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Abstract

Connected autonomous intelligent agents (AIA) can
improve intersection performance and resilience for the
transportation infrastructure. An agent is an autonomous
decision maker whose decision making is determined internally
but may be altered by interactions with the environment or with
other agents. Implementing agent-based modeling techniques to
advance communication for more appropriate decision making
can benefit autonomous vehicle technology.

This research examines vehicle to vehicle (V2V), vehicle
to infrastructure (V2I), and infrastructure to infrastructure (I12I)
communication strategies that use gathered data to ensure these
agents make appropriate decisions under operational
circumstances. These vehicles and signals are modeled to adapt
to the common traffic flow of the intersection to ultimately find
an traffic flow that will minimizes average vehicle transit time
to improve intersection efficiency. By considering each light
and vehicle as an agent and providing for communication
between agents, additional decision-making data can be
transmitted. Improving agent based 121 communication and
decision making will provide performance benefits to traffic
flow capacities.

1. INTRODUCTION

Prior research has demonstrated that localized decision
making within groups of robots (agents) can improve overall
system decision making in stochastic environments [Chee,
2014]. In this scenario, each robot, is indistinguishable from the
concept of a computational agent. Agents make independent
decisions based on localized information obtained from the
environment and other interacting agents, as determined by
internally defined dynamic behaviors. Use of this approach
enables the system to stay current with local conditions.
Furthermore, rather than having a centralized controller
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gathering all information, each individual robot will gather data
that can be interpreted and used for individual decision making.
The ability for individual agents to gather data to provide
information to nearby agents will allow the system to adapt to
local conditions.

Research Problem and Motivation

With emerging autonomous vehicle technology, it is
important to study the positive and negative effects that may
occur in a connected vehicle/city environment. Further, the
question of how can connected autonomous technology be used
to improve performance through intersections? If this
technology can lead to enhanced safety, traffic flow, and
resilience a connected agent-based approach will ultimately
create a positive outcome.

By treating each connected autonomous system as an
agent, the potential impact of connected autonomous systems
can be studied in the context of these transportation questions.
The ability for each car to gather data through its own sensors
as well as pull data from other local cars can be a huge
technology improvement. If automobiles can relay information
about current locations to nearby vehicles as well as traffic
lights, the intersection can apply the received data to the
immediate situation. For example, an individual intersection
may be overcrowded from a high number of approaching
vehicles. The improved communication between the status of
intersections will allow traffic lights to communicate to provide
alternative light signal times. This is just one example that
displays the benefits of improved vehicle communication and
decision making. This knowledge will ultimately improve
traffic flow, safety and overall agent behavior.
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2. BACKGROUND

The individual details of each component in the
transportation infrastructure are complex, therefore highlights
of current, new, and potential improvements will be discussed.
Overall, there is a need and potential for improved
communication between vehicles and traffic signals given
emerging autonomous vehicle technology.

Current Infrastructure Technology

General traffic lights operate on a fixed timing schedule
typically only allowing adjustments to the sequence based on a
sensor to detect vehicles at the intersection and through
expected volumes of traffic based on daily traffic routines.
These common approaches are solely based on the detection of
nearby vehicles. A benefit of detection devices present in a
fixed light sequence traffic signal is the option to alter traffic
flow directions through nearby vehicle detection given the light
has not reached its maximum green light time display. Another
benefit is the option to skip certain cycles if no vehicle is
present in a specific direction at that intersection. This will
result in an improved flow of traffic in the opposite direction.
Another common technique for traffic flow optimization is the
use of the concept rolling horizon [Goodall 2013]. A traffic
control algorithm will optimize an objective function over a
short period of time to estimate the position of vehicles over
future cycles. This approach again only allows for estimation of
a vehicle location as opposed to a precise recognition. With
emerging autonomous vehicle technology, intersection
performance can greatly be enhanced.

Furthermore, a rolling horizon quadratic programming
approach was used for signal control [Aboudolas 2010]. They
investigated recently developed signal control and discovered
new ways to improve real-time network control in large-scale
networks. The traffic responsive urban control (TUC) method
was used and is based on a linear quadratic multivariable
regulator which considers minimum green time constraints and
cycle time. Two different strategies of first and second class
were created. First class considers undersaturated traffic
conditions while second class considers oversaturated traffic
conditions. Overall optimization for network wide signal
control of traffic was proven effective through efficiency
improvement.

For over a decade, there have been several attempts to
develop approaches for improving operations of self-driving
vehicles through signalized intersections [Mladenovic 2014].
One main concentration for improvement has been the
cooperation of the vehicles to improve safety. About 96% of
traffic engineers recognize the importance of safety at
intersections, while identifying the concern for respect and
morality. Crashes that occur generally are due to human error.
Therefore, to implement autonomous vehicles and ensure
citizens are content with this improvement, a safer environment
throughout the automotive transportation must be proven
successful.
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Connected Vehicle Technology

Although quality decision making is important in the
improvement of safety, connectivity between vehicles adds an
extra component to improve the traffic flow and overall safety
of the vehicle. Talebpour and Mahmassani [2016] performed a
study demonstrating the influence of connected autonomous
vehicles and the impact on traffic flow. It was proven that
connected vehicle technology can provide real-time
information about nearby traffic and ultimately can increase
efficiency and reliability.

