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Abstract

In this work, we provide an analytical proof of the robustness of a form of topological
entanglement under a model of random local perturbations. We define the notion of
topological purity and show that, in the context of quantum double models, this quan-
tity does detect topological order and is robust under the action of a random shallow
quantum circuit.
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Introduction

Topological order [1] is a novel kind of quantum order that goes beyond the paradigm of
symmetry breaking. Its role is prominent in condensed matter theory as well as in quantum
computation. In particular, topological order can be employed to construct various models for
robust quantum memory and logic gates [2, 3]. Topologically ordered states show patterns of
non local quantum entanglement that cannot be detected by a local order parameter. How-
ever, the long-range quantum entanglement leaves its mark in the reduced density matrix,
and a series of papers have shown that topological order can be detected by the topological
entropy [4–6]: a topological correction to the area law for the entanglement entropy. In par-
ticular, topological entanglement entropy has been employed to characterize the ground state
of different models [7–17].

The presence of topological entanglement entropy is not identical with topological order:
there are in fact spurious examples of topologically trivial states that nonetheless exhibit a
non-zero topological entropy [18–21]. However, topological entanglement entropy is at least
a very important probe of topological order. One important question is: if a topologically or-
dered state with non-zero topological entropy belongs to a gapped phase, is the topological
entanglement entropy robust within that phase? In other words, if one perturbs the Hamilto-
nian whose ground state possesses topological order without closing a gap, will the topological
entanglement entropy stay constant, or, at least, nonzero? There are rigorous proofs of the
robustness of a quantum phase (i.e. the gap is not closing) that contain a topologically or-
dered state [22], but would that mean that the topological character of that state is preserved
throughout the state, as revealed, for instance, by the topological entanglement entropy?

For specific forms of the perturbation, one can prove that the topological entanglement
entropy is robust, see, [23] and [24]. From the numerical point of view, several results have
shown such robustness under local perturbations of the Hamiltonian [25–28]. Other works
have shown the robustness of topological entanglement entropy under small deformation of
partition geometry. Quantum field theory arguments [5] suggest that topological entangle-
ment entropy should always be robust within a phase, but an analytical proof for its robust-
ness in lattice models is still lacking [29–31]. A remarkable result [32] exploits conditional
independence of quantum states to prove robustness of topological entanglement entropy in
2D gapped system at the first order in perturbation theory; although the proof works fairly
well for quantum double models, it is also limited to specific details of the perturbation.

In this work, we provide an analytic proof of the robustness of topological order under a
noise model consisting of shallow circuit with random local unitaries. To this end, we con-
struct a notion of topological subsystem purity that captures the same long-range pattern of
entanglement of topological entanglement entropy, and we show that such topological purity
is constant if the circuit is shallow compared to some relevant size of the subsystem.

We work in the framework of quantum double models on the cyclic group Zd introduced
by Kitaev in [2], and define the topological purity (TP), which is related to the topological
2−Rényi entropy defined in [33]. There are many reasons to use purity instead of entangle-
ment entropy in order to argue about questions about quantum many-body systems. Unlike
the von Neumann entanglement entropy (whose measurement requires a complete state to-
mography of the system [34]), the 2−Rényi entropy is directly related to the purity which is
an observable and can be measured directly [35–39] as it is the expectation value of the swap
operator over two copies of the system [40]. This quantity contains substantial information
about the universal properties of quantum many-body systems [41] and it is able to reveal
the topological pattern of entanglement [23, 33]. This property makes purity also amenable
analytical treatment [42–47].

A phase of the matter is an ensemble of states that are considered equivalent: for example,
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they enjoy the same symmetry (this criterion is not useful for topologically ordered states), or
they are adiabatically connected, or they are connected by a shallow quantum circuit [48].
The kind of order that is revealed by this equivalence relation consists in the property that
is conserved. For symmetry breaking states, the ordered phase is the phase of all the states
that break the symmetry of the Hamiltonian in the same way (that is, they enjoy the same
residual symmetry). In this context, the topological phase is revealed by the conservation of a
topological pattern of entanglement.

To prove the robustness of topological order by the topological purity we introduce, as
a noise model, a set of quantum maps whose action on a state is based on local random
(shallow) quantum circuits. We find that the topological purity attains two different constant
values in the two ensembles of states obtained by acting with the shallow quantum maps on
two reference states, one topologically ordered and the other one topologically trivial, thereby
defining two phases. When the circuit depth is comparable with the subsystem size, the long-
range pattern of entanglement that is responsible for topological order can be changed and
the topological purity can change value. The phase is then indeed the orbit of the so defined
set of quantum maps through a reference state. The proof is obtained thanks to two key
non trivial facts: (i) the subsystem purity (i.e. the purity of the reduced density matrix in a
subsystem) of the ground state of Zd quantum double models only depends on the geometry of
the subsystem boundary, while the topological purity only depends on the subsystem topology,
and (ii) the action of the specific noise model we work with can be regarded as the evolution of
that boundary. Since the maps are shallow, their action will result in a local deformation of the
subsystem boundary that does not alter their topology, and, by (i), this will result in an exactly
constant topological purity. Similarly, we show that the topological purity of a topologically
trivial state is zero and that it cannot be changed by our noise model.

The main idea of this work is the following. One defines subsystems A, B, C such that the
pair (AB, BC) is in some sense topologically equivalent to the pair (B, ABC). In a similar fashion
as the topological entropy, the ratio of the purities

Ptop(σ) :=
PAB(σ)PBC(σ)
PB(σ)PABC(σ)

,

is non trivial (< 1) in a topologically ordered states σ and detects the topological pattern of
entanglement in such states. Then we consider a random quantum circuit Uk =

∏k
i=1 UX̃ i

with
k gates acting on the qubits of the system. Every gate UX̃ i

acts on the qubits in X̃ i . Now, after
the action of Uk the pure state of the system is mapped as σ→ σk into another pure state. For

every subsystem Λ, its purity will be PΛ(σk). By (. . .)
k

denote the average over the unitaries
composing the circuit Uk. One can then define the quantity

P̃ =
PAB(σk)

k
PBC(σk)

k

PB(σk)
k
PABC(σk)

k
. (1)

We will show that the above products (and ratios) of the average purities after randomizing
over the unitaries in the circuit still show exactly the same topological pattern of entanglement,
as long as the number k of gates in the circuits is smaller than the relevant sizes of the system,
namely the smallest of the length scales involved in the definition of the subsystems A, B, C .
In order to make the proof, we show that the quantity P̃ can be seen as a functional on pairs
of states. We will show that under the action of a unitary noise model based on shallow
quantum circuits, the pattern of topological entanglement is preserved. Let us make a remark
for the scope of clarity. In principle, one could define the topological purity by considering
the ratios of the purities first, and then averaging over the unitaries in the quantum map.
This quantity would be equivalent to the one we defined only if the ensemble fluctuations
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Figure 1: A system of spins on square lattice, plaquette and star are denoted respec-
tively by p and v.

were proven to be very small, which seems a formidable problem. Our definition goes around
this problem because it nevertheless defines one quantity that has a constant value in the
ensemble of states connected to the topologically ordered state and a different constant value
in the trivial ensemble. The value of the definition is in its properties, that is, in being able to
distinguish the two ensembles of states.

