open quantum systems.
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Appendix A. 4k—Point OTOC
Appendix A.1. Proof of Proposition 1

Recall definition (6) and use the cyclic property of the trace to write it in terms of
B,(—t) = UBU":
1
OTOCy;, = Htr(A{B{(—t) - AfBf(—t) x
A1Bi(—t) - - AxBr(—1)) (A1)

to write the product of operators in terms of a tensor product, let us use the property
proven in [67]:

OTOCy = tr(Ti g0 (AT @Bl @ - @ Ay @ By) x
(U ut)“) (A2)

where (14k - --2) € Sy. Now let us act with the adjoint action of S := H;‘;& Too142 2k42141)
(21 +2 2k + 21 4+ 1) € Sy on (U @ UT)®?; inserting multiple S*S = 1 one obtains:

OTOCy = tr(Tff") (Aloa® @B ® Bk)u®k'k> (A3)

where T7(T4k) = STi4k..,ST; defining A; = ®f<:1A;r ® A, similarly for B and averaging over
Ug := GTUG one obtains the desired result (7).

Appendix A.2. Proof of Equation (10)

Setting k = 1, we have T7(T4) = T(23)T(1432) T(23) = T{(1423); therefore, Equation (A3) after
the isospectral twirling reads:

this concludes the proof.
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Appendix B. Calculations for the Clifford Averages
Appendix B.1. Calculation of tr(US>*QT,)
Defining I1;j;; = I; ® II; ® I]; ® I1; and similarly for the others, U222 reads:

US> =Y (i + Tigji) + Y Wi (A5)
iZj i

Then, let us split Q into two parts:

]1®4 ®4 ]1®4 )
Q= — + P;lp — +Q (A6)
We write: .
tr(US2QT,) = ﬁtr(ll@z'zTa) +tr(UZ*Q'Ty) (A7)

and note that the first part coincides with the asymptotic values of these traces used for the
computation of the usual Isospectral twirling, see [67]:

(UL QTy) = %tr(u@mn) + tr (UL Q'T,) (A8)

the only part that are left out and need evaluation is tr(US?,z'zQ’ Ty), with Q' = Y P41 pe4
Therefore, plugging Equation (A5), we find:
d2tr(US2? Q') =2d(d — 1)> +d(d — 1)
2 r(U*Q' Tay)) = tr(U™* Q' Ty))
=d(d—1)
Per(Ug™Q' T(o3)) = tr( ug>? Q'Tpog))
=tr(U$**Q'Tj13))
= tr(USZ’ZQ/T(M))
dd—1)2+d(d—1)
dd—1)
tr(US**Q' T(1432)) (A9)
(U®2’2Q/T 1243) )
= tr(U™* Q' Tp1aa2))
=d*(d—1)+d(d—1)
Ptr(US>* Q' Trizos)) = tr(US>*Q Ti1a3))
=d(d—1)
dZtr(US%MQ'T(lz)(M)) =24%(d — 1) +d(d —1)
Ptr(US* Q' T13)(20)) = tr(US* Q' Ti14) (23))
=d*(d—1)+d(d—1)*
+d(d—1)

Pr(US7Q Tz
dtr(USQ'T(1234))

The above calculations are straightforward, let us just give some insights and examples.
For I1;;;;, the result is always the same, indeed T,11;;; = I1;;;; and:

Y w(;:Q) = Y [{lPfi)* (A10)
i i,P#£1

=Y ) =dd-1)
i P3{ZI}#1
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Or let us calculate ), tr(HijijQT(1234))i

d* Y tr(11jijQTse)) = Y, (ijijIPjiji)

i#] i#),P#1
= Y. [ilP* (A11)
i#j,P#1
= Y =dd-1)
i#j,P#1

Indeed for any pair of (i, j) with i # j, there are d Pauli operators, which transform i into j
and vice versa. While for QJ-, we have:

2 _
d - 1tr(U®2'2Tg)—tr(Uo%z'ZQ’Tg) (A12)

tr(US*Q Ty) =

Appendix B.2. Calculation of tr(T, (1423)A ® BQTr)