In the same article published by Talebpour and
Mahmassani [2016], the type of communication that can occur
in an autonomous environment was discussed. Active Vehicle-
to-Vehicle (V2V) communication is the ability for one vehicle
to maintain an appropriate distance behind another. This is
typically based on desired spacing, comfortable acceleration or
deceleration, and the relative velocity between the vehicles.
This specific type of communication is like adaptive cruise
control (ACC) which allows a user to specify a top speed which
may be reduced based on the distance behind and speed of a
vehicle in front. Vehicle to Infrastructure (V2I) is also an
important level of communication. Active V2I communications
allow real-time data to be transmitted regarding speeds of
multiple vehicles. The signal can then update an appropriate
speed limit to allow the connected autonomous vehicles to
work in harmony. It is concluded that the general autonomous
vehicle will calculate the appropriate acceleration based on all
inputs to the system from nearby vehicles and infrastructure
signals. This calculation is important as the basic behavior of a
vehicle begins with the ability to accelerate and decelerate
appropriately.

More recent research relating to the topic of connecting
autonomous vehicles and traffic signals is through [Feng 2015]
paper titled “A real-time adaptive signal control in a connected
vehicle environment.” Common traffic signals have been
optimized to improve traffic flow based on real-real time traffic
conditions. Adaptive signal controls design signal time and
phasing on-the-fly based on real-time traffic demand as well as
predicted traffic demand. Furthermore, they can use sensors
embedded in the pavement or non-intrusive sensors, like video
detectors. However, this traffic flow can be improved with
advances in wireless communication technology as vehicles
can communicate with each other and with the infrastructure in
the emerging connected vehicle system [Feng 2015]. There
have been many advances in Vehicle to Vehicle (V2V)
communication as well as Vehicle to Infrastructure (V2I)
communication. These technologies use dedicated short-range
communication (DSRC) and this technology can be used to
gather data for these specific communication scenarios.

This study considered both autonomous and non-
autonomous vehicles. Applications utilizing V21
communication enable the intersection to acquire a more
complete picture of the nearby vehicle states. Data from
connected vehicles provide real-time vehicle location, speed,
acceleration, and other status-based vehicle data. From this new
source of data, traffic controllers should be able to make
“smarter” decisions [Feng 2015]. This author has presented a
real-time adaptive traffic control algorithm by utilizing data
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from connected vehicles. Algorithms for this study utilize
arrival time, estimation for traffic signal timing, and phasing
decision at the traffic controller.

To improve light signal timing, Goodall et al [2013]
created an algorithm to control traffic signals with connected
vehicles. Instead of relying on point detectors to recognize
vehicles at a fixed location, traffic signals can use data
transmitted from a vehicle through DSRC to gain access to
previously estimated measures such as vehicle speed, position,
arrival time, acceleration rates, and queue lengths [Goodall
2013]. The predictive microscopic simulation algorithm
(PMSA) was then created to improve state of the practice
performance by responding to real time demands while
eliminating the ability to reidentify records of an individual
vehicle to protect driver privacy. The algorithm initially
receives data regarding the position and speed within a 300-
meter distance of the light. Assuming a minimum green light
signal time of 5 seconds and a maximum of 15 seconds, the
most appropriate green light signal timing is determined by the
time required to clear vehicles in that direction.

Similar connected vehicle and infrastructure research was
also completed for situational awareness for a connected
autonomous vehicle (CAV) making a left turn at a signalized
intersection [Khan 2019]. Video cameras as well as lidar and
radar sensors are placed at the intersection to recognize
upcoming vehicles traveling in the opposite direction of the
vehicle intending to make a yielding left turn. The intersection
will predict the arrival time to the intersection of the opposite
direction vehicles. If the maneuver can be completed safely, the
intersection sensors will notify the CAV (I2V) that it may
proceed through the intersection. Furthermore, given a two-lane
road, the autonomous vehicle control system can recognize
behind vehicles to determine if a safe maneuver to the left turn
lane can be completed [Khan 2019]. This study was completed
given an aggressive non-CAV driver which is important to
consider because not all vehicles on the road today are
autonomous. Overall, the ability for the traffic signal to
recognize upcoming vehicles from a distance was proven
effective.

Multi-Intersection and Adaptive Signal Control for Traffic
Optimization

SCOOT and SCAT traffic signal techniques have been
used widely throughout traffic control for many decades.
SCOOT is an optimization technique that incorporates a
centralized system that measure traffic loads continuously [Luk
1984]. These measurements of traffic volumes adjust signal
timings to minimize the average vehicle queue in specific areas
per intersections [Stevanovic 2009]. Multiple details of the
overall optimization include split timing, offset, and cycle
length which provide smaller individual details for queue
minimization. SCAT 1is an automated real time traffic
responsive signal control strategy that incorporates local and
regional computers [Stevanovic 2009]. Information from
vehicle detectors regarding location is used to adjust signal
timing based on the variation in traffic demand. Software
program VISSIM is often used with this method and overall,
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signal timing is adjusted based on change in traffic flow which
is monitored from the heuristic feedback system.

A connected vehicle research study based on an adaptive
traffic signal in a mixed traffic stream was also completed
[Khan 2019]. Connected vehicles (CV) are considered mobile
nodes that communicate with nearby vehicles (connected road
users) and infrastructure traffic signals. The intersection signals
use an algorithm to optimize the traffic flow and adapt the
timing based on vehicle load through the intersection. Initially,
traffic signal timing is estimated based on the number of
connected vehicles at the intersection. As vehicles travel
through the intersection, dynamic offsets based on the initial
signal timing can be implemented from the vehicle data load
[Khan 2019]. Finally, the green time interval can be adjusted
from the queue load of vehicles in the red direction. Overall,
the time a vehicle is stopped at the intersection (stopped delay)
can be reduced through adaptive signal timing.

Finally, multi intersection autonomous vehicle interactions
have been simulated based on distributed mixed integer linear
programming (MILP) to enhance traffic flow at signalized
intersections [Ashtiani 2018]. Using connected autonomous
vehicles (CAV), intersections solve their own optimizations
given vehicle information and communicate decisions to other
autonomous vehicles. Using time for a vehicle to proceed
through an intersection and distance to the intersection, the
controller can create a list of subscribed vehicles to neighboring
intersection to find the desired access time. Overall traffic flow
is optimized given these calculations.

