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An Intelligently Designed AI for Structural Health Monitoring of a Reinforced Concrete Bridge 
 

William R. Locke, Stefani C. Mokalled, Omar R. Abuodeh, Laura M. Redmond, Christopher S. McMahan 
 
 
 

Synopsis: With recent advances in online sensing technology and high-performance computing, structural health 
monitoring (SHM) has begun to emerge as an automated approach to the real-time conditional monitoring of civil 
infrastructure. Ideal SHM strategies detect and characterize damage by leveraging measured response data to update 
physics-based finite element models (FEMs). When monitoring composite structures, such as reinforced concrete 
(RC) bridges, the reliability of FEM based SHM is adversely affected by material, boundary, geometric, and other 
model uncertainties. Civil engineering researchers have adapted popular artificial intelligence (AI) techniques to 
overcome these limitations, as AI has an innate ability to solve complex and ill-defined problems by leveraging 
advanced machine learning techniques to rapidly analyze experimental data. In this vein, this study employs a novel 
Bayesian estimation technique to update a coupled vehicle-bridge FEM for the purposes of SHM. Unlike existing AI 
based techniques, the proposed approach makes intelligent use of an embedded FEM model, thus reducing the 
parameter space while simultaneously guiding the Bayesian model via physics-based principles. To validate the 
method, bridge response data is generated from the vehicle-bridge FEM given a set of “true” parameters and the bias 
and standard deviation of the parameter estimates are analyzed. Additionally, the mean parameter estimates are used 
to solve the FEM model and the results are compared against the results obtained for “true” parameter values. A 
sensitivity study is also conducted to demonstrate methods for properly formulating model spaces to improve the 
Bayesian estimation routine. The study concludes with a discussion highlighting factors that need to be considered 
when leveraging experimental data to update FEMs of concrete structures using AI techniques. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Artificial Intelligence, Bayesian Statistics, Structural Health Monitoring, Reinforced Concrete, Highway 
Bridges, Vehicle-Bridge Interactions. 
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INTRODUCTION 
As sensor technology has continued to advance, the volume of data being transmitted for structural health monitoring 
(SHM)  has also increased, creating the need for processing procedures capable of rapidly analyzing data to reliably 
diagnose system health. Artificial intelligence (AI) has emerged as a popular solution to this big data problem in civil 
engineering, as AI techniques are able to solve complex and ill-defined problems associated with big data and damage 
detection1. Engineers have employed AI for automated damage detection when working with physics or data-driven 
SHM strategies. A fundamental issue with data-driven SHM is that techniques require training on difficult to obtain 
labeled data from different damage scenarios in order to fully diagnose the anomalous behavior of a system (i.e. detect, 
locate, and quantify damage)2,3. Physics-based SHM utilizes numerical models to identify damage through updating 
strategies or by comparing response features from a baseline model to changes in physical data4. AI techniques are 
typically employed under this framework to update models by tuning against experimental data, which has the dual 
benefit of being able to detect, locate, and quantify damage, while simultaneously identifying uncertain model 
parameters (e.g., material, geometric, and boundary conditions). Being able to identify uncertain model parameters is 
especially beneficial when monitoring composite structures, such as reinforced concrete (RC) bridges, as the presence 
of material and/or geometric non-linearities are difficult to accurately predict and capture2,4. An additional benefit of 
physics-based SHM is updated models can be employed to evaluate the effect of damage on structural performance 
and forecast a system’s remaining service life.  
 