The paper is organized as follows: in Sec.1 we review Zd quantum double models; in
Sec.2 we introduce the notion of topological purity and discuss how it is connected with other
measures of topological entropy; in Sec.3.1 we introduce the noise model and finally Secs.3.2
and 3.4, will be devoted to the rigorous proof of our result and will be rather technical.

1 Quantum Double models on Zd

Quantum double models are exactly solvable models defined on a lattice [2]. Consider the
cyclic finite groupZd with |Zd |= d and local Hilbert spacesHi ' Cd and the total Hilbert space
given by the tensor product of N local Hilbert spaces, namely H =

⊗N
i=1 Hi placed at the bonds

of a square lattice (V, E), see Fig.1. The dimension of the total Hilbert space is thus D = dN .
Without loss of generality for what concerns the calculation of topological entanglement en-
tropy [49], we consider quantum double models on a torus. Let B ≡ {|n〉 |n= 0, . . . , d −1} be
an orthonormal basis in Hi ' Cd . For each local Hilbert space Hi we introduce the operators
L̃, T̃ ( j) defined through their action on the ket |n〉:

L̃m |n〉= |n+m〉 , T̃ (m) |n〉= δmn |n〉 , (2)

where L̃m := L̃ L̃ · · · L̃ m times and the addition is modulo d. Consider the enlarged operators
Li := L̃i ⊗ 1lH\i and T (m)i := T̃ (m)i ⊗ 1lH\i acting non trivially only on the site i ∈ V . Define the
following operators acting non trivially on the subset v ⊂ V , sketched in Fig.1:

Am(v) =
∏

i∈v

Lm
i , B(p) =

∑

m1,m2,m3,m4
m1+m2+m3+m4=0 mod d

T (m1)
i1

T (m2)
i2

T (m3)
i3

T (m4)
i4

, (3)

note that B(p)(plaquette operator) and A(v) = d−1
∑d−1

m=0 Am(v)(star operator) are projectors.
At this point, the Hamiltonian of the quantum double model reads:

HQD =
∑

v

(1l− A(v)) +
∑

p

(1l− B(p)) , (4)
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and the ground state manifold L is given by:

L= {|ψ〉 ∈H|A(v) |ψ〉= |ψ〉 , B(p) |ψ〉= |ψ〉}. (5)

To represent the ground state in terms of the spin degrees of freedom,
let us introduce G the group generated by all the Am(v) operators, defined as
G = 〈{Am(v) |m= 0, . . . , d − 1, v = 1, . . . , N/2}〉. The state |ψGS〉 defined as

|ψGS〉=
∏

s

A(s) |0〉⊗N = d−N/2
∏

s

d−1
∑

m=0

Am(s) |0〉
⊗N = d−N/2

∑

h∈G

h |0〉⊗N (6)

is a state in L, as it can be readily checked. Other basis states in L can be constructed by
the use of non contractible loop operators [2]. The topological order in this model can be
detected by the entanglement entropy in the ground state manifold. Consider a bipartition in
the Hilbert space, namely H =HΛ ⊗HΛ̄ and compute the reduced density matrix ρΛ[33]:

ρΛ = tr Λ̄Ψ0 =
|GΛ̄|
|G|

∑

h∈G/GΛ̄,h̃∈GΛ

h−1
Λ |0〉 〈0|⊗N hΛh̃Λ , (7)

where Ψ0 ≡ |ψGS〉 〈ψGS| and we introduced GΛ := {g ∈ G| g = gΛ ⊗ 1lΛ̄} and
GΛ̄ := {g ∈ G| g = 1lΛ ⊗ gΛ̄} that are normal groups in G, and the quotient groups G/GΛ
and G/GΛ̄. Following [33] we can prove that ρ2

Λ =
|GΛ||GΛ̄|

|G| ρΛ and thus the purity is given

by PΛ(ρ) =
|GΛ||GΛ̄|

|G| , i.e one can argue that the purity is counting the number of independent
operators Am(v) acting non trivially on both regions Λ and Λ̄. Following [4], given a region
Λ, the number of Am(v) operators acting on both subsystems Λ and Λ̄ is d |∂Λ|−n2−2n3 where
|∂Λ| is the cardinality of the boundary of Λ, i.e the number of sites in Λ̄ having at least one
nearest neighbor inside Λ, and ni , for i = 2,3, is the number of sites in Λ̄ having i nearest
neighbors inside Λ. Thus n2 + 2n3 is a geometrical correction which depends on the shape
of the region Λ. For example, if Λ is a convex loop (a rectangle) n2 = n3 = 0. So far we
accounted for the number of star operators acting on both subsystems, but not all of them are
independent from each other because of the constraints on the ground state manifold in (5),
in particular the condition |ψGS〉 ∈ L ⇐⇒

∏

p B(p) |ψGS〉 = |ψGS〉. Following [4, 6] and
defining n∂ (Λ) as the number of boundaries of Λ, we have that the number of independent
star operators is d |∂Λ|−n2−2n3−n∂ (Λ), i.e for each boundary of Λ we have that the number of
independent star operators acting on both subsystems decreases of a factor scaling as d−1. For
Ψqd ≡

�

�Ψqd

� 


Ψqd

�

� being the ground state of the quantum double model on Zd , we thus can
finally write the following:

PΛ(Ψqd) = 2− log2 d|∂Λ|+ΓΛ , (8)

where ΓΛ = γΛ + n∂ (Λ)γ is the sum of a geometrical term γΛ = log2 d(n2 + 2n3) which de-
pends on the shape of the boundary ∂Λ and a topological correction n∂ (Λ)γ, due to the actual
number of independent star operators, only related to the topology of Λ. This topological
correction γ ≡ log2 d is called topological entropy[4–6]. Eq.(8) is of fundamental importance
for the reminder of the paper: it is telling us that the purity of the reduced density matrix in
the ground state manifold of the topologically ordered quantum double model depends on the
boundary ∂Λ only.

2 The topological purity

In this section, we show how the topological pattern of entanglement involved in topolog-
ically ordered states [1] can be also found in a new quantity: the topological purity (TP).
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Figure 2: (a) The graph configuration to define the topological entropy, i.e. I(A; C |B).
l is the feature size of this graph configuration and l ∼ O(N), where N2 is the total
number of qudits, while r ∼ O(N) is radius of this topologically non trivial domain.
Here and throughout the paper we assume r > l. (b) I(A; C |B) = 0 in this simple
graph configuration, even though there is long-range entanglement of the ground
state.

To understand heuristically how this quantity works, let us first introduce the topological en-
tropy. Consider the state σ living in the Hilbert space H ≡HA⊗HB⊗HC ⊗HD and the regions
AB, BC , B and ABC drawn in Fig.2 (a). The topological entropy is defined as

Stop(σ) = SABC(σ) + SB(σ)− SAB(σ)− SBC(σ)≡ −I(A; C |B) , (9)

where SΛ(σ) labels the von Neumann entropy of tr Λ̄(σ) where Λ̄ is the complement of Λ with
respect to ABC D. The von Neumann entropy has several important theoretical properties,
specifically strong subadditivity [50]. In the context of topological entanglement, this results in
I(A; C |B)≥ 0. On the other hand, the 2−Rényi entropy is also a good measure of entanglement
and it has the advantage of being more amenable for our scope. Moreover, this quantity can
be measured without resorting to complete state tomography [37–39].