This research was also incorporated using optimal schedule
of autonomous vehicle arrivals at intelligent intersections
[Fayazi 2017]. Using the mixed integer linear programming

Figure 1: Full City Intersection Connectivity.

technique (MILP), a live picture of traffic conditions can be
created. Notifications per vehicle can be communicated to the
upcoming intersections to determine arrival time of that
vehicle. Considering all subscribed vehicles to the upcoming
intersection, an optimal schedule for light time can be
determined to minimize intersection delay while ensuring
safety. The access distance of the vehicle to the intersection
allows for further calculations of the desired arrival time to
ensure vehicles do not face extreme delays. Furthermore, safety
is more improved through ensuring vehicles travel safely
behind vehicles ahead given autonomous vehicle reaction time.

Copyright © 2020 ASME

UaY0} eseo;pd'896zZ-0202o1eP-250e601600/1/90.9859/250V60L600A/€86€8/0202310-013al/4pd-sBulpaeooid/310-01301/610 awse uonos)||0deybipawse/:c

| Ayssenun uoswal) Aq By AMPAHBAND ABESZH-006.90X108997Z08 AANXONYY17098NAdTOIdPIAXMILXH 4GPDDSI: VY VYV IBIINAOILON



Potential for Communication Improvement

In general, studies have been completed through
connecting vehicles to determine common traffic flow. This
data is used to ultimately improve the traffic signal patterns.
However, there is not a significant amount of research
considering the communication between both vehicles and
traffic signals and treating each as an individual intelligent
agent. This further includes a lack in research of
communication between adjacent intersections (I2I). Including
this newer form of communication can create improved traffic
flow across a wider range of roads. Connecting vehicle flow
through multiple intersections allows for more accurate status
updates that can be used to improve both vehicle and
intersection status decisions. Considering previous research
regarding connected vehicle behavior and implementing
optimization algorithms for the addition of connected traffic
signals will allow for further improvement of intersection
performance. A full network of agent-based communication
between autonomous vehicles and intelligent traffic signals is a
new study that will be discussed and proven to be advantageous
to the transportation infrastructure. Eventually, this
communication can be improved to full dynamic component
connectivity in a city intersection as shown in Figure 1
however, this research will only consider communication
between autonomous vehicles and intelligent traffic signals.

3. METHODOLOGY

The goal is to model an intersection that connects both
autonomous vehicle and intelligent traffic signal agents to
understand and improve communication between intersections.
Figure 2 displays the ideal coupled system at an individual
intersection when considering both an autonomous vehicle and
an intelligent traffic signal each as an agent. Realistically,
numerous nearby vehicles and traffic signals will be in
simultaneous communication. However, for simplicity, initially
only the interaction between one vehicle and light is
considered.

Control Parameters  Uncertainty Parameters
xind
d: Vehicle Initial Direction
0: Vehicle Desired
Output tion
X;: Upcoming Vehicle
Location

“Environmental
Regulations

Vehicle
(system A)

c: Current Light Status

Output yiP=xf”
t: Time to Reach
Intersection
Q: Queue Addition
at
Traffic
n: Nearby Light Status Signal T: Timing Countdown of Current
System B Light Status
g

I: Intersection
L: Lane Length

Figure 2: Coupled Agent-Based Behavior.

The importance of this experiment is to ensure the
autonomous vehicle agents and intelligent traffic signal agents
are working in harmony. As displayed in Figure 2, autonomous
agents can communicate approach time to an intersection when
necessary. The intelligent light can then put that autonomous
car in queue and determine if a potential light status change is
necessary based on the load of vehicles currently waiting at the
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light. The traffic signal will continuously gather nearby vehicle
data to determine if a light status change is necessary.
Furthermore, to allow two-way communication, intelligent
traffic signals can relay light status to upcoming vehicles to
ensure common traffic laws are obeyed.

The MATLAB model has been created to run specific
simulation scenarios on the behavior of autonomous vehicles in
a smart city environment. The initial model was created to
demonstrate traffic flow at one individual intersection. Figure 3
displays the individual intersection model labeled with specific
directional values for facilitated reference throughout this
section. The direction number is based on the input or output
location relative to the center of the intersection and it is
assumed that all cars will travel on the right side of the road.
The overall model is a fixed time step iteration-based code
which calculates the desired acceleration of each individual
vehicle for appropriate movement throughout the simulation.
This model is based on the behavior of a realistic vehicle. As
time passes, drivers change positions relative to the traveled
road in the desired direction. Vehicles will continue to move
throughout the simulation until their desired destination is
reached.

250
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0
150
0
100 [
50 - 5 P \d 5 i
Direction 2 0 Direction 4
0 e edes (=
-50
-100 o
sl Direction 1
-200 0
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Figure 3: Individual MATLAB Simulation Intersection.

Updated behavior parameters calculated from the previous
iteration to be used for the current iteration include the current
position (x;) and velocity (vi) of an individual vehicle. The main
objective of each iteration per car is to calculate the appropriate
acceleration given the situation. Four main types of
accelerations are calculated per iteration and the most
appropriate acceleration is implemented in the final car
movement calculation. The accelerations are highlighted in
Table 1 and explained in detail throughout this section.

xPS = —28 — Uld * tY (31)
Xpp = —22 — Vg * ty + % * Qg * L2 (3-2)
=—16 — 1 2 (3.3)

Xpr = Vig *ty 5% Qg *x ly
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Table 1: Individual Iteration Acceleration Options

Distance Maintaining an appropriate

Acceleration following distance behind a car
given the desired headway time.