This study aims to demonstrate the capabilities of a novel Bayesian estimation technique to update a simplified 
vehicle-bridge finite element model (FEM) for the purpose of identifying crack damage on a RC bridge. Unlike most 
existing AI based techniques that rely on data from nonintegrated FEMs or surrogate models, the proposed approach 
makes intelligent use of an embedded FEM, thus reducing the parameter space while simultaneously guiding the 
Bayesian model via physics-based principles2,4. Furthermore, unlike most model updating strategies that locate 
damage induced changes in stiffness by minimizing an objective function based on differences in measured and 
analytical modal properties, the proposed approach identifies damage by tuning element level stiffness in the 
embedded model to minimize the difference between measured and predicted acceleration time histories4. The benefit 
of directly leveraging time history data is that more response features are available to improve tuning; additionally, 
time history data is less sensitive to higher order modes with low levels of excitation that are difficult to accurately 
capture in simplified FEMs. In this study, a numerical analysis is conducted to demonstrate the reliability of the 
Bayesian approach when a subject FEM is complex enough to capture all the modal properties of a “physical” 
structure. A sensitivity study is also conducted with the vehicle-bridge FEM to demonstrate how the uncertain 
parameter space can be reduced to address run-time issues that arise when applying the proposed Bayesian estimation 
technique towards a system with many unknown parameters that are essential to capturing physical system properties. 
The study concludes with a discussion highlighting some of the benefits and limitations associated with the proposed 
estimation technique, as well as outlining factors that need to be considered when employing physics-based SHM 
strategies.  
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Physical Vehicle-Bridge System 
This section provides a description of the physical RC bridge and test vehicle modeled for the numerical study 
performed to demonstrate the capabilities of AI based SHM. Brief details are also provided for how experimental data 
from the physical system could be leveraged for updating a coupled vehicle-bridge FEM.  
 
Bridge and Vehicle Descriptions 
The reinforced concrete bridge employed in this study consists of four 9.14m long simply supported spans that each 
have a cross-section as seen in Fig. 1. The subject structure is located along US-221, which serves as a transportation 
route for tractor-trailers supporting logging and other shipping industries. Because of this, the structure is constantly 
exposed to loads on the order of HL-93 design loads. During a visual inspection conducted in March of 2018, the 
superstructure received a condition rating of 6 out of 9 due to the presence of flexural cracks at the center of each 
span; static load tests conducted in July of 2019 identified extensive flexural cracks on one of the exterior spans that 
were observed to propagate further under the presence of heavy trucks5. The presence and continuing propagation of 
cracks makes the subject exterior bridge span ideal for demonstrating the capabilities of AI based SHM techniques.  

 
Fig. 1—Cross-section of subject reinforced concrete bridge. 

The test vehicle used to dynamically excite the bridge in this study is a 2005 RAM 2500 series truck with a wheelbase 
of 3.57m and a front/rear track of 1.74m. The total mass with a driver and passenger is approximately 2812kg, with 
the front and rear mass distribution being 1509kg and 1303kg, respectively. The vehicle has an independent front 
suspension with coil springs and a live axle rear suspension with leaf springs. 
 
Damage Detection Strategy 
When performing model updating with real system response data, a series of dynamic tests would be conducted to 
capture time history responses under controlled but realistic operating conditions (e.g., single vehicle crossing when 
the bridge is free of other traffic). Obtaining data under controlled conditions is important when performing updating 
directly with time-history data, as unknown sources of excitation, such as that introduced by random traffic, cannot 
be accurately captured in a FEM and will introduce more model uncertainty6. An ideal time history response is one 
that has been obtained from a known input excitation or from a source that can realistically be represented in a model. 
For the subject vehicle-bridge system, input excitations on the bridge can realistically be captured in the FEM by 
accurately modeling vehicle dynamic properties and the surface roughness profile. To minimize discrepancies between 
the embedded FEM in the Bayesian estimation approach and the physical data used for model inputs, the experimental 
data would be processed to remove linear trends, aliasing, and high frequency noise effects that are difficult to account 
for in a simplified FEM. Once processed, the experimental data could then be input to the Bayesian estimation routine. 
 
In this study, model updating is performed using simulated data obtained from a coupled vehicle-bridge FEM with a 
set of “true” parameter values. On each step of the Bayesian algorithm, the “true” simulated data are compared against 
the solution to the FEM model given the current set of parameter estimates. Hence, the FEM is embedded within the 
Bayesian method and is solved on each iteration to allow for parameter updating. 
 

Analytical Methods and Procedures 
This section discusses the methodologies employed to model coupled vehicle-bridge interactions and perform the 
Bayesian estimation. Vehicle and bridge systems are modeled as if the coupled system is being tuned using real 
measured data, meaning the model attempts to capture real material properties, boundary conditions, and damage.  
 