As it was shown in [33], also all the Rényi topological entropies give exactly the same
results for quantum double models. The definition of the topological entropy is equal to minus
the quantum conditional information I(A; C |B)[50], which is an entropy quantity describing
tripartite correlations of quantum states.

On the other hand, the purity of the state σ in the subsystem Λ is defined as
PΛ(σ) := tr [(tr Λ̄σ)

2], where Λ̄ is the complement of Λ.
In the same fashion of Eq.(9), we define the quantity

Ptop(σ) :=
PAB(σ)PBC(σ)
PB(σ)PABC(σ)

, (10)

i.e. the ratio of purities of the reduced density matrix of a quantum state σ for the four
subsystems AB, BC , B and ABC . By definition,

− log Ptop(σ) = − log PAB(σ)− log PBC(σ) + log PB(σ) + log PABC(σ) (11)

is just the topological 2-Rényi entropy. A topologically ordered state will feature Ptop(σ) < 1
while for a topologically trivial state Ptop(σ) = 1. In other words, the product (ratios) of
purities in Ptop show the topological entanglement pattern of a topologically ordered state.

Consider the domain ABC in Fig.2 (a), and the ground state of a quantum double model
Ψqd for which PΛ(Ψqd) = 2− log2 d|∂Λ|+ΓΛ for each Λ ∈ {AB, BC , B, ABC} and since
|∂ AB|+ |∂ BC |= |∂ B|+ |∂ ABC |, Ptop is just given by the sum of the geometrical corrections

Ptop(Ψqd) = 2ΓAB+ΓBC−ΓB−ΓABC ≡ 2−2γ , (12)

6
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where −2γ ≡ ΓAB + ΓBC − ΓB − ΓABC is the topological entropy [6]. Note that, according to
the discussion in the previous section, all the geometrical corrections related to the shape
of the boundary ∂ (ABC) are canceled by the choice of the partitions AB, BC , B, ABC , namely
γAB + γBC = γB + γABC , and the only surviving term is the topological correction that does not
depend on the shape of the boundary: it is a purely topological correction ∝ γ. This correction
is the mark of the topological phase. It is worth noting that the topological correction would
not be detected from Ptop if ABC was a simply connected region as the one sketched in Fig.2,
see also [6]. That is because, as shown in the previous section, the number of boundaries
n∂ (Λ) gives the number of topological corrections γ to the purity PΛ of the related subsystem
Λ. Specifically, consider Fig.2 (b) first: we have n∂ (AB) = n∂ (BC) = n∂ (B) = n∂ (ABC) = 1,
and thus according to Eq.(12) we have 2γ−2γ= 0, while for Fig.2 (a): n∂ (AB) = n∂ (BC) = 1
and n∂ (B) = n∂ (ABC) = 2, thus 2γ− 4γ= −2γ.

We now exploit a standard trick based on the swap operator to express Ptop in terms of
expectation values. Let HV ' CD ' Cd⊗N be the D−dimensional Hilbert space of N qudits in
a set V . Here, the Hilbert space of the x−th qudit is denoted by Hx ' Cd . Let Λ ⊂ V be a
subset of these qudits and HΛ = ⊗x∈ΛHx the corresponding Hilbert space. Let T̃Λ be the order
two permutation (swap) operator on H⊗2

Λ and let TΛ = T̃Λ ⊗ 1lΛ̄ be its trivial completion on
the full H⊗2

Λ ⊗H⊗2
Λ̄

.
The purity of the state σ in the bipartition HΛ ⊗HΛ̄ is given by

PΛ(σ)≡ tr Λσ
2
Λ = tr (σ⊗2TΛ)≡ 〈TΛ〉σ⊗2 , (13)

where σΛ := tr Λ̄σ. The above chain of relations is telling us that the purity is from both
the analytical point of view and the experimental point of view a quantity defined on two
copies of the Hilbert space H. In practice, in order to measure the purity of a quantum state
σ in a given bipartition HΛ ⊗HΛ̄, one needs three steps: (i) to prepare two identical copies
of σ, (ii) to build the observable swap operator on the subspace Λ and finally, (iii) to take
the quantum expectation value of TΛ in σ⊗σ, namely 〈TΛ〉σ⊗2 . Similarly, in order to measure
Ptop defined in Eq.(10), one needs to repeat the steps (i), (ii) and (iii) for the four observables
TAB, TBC , TB, TABC and then combine them in the following way:

Ptop(σ) =
〈TAB〉σ⊗2 〈TBC〉σ⊗2

〈TB〉σ⊗2 〈TABC〉σ⊗2
. (14)

The quantity PΛ(σ) is the purity of σ when as a linear functional over σ⊗2, that is, product
states Ψ⊗2 of H⊗2 . We now extend this definition to arbitrary states Ψ ∈ H⊗2. We define
Topological purity (TP) the quantity

P̃top(Ψ) :=
〈TAB〉Ψ 〈TBC〉Ψ
〈TB〉Ψ 〈TABC〉Ψ

. (15)

Obviously, for product states Ψ⊗2 of H⊗2 one has P̃top(Ψ) = Ptop(Ψ). With this result, if Ψqd
is the topologically ordered ground state of a quantum double model, its topological purity
P̃top(Ψqd) will be

P̃top(Ψqd) = 2−2γ . (16)

On the other hand, if Ψt r iv is a state belonging to a topologically trivial phase with no topo-
logical entanglement entropy, it will also be true that

P̃top(Ψt r iv) = 1 . (17)

We have therefore established that the topological purity distinguishes these two states. In the
next section, we show how this new definition helps us to prove that this quantity is robust
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under a quantum map based on a shallow quantum circuit. This protocol to detect topological
order under the noisy channel we defined is experimentally realizable on a quantum processor
[51] using the techniques based on randomized measurements [37, 40] .

3 Stability of topological purity

In this section, we establish a noise model based on quenched disorder, and show how the
topological purity behaves under the noise model.

The noise model consists in a quantum channel RU based on (shallow) random quantum
circuits Uk. The quantum channel has as an input two copies of the initially topologically
ordered state Ψ:

RUk
: Ψ⊗2 7→RUk

(Ψ⊗2) . (18)

In the above, Uk is a random quantum circuit with k gates. The gates act on a subset of the
qubits on the graph Λ, that is, X̃ i ⊂ Λ for i = 1, . . . , k. The random quantum circuit has thus
the form

Uk =
k

∏

i=1

UX̃ i
. (19)

We say the map is based on quenched disorder because it acts as

RUk
(Ψ⊗2) :=

∫

dµ(U |X̃1) . . . dµ(U |X̃k)U
⊗2
k Ψ

⊗2U†⊗2
k . (20)

Notice that the sequence S = (X̃k, . . . , X̃1) completely characterizes the map. For this reason,
we will also denote the above quantum channel by RS when we want to make explicit the
dependency on the sequence S. Operationally, this quantum channel maps the input state in
a mixed state obtained by collecting several outputs of the random quantum circuit. If the
sampling is good enough, the output state has the form Eq.(20). The output of the channel
is now a mixed, non-separable state in H⊗2 for which the topological purity Eq.(15) is well
defined. From the experimental point of view, this is the purity one would measure in an
experiment if the measurement time-scales are much longer than the random fluctuations in
the unitary noise.