Let us calculate this trace for all 1 € S4:

tI'(T(1423)A ® BQH) = tr(T(1423)A & BQT(’])(H))
:d’ltr(ABAB) =1

A® BQTp3)) (A13)

A® BQT(1234
A®BQT (1340

)
)
)
)
=d- ztr(ABAB) =d- 1
The above calculations are straightforward, but let us discuss just one example:

tr(T(1423)A ® BQT(134)) =d'tr( A ® BQ)
=d 3y tr(AP)*tr(BP)? (A14)
P

=d) 6apbpp =0
P

since A and B are non-overlapping Pauli operators.

Appendix C. Frame Potential
Appendix C.1. Proof of Proposition 3

Recall the definition of the frame potential

- / dGldGz‘tr<GIU+G1G§ uGz) \M (A15)
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Then:
k k
FO = / 4GdGotr (GIUGIGIU'Gy)
tirte. ot k
x tr(GlutGiGiuG) (A16)
Using the property of the trace for which tr(A)* = tr(A®K), we can rewrite it as:
(k) _ +®2k ) rt@kk ~®2k ~1@2k) ;@kk ~®2k
F — / 4G1dGatr (GIEPUTEHA GG A G2 (A17)
where U%* = %k @ Ut®k, From the Definition (1), we have:
k 5020 11 5
FE = (R WREI W) = R W) (A18)
the result is proven. To write F, g{) in a linear form, define Ty, = HlZi 1 Taok+1):
k 5026 o A
FU) = tr(Tioa (R @ RE9) ) (A19)

Appendix C.2. Proof of Proposition 4

In order to prove Proposition 4, we make use the usual bound holding for the Schat-
ten p-norms [80] [|Al|, < rank(A)%fé |All4. Since rank(A) = rank(A'A), we have
rank(R2) (U)) = d% and thus:

A 7?,(2]‘)([1))
s IR | [
IR )2 > = = gy
where we used the property |tr(A)| < [|A]];, which can be derived from [80] |tr(AB)| <
|All||Bllg where p~! + g1 =1, setting B= 1, p = 1 and g = cc. Finally, we obtain:

(A20)

(R ()|

(k)
Feo 2 (A21)

Just recalling that tr(R () (L)) = |tr(U)|%, we obtain the desired bound (3).

Appendix C.3. Definition of Generic Spectrum

Given {E,}?_,, the spectrum of a Hamiltonian H on H ~ C¥, it is said to be generic iff

foranyd > 1 > 1:
1 !
Y En—), Ep; #0 (A22)
m=i j=1

unless E;,, = Emj, Vi, j =1,...,1 and for some permutation of the indices n;, m -

Appendix C.4. Proof of Proposition 5

We need to compute the infinite time average of [tr(U)|*. Let us write the unitary
with its spectral decomposition: U = Y e/F+IT, assuming {Ei}z’?lzl is a generic spectrum:

my...mMyj
ny...noj

2k 2k
ru)|* =Y exp{it Y Ew, — ity En]} (A23)
i=1 j=1
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Taking the infinite time average, the result is zero unless E;, = En]. forall i, j:

]tr Z Z Z 511]1 o 12k]2k + error

pairs My...1Mp) 117 .19k

=) d%* 4 error = (2k)1d%* + O(d?*1)
pairs

(A24)

the error comes from the fact that we over-count the pairs, e.g., the case §;,;, 6, ,

i1 overlaps

with J; ; 0 because we are considering the case J;, 719i1/,%,j, 01, tWice; thus, the error is
O(d?1). After these considerations, we obtain:
—_ T
tr(U) [ * _
% = (2k)!+0(d ) (A25)

Appendix C.5. Proof of Proposition 6

The k-th frame potential of the ensemble & is lower bounded by [tr(U)|* /d?*, recall
(3). Now we should prove that:
——————GDE
4k
LG > (2k)!+0(d™ ) (A26)

42k

2k 2k
W= T exp{itzfsml- —itZEnf} (427)
my...moj i=1 j=1
ny...nok

Let us exclude from this sum all the terms, such that E;;; = Ej, for any pairs:

(L[

= (2K)!

