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Concrete Defects Inspection and 3D Mapping Using
CityFlyer Quadrotor Robot

Liang Yang, Bing Li, Member, IEEE, Wei Li, Howard Brand, Biao Jiang, and Jizhong Xiao, Senior Member, IEEE

Abstract—The concrete aging problem has gained more
attention in recent years as more bridges and tunnels in the
United States lack proper maintenance. Though the Federal
Highway Administration requires these public concrete structures
to be inspected regularly, on-site manual inspection by human
operators is time-consuming and labor-intensive. Conventional
inspection approaches for concrete inspection, using RGB image-
based thresholding methods, are not able to determine metric
information as well as accurate location information for assessed
defects for conditions. To address this challenge, we propose a
deep neural network (DNN) based concrete inspection system
using a quadrotor flying robot (referred to as CityFlyer) mounted
with an RGB-D camera. The inspection system introduces several
novel modules. Firstly, a visual-inertial fusion approach is
introduced to perform camera and robot positioning and
structure 3D metric reconstruction. The reconstructed map is
used to retrieve the location and metric information of the defects.
Secondly, we introduce a DNN model, namely AdaNet, to detect
concrete spalling and cracking, with the capability of maintaining
robustness under various distances between the camera and
concrete surface. In order to train the model, we craft a new
dataset, i.e., the concrete structure spalling and cracking (CSSC)
dataset, which is released publicly to the research community.
Finally, we introduce a 3D semantic mapping method using the
annotated framework to reconstruct the concrete structure for
visualization. We performed comparative studies and
demonstrated that our AdaNet can achieve 8.41% higher
detection accuracy than ResNets and VGGs. Moreover, we
conducted five field tests, of which three are manual hand-held
tests and two are drone-based field tests. These results indicate
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that our system is capable of performing metric field inspection,
and can serve as an effective tool for civil engineers.

Index Terms—3D reconstruction, concrete inspection, deep neural
network, quadrotor flying robet, visual-inertial fusion.

I. INTRODUCTION

TRUCTURAL health monitoring (SHM) plays a
S significant role in performance evaluation and condition
assessments for the nation’s highway transportation assets.
SHM can augment the operational safety and longevity of
highway transportation assets based on data-driven analysis
and decision-making. The Federal Highway Administration
(FHWA) of the U.S. Department of Transportation (DOT) has
launched a Long-Term Bridge Performance (LTBP) program
in 2015 to facilitate the SHM by collecting critical
performance data [1]. According to the FHWA’s latest bridge
element inspection manual [2], New York Bridge inspection
manual [3], and tunnel operations, maintenance, inspection,
and evaluation (TOMIE) manual [4], it is crucial to identify,
measure, and evaluate condition state during a routine
inspection on bridges and tunnels. Such condition states
include concrete spall (delamination, patched area), exposed
rebar, cracking, abrasion (wear), and other damages.

There are several robotic inspection systems that have been
developed for automated concrete inspection. Lim ef al. [5]
proposed a visual pavement crack inspection and mapping
system using a mobile robot platform. The robot used a
camera to perform visual inspection using an edge detection
algorithm with a machine learning method. Lidar was used for
location tagging and mapping. Under the support of the
FHWA LTBP program, Prasanna et al. [6], [7] proposed an
autonomous bridge deck inspection mobile robotic system
using a mono-visual camera, ground penetrating radar, and
acoustic sensors. The robot was developed to perform
pavement crack detection which are relatively planar surfaces.
Unmanned aerial vehicles (UAVs) have also been deployed
for bridge visual inspection [8]. UAVs are able to perform
remote inspection for areas that are not accessible to human
operators. However, none of these robotic inspection systems
were able to retrieve metric information of the defects such as
width, length, and area information. Also, though these
robotic systems used GPS to obtain location information, they
were not accurate enough to build a 3D map for visualization
nor were they applicable in GPS-denied areas.

To facilitate automatic inspection, acoustic sensors [9], [10],
ground penetrating radar [11], and visual cameras [12]-[14]
are the three most commonly used sensors in the civil
engineering community over the past decade. For visual
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camera-based inspection, previous researches were mainly
focused on using entropy or intensity thresholding methods by
highlighting high contrast distinct visual areas. These methods
include edge detection, fast Fourier transform (FFT), and fast
Haar transform (FHT). Besides using pure thresholding
methods, researchers also introduced new detection
algorithms by combining image segmentation, image
thresholding (such as OSTU’s method [15]), and morphology
operations [15] to produce high-quality detection results.
Histogram analysis and automatic peaks detection approaches
were also used for visual inspection [16]. The crack-
defragmentation approach for fragment grouping and
fragment connection was proposed in [17], and an artificial
neural network (ANN) was introduced for crack detection
classification. However, these methods only work well on a
simple clear surface and are not able to indicate defect
categories.