The reason why the quantum channel RUk
allows us to prove the stability of topological

purity is that the evolution of Ψ⊗2 under RUk
can be mapped - for the sake of computing

subsystem purities - in the evolution of the boundary of the subsystem, which we show in the
next subsection. Then, we show that such boundary evolution exactly preserves P̃top provided
that the number of gates k is smaller compared to the smallest length scale in the subsystems
A, B, C , D, see Fig. 2.

3.1 Topological purity and phases

Let us now dive into the technical details of the noise model. Since the purity is defined on
H⊗2, we define a noise model on states living on two copies of the Hilbert space in the following
way: let X ⊂ V be a set of qudits with Hilbert space HX := ⊗x∈XHx and dX := dimHX . Let UX
be a local unitary operator operating on the region X , i.e. operating on all the qubits contained
in X . Let U⊗2

X be two copies of UX , then after operating on σ⊗2 with the unitary U⊗2
X , we have

σ⊗2 7→ U⊗2
X σ

⊗2U†⊗2
X and the purity becomes

〈TΛ〉σ⊗2 7→ 〈TΛ〉U⊗2
X σ⊗2U†⊗2

X
≡ tr

�

TΛU⊗2
X σ

⊗2U†⊗2
X

�

. (21)
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We now choose UX to be a random unitary operator and define the following quantum
map acting on σ⊗2:

RX (σ
⊗2) :=

∫

dµ(U |X )(UX )
⊗2σ⊗2(UX )

†⊗2 , (22)

where dµ(U |X ) is the Haar measure over the unitary group U(HX ). Therefore, fixed X ⊂ V ,
the map RX (·) randomizes over the action of the full unitary group on H⊗2

X . Thus, after the
noise on X , the purity becomes:

〈TΛ〉σ⊗2 7→ 〈TΛ〉RX (σ⊗2) ≡ tr
�

TΛRX (σ
⊗2)

�

, (23)

note that the above operation is no more acting independently on the single copies of H, but
it is entangling them in H⊗2. So far this is a single X noise model. In order to generalize
it to more than one single X domain, consider an ordered string of subsets S = {X̃1, . . . , X̃k}
and random unitary operators U⊗2

X̃ i
, i = 1, . . . , k operating on the corresponding subset X̃ i and

acting on σ⊗2 in an ordered way, namely σ⊗2 7→ U⊗2
X̃k

· · ·U⊗2
X̃1
σ⊗2U†⊗2

X̃1
· · ·U†⊗2

X̃k
. We define the

quantum map randomizing over the action of these gates as:

RS(σ
⊗2) := RX̃k

· · ·RX̃1
(σ⊗2) , (24)

where

RX̃ i
: O 7→ RX i

(O) :=

∫

dµ(U |X̃ i)(UX̃ i
)⊗2O(UX̃ i

)†⊗2 , O ∈ B(H⊗2) . (25)

As we remarked above, the string S completely characterizes the map. For each string of
domains S, the action of RS on a state of H⊗2 describes the average action of a given random
quantum circuit operating in the region X̃ i ∈ S, therefore at this point we define the set S of
all such strings:

S := {S = {X̃1, . . . , X̃k| X̃ i ⊂ V, i = 1, . . . , k}, k ∈ N} . (26)

It is straightforward to see that, for any subset S̃ ⊂ S, the action of RS on a state σ⊗2 varying
S ∈ S̃ creates an ensemble of states living on H⊗2 as follows:

ES̃(σ
⊗2) := {RS(σ

⊗2) ∈ B(H⊗2) |S ∈ S̃} , (27)

i.e. the ensemble of states ES̃(σ⊗2) contains all the states ΨS living in H⊗2 obtained by the
action of RS varying S in a subset S̃ of S, defined in Eq.(26). Notice that each string of ordered
domains S describes a quantum circuit consisting of random gates with support on X̃ i ∈ S. In
the following definition, we give the notion of l− shallow string, which is produced by the
action of a shallow quantum circuit (although the opposite is not true, i.e. a shallow string
can be also generated by a non-shallow circuit):

Definition 1 (l−shallow string). Let S be a string of domains. S = {X1, . . . , Xk |X i ⊂ V} is an
l−shallow string iff diam(X1 ∪ · · · ∪ Xk)< l.

Now we can enunciate the main result of this paper: in the following theorem we prove
that the topological purity attains a constant value in the ensembles of states obtained from
both the ground state of the quantum double model on Zd Ψqd and a topologically trivial pure
state Ψt r iv , provided that the subset S̃ ⊂ S contains strings of domains S describing shallow
quantum circuits. Since this definition contains circuits with trivial action, this value is also
the value of the topological purity in the initial state.
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Theorem. Let Ψqd be the ground state of a quantum double model and let Ψt r iv be a pure,
topologically trivial quantum state. Let S̃l ⊂ S be the subset of all possible l−shallow strings
defined in Definition 1, then the topological purity is constant in the following ensembles of states:
ES̃l
(Ψ⊗2

0 ), ES̃l
(Φ⊗2), namely:

P̃top(ΨS) = 2−2γ , ∀ΨS ∈ ES̃l
(Ψ⊗2

qd ), (28)

and
P̃top(ΦS) = 1 , ∀ΦS ∈ ES̃l

(Ψ⊗2
t r iv) , (29)

morally an l−shallow string S ∈ S̃l describes a shallow random quantum circuit that do
not destroy the topological nature of Ψ⊗2

qd . Since we found that the TP gets a constant value in
two distinct ensemble of states, we claim that the topological purity is stable in the topological
ordered phase ES̃(Ψ

⊗2
qd ) and in the topological trivial phase ES̃(Ψ

⊗2
t r iv). Based on Fig. 2, we

remark that an l−shallow string is an r−shallow string as well, being r > l.
The proof of this theorem is in Sec.3.4. As we stated at the beginning of this section, the

proof descends from two facts:
(i) the purity dynamics generated by R purity averaged over the noise is equal results in a

boundary evolution for the subsystem. The purity of the output state is equal to the purity of
the initial state for the subsystem corresponding to the evolved boundary.

(ii) For a shallow map, the boundary evolves in a way that the topological purity stays
exactly constant.

We start proving the fact (i) in the next subsection. Subsection 3.3 will instead show fact
(ii).

3.2 Purity dynamics under random quantum circuits

In this section, we show how, under the noise model defined by the quantum map Eq.(22),
the evolution of the purity becomes a boundary evolution for the purity in the initial state.