Light Status Determining the appropriate

Acceleration acceleration given no cars ahead,
the current light status, and an
intent to proceed straight through
the intersection

Right Turn Calculated instantaneous

Acceleration acceleration given no cars to
impede upcoming progress and a
desire to make a right turn at the
upcoming intersection

Left Turn Calculated instantaneous

Acceleration acceleration given no cars to

impede upcoming progress and a
desire to make a left turn at the
upcoming intersection

Equations 3.1, 3.2 and 3.3 based on the desired turn are
calculated to determine if the vehicle at the current speed will
make it through the intersection if the light were to change
immediately from green to yellow. Considering the same
direction 2, if the current x; position is greater than the through
intersection calculation position, it is highly likely the vehicle
will make it through given an immediate yellow light change.
The equations are evaluated only with a green light at the
upcoming intersection. An additional value used is the yellow
light time (ty). These equations calculate the passing position
(through point) based on ideal behavior for a straight (xps),
right (xpr), and left (xpr) turns.

These equations are used to determine if a vehicle will
pass through the intersection and to provide opposite direction
vehicle status to confirm if a vehicle can proceed through an
unprotected left turn. If no cars in that opposite direction have
reached the through point, the yielding vehicle can proceed
safely across the lanes of traffic. Figure 4 displays a
comparison between the straight (xps), right (xpr), and left (xpr)
turns values for a vehicle with an intensity rating of 5. It is clear
from the graph that a vehicle traveling straight can be the
furthest distance away from the center of the intersection but
still make the light given a potential yellow light change. This
is because no deceleration is required for a vehicle proceeding
straight assuming no nearby vehicles are impeding the
progress. Vehicles turning left and right are required to slow
down to complete the turn safely.
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Figure 4: Distance from Intersection to Likely Proceed
Through Based on Desired Turn.

Overall, vehicles in the simulation behave typical traffic laws in
a single intersection model with one lane input and output per
direction. The light timing at the four-way intersection is fixed
with varying green times per simulation and a fixed yellow
light time based on the speed limit. The individual intersection
is then used to create a grid scenario like a city environment.
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Figure 5: 2 x 3 Intersection Grid.

Intersection Grid with Fixed Timing Signals

Upon completion of the basic intersection model,
individual intersections are then connected to create a city
environment. The initial evaluation of traffic flow through the
intersection is evaluated using fixed timing signals. This
objective is critical for understanding the status and behavior of
previously constructed intersection or city models. Once the
behavior of a basic city environment can be evaluated,
approaches to improve the efficiency of these models while
ensuring a safer environment for the transportation
infrastructure can be determined.

Initially, basic intersection modeling was carried out. A
simple intersection model has been created with vehicles
passing through the intersection based on light status. Next, the
basic intersection model was scaled to simulate a city
environment with fixed timing signals. This is important so the
efficiency of the grid setup and an average vehicle time through
individual intersections can be calculated. Overall, these
parameters will be calculated given fixed green light signal
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times to establish a baseline for improvement in each city grid
scenario.

MATLAB Modeling for Connected Intersections

The initial MATLAB code was created to simulate
vehicles traveling through one specific intersection. To
consider a city scenario, individual intersections are placed in
new locations throughout a mapped area with one lane road
transitions connecting each adjacent intersection. An example
of a 2x3 intersection setup is shown in Figure 5. The center of
each individual intersection was placed at a specific (xi, yi)
coordinate on the map based on the lane length (L) of the
intersection, the intersection grid row (R) count and
intersection column (C) count. Furthermore, the intersection
number (I) is established as well as the direction (d) per
intersection. The single intersection 1 used direction numbers 1
— 4 to establish north, south, east, and west surrounding the
intersection; intersection 2 will possess directions 5 — 8. This
numbering process will continue for the total amount of
intersections in the grid (N = R*C).

The center location of the individual intersection is based
on the lane length (L). In Figure, L = 800 ft. Due to the
intersections all possessing the same length, the location of
each intersection center must be exactly L*2 ft away from an
adjacent intersection to represent a square setup. The grid setup
in Figure 5 is not displayed to scale.

The iteration process per vehicle is very similar compared
to the single intersection acceleration determination process.
The main difference is the overall location evaluation per
vehicle. Individual calculations regarding position are all based
on the center location of the intersection. For example, the
through intersection equations now include an additional x;
center location term. Furthermore, the specific direction
number 2 from the individual intersection cannot always be
referenced however, the west direction relative to an individual
intersection will still be considered. The new through
intersection evaluation equations are listed as

Xps = X — 28 — Vig * ty (34)

xPR=x,—22—vid*ty+%*aid*t§ 3.5

xpL=x,—16—vid*ty+%*aid*t§ (3-6)

which still directly relate to the individual intersection
equations. All equations from section 3.3.1 can be used for any
direction west of an intersection given the center x coordinate.
This consistency highlights the scalable ability of the individual
intersection to a grid city model.

Evaluation of Fixed Timing Intersection Performance

The initial evaluation of intersection performance will
begin by modeling a select few basic intersection networks to
build a framework for the experiment. To evaluate the
performance of this intersection, we will consider the average
time for each car to proceed through an intersection. Individual
vehicle timing can be evaluated using the actual simulation
start time (t;) of the vehicle when it is located at the beginning
of the intersection and the final intersection departure time (tq).
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The actual time through the simulation (t,) can be found using
the equation
tg =tg —t (3.7)

To compare the quality of this value, we can study how
long it may take for each individual car to pass through based
on the typical behavior of that driver (desired speed, following
time, desired acceleration). We can determine the time it would
take for an individual driver to pass through this intersection
given a green light and no other cars to impede the progress.
This calculation will be used as an ideal time (tig) scenario per
car.

The ideal time is based on the output direction relative to
the input direction. Given different output directions of straight,
right, or left, the following three equations for the ideal time
(tig) can be determined.