Coupled Vehicle-Bridge Model 
The vehicle-bridge model employed in this study is outlined in Fig. 2, where the 6 degree-of-freedom (DoF) half-car 
model is coupled to the occupied 4 DoF bridge elements at points of contact using the concept of vehicle bridge 
interactions7. The bridge is discretized into ten elements, where the mass and stiffness of each element is modeled 
using traditional 4 DoF Euler-Bernoulli stiffness and continuous mass matrices; Rayleigh damping is used to model 
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the global bridge damping matrix8. To account for the noteworthy sources of excitation introduced to the physical 
vehicle by surface roughness, a class A surface profile is generated using ISO-8608:2016 standards and interfaced 
into the model using the approach outlined by Yang et al.7,9,10. The model solution is obtained using Newmark Beta 
numerical integration with a time step of 0.001 seconds (i.e., fs = 1000 Hz)7,8.  

 
Fig. 2—Interaction between 6 DoF half-car model and 4 DoF bridge elements. 

Equivalent Parameter Values  
The half-car model is a simplified representation of the RAM test vehicle and has the equivalent dynamic properties 
outlined in Table 1. It should be noted the properties in Table 1 were obtained from previous experimental vehicle 
tests and manufacturer specifications11. The truncated normal (TN) distributions on the stiffness parameters are 
attributed to a lack of available information on suspension properties and stochastic variables affecting tire stiffness 
(e.g., pressure, temperature, wearing, etc...). More information on parameter distributions is provided in the Bayesian 
Methodology for Parameter Estimation section. 

Table 1— Equivalent half-car properties 
Properties Values 

Mass 
MV  (kg) 2556 
MW1,2 (kg) 128 
IV  (kg m2) 11508 

Stiffness 
KV1 (kN m-1) TN(1.40e+5, 5667, (1.23e+5, 1.57e+5)) 
KV2 (kN m-1) TN(1.05e+5, 5667, (8.80e+4, 1.22e+5)) 
KW1,2 (kN m-1) TN(1.00e+6, 1.6e+5, (5.20e+5, 1.48e+6)) 

Damping CV1,2 (N s m-1) 2500 
CW1,2 (N s m-1) 0 

Length a (m) 1.64 
b (m) 1.93 

Note: TN denotes a truncated normal prior distribution and indicates the 
subject parameter is tuned by the Bayesian estimation routine.  

The equivalent area method is employed to simplify the entire cross-section in Fig. 1 to an equivalent rectangular 
cross-section of concrete; the equivalent model properties are shown in Table 2.  From the static load tests previously 
conducted on the bridge, it was determined that the support bearings resist horizontal movement, resulting in an 
increase in bending stiffness and partial fixity at the supports that is analytically accounted for using rotational springs 
(kr1,2)5,12-13. To account for uncertainties in longitudinal stiffness introduced by modelling assumptions, creep, 
shrinkage, and cracking, the stiffness (EI) of each element is multiplied by a stiffness modifier parameter (Ψ1-10).  

Table 2— Equivalent bridge properties 
Properties Values 

Mass ρ  (kg m-1) TN(8750, 250, (8000, 9500)) 

Stiffness 
EI (N m2) 5.73e+9 
Ψ1-10  TN(1.0,0.2,(0.4,1.6)) 
Kr1,2 (N-m rad-1) U(0.0, 1e+10) 

Damping ζ  (%) U(0.15, 4.5) 
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It should be noted that additional factors could be considered to improve vehicle-bridge model accuracy and capture 
realistic operational and environmental effects (e.g., ambient temperature and gradient effects, nonlinear breathing 
cracks, or nonlinear suspension properties); however, these factors are ignored in this study to reduce the parameter 
space and computation times. In this same vein, the fixed parameters in Tables 1 and 2 (e.g., vehicle length, mass, and 
damping) are held constant to reduce the uncertain parameter space for the numerical damage detection demonstration 
conducted in this study; these parameters could, however, be treated as uncertain and updated when working with real 
measured data or more complex vehicle-bridge models.     
 
Bayesian Methodology for Parameter Estimation 
The development of the proposed Bayesian estimation technique relies on the embedding of the FEM into a statistical 
model. Herein, a description is provided for how this is accomplished. To this end, let  𝑏̈𝑘 ∈ 𝑅𝑇 be a vector of 
acceleration data obtained from the coupled vehicle-bridge FEM measured at 𝑇 time steps. It is assumed that there are 
𝑁 DoF from which data are obtained and 𝑘 ∈ {1, … , 𝑁} is the 𝑘th DoF. Let 𝑥𝑘 denote the known fixed inputs (e.g., 
vehicle length, mass, damping, etc…) to the FEM and 𝛿 = (𝛿1, … , 𝛿𝑝)′ be the unknown model parameters; see Tables 
1 and 2. Note that all these variables are bounded (i.e., 𝛿𝑗 ∈ [𝑙𝑗 , 𝑢𝑗] for 𝑗 = 1, … , 𝐽). It is assumed that: 