In this paper, we propose an automatic robotic system for
concrete structure visual inspection, using an RGB-D camera
with a deep neural network and RGB-D reconstruction
method to build a 3D map with defects highlighted. This is
illustrated in Fig. 1. Unlike the previous research which only
performed crack or spalling detection using pure RGB
images, we introduce an RGB-D visual simultaneous
localization and mapping (SLAM) method for structure
reconstruction and combine a deep neural network to
recognize and highlight defects. The defects are registered and
labeled in the 3D map to reveal the physical location in the 3D
structure  model, facilitating condition  assessment.
Furthermore, we introduce a depth adaptive windows size
predictor based on depth-inpainting to effectively predict the
optimized sliding window size. Then, a sliding window based
multi-resolution detection model is used to detect the defect
area. Finally, to visualize the defects, we introduced a
conditional random field (CRF) method to perform 2D to 3D
registration and fusion.

RGB-D
camera

-—

Depth

Fig. 1.
on the CityFlyer quadrotor robot aiming to perform the concrete structure

Illustration of our robotic inspection system, it is developed based

inspection. The right side image shows the inspection result that we got under
a bridge located at Riverside Drive & West 155th Street, New York. The
robot is equipped with an RGB-D camera which is used for localization and
3D mapping with defect visualization.

Extending our preliminary work [18], [19], instead of using
the VGGs with fixed sliding windows size to solve the
detection problem, we proposed a depth adaptive model to
optimize the detection. To summarize, our main contributions
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are:

1) A high-quality labeled dataset for crack and spalling
detection, which is the first publicly available dataset for
visual inspection of concrete structures. It has 522 (labeled)
crack images and 298 spalling images, and over 10000 field-
collected images from the concrete structure.

2) A robotic inspection system with visual-inertial fusion to
obtain pose estimation using an RGB-D camera and an IMU.
The visual-inertial system has a 100 Hz pose estimation rate to
enable online navigation and 3D mapping.

3) A depth in-painting model that allows depth hole in-
painting in an end-to-end approach with real-time
performance.

4) A multi-resolution model that adapts to image resolution
changes and allows accurate defect detection in the field.

II. SYSTEM ARCHITECTURE

We propose a novel robot inspection system using the
CityFlyer [20] which consists of a control and mission module
(CMM), a visual-inertial positioning module, and a deep
inspection and 3D registration module as illustrated in Fig. 2.
The CMM implements autonomous navigation which is
developed under the Robot Operating System (ROS) platform.
The CMM receives visual inertial odometry (VIO) as
feedback to navigate the CityFlyer. The VIO has a 100 Hz
frame rate that meets state control requirements and also
decreases the frame-to-frame pose estimation error (within
10 cm). Meanwhile, the concrete defects prediction output is
registered to 3D space using the depth information and the
target defect’s 3D location and surface normal [21] are used to
navigate the CityFlyer to the best viewing angle. By
navigating the CityFlyer to the front view perspective of the
target defect area, our system can achieve better inspection
data acquisition.

The visual-inertial positioning module fuses the output of
visual odometry and IMU propagation to achieve real-time
pose estimation of the CityFlyer. We use ASUS Xtion Pro
RGB-D camera as the visual perception unit to perform pose
estimation and 3D perception. Its data sheet is listed in Table I.
The IMU sensor is Phidgets Spatial 3/3/3 sensor. For VIO
fusion, it follows the following steps. First, RGB and depth
images are used to estimate the pose of the UAV, using
feature matching and optimization approaches [22]. Second,
we implement a multi-state extended Kalman filter (MS-EKF
[23]) to fuse IMU state propagation and the visual odometry
observation, allowing real-time positioning and control at a
100 Hz. It should be noted that we perform an off-line

TVP VP, between

calibration to obtain the transformation, CityFlyer

the camera and CityFlyer body.

The adaptive defect detection and 3D registration module is
proposed to solve the significant problem of providing metric
information during inspection, allowing civil engineers to
perform condition evaluation [4] and have a context on the
spatial characteristics and location of the defects. An AdaNet
with depth in-painting and multi-resolution approach is
proposed to augment defect detection accuracy. We first
introduced a depth-varying sliding window size optimizer.
Then, the detection result is registered and fused in a 3D map
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Fig. 2.

The CityFlyer inspection system uses an RGB-D camera and an IMU to perform online visual positioning and navigation. We propose a F-ResNet 34

model to perform defects detection. Afterward, 3D reconstruction and registration is performed to visualize the inspection result.

TABLE I
ASUS XTION PRO DATA SHEET

Field of view Horizontal: 58, Vertical: 45, Diagonal: 70

0.35 — 8.0 meters (we tested)
30 Hz
VGA (640 x 480)

1 (mm) (but accuracy varies with distance)

Depth range
Frame rate
Image resolution

Depth resolution

for visualization.