; 2L (3.8)
ids Vig
The right and left turn equations require more detail regarding
deceleration and acceleration time as it is necessary to slow
down to complete a turn safely.

[ Via —Vr\ , 1 Via = vr\* ]
28— vy ( ; a; ) +3(ia) ( : Qig ) +1L Vig — VUt 6
tigr = 2 o +2 ( : ) +—
id Aiq vr
3.9

[ 00—y (Vid=V1\, 1., y(Yia—Vr)

20 Via ( aq ) + E(am) ( Qi ) +L Vig — U 10
Ligy, = 2 - + 2( . ) +—
Vid QAiq Ur
(3.10)

Eventually, an overall real average time per car is
evaluated to determine the efficiency of the intersection given
the average ideal calculation.

Given details from the MATLAB model from a fixed
timing intersection, there is room for improvement.
Autonomous vehicles are moving in a positive direction
possessing new vehicle recognition and 5g technology. This
creates the ability for vehicles to communicate. Building on this
initial model and improving intersection performance by light
and vehicle communication is a challenging problem. These
initial basic steps will help determine the best approach for
intersection evaluation.

Implementing Coordinated Traffic Signals

After evaluating and modeling multiple basic intersections,
agents will be introduced in traffic signals. As previously
stated, an agent is an autonomous decision maker whose
decision making is determined internally but may be altered by
interactions with the environment or other agents. Therefore, to
ensure a proper functioning network, individual traffic signal
agents will have their own internal behavior function and will
gather data from nearby intelligent intersections to build and
improve the model. These coordinated traffic signals
communicate light status to optimize traffic flow for safety and
resilience improvement for the transportation network.
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MATLAB Modeling for Coordinated Traffic Signals

Given the basic intersection model for city grid scenarios,
intelligent traffic signals are now implemented. Nearby
intersections view the status of adjacent intersections and adapt
their own status based on average time for a vehicle to travel
between intersections. The average time for a vehicle to travel
between intersections (tp) is

. 2L (3.11)
PTs
where L is the lane length and S is the speed limit. This is the

approximated time a vehicle will take to travel from the center
of one intersection to another. Given fixed values of L = 800
and S = 40 mph (58.6667 ft/s) for all simulations run, the
average vehicle time between intersection t, = 27.27s. This
calculation considers vehicles traveling at the full speed limit
throughout the transition. Realistically, a range of drivers will
travel above and below this value however, this is used as a
reasonable approximation for this scenario. This value is used
to initialize the adjacent intersection green light countdown.
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Figure 6. Coordinated Intelligent Intersection Setup.

In this example, the 2 x 3 intersection setup will be used.
Figure 6 displays a sampled view of the coordinated traffic
signal intersection setup. All traffic is initially routed to pass
through each intersection in the north and south directions
(Figure 5). Note the intersection numbers displayed in Figure 6.
For this coordinated traffic scenario, intersection 1 has the
leading fixed signal. This intersection behaves similarly to the
fixed timing lights based on the maximum green light time. All
other intersections in this simulation will adapt to the nearby
intersections relative to the west or north depending on
location.

Based on the overall mapping, the direction of coordinated
traffic flow will be in the southeast direction. Intersections 2
and 4 are informed when intersection 1 changes state to a
yellow light and will immediately start a countdown for their
individual light change generally based on the average time for
a vehicle to travel between intersections (t, = 27.27s).

Referring to the display in Figure 6, intersection 1 has
already allowed traffic to pass through in the east and west
directions while the north and south traffic is held at a red light.
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Intersection 1 ‘ ‘ Intersection 2 - Intersection 3
(Fixed Timing) ; (Coordinated 1) (Coordinated 2)
|

! ! !

Intersection 4 “ Intersection 5 ‘ Intersection 6
| Figure 7: Coordinated Traffic Signal Logic. i

Intersections 2 and 4 have switched to a yellow light which has
started a countdown for intersections 3 and 5 to adjust to their
yellow light. Figure 7 shows the coordinated logic for a 2x3
intersection example.

Coordinated Traffic Signals

Overall, various maximum green light times were run to
simulate alternative traffic scenarios. To coordinate traffic
appropriately, the intersections receive the instant yellow light
change and create a countdown for their individual light change
based on either the maximum green light time (tg) or the
average time for a vehicle to travel between intersections (tp).
The appropriate choice is determined by which numerical value
is smaller.

Figure 8

Light # Status Countdown Intersection
displays a 1 0 0 1
section of the 2 2 4.5341 1
Traffic Light 3 0 0 1
matrix  from 4 2 4,5341 1
the MATLAB 5 1 3.5 2
code which 6 0 0 2
displays  the 7 1 3.5 2
light number, 8 0 0 2
the status of 2 2 42 2
the light, the 10/ 2 =
countdown of it > = 3
that  specific - 0 2 i
. 1 ik 3.5 4
light status, i - o 4
and the 15 1 35 4
intersection at 16 0 0 4
which the light 17 2 a5 5
is placed. For 18 0 0 5
the status, 19 2 95 5
green = 2, 20 0 0 5
yellow = 1, 21 2 79.4773 6
and red = 0. 22 0 0 6
For reference, 23 2 79.4773 6
the individual 24 0 0 6

intersection
setup in Figure F£igure 8: Individual Traffic Signal Status.
3 can be directly labeled as intersection 1. Intersections 2 — 6
contain the same relative direction numbers as intersection 1.
The traffic light status in Figure 8 can be directly related to the
visual light status representation in Figure 6. An equation
relating light status countdown from coordinated intersections
(3 coordinated from 2) is important to consider.
tY - TS = tG - Tg (312)

From Figure 8, given a yellow light time of 4 seconds (ty =
4) and a maximum green light time of 10 seconds (tg = 10), it
can be observed that intersection 2, which contains lights 5 and
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7 has communicated information to intersections 3 (lights 9 and
11) and 5 about the recent light status change from green to
yellow (0.5 seconds have passed since the light change).
Therefore, the simulation logic is accurate as the countdown
time that has passed in intersections 3 and 5 is exactly 0.5
seconds less than the maximum green light time. This logic is
repeated for the duration of the simulation and the average
vehicle time through individual intersections is evaluated.