𝑏̈𝑘 = 𝑓(𝑥𝑘, 𝛿) + 𝜖𝑘, (1) 

where 𝑓(𝑥𝑘, 𝛿) represents the solution to the FEM at the parameter settings 𝑥𝑘 and 𝛿, while 𝜖𝑘 denotes the usual error 
term. In this study, it is assumed that 𝜖𝑘 consists of both measurement and model errors, which are assumed to be 
normally distributed with mean 0 and covariance matrix 𝜑−1𝐈 such that the errors are uncorrelated (i.e., 𝜖𝑘 ∼
𝑀𝑉𝑁(0, 𝜑−1𝐈)). In this problem, it is assumed that the only discrepancy between the FEM and the observed simulation 
data is measurement and model error such that the FEM captures the “true” acceleration responses at the time steps 
which correspond to the measurements 𝑏̈𝑘. This assumption is reasonable for the purpose of this study. Adaptations 
can be made allowing the incorporation of correlation in error terms via functional forms on the covariances14. Under 
these assumptions, it is established that: 

𝑏̈𝑘|𝑥𝑘, 𝛿, 𝜑 ∼ 𝑀𝑉𝑁(𝑓(𝑥𝑘, 𝛿), 𝜑−1𝐈). (2) 

To complete the Bayesian model, the following priors are specified for the model parameters: 

• 𝜑 ∼ 𝑔𝑎𝑚𝑚𝑎(𝑎0, 𝑏0) 
• 𝛿𝑗 ∼ 𝑇𝑁 (𝜇𝑗, 𝜏𝑗 , (𝑙𝑗 , 𝑢𝑗)) , 𝑗 ∈ 𝑃𝑇𝑁 
• 𝛿𝑗 ∼ 𝑈(𝑙𝑗, 𝑢𝑗), 𝑗 ∈ 𝑃𝑈 , 

where 𝑇𝑁(𝜇, 𝜏, (𝑙, 𝑢)) denotes a truncated normal distribution with mean 𝜇, variance 𝜏, and bounds (𝑙, 𝑢), and 𝑈(𝑙, 𝑢) 
is a uniform distribution with lower and upper bounds 𝑙 and 𝑢, respectively. Note that 𝑃𝑇𝑁 and 𝑃𝑈 are sets of indices 
corresponding to parameters whose priors are truncated normal and uniform distributions, respectively. To facilitate 
model fitting, a posterior sampling algorithm is developed which draws realizations from the posterior distribution 
given by: 

𝑝(𝜑, 𝛿|𝐵) ∝ 𝜑
𝑁𝑇
2 exp [ 

−𝜑 ∑ {𝑏̈𝑘 − 𝑓(𝑥𝑘, 𝛿)}′{𝑏̈𝑘 − 𝑓(𝑥𝑘 , 𝛿)}𝑁
𝑘=1

2
] 

 

× ∏ 𝜏
𝑗

1
2

𝑗∈𝑃𝑇𝑁

exp {
−(𝛿𝑗 − 𝜇𝑗)

2

2
} 𝐼(𝑙𝑗 < 𝛿𝑗 < 𝑢𝑗) ∏ 𝐈(𝑙𝑗 < 𝛿𝑗 < 𝑢𝑗)

𝑗∈𝑃𝑈

 (3) 

× 𝜑𝑎0−1 exp(−𝑏𝜑),   

where 𝐵 = {𝑏̈1, 𝑏̈2, … , 𝑏̈𝑁} is a matrix of observed data, with the 𝑘th column of the matrix corresponding to the 
acceleration responses obtained from the 𝑘th sensor. Since the posterior distribution is not of a known distributional 
family, a Markov Chain Mone Carlo (MCMC) sampling algorithm which consists of Gibbs and Metropolis-Hastings 
(MH) steps is considered. In particular, 𝜑 is sampled using a Gibbs step, while 𝛿𝑗 , 𝑗 = 1, … , 𝐽 are sampled using MH 
steps. To elucidate these steps, the full conditional distribution of 𝜑 is given by: 
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𝜑|𝛿, 𝐵 ∼ 𝑔𝑎𝑚𝑚𝑎 (
𝑁𝑇