+d- 2I‘Z:exp{th:Em — it ZEn }
7

Mok FNY .o M

oY) (A28)

see Appendix C.4 for a discussion regarding the error O(d~1). After the ensemble average
over GDE [67], the second term of the above equation returns a sum of Fourier transforms
of Gaussians weighted by positive coefficients depending on the dimension 4. Hence:

LG

e (2k)! +0(d™1) (A29)

This concludes the proof.

Appendix D. Loschmidt Echo
Appendix D.1. Proof of Proposition 7

We first show that when the perturbation of H leaves the spectrum unchanged,
Sp(H) = Sp(H + 6H), then L(t) can be viewed as a two-point auto-correlation function.
Any perturbation that leaves the spectrum unchanged can be viewed as a perturbation



Entropy 2021, 23, 1073

16 of 20

obtained by rotating the Hamiltonian by a unitary operator close to the identity, say
A €U(H), H+SH = ATHA; one obtains:

L(t) = d—2|tr(ethe—iA+HAt)|2
d2|tr(eTt AT A))2 (A30)
in the last equality, we have used the unitarity of A and the series of ¢! = ¥, %H".

Twirling the unitary evolution with G, Ug = G'exp{—iHt}G and using tr(A)tr(B) =
tr(A ® B), one can easily express:

L(t) =d (U (A® AHUL? (AT ® A)) (A31)
It is straightforward to verify tr(T{;3)(24)A%? ® B¥?) = tr(A®2B®?) and express
L(t) = tr(Tp13)00) (U2 @ UE) A® AT 0 AT @ A) (A32)
Inserting T(213) (24) = 1, one obtains:
L(t) = tr(Tpz) 00y (AT @ A® A® AT (UG @ UE?)) (A33)
Inserting T(zlz) = T and noting that [T{;5), (US> ® UE?)] = 0, we finally obtain (10).

Appendix E. Entanglement
Appendix E.1. Proof of Proposition 8
Starting from the definition of 2—Rényi entropy, through the identity try(0%) =

tr((’)ff2 T(a)), where T 4y = T ® ]1%2 and T4 is the swap operator, it is possible to express
the 2—Rényi entropy as:

S2 = —log tr| T ) U2y 2u"*2] (A34)
Again, we average over the isospectral unitary evolutions by U — G'UG and obtain

(S2)g = (—logtr {T(A)u@@zlp@zumz] Vo
= —logr|T(4) (U9 2U"*2) g (A35)

where the lower bound follows by the Jensen inequality by the concavity of the function
—log. Now, calling a = U®2p®%, b = U™?T 4, and using trlab] = tr[T(13)(42 © b],
we obtain

(S2)g =2 —logtr [T(13)(24)7?/(4) (U)yp** @ T(A)} (A36)

Appendix F. Tripartite Mutual Information
Appendix F.1. Choi State: Definition and Properties

Let U € U(H) be a unitary operator, which decomposed in a basis {|i)} reads
U = ¥, u;]i) (j|- The Choi isomorphism maps an operator O into a state |O) € B (H®2).
The two copies H®? of the Hilbert space can be thought of as one lying in the past (input),
the other in the future (output) [12]. The normalized state corresponding to U reads:

Uy =d =2y ugli) @ |j) (A37)
ij
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note that defined |I) as the bell state between the two copies of H: |I) = id Y.ili) ®|i) one

has |U) = (1® U)|I). The density matrix associated with the Choi state of U:
pu = |U)(U| = Qe W)|N{I|(TeU") (A38)

One important property is that if one traces out the input (output), the resulting state is
always maximally mixed. This reflects the idea that the input and the output are always
maximally entangled. Here, we can prove a slightly stronger statement.

Proposition A1. Let f be a trace preserving, unital CP—map; the Choi state pr = 1@ f(|I)(I|)
is such that:

try()(of) o< Iy (A39)
where the subscript 1(2) indicates the first (second) copy of H.