MATLAB Modeling for Adaptive Traffic Signals

The main addition to the MATLAB model is the ability for
a traffic light to recognize the level of vehicles waiting in a
specific direction at the intersection. This is referred to as the
queue (Q) of the light. For each experiment, the queue of each
individual intersection throughout the overall simulation is a
fixed value. Each intersection will add up the number of
vehicles waiting in the red-light direction and when the current
queue value reaches the maximum (Q > Qmax) set in the
simulation, a new countdown for the green light direction may

be applied.
Phase A Phase B
HON

A 4 =
e e L i

EERE

RN
_‘é)i:_ _‘% %:_
P Rl

Figure 9: 2x2 Fixed Timing Signal Sequence

Overall, the intelligent coordinated traffic signal
environment is still implemented. However, the status may be
altered due to a large queue. For consistency, the basic
intersection directions from Figure 3 will be referenced in this
scenario. If directions 1 and 3 (north and south) currently
display a green light, directions 2 and 4 (east and west) will
display red to avoid intersection collisions. As the countdown
to a yellow light continues, traffic from the direction with a red
light will build up. A car will be officially added to the queue
count when it is completely stopped at the intersection (vi = 0)
while waiting for the light to change. When the Qmax value is
reached in either direction 2 or 4, a calculation to determine the
amount of time it will take for the furthest vehicle in a green
light direction (1 or 3) to reach the intersection (t,) is carried
out.

Initially, the code determines the furthest vehicle in each
direction from the intersection that is within the lane length
range. A situation may occur where no upcoming vehicles are
present in the green light directions. In this scenario, the green
light countdown will automatically be reduced to 1. This will
ensure the vehicles in the red-light direction are not waiting
more time when no traffic is present for a green light.

The time each vehicle will take to reach the intersection in
each direction (ty1 and ty3) will be evaluated. For simplicity,
only the evaluation for direction 1 will be explained. First, a
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calculation is completed to determine the minimum distance the
individual vehicle can be from the intersection to make it
through given ideal behavior in the event of an immediate
change to a yellow light. These calculations are the same
compared to the through intersection calculations. They are
shown here again as equations 3.13, 3.14, and 3.15 and are
based on the desired output direction straight (xps), right (xpr),
or left(xpr).

xps = _28 — Uid * ty (313)
Xpp = —22 —vig * ty + % * Qg * t2 (3.14)

Next a calculation is completed to determine how long it
will take the vehicle to reach this specific point. Realistically,
depending on the true output direction of the vehicle, any of the
three above equations could be used. For this scenario, the
displayed calculation assumes the upcoming vehicle will make
a right turn therefore, variable (xpr) will be used. The time for
the vehicle in direction 1 (t,1) is calculated as
XpRr — X1i

Vii
given current vehicle speed (vii) and position(Xi;).

A comparison for calculated values ty; and ty3 is completed.
The greater value will be used as the ultimate t, value which is
then compared to the light countdown. In this scenario, ty; > ty3
is assumed therefore, t, = ty;. The individual light countdown in
direction one (T}) is then compared to the calculated value t,. If
ty < Ty, the new countdown value will be t,. This will allow all
vehicles in each green light direction to proceed through the
light and ensures that once this happens, vehicles in the red-
light direction will not have to wait unnecessarily.
Alternatively, if t, > T, the light will continue its normal
countdown (T;) to keep traffic continuously moving. In this
research, no additional time will be given to a green light
countdown.

(3.16)
tn =

Simulation Goals of the MATLAB Model

The MATLAB code can run simulations regarding either
the fixed, coordinated, or adaptive timing signal network.
Furthermore, based on details explained throughout chapter 3, a
variety of inputs can be adjusted to vary the intersection
simulation (car load, intersection grid setup, etc.) These varying
parameters allow a user to determine how efficient an
intersection may be based on the input details and the signal
performance choice. The overall evaluation and explanation
regarding the performance difference of each scenario will be
explained throughout Section 4. The appendix contains the
main MATLAB code for an adaptive traffic signal setup.

4. SIMULATION RESULTS

To determine if this adaptive approach improves
intersection performance in city environments, evaluations per
car will be completed. These evaluations will be completed by
comparing overall distance traveled through the entirety of the
intersection and time it takes to reach the destination from the
initial starting point. Evaluations were initially completed from
the fixed timing intersection model to establish a baseline and
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to confirm there is potential for improvement. The evaluations
of the fixed timing signal are compared to the coordinated
signal setup as well as the adaptive signal setup. Comparison
criteria will be the intersection grid setup, the number of
vehicles in the setup, and the queue count for the various
adaptive signal options.

Fixed Timing Evaluation Results

Timing is the most important factor that will be considered
during this evaluation. Performance will be evaluated for
overall time through intersections. The key factor in this
research is reducing wait times at intersections (stopped delay).
Figure 9 displays the fixed timing intersection sequence in two
phases given a 2x2 intersection setup. Due to the fixed timing
evaluation, the only varying parameters are the intersection
setup, the number of vehicles on the road, and the maximum
green light time. The main comparisons are the
intersection setup and the number of vehicles present on the
road. The green light time varies and average traffic flow time
and overall efficiency through an intersection is evaluated. The
maximum green light ranges from a time of 10 — 50 seconds
and the number of vehicles on the road per intersection ranges
from 5 — 60 cars. The intersection setups evaluated for the fixed
timing signal are 1x1, 2x2, 2x3, and 3x3.