2
+ 𝑎0,

∑ {𝑏̈𝑘 − 𝑓(𝑥𝑘, 𝛿)}′{𝑏̈𝑘 − 𝑓(𝑥𝑘, 𝛿)}𝑁
𝑘=1

2
+ 𝑏0), (4) 

where the inputs to the gamma distribution are shape and scale parameters, respectively. The hyperparameters were 
set to be 𝑎0 = 1 and 𝑏0 = 0 such that the prior is weakly informative. The full conditional distributions of  𝛿𝑗 , 𝑗 ∈ 𝑃𝑇𝑁 
and 𝛿𝑗 , 𝑗 ∈ 𝑃𝑈  are given by:   

𝑝(𝛿𝑗|𝐵, 𝜑, 𝛿(−𝑗)) ∝ exp [ 
−𝜑 ∑ {𝑏̈𝑘 − 𝑓(𝑥𝑘, 𝛿)}′{𝑏̈𝑘 − 𝑓(𝑥𝑘, 𝛿)}𝑁

𝑘=1

2
] 𝜏

𝑗

1
2 exp {

−(𝛿𝑗 − 𝜇𝑗)
2

2
} 𝐼(𝑙𝑗 < 𝛿𝑗 < 𝑢𝑗), 

 𝑗 ∈ 𝑃𝑇𝑁  

(5) 

𝑝(𝛿𝑗|𝐵, 𝜑, 𝛿(−𝑗)) ∝ exp [ 
−𝜑 ∑ {𝑏̈𝑘 − 𝑓(𝑥𝑘, 𝛿)}′{𝑏̈𝑘 − 𝑓(𝑥𝑘, 𝛿)}𝑁

𝑘=1

2
] 𝐼(𝑙𝑗 < 𝛿𝑗 < 𝑢𝑗),  𝑗 ∈ 𝑃𝑈 , (6) 

respectively. The vector 𝛿(−𝑗) contains all the unknown parameters with the 𝑗th element removed. Note that these 
distributions do not belong to a common family, and MH steps were used to sample from these full conditionals. In 
implementing the MCMC algorithm, the first 𝑟 iterates were discarded as a burn in. Using the remaining iterates, 
posterior estimation and inference may proceed as usual. For further discussion on these standard practices please 
see15. 
 

Study Demonstrating Damage Detection Capabilities of Bayesian Methodology 
In this section a numerical study is conducted to validate the Bayesian estimation approach and demonstrate its damage 
detection capabilities.  
 
Scope 
To validate the damage detection capabilities of the Bayesian estimation routine, “true” parameter values are assigned 
to the vehicle and bridge parameters. Damage is applied as a 20% reduction in stiffness on two elements of the bridge 
(i.e., Ψ6,7 = 0.8); the selected locations are in line with the location of severe flexural cracking observed on the physical 
structure5. A low level of noise is added to each response vector such that a signal-to-noise ratio (SNR) of 40db is 
recorded for the subject response data. For this study, only the vertical acceleration response of the central bridge node 
is recorded; this is the equivalent of having a single accelerometer located at mid-span of the physical structure. Noisy 
simulation data is obtained for two separate vehicle crossings, which is the equivalent of obtaining real data from two 
separate dynamic vehicle tests. To perform posterior estimation and inference, the posterior sampling algorithm was 
used to draw 8000 MCMC samples with a burn in period of 3000 iterations. Thinning was performed such that every 
5th iterate was retained. Hence, 1000 MCMC iterations were included for estimation and inference. The algorithm was 
implemented on 75 different data sets. Table 3 indicates the “true” values assigned to each parameter and provides a 
summary of the mean parameter estimates and standard deviations obtained by the estimation routine.  
 