Consider a state σ and the swap operator TΛ defined in the region Λ. As shown in Sec.
3.1 the purity of σ in the region Λ is the expectation value of the swap operator TΛ computed
on two copies of the state σ, PΛ(σ)≡ 〈TΛ〉σ⊗2 . Let RX be the quantum map defined in Eq.(22)
and consider the expectation value of TΛ in the state RX (σ⊗2); because RX (·) is an hermitian
and self-dual operator [52], we can equivalently write:

〈TΛ〉RX (σ⊗2) = 〈RX (TΛ)〉σ⊗2 , (30)

i.e. the expectation value of the swap operator TΛ on the state RX (σ⊗2) is equal to the expecta-
tion value of the evolved swap operator RX (TΛ), i.e. the image of TΛ under the map RX (·), on
the original state σ⊗2. In practice, we are considering the Heisenberg picture for the evolution
of the swap operator. This point of view is convenient for us, because - thanks to the simple
equation (30) - the purity dynamics can be described as the dynamics of the boundary ∂Λ of
the region Λ and thus can be described in terms of patching. First of all, let X ⊂ V be a domain
and let us compute the action of the map RX (·) on the swap TΛ. One can show [52]:

RX (TΛ) =

¨

NdΛ\X
TΛ\X + NdΛ∪X

TΛ∪X , X ∩ ∂Λ 6= ;, X ∩ ∂ Λ̄ 6= ; ,

TΛ, X ∩ ∂Λ= ; ,
(31)

where NdΛ\X
:= (d2

X − d2
Λ∩X )d

−1
Λ∩X/(d

2
X − 1) and NdΛ∪X

:= dX (d2
Λ∩X − 1)d−1

Λ∩X/(d
2
X − 1) and

dΛ∩X = dimHΛ∩X .
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Figure 3: An illustration of the action of the superoperator RX on the swap operator
TΛ with support on the region Λ ⊂ V . In (a) the domain X has a non trivial overlap
with the boundary ∂Λ and, according to Eq.(31), its action gives a linear combination
of two domains, namely Λ \ X and Λ ∪ X . In (b) the domain X ⊂ Λ is completely
contained in Λ and its action is trivial. Note that we neglected the prefactors NdΛ\X

and NdΛ∪X
, cfr. Eq.(31).

A simple representation of this action is provided in Fig.3. Note that we can compactly
write the above action as follows:

RX (TΛ) = (1− f (X ,Λ))TΛ + f (X ,Λ)[NdΛ∪X
TΛ∪X + NdΛ\X

TΛ\X ] , (32)

where f : (X ,Λ)→ R:

f (X ,Λ) =

¨

1 , X ∩ ∂Λ 6= ;, X ∩ ∂ Λ̄ 6= ; ,

0 , X ∩ ∂Λ= ; .
(33)

Eqs. (31) and (32) are telling us that if X intersects the boundary of Λ, the expectation
value of TΛ on RX (σ⊗2) becomes the linear combination of the expectation values on the
original state σ⊗2 of swap operators with different boundaries, namely Λ∪X and Λ/X . If X is
completely inside or outside Λ, the expectation value is unchanged. In other words, the action
of RX on the swap TΛ results in a linear combination of two swaps defined in the patched
regions Λ ∪ X and Λ/X . Thus, thanks to the duality in Eq.(30) we can write the expectation
value of RX (TΛ) on σ⊗2 as a linear combination of the purity of σ in different domains:

〈RX (TΛ)〉σ⊗2 = (1− f (X ,Λ))PΛ(σ) + f (X ,Λ)[NdΛ∪X
PΛ∪X (σ) + NdΛ\X

PΛ\X (σ)] , (34)

where PΛ(σ) = 〈TΛ〉σ⊗2 etc. Now, in order to generalize the above discussion to more than
one domain X , consider the action of the quantum map RS(·) defined in Eq.(24). Although
RS(·) is no more hermitian, we can exploit the duality as well and write:

〈TΛ〉RS(σ⊗2) =



R†
S(TΛ)

�

σ⊗2 , (35)

where R†
S(·) = RX̃1

· · ·RX̃k
(·). As one can see the adjoint operator R†

S(·) is always the same
operator R(·) with a different ordering of the domains of S. Thus, defining the ordered subset

S̄ = {X̃k, . . . , X̃1 |X̃ i ∈ S} (36)

we can write R†
S(·) = RS̄(·). Here ordered means that, given X̃ i , X̃ j ∈ S̄ with i > j, the map

RX̃ j
(·) acts after the map RX̃ i

(·). In order to avoid confusion, let us re-define the subsets as
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Figure 4: The figure shows how different orderings of the same domains
X i ∈ S̄ can give different results. In (a), S̄(a) = {X1, X2} and thus we have
f (X1,Λ) = 1, f (X2,Λ \ X1) = 1, f (X2,Λ ∪ X1) = f (Λ, X2) = 0; therefore
¬

RS̄(a)(TΛ
¶

σ⊗2
= NΛ\X1

PΛ∪X1
(σ) + NΛ\X1

NdΛ\X1\X2
PΛ\X1\X2

(σ) + NΛ\X1
NΛ\X1∪X2

PΛ\X1∪X2
(σ)),

cfr. Eqs. (33) and (38). In (b), S̄(b) = {X2, X1} and thus we have f (X1,Λ) = 0,

f (X2,Λ) = 1; therefore
¬

RS̄(b)(TΛ
¶

σ⊗2
= NΛ\X2

PΛ\X2
(σ) + NΛ∪X2

PΛ∪X2
(σ).

X j = X̃k+1− j , so that S̄ = {X1, . . . , Xk |X j = X̃k+1− j , X̃k+1− j ∈ S} and RS̄(TΛ) = RXk
· · ·RX1

(·).
By duality, the expectation value of RS(TΛ) is always a linear combination of purities of σ:

〈TΛ〉RS(σ⊗2) =



RS̄(TΛ)
�

σ⊗2 =
∑

Λα∈Y(k)(Λ)

mΛαPΛα(σ) , (37)

where we defined the set of domains Y (k)(Λ) := {Λ,Λ∪X1,Λ∪X2, . . . ,Λ∪X1 \X2, . . . }; the set
of domains Y (k)(Λ) contains all the possible combinations of patching given by the domains
(patches) X1, . . . , Xk; in the r.h.s of (37) the coefficients mΛα depend on the particular choice
of the ordered string S and on the geometry of the region Λ. In order to make the notation
clearer, let us write the expression for k = 2 explicitly:



RS̄(TΛ)
�

σ⊗2 ≡



RX2
RX1
(TΛ)

�

σ⊗2 = (1− f (X1,Λ))(1− f (X2,Λ))PΛ(σ)

+ (1− f (X1,Λ)) f (X2,Λ)[NdΛ∪X2
PΛ∪X2

(σ) + NdΛ\X2
PΛ∪X2

(σ)]

+ f (X1,Λ)(1− f (X2,Λ∪ X1))NdΛ∪X1
PΛ∪X1

(σ) (38)

+ f (X1,Λ)(1− f (X2,Λ \ X1))NdΛ\X1
PΛ\X1

(σ)

+ f (X1,Λ) f (X2,Λ∪ X2)(NdΛ∪X1
NdΛ∪X2

PΛ∪X1∪X2
(σ) + NdΛ∪X1

NdΛ\X2
PΛ∪X1\X2

(σ))

+ f (X1,Λ) f (X2,Λ \ X2)(NdΛ\X1
NdΛ∪X2

PΛ\X1∪X2
(σ) + NdΛ\X1

NdΛ\X2
PΛ\X1\X2

(σ)) ,

where S̄ = {X1, X2} and mΛ ≡ (1− f (X1,Λ))(1− f (X2,Λ)), mΛ\X1\X2
≡ NdΛ\X1

NdΛ\X2
f (X1,Λ)×

f (X2,Λ \ X2), etc. The model is completely general: once one has chosen the string S and
the domain Λ the functions f are completely determined to be either 0 or 1 according to the
rules in Eq.(33). It is worth noting that the ordering of the domains X i ∈ S̄ is very important;
consider X1, X2 ∈ S̄ and note it can be the case that X2 ∩ ∂ (Λ/X1) 6= 0 while X2 ∩ ∂Λ= 0 and
so in the if X2 acts before X1 it does not have any effect, see Fig.4 for a pictorial proof.