Efficiencies per scenario are also compared. To maintain
consistency for minimizing parameters, the inefficiency will be
measured and displayed using the following equation:

- = (1- )
Lprp =1 /()E—(l n

a

@A.1)

where tiq is the average ideal time and t, is the average actual
time for a vehicle to proceed through the intersection.

20 Vehicles

10 Seconds 20 Seconds 30 Seconds 40 Seconds 50 Seconds

Average Vehicle Time (s)
= =
N F=y [=a] o0 Q [
o o (=] o (=] (=]

o

Maximum Green Light Time
Figure 10: Average Time, Fixed, 20 Vehicles

A graph summarizing the data for a 2x2 intersection grid
can be displayed in the Figure 10. The detailed comparisons
show the difference in vehicle time through each intersection
based on the vehicle load, the green light times per direction,
and the intersection setup. Generally, the average vehicle time
is based on the longer light time as well as the increased
number of vehicles on the road. It can be seen that longer green
light times are more beneficial for a larger vehicle count.
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20 Vehicles

Inefficiency
o
(%2

0.41
0.35 0.38
0.29 0.29
03
02
0.1
0

10 Seconds 20 Seconds 30 Seconds 40 Seconds 50 Seconds
Maximum Green Light Time

Figure 11: Inefficiency, Fixed, 20 Vehicles

Average Vehicle Time vs Maximum Green Light Time per
Car Load (2x2 Fixed Signal Timing)
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Figure 12: Average Vehicle Time for 2x2 Intersection, Fixed Signal

Coordinated Signal Evaluation Results

The coordinated traffic signal is the first step for improving
the intersection performance. As discussed in Section 3, the
nearby light sequences are now adaptable based on nearby
intersection signal changes which includes rudimentary 121
communication. A representation of this light sequence in
ongoing phases for a 2x2 intersection is displayed in Figure 13.
The exact phase changes may not be represented by the exact
figure but overall, the upper left intersection will change first to
allow the opposite directional traffic to flow. The next phase
includes the adjacent intersections compared to the initial.
Finally, the bottom right intersection will adjust the direction.
Other situations could occur where the initial intersection may
change back to allow north and south traffic to flow before the
last intersection has the option for a change. This ultimately
will depend on the maximum green light time.

Graphic Displays of Coordinated Light Sequence

The data displayed for each graph will also be for a 2x2
intersection grid setup for consistency. More traffic creates an
overall longer wait time. However, the wait times are more
consistent given the longer green light time in scenarios with a
higher number of vehicles. This is also consistent for the
inefficiency of the intersection.
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Figure 13: Coordinated Signal Light Sequence

Coordinated Signals, 20 Vehicles
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Figure 14: Average Time, Coordinated, 20 Vehicles

Coordinated Signals, 20 Vehicles
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Figure 15: Inefficiency, Coordinated, 20 Vehicles

To demonstrate the importance of the light signals, Figure
17 shows the light status as run through a 2x2 simulation with
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20 vehicles on the road per
intersection (80  total).
These values specifically
are identified as the west
directional light statuses per
intersection in the 2x2
setup. Light 2 is the upper
left intersection, light 6 is
for the upper right, light 10
references lower left, and
light 14 refers to the lower
right intersection. Figure 16

L
=
L
—

‘Eﬂg;ll;f s ) 5
e ] Tﬁbﬁip_
Figure 16: 2x2 Intersection Light shows the light locations
Number Locations for a 2x2 intersection
setup. The light patterns can be compared, and it is evident that
as light 2 changes to a yellow, it is within a certain amount of
time that lights 6 and 10 will alter their status. It is furthermore

clear that lights 6 and 10 are on the exact same track as they
both alter their status based on light 2.

-
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0 50 100 150 200 250 300 350
Light 6
1
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0 50 100 150 200 250 300 350
Light 10
3
0 - L] L L L ] L L
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Light 14
3
0 L] L L L L L] -
0 50 100 150 200 250 300 350

Figure 17: Visual Status Representation of Coordinated Traffic
Signals

Trendlines can again be formed from evaluations of the
2x2, 2x3, and 3x3 intersection grid setups. Data from the 2x2
intersection is show in Figure 18. Again, like the fixed signal
timing, it is evident that longer wait times occur with more
vehicles on the road and with longer green signal times. Higher
loads of vehicles contain trends where longer green light times
improve the overall efficiency. This is due to more vehicles
allowed through the intersection in one cycle.
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Average Vehicle Time vs Maximum Green Light Time per
Car Load (2x2 Coordinated Signal Timing)
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Figure 18: Average Vehicle Time for 2x2 Intersection, Coordinated
Signal

Adaptive Signal Results

Overall, the best improvement for the vehicles to proceed
through the intersection is the addition of the adaptive signal.
This will allow the lights to adjust their light signal from
neighboring traffic light status as well as the vehicle queue at a
specific intersection. There is no specific phase diagram for this
sequence. The initial light changes are based on the phases
from Figure 13, but may be altered based on the queue size of
cars at each intersection in the direction of the red light. In this
research, the queue is not adjusted per simulation.

Adaptive Signals, 20 Vehicles with Queue = 3
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Figure 19: Average Time, Adaptive, 20 Vehicles

Adaptive Signals, 20 Vehicles with Queue = 3
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Figure 20: Inefficiency, Adaptive, 20 Vehicles
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Furthermore, the light sequence status can be viewed as
well. Like the coordinated signal setup, these lights are all
based on the west direction from each intersection as displayed
in Figure 16. Individual lights now have their own specific
agenda based on the queue count but can also be altered from
the neighboring light status. Light 14 in Figure 21 has a red-
light section that lasts a very large amount of time. This
scenario may occur when no vehicles are present in a specific
direction. In this case, no vehicles are waiting for the lights at
the intersection approaching from both the east and west input
directions. This allows for the north and south signals to be
green for an extended period as it is unnecessary to alter the
status for no upcoming vehicles.