Results 
A summary of the mean estimates, average standard deviations, and bias from the 75 data sets can be seen in Table 3. 
From the results, the Bayesian methodology seems to be performing well in terms of parameter estimation, with bias 
and standard deviations being small for all parameters. From a SHM perspective, the model updating procedure was 
also able to accurately locate and quantify the magnitude of damage on bridge elements 6 and 7. It is also observed, 
however, that the Bayesian methodology appears to have incorrectly identified the true stiffness values for elements 
at the ends of the bridge. This observation is attributed to inadequate spatial coverage of sensor data across the bridge 
and the fact that variations in stiffness at the ends of the bridge have little influence on the acceleration response at 
mid-span; this is evidenced by Fig. 3 where there are only minor differences in the solution to the FEM given the 
mean estimates of the parameters compared with the observed simulation data. Other studies have also indicated that 
inadequate spatial coverage of sensor networks can lead to biased models that do not necessarily represent true 
operating conditions4,6,16. This issue can easily be overcome by increasing the number of measurement locations on 
the bridge or using response data from the vehicle; leveraging vehicle acceleration data is beneficial as it allows 
instantaneous acceleration data to be collected across the whole bridge span, which can improve damage detection, 
localization, and quantification7,17-19.  
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Table 3: Comparison of parameter estimates from Bayesian routine against “true” parameter values 

Bridge Parameters 
 ρ 

[kg m-1] Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8 Ψ9 Ψ10 
ζ 

[%] 
θb1,2 

[N-m rad-1] 
Truth 8750 1.0 1.0 1.0 1.0 1.0 0.8 0.8 1.0 1.0 1.0 3.0 1.0e+9 
Mean 8771 0.6 0.8 0.9 0.9 1.0 0.8 0.8 1.0 1.1 1.5 3.3 1.0e+9 
STDV 39.3 0.1 0.2 0.1 4e-2 6e-3 2e-2 4e-2 0.1 0.1 2e-2 7.6e-2 2.6e+7 
Bias -21 0.4 0.2 0.1 -0.1 -0.2 0.2 0.2 -0.1 -0.1 -0.5 -0.3 -7.9e+6 

 

Vehicle Parameters 
 KV1 

[kN m-1] 
KV2 

[kN m-1] 
Kw1,2 

[kN m-1] 
Truth 1.4e+5 1.05e+5 1.06e+6 
Mean 1.4e+5 1.0e+5 9.6e+5 
STDV 2.4e+3 2.5e+3 1.7e+5 
Bias -5.8e+2 1.1e+3 4.2e+4 

 

 
Fig. 3—Compares the “true” simulated response against the estimated response 
in the time and frequency domain. Results indicate that tuned model captures the 
“true” response with minimal differences despite some bias introduced by limited 
spatial coverage of sensors.  

Sensitivity Analysis Demonstrating Reduction of Uncertain Parameter Space 
This section provides a brief discussion on parameters identified as essential for modeling the physics of RC bridges 
that were excluded from the initial feasibility demonstration of the Bayesian technique. Additionally, issues pertaining 
to large uncertain parameter spaces in the proposed Bayesian routine are discussed, and a sensitivity analysis is 
conducted to demonstrate how the parameter space can be reduced. A final discussion is provided for general concepts 
that should be considered when leveraging Bayesian estimation methods for other SHM applications. 
 
Additional Parameter Uncertainties to Consider for RC Bridge FEM Accuracy 
When tuning a RC bridge model with experimental data, it is imperative that ambient temperature effects, surface 
roughness, and nonlinear crack damage effects be accurately represented in the model or mitigated during testing. 
Ambient temperature is known to cause significant linear and non-linear fluctuations in bridge modal properties that 
can easily be mistaken as damage6,13,20. Several methods exist for modeling temperature effects in simulation, but the 
effects can also be mitigated by conducting tests at the same time of day and/or at the same ambient temperatures13,20; 
the incorporation of data-driven approaches has also shown success in managing temperature effects6. Surface 
roughness is known to amplify the dynamic interaction between vehicles and bridges, and if not properly modeled can 
lead to numerical ill-conditioning. In the numerical study, the modeled surface roughness profile  was taken as a known 
quantity, but it could be obtained from a physical bridge by analyzing acceleration or laser displacement data measured 
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on monitoring vehicles during testing18,19,21.  Nonlinear crack effects are introduced when breathing is exciting within 
a crack, causing continuous fluctuations in stiffness and damping that can make identifying damage difficult. 
Nonlinear crack effects can be captured using rotational springs with bilinear stiffness or other fracture mechanics 
based methods22,23. The need to model nonlinear cracking can be mitigated if experimental data is measured for low 
levels of excitation where breathing is not excited22,23.  
 