3.3 Topology at a large scale: l−topology

After establishing the fact (i), we now see how the proof would work. A shallow map R will
deform the boundary of the subsystems A, B, C , D only locally, in a way that in the ratio Eq.(15)
there is an exact cancellation for the boundary modifications.
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Figure 5: (a) Illustration of ε−topology: Λ1 becomes topologically equivalent to Λ2
by a patch of diameter ε, see Eq. (39). (b) Illustration of l−topology: in this case a
combination of many ε−patches is necessary to make Λ1 topologically equivalent to
Λ2.

The boundary deformations induced by R are not strictly speaking topological, because
they can punch holes or glue disconnected parts. However, they can only punch holes and
glue parts on a short scale. For what we are concerned, only topological changes at a large
scale are important. For this reason, in the following we introduce the notion of topological
equivalence by “small scale patching”.

Consider a graph Γ = (V,E) and a subset of vertices (region) Λ ⊂ V ; we define the
complement of Λ as Λ̄ := {x ∈ V | x 6∈ Λ}; then the (inner) boundary of Λ is defined as
∂Λ := {x ∈ Λ | (x , y) ∈ E, y ∈ Λ̄}. Λ has two (or more) disconnected boundaries if
∂Λ= ∂Λ1 ∪ ∂Λ2 and one of the following properties is satisfied:

• Λ= Λ1 ∪Λ2 and there is no path in Λ connecting Λ1 and Λ2.

• Λ̄= Λ̄1 ∪ Λ̄2 and there is no path in Λ̄ connecting Λ̄1 and Λ̄2.

The above definitions immediately generalize to more than two, say n∂ (Λ), disconnected
boundaries. In the following the number of disconnected boundaries will be denoted as n∂ (Λ).

An ε−patch is a simply connected region X ⊂ V of diameter diam(X ) = ε. Considering a
region Λ ∈ V , the patching of Λ through X is defined as the map:

PX (Λ) :=

¨

Λ∪ X , or

Λ/X ,
(39)

i.e. the action of patching whether adds something to the region Λ or subtracts it. The com-
position of patching A by X1 and X2 can result in one of the following four combinations
Λ∪X1∪X2, Λ∪X1/X2, Λ/X1∪X2 and Λ/X1/X2. It is clear that by combining more ε−patches
together X = X1 ∪ · · · ∪ Xnp

one can create a patch X as large as one wants, resulting in Λ∪ X
or Λ/X . Having introduced the notion of patching a region Λ ⊂ V , we can introduce a notion
of distance in the topology:

Definition 2 (ε−Topology). Two regions Λ1,Λ2 ⊂ V are ε−topologically equivalent Λ1
ε∼ Λ2 iff

PX (Λ1)∼ Λ2, i.e. patching Λ1 with a ε−patch makes Λ1 topologically equivalent to Λ2.

The above definition naturally extends to a combination of more than one patch: two re-

gions Λ1,Λ2 ⊂ V are l−topologically equivalent Λ1
l∼ Λ2 iff PX (Λ1) ∼ Λ2 where

diam(X ) ≡ diam(X1 ∪ · · · ∪ Xnp
) = l. See 5 for a pictorial representation. At this point, we

want to formalize the notion of how some sets can contain the same points and have the same
shape locally, thus also having the same boundary length, and yet have a different number of
disconnected boundaries. Consider the doubled graph Γ 2 := (V 2,E2) and define the set:

EΛ1Λ2
:= {{x1, x2} | x1 ∈ Λ1, x2 ∈ Λ2, Λ1,Λ2 ⊂ V} , (40)
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Figure 6: Pictorial representation of genuine topological difference. Consider the sets
Λ1,Λ2,Λ3 and Λ4 sketched in both (a) and (b). In both (a) and (b) the sets EΛ1Λ2

and EΛ1Λ2
are equal EΛ1Λ2

= EΛ3Λ4
. While (a) the sets show genuine topological

difference EΛ1Λ2
6∼ EΛ3Λ4

, because n∂ (EΛ1Λ2
) − n∂ (EΛ3Λ4

) = 2; (b) the sets do not
have any topological difference EΛ1Λ2

∼ EΛ3Λ4
, indeed n∂ (EΛ1Λ2

)− n∂ (EΛ3Λ4
) = 0.

where the elements {x1, x2} are non-ordered pairs of elements of Λ1 and Λ2; we define the
boundary ∂ EΛ1Λ2

of EΛ1Λ2
as:

∂ EΛ1Λ2
:= {{x1, x2} | x1 ∈ ∂Λ1, x2 ∈ ∂Λ2} , (41)

where |∂ EΛ1Λ2
| := |∂Λ1| + |∂Λ2| and the number of disconnected boundaries

n∂ (EΛ1Λ2
) := n∂ (Λ1) + n∂ (Λ2). At this point, we require that, considering four regions

Λ1,Λ2,Λ3,Λ4, the two sets obey EΛ1Λ2
= EΛ3Λ4

, that is: EΛ1Λ2
. Moreover, we require that

EΛ3Λ4
are equal as sets and their boundaries ∂ EΛ1Λ2

,∂ EΛ3Λ4
are equal (as sets) with equal

lengths |∂ EΛ1Λ2
| = |∂ EΛ3Λ4

|, see Fig. 6, but they have a genuine topological difference, i.e.
the number of disconnected boundaries within the two sets is different (Fig. 6 (a)), as the
following definition says:

Definition 3 (Genuine topological difference). Consider four regions Λ1,Λ2,Λ3,Λ4 and the
two sets EΛ1Λ2

, EΛ3Λ4
such that, EΛ1Λ2

= EΛ3Λ4
. If n∂ (EΛ1Λ2

) 6= n∂ (EΛ3Λ4
), the two sets enjoy a

genuine topological difference, i.e. EΛ1Λ2
6∼ EΛ3Λ4

.