Light 2

i
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0 50 100 150 200 250 300 350 400
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1

0 L L ] b oD T Ty @ @

0 50 100 150 200 250 300 350 400
Light 10
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0 50 100 150 200 250 300 350 400

Light 14

1
0 @ G D T U G —
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Figure 21: Visual Status Representation of Adaptive Traffic Signals

The overall comparisons from the different intersection
setups compared to the queue values can be evaluated. Note
that a lower count of vehicles on the road has better
performance with a smaller queue as the lights need to adapt
more recently. The larger queue though is more beneficial for a
higher number of cars on the road and the trendline is steadier
for the varying light times. By using this data appropriately, an
adaptive queue can be implemented in future work.
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Average Vehicle Time vs Maximum Green Light Time per
Car Load (2x2) Adaptive Signal Timing, Queue 1)
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Figure 22: Adaptive Signal Timing, Queue 1

Average Vehicle Time vs Maximum Green Light Time per
Car Load (2x2) Adaptive Signal Timing, Queue 3)
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Figure 23: Adaptive Signal Timing, Queue 3

Average Vehicle Time vs Maximum Green Light Time per
Car Load {2x2) Adaptive Signal Timing, Queue 10)
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Figure 24: Adaptive Signal Timing, Queue 10

Light Sequence Comparison

Furthermore, to consider the benefits of the adaptive traffic
signal, details of each traffic light in a 2x2 scenario can be
observed based on the gathered data. For consistency, the 2x2
intersections graphs will be compared while 40 vehicles are on
the road. Figures 22, 23, and 24 display trendlines of the
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average vehicle time by comparing all car counts and signal
types for a 2x2 intersection setup.
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Figure 25: Average Time, Fixed, 40 Vehicles
Coordinated Signals, 40 Vehicles
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Figure 26: Average Time, Coordinated, 40 Vehicles

Adaptive Signals, 40 Vehicles with Queue = 3
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Figure 27: Average Time, Adaptive, 40 Vehicles

As can be seen here, by comparing the basic light timing
sequence to the coordinated and adaptive sequences, the overall
average time per vehicle is reduced as well as the inefficiency
especially with 40 vehicles on the road. In some cases, the
coordinated signal may be more beneficial compared to the
adaptive but that is generally based on the maximum queue
value. As previously mentioned, this research only considers a
fixed queue value per simulation and overall, a lower vehicle
load will require a smaller queue value to improve traffic flow.
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It will eventually be beneficial to consider an adaptive queue
for greater intersection improvement.

5. CONCLUSIONS & FUTURE WORK

All in all, the use of agent-based communication for
improved decision making has been proven effective. Referring
to the design statement, it has been shown that improving
agent-based Infrastructure to Infrastructure (12D
communication and decision making does provide performance
benefits to traffic flow capacities.

The initial communication of queue size from the vehicle
to the traffic light (V2I) allows the intersection to make an
appropriate decision for the status based on the load of traffic.
This change of state based on the queue is then communicated
to nearby traffic signals. Next, the addition of agent
communication between traffic signals allows for further
improved decision making. The 121 addition is the main area of
improvement for the transportation infrastructure. This
improved ability allows intersections to communicate status
effectively and the coordinated approach demonstrates success
of this improvement. From the individual light status change
based on the level of traffic to the communication between
intersections, a level of connectivity is created between vehicles
and traffic lights that are at different intersections. The traffic
flow is then further optimized as the intelligent signals
communicate and adjust individual status based on nearby
intersection signal updates.

The decision-making process and improved
communication through intersections (I21) is proven effective
and can be implemented throughout the real world as overall
vehicle technology improves. This has been proven through
multiple scenario simulations regarding various city
intersection setups, load of traffic present throughout the
simulation, and for alternative maximum green signal times.
The overall ability to reduce average vehicle time through an
intersection and reduce inefficiency is possible through
adaptive signals and nearby intersection communication.

Future Work

Future work for this research can be taken in several
directions. First, in this specific research, the queue size was
fixed for different scenarios. A new research method would be
to implement an adaptive queue size for the number of vehicles
on the road or the duration of vehicles in the queue. The data
already gathered from this research can be used to create a
linear or quadratic maximum queue count for individual
intersections or the overall intersection setup. This could
depend on the number of vehicles proceeding through one
intersection which may require that specific intersection to
allow for an adaptive queue size.

Another opportunity for future work would be the
individual intersection setup. Common intersections today have
2 or more lanes approaching from an individual direction.
Many intersections also include a designated left turn lane
which may assist with traffic flow improvement as well.
Allowing these different types of intersections to communicate
with each other (I2I) as well as with nearby vehicles (12V) adds
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complexity on a new level. Queue sizes will need to then be
adjusted potentially per number of lanes and for a potential left
turn lane. Given the wide variety of intersection setups that are
seen today, the possibilities are endless.

A final opportunity for future work is related to the
different types of connected agents. In a real intersection, more
types of dynamic components are found throughout. Examples
of more components may include but are not limited to
pedestrians, bikers, electric scooters, and pets. For improved
safety, it will be beneficial to consider these components as
agents as well. This will ensure autonomous vehicles will know
one of these components is nearby regardless of camera
technology ability. These extra possibilities that can be
considered will add more complexity to the system but the
ability to model this will be beneficial for improving safety.

With overall implementation of this future work,
intersection performance can be evaluated and improved
regarding average vehicle time, resilience, and safety. The
newer technologies for individual autonomous vehicles allow
for connected vehicles in city intersections to be implemented.
The addition of agent-based communication for improved

performance will greatly enhance the transportation
infrastructure.
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