Proof. Let us first prove the statement for 1. Writing pr explicitly and tracing out the input
we obtain try(ps) = d =1 ¥ tr([i) (jl;) @ f(]i)(j|,) from which one obtains try (of) e« f(1),
which is the identity since f is unital. To prove the statement for 2, we need f to be trace
preserving: try(pf) = d~! Yiili) (il @ & (f (1)) (o) = d~1, which concludes the proof.
This proposition is important for our purposes: it ensures that taking the average over an
ensemble of unitaries, £y in particular, preserves the properties of the Choi state. [J

Appendix F.2. 2—Rényi TMI

Consider a unitary time evolution Usp_,cp, where A, B and C, D are fixed bipartitions
of dimensions d 4, ...,dp of past and future time slices of the quantum system: (H4 ®
Hp) @ (He ® Hp). The TMI defined through 2—Rényi entropy reads [12,13]:

I3, = 52(C) + S2(D) — $2(AC) — 52(AD) (A40)

from the hierarchy of Rényi entropy follows I3 < I3 , , where I3 is the TMI calculated with
the Von Neumann entropy. For the Choi state of U4p_,cp, pu, we have:

13(2) = logd + log tr(pic) + logtr(pfw) (A41)
where p sc(ap) = trpp(sc) (ou)- It is straightforward to see that I3 @ has the following bounds:
—2logds < I, <0 (A42)

the lower bound is achieved when the information has scrambled, while the upper bound
is achieved in the opposite case.

Proposition A2. The unitaries of the type U = Uc @ Up, where Uc € U(Hc), Up € U(Hp),

satisfy:
I, (U) =0 (A43)

therefore, according to this measure of scrambling, do not scramble the information.

Proof. First rewrite Equation (A41) as
I, = logd + logtr (p“2T 1) T(c) ) + log tr (0™ T4 T(p) ) (Add)

where T 4) = Ta ® II?CZ:D and T, the swap operator on H 4, similarly for Tc) and T(p.
The Choi state of U:

pg = (1ap ® Uc ® Up) 1) {I|(14p ® Uc @ Up)* (A45)
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Inserting it into Equation (A44), making use of the cyclic property of the trace and exploting
the fact that [Uc(p), Tp(c)] = 0, one obtains:

I3, (U) =logd + log tr (| (1T UEPT g Uggz)

+log tr(|1> ()22 ) U2 T ) ugZ) (A46)
since [U?Z, Pc} =0, and [ng, PD} = 0, we obtain
I, (() =logd + logtr(|1><l\®2T T )
@) (A) ()
+log tr<|I> <I|®2T(A)T(D)) (A47)
at this point a straightforward calculation shows that I3 @ ()y=o0. O

Appendix F.3. Proof of Equation (26) and Proposition 9

We start from Equation (A41) and rewrite it as Equation (A44), where pyy = (lap ®
Ucp)|I){(I|(1ap @ ULp). Let us set A = C and B = D. We need two facts. First, note that
in this setting |I)(I| = ac ® Ppp, where P4c, Ppp are Bell states. Second, let T be the
swap operator and let ) € H be a pure state, then Typ®? = 2. Now let us focus on the
second term of Equation (A44). Using the above identity, we have:

T Tioy¥ae = ¥ae = Ta¥ae = Tioydie (A48)

In this way, we can trace out 4 ® Hp and obtain that:
log tr (T4 T(c) ) = d 2logtr (U T UFET(c)) (A49)

where the factor d~2 comes from having traced out the Bell states tr A(B)(lpi?é(BD)) =

dE(ZD) ¢ (p). For the second term in Equation (A44), we can play the same game and obtain:
@2 _ 42 @2 +©2
log tr (pu T(A)T(D)> =d logtr(UCDT(C) UCD T(D)) (A50)

to prove Equation (27), we use tr(ab) = tr(T(13)04)a ® b) if a,b € H®?, then we take the
isospectral twirling over Ug = G’ exp{—iHt}G and use the Jensen inequality to upper

bound I3 @
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