See Fig.6 for an illustration of the above definition.
With the notion of l−topology given in Definition 2 we can define:

Definition 4 (l−genuine topological difference). Consider four regions Λ1,Λ2,Λ3,Λ4 and the
two sets EΛ1Λ2

and EΛ3Λ4
such that EΛ1Λ2

6∼ EΛ3Λ4
and n∂ (EΛ1Λ2

) − n∂ (EΛ3Λ4
) = t. The two

sets EΛ1Λ2
and EΛ3Λ4

shows l−genuine topological difference iff for any l ′−patch such that l ′ < l
acting on Λ1,Λ2,Λ3,Λ4, the sets feature the same genuine topological difference, i.e.

n∂ (PX (EΛ1Λ2
))− n∂ (PX (EΛ3Λ4

)) = t , (42)

where PX (EΛ1Λ2
) := {{x1, x2} | x1 ∈ PX (Λ1), x2 ∈ PX (Λ2)}.

Example.— A specific example of l−topologically different sets is provided in Fig. 7. We
see that while by patching a region Λ1 one can change its topology, on the other hand if the
four sets Λ1,Λ2,Λ3,Λ4 shows genuine l−topological difference, no matter the patching on
the four sets, the difference of disconnected boundaries will remain the same as long as the
diameter of the patch fulfills the condition l ′ < l.
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Figure 7: Pictorial representation of l−genuine topological difference. The typical
size of the sketched domain is l. (a) A l ′ patch has been applied to the sets of domains
EΛ1Λ2

and since l ′ < l the sets shows the same genuine topological difference, indeed
n∂ (EΛ1Λ2

) = 3 + 2, n∂ (EΛ3Λ4
) = 2 + 1 and n∂ (EΛ1Λ2

) − n∂ (EΛ3Λ4
) = 2, cfr. Fig.

6. (b) the sets are patched with a patch whose size is l ′ ≥ l which change the
genuine topological difference, indeed n∂ (EΛ1Λ2

) = 1 + 3, n∂ (EΛ1Λ2
) = 2 + 2 and

n∂ (EΛ1Λ2
)− n∂ (EΛ3Λ4

) = 0 6= 2.

3.4 Proof of the main result

We are finally ready to prove the main result of the paper. By virtue of fact (i), we can re-write
Eq.(15) for the topological purity of the state ΨS =RS(Ψ⊗2

0 ) in terms of expectation values of
evolved swap operators RS̄(TΛ) for Λ being AB, BC , B and ABC , namely:

P̃top(ΨS) =




RS̄(TAB)
�

Ψ⊗2
0




RS̄(TBC)
�

Ψ⊗2
0




RS̄(TB)
�

Ψ⊗2
0




RS̄(TABC)
�

Ψ⊗2
0

. (43)

Let S be the set of all possible strings of domains defined in Eq. (26) and let S̃l ⊂ S be the
subset containing all possible l−shallow strings, see Definition 1.

To prove the main theorem, we need to prove that, for any S ∈ S̃l , the topological purity
keeps constant to the value of the topological purity of the initial state, i.e. the ratio of expec-
tation values of evolved swap operators in Eq.(15) equals the ratio of expectation values of the
initial TAB, TBC , TB, TABC . We recall that, evolving a swap operator TΛ by RS , one deforms the
domain Λ by patching. In particular we consider two states, the ground state of the quantum
double model and a topologically trivial state. If the initial state

�

�Ψqd

�

∈ L is the ground state of
the quantum double model (cfr. Sec.1 ) then P̃top(Ψ⊗2

qd ) = Ptop(Ψqd) = 2−2γ, while if the initial

state is a pure and topologically trivial state such as Ψt r iv , then P̃top(Ψ⊗2
t r iv) = Ptop(Ψ⊗2

t r iv) = 1.

Proof. Consider
�

�Ψqd

�

∈ L and a shallow string S ∈ S̃l defined in Definition 1. Let us compute
the topological purity of ΨS ≡RS(Ψ⊗2

qd ) for S ∈ S̃l . According to Eq.(43) we can directly com-
pute the expectation values of the evolution of the swap operators TΛ forΛ= (AB, BC , B, ABC).
Recalling Eq.(37) the expectation value of the evolved swap operator TΛ is a linear combina-
tion of purities of Ψqd in domains Λα ∈ Yk(Λ):




RS̄(TΛ)
�

Ψ⊗2
0
=

∑

Λα∈Yk(Λ)

mΛαPΛα(Ψqd) . (44)

According to Eq. (8), any purity term PΛα(Ψ0), for Λα ∈ Yk(Λ) equals to

PΛα(Ψqd) = 2− log2 |d∂Λα|+ΓΛα , (45)
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where we recall that |∂Λα| is the boundary length of Λα and ΓΛα = γΛ + n∂ (Λ)γ is the sum of
a geometrical term γΛ and a pure topological term n∂ (Λ)γ only depending on the topological
nature of the state and proportional to the number of disconnected boundaries n∂ (Λ) of the
domain Λ. Plugging Eq. (44) in Eq.(43) one obtains

P̃top(ΨS) =

∑

αmABαPABα

∑

β mBCβ PBCβ
∑

ηmBηPBη

∑

ζmABCζPABCζ

, (46)

where we adopted a compact notation for the sum, namely
∑

α ≡
∑

ABα∈Yk(AB) and
PABα ≡ PABα(Ψqd), etc.

Now, if the two sets E(ABC)(B) and E(AB)(BC) enjoy a genuine l−topological difference
E(ABC)(B) 6∼ E(AB)(BC), then the difference in the number of their boundaries remains unchanged
under any patches of diameter less than l:

n∂ (E(ABC)(B))− n∂ (E(AB)(BC)) = 2 . (47)

Let us rewrite Eq. (46) as

P̃top(ΨS) =

∑

α,β mABαmBCβ PABαPBCβ
∑

η,ζmBηmABCζPBηPABCζ

. (48)

As proven in Sec. 3.1, the action of the noisy map corresponding to the string
S = {X1, . . . , Xk |X i ⊂ V} on a swap operator TΛ results in a combination of purity of the
initial state Ψ⊗2

0 computed in all the possible patched regions with X1, . . . , Xk according to the
rules in Eq. (37). Since we assumed that S is a shallow string, we also have that the com-
bination of patches can never creates a patch of diameter bigger than l and thus the action
of the noisy map keeps constant the genuine l−topological difference of the initial domains
ABC , B, AB, BC . This property is reflected in the following: for any α,β the purity in the
patched regions ABα, BCβ can be written as

PABαPBCβ = 2−(|∂ ABα|+|∂ BCβ |)+(γABα+γBCβ
)+γ(n∂ (ABα)+n∂ (BCβ )) , (49)

then, there are two corresponding patched regions, ABCη and Bζ, such that E(ABCη)(Bζ) and
E(ABα)(BCβ ) shows genuine topological difference E(ABCη)(Bζ) 6∼ E(ABα)(BCβ ) and the number of
disconnected boundaries obeys to:

n∂ (E(ABCη)(Bζ))− n∂ (E(ABα)(BCβ )) = 2 , (50)

thus we have |∂ ABα| + |∂ BCβ | = |∂ ABCη| + |∂ Bζ|, γABα + γBCβ = γABCη + γBζ and
n∂ (ABα)+n∂ (BCβ ) = −2+n∂ (ABCη)+n∂ (Bζ). The product of purities in Eq. (49) is therefore
equal to:

PABαPBCβ = 2−2γPABCηPBζ . (51)

In order to conclude the proof, it is worth noting that the weights mΛ of purities, in Eq. (44),
do not depend on the number of disconnected boundaries n∂ (Λ), cfr. Sec. 3.2. Then, because
the sets E(ABCη)(Bζ) and E(ABα)(BCβ ) enjoy genuine topological difference, for any α and β there
exist η and ζ such that we have the following:

mABαmBCβ = mABCηmBζ . (52)

Note that we have the equality because the sets E(ABCη)(Bζ) = E(ABα)(BCβ ) are equal. Finally, by
grouping all the terms, we have:

P̃top(ΨS) = 2−2γ

∑

η,ζmBηmABCζPBηPABCζ
∑

η,ζmBηmABCζPBηPABCζ

= 2−2γ = P̃top(Ψ
⊗2
qd ) . (53)
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The proof for Ψt r iv being a pure and topologically trivial state is identical to the one presented
above, with the only difference that PΛα(Ψt r iv) =




TΛα
�

Ψ⊗2
t r iv
= 1 for any Λα ∈ Yk(Λ), cfr.

Eq.(37). This concludes the proof.

Remark. If the string S 6∈ S̃l is not a shallow string, then diam(X1 ∪ . . . Xk)> l and it can be the
case that the joint patch creates a hole in the donut shape of ABC or connects two far apart regions
(operations breaking the genuine topological difference), see Fig.7 (b) for a graphical example.
In that case, there exist ᾱ, β̄ , η̄ and ζ̄ in Eq. (48) such that n∂ (E(ABᾱ)(BCβ̄ ))− n∂ (E(ABCη̄)(Bζ̄) 6= 2
which would invalidate Eq. (51) for PABᾱ , PBCβ̄

, PABCη̄ and PBζ̄
; that would result in the failing of

the grouping in Eq. (53), hence Ptop(ΨS) 6= 2−2γ.

4 Conclusions

In this paper, we addressed some questions regarding the stability of topological order under
noisy perturbations, but the path to find a general analytic proof is still long and tortuous.
Working with the ground state Ψ0 of quantum double models, we defined a new probe for
topological order - the topological purity P̃top - proving its robustness in two distinct phases,
namely the topological phase and the trivial phase. More precisely, as a noise model, we
introduced a set of quantum maps that mimics the evolution of local random quantum circuits.
The two phases are indeed created by the quantum maps as orbits of two initially distinct
states, the ground state of quantum double models Ψ0 and a pure, topologically trivial state.
We found that the topological purity attains two different constant values among such states,
in particular P̃top = 2−2γ < 1 for the topologically ordered phase and P̃top = 1 for the trivial
phase. The dynamics of the topological purity under such noise model can be mapped onto
dynamics for the subsystems used to define the topological purity, cfr. Sec.2. This property
enabled us to prove our main theorem and to provide many pictorial representations, giving
the reader more intuition on the effects of the noisy dynamics. The noisy dynamics is based
on local quantum circuits. As the depth of the circuits increases, the noise propagates and
eventually, for a circuits scaling with the size of the topologically relevant scale, the topological
phase breaks down. Our work shares the model of propagation of local perturbations studied
in [32].

Despite the generality of the setup, in the sense that the noise model does not obey any
particular symmetry or fine tuned feature, our result is not the final word regarding the stability
of topological order, and even more general and complete proofs are necessary to go further
in this direction. This paper opens a series of different questions that might be interesting to
investigate, for instance, whether the proof can be extended to non-abelian quantum double
models, the difficulty being that for non abelian groups the order of the group is in general
hard to compute. Moreover, an important open problem is whether the higher moments of
the purity under random quantum circuits obey some algebra that can be cast in the form
of evolution of geometries. This would open the way to, on the one hand, compute generic
Rényi entropies for the evolved states and from there the von Neumann entropy, on the other
hand, associating evolutions under a quantum map to evolution of geometries would be a very
useful tool for the study of topological phases away from equilibrium. Moreover, studying
higher moments of the purity would also result in evaluating the fluctuations of the ratio and
products of purity, thereby making the scope of our results valid for more general noise models.
In particular, it would be interesting to study the application of random local quantum circuits
to the theory of gapped domain walls between topologically ordered systems developed in
[53–55].
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A Action of RX (·) on the swap operator

In this appendix, we review the calculations given in [52] to obtain Eq.(31). First, we recall
the definition of the quantum map RX (·) given in Eq.(22).

RX (·) =
∫

dµ(U |X )(UX )
⊗2(·)(UX )

†⊗2 , (54)

where UX is a unitary operator acting on HX . The action of RX (·) over a swap operator TΛ is:

RX (TΛ) =

∫

dµ(U |X )(UX )
⊗2TΛ(UX )

†⊗2

=
tr X (TΛ(1lX + TX ))

2dX (dX + 1)
(1l+ TX ) +

tr X (TΛ(1lX − TX ))
2dX (dX − 1)

(1l− TX ) ,
(55)

where we made use of the Haar average techniques [56, 57] to compute the integral. Before
proceeding, it is important to make a remark on the role of the domains in this calculation, we
have to distinguish between two cases: the first one where X ⊆ Λ or X * Λ, and the second
one where X ∩Λ 6= ; and X ∩Λ 6= ;. For the first case, when X ⊆ Λ, the Eq.(55) becomes

RX (TΛ) = TΛ\X
tr X (TX (1lX + TX ))

2dX (dX + 1)
(1l+ TX ) + TΛ\X

tr X (TX (1lX − TX ))
2dX (dX − 1)

(1lX − TX )

=
1
2
(TΛ\X (1lX + TX )− TΛ\X (1lX − TX )) = TΛ\X TX = TΛ , (56)

where we used that the swap operator TΛ = TΛ\X TX , while if X * Λ we obtain:

RX (TΛ) =
1
2

TΛ(1lX + TX ) +
1
2

TΛ(1lX − TX ) = TΛ . (57)

When instead X ∩Λ 6= ; and X ∩Λ 6= ;, we obtain:

RX (TΛ) = TΛ\X
tr X (TΛ∩X (1lX + TX ))

2dX (dX + 1)
(1l+ TX ) + TΛ\X

tr X (TΛ∩X (1lX − TX ))
2dX (dX − 1)

(1lX − TX )

=
d2

X d−1
Λ∩X + dΛ∩X dX

2dX (dX + 1)
(TΛ\X + TΛ\TX )−

d2
X d−1
Λ∩X − dΛ∩X dX

2dX (dX − 1)
(TΛ\X − TΛ\X TX )

= NdΛ\X
TΛ\X + NdΛ∪X

TΛ∪X , (58)

where we used that TX = TX/(Λ∩X )TΛ∩X and that TΛ∪X = TΛ\X TX Nd\X = (d2
X ), with

NdΛ\X
:= (d2

X − d2
Λ∩X )d

−1
Λ∩X/(d

2
X − 1) and NdΛ∪X

:= dX (d2
Λ∩X − 1)d−1

Λ∩X/(d
2
X − 1) and

dΛ∩X = dimHΛ∩X .
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