Computational Limitations of Bayesian Estimation Routine  
The inclusion of the above-mentioned parameter uncertainties, in addition to the uncertainties in vehicle-bridge mass, 
stiffness, and damping parameters, can significantly increase the computational cost of Bayesian estimation and result 
in higher run-times4,6,16. One approach to reducing run times is to perform a sensitivity analysis to identify the impact 
parameter uncertainties have on fluctuations in response data. Through this approach, parameters demonstrating little 
to no influence on response data can be held constant and removed from the model updating space. In this study, 
Analysis of Variation and the Coefficient of Determination (R2) are employed to demonstrate the sensitivity of the 
output response features to uncertainties in the parameters in Tables 1 and 224. For this analysis, distributions are 
assigned to the parameters that were previously fixed in Tables 1 and 2, and a number of surface profiles (Road) are 
generated to demonstrate the impact varying elevation profiles can have on response data. Note the R2 metric provides 
a measure for the influence each parameter has on response features, where a 100 indicates uncertainty in an input 
accounts for 100% of the observed variations in a response, and 0 indicates uncertainty in an input causes no 
measurable change in a response. Table 4 indicates the results of the sensitivity study.  

Table 4: R2 values indicating mean contribution of parameter uncertainties to variability in time history response. 

Bridge Parameters 
 ρ Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8 Ψ9 Ψ10 ζ θb1,2 

Mean R2 3.07 0.74 1.05 2.38 4.01 5.46 6.54 3.63 2.02 1.35 0.77 1.0 34.00 
 

Vehicle Parameters 
 MV MW1,2 IV   KV1 KV2 KW1,2 CV1,2 CW1,2 a,b Road 

Mean R2 8.64 4.33 0.13 1.07 0.75 6.76 3.7 1.06 2.41 5.11 

The sensitivity results in Table 4 agree with the conclusion from the numerical damage detection study in that the 
stiffness of the end elements has less of an impact on the mid-span acceleration response; these parameters, however, 
cannot be removed from the updating space because they are needed for damage detection. It can also be seen that ζ, 
CW1,2,  IV, KV1, and KV2 have an insignificant impact on variations in the mid-span response, indicating these parameters 
can be removed from the model updating space without affecting the ability of the model to capture the “true” mid-
span acceleration response. Furthermore, it is observed that uncertainty in previously fixed properties (e.g.,  MV, MW1,2, 
and Road) can have a significant impact on variations in system response; indicating these parameters are essential 
and should be tuned if they cannot be identified prior to model development. For surface roughness specifically, 
everything should be done to obtain an accurate profile prior to model development, as each individual elevation 
would need to be treated as an uncertain parameter if tuned as part of the Bayesian estimation approach. As an example, 
an additional 751 parameters would have been added to the model updating space for the numerical damage detection 
study that was only analyzing a 1.5 second time history. If surface roughness cannot be identified prior to model 
development, model updating can be performed sequentially to identify and then fix certain parameter estimates25. 
Through this approach, the model updating space can be incrementally reduced while computational times remain 
small. Another approach for reducing the uncertain parameter space in higher fidelity models is to employ 
substructuring, where system properties are grouped into a subcomponent that is itself then updated as a piece of the 
entire system4,16.  
 
General Considerations for the Use of Bayesian Estimation in SHM 
When estimating parameters, it is important to consider any interdependencies between two parameters (e.g., the 
relationship of stiffness and mass to changes in frequency) as this can lead to a non-identifiability issue; the parameter 
space may be reduced to resolve this issue. Care must also be taken in specifying prior distributions to reflect the 
physical properties of each parameter. If knowledge does not exist on the distribution, a weakly informative prior can 
be specified such that the observed data provide more information to the model. Lastly, validation metrics, such as the 
Root-Mean-Square-Error, should be levered to identify how well a model fits the true system response.    
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Conclusion 
In this study, a novel Bayesian estimation technique was employed to update a simplified vehicle-bridge FEM for the 
purpose of identifying crack damage on a RC bridge. From a numerical study, the proposed methodology 
demonstrated promising model updating and damage detection capabilities, with parameter estimate bias being 
relatively limited and mean parameter estimates producing nearly identical acceleration and frequency responses. 
Furthermore, identified issues and limitations with employing the methodology towards physical data do not appear 
to be significant and can easily be addressed through sensitivity studies and modifying experimental procedures. 
Overall, this study provides a generalizable framework for concepts and procedures that need to be considered when 
employing Bayesian estimation techniques for performing model updating and SHM on reinforced concrete bridge 
structures. 
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