III. CONCRETE INSPECTION METHOD

This section discusses the DNN model-based concrete
inspection method, which is able to tell the defects’ 2D region
information by taking RGB images as inputs. Inspired by
feature pyramids [24], we propose a Multi-resolution
DetectionNet taking multi-resolution RGB image inputs to
detect the concrete defects. Moreover, we introduce a depth
adaptive sliding-window size selection method, with the
capability to adjust bounding box size based on the distance to
the surface. In the rest of this section, we provide
comprehensive theoretical analysis of the model, and we also
compare the detection performance between our AdaNet and
ResNets [25], VGGs [26], and AlexNet [27].

For visual inspection, we treat the concrete defects detection
task as a multi-class classification problem. For all input
images X = {xy,x2,....,xy}, N denotes the number of the
images falling in three categories, e.g., crack, spalling, and
background. Each image x; € R? is associated with a ground
truth label y; € Y, where Y C N is natural number starting from
0. The detection goal is to find a mapping function f: X - Y
that minimizes a pre-defined loss Loss(x,y). For the label Y,
we encode the label of each image as an integer from
{0,1,...,n—1}, n denotes the number of classes. In this paper,
we define the crack images’ label as 1, the spalling images’

label as 2, and the background images’ with label 0.

A. Data Preparation and Augmentation

There is no publicly accessible concrete defect dataset
available to train our model, let alone an RGB-D dataset with
depth information. In order to train the inspection model for
defects detection, we developed a new concrete structure
spalling and cracking (CSSC) dataset for training. We met
with and organized discussions with civil engineers to catalog
the terminology used in concrete defect assessment
applications. This provided key terms for image-based search
engines and allowed us to mine images from image search
results. The following terms used for web-based datamining
are listed below:

1) Concrete spalling/Rebar: Concrete spalling, concrete
rebar, concrete delamination, concrete bridge spalling,
concrete column spalling, concrete spalling from fire,
concrete spalling repair, and concrete wall.

2) Concrete Crack: Concrete crack, crack repair, concrete
scaling, concrete crazing, and concrete crazing texture.

We searched the image data through Google, Yahoo, Bing,
and Flickr. Then, we collected a total of 954 concrete crack
images and 278 concrete spalling images. For spalling
images, we further added 20 images collected from the field,
obtaining a total of 298 spalling images for training and
validation purposes.

After assembling the crack and spalling images, we
annotated them using Photoshop. An illustration of some of
the annotated images are shown in Figs. 3 and 4. For spalling
images, we annotated the exposed rebars and annotated the
regions (contours) of spalling damage. These are two regions
of interest for civil engineering diagnosis with areas of
exposed rebar being areas of more serious degradation.
Examples of exposed rebar and spalling contour annotation
are shown in Fig. 4. For concrete cracks, the annotators were
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Fig. 3. Illustration of raw crack images and the annotated binary images in
CSSC dataset.

RGB
Image

Exposed
Rebar

alling
ntour

&

Fig. 4.
CSSC dataset. We annotated the exposed rebars and spalling contour. In the

Illustration of raw spalling images and the annotated images in

third row, the red pixels denote the background, and the pink pixels denote
the spalling area.

asked to carefully annotate the entire crack areas in order to
develop a binary mask as a ground truth (shown in Fig. 3).

Since our AdaNet is a sliding-window detector, we
randomly crop the images around the regions of interests
(ROIs) using two size settings: 100 x 100 and 130 x 130. This
is illustrated in Fig. 5. For each cropped image output, we
determine whether it is a defect or background image via the
rule defined in (1). We first count the number pixels, n(J),
located inside of the defect region in its corresponding label
image (with a total N(/) pixels). Then, if the defect pixel
number is greater than or equal to a pre-defined threshold
condition, n(l) > N(I)xk (where k represents an empirical
percentage threshold value), we claim the cropped image as a
defect image and label them with 1 (as crack) or 2 (as
spalling). 1f there are no defected pixels, i.e., n({) == 0, we
classify the cropped image as background and label with 0. It
should be noted that a cropped image will be discarded if the
number of defected pixels is between zero and the threshold,
ie.,0<n(l)<N{I)xk.

£l {2" i 10952 Nxk 1)
ag = iscarda, 1 <n < X
§ 1or2, if n(l) > Nxk

where flag denotes the category of the image and discard
denotes the image is not used for training. In this paper, we set
k=0.04 for crack if cropped size is 100x 100, and k = 0.06
for crack if cropped size if 130 x 130. For concrete spalls, we
set k=0.8 to obtain spalls sub-images. These values are
selected to consider the constraints of the dataset size and the
data quality for better detection accuracy.

B. Depth In-Painting Model

Commercial RGB-D cameras normally output incomplete
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Fig. 5.
proposed selection criteria. The spalling images are presented with size of
100x 100 with £ =0.8, and 130x 130 with k=0.8 for training. The crack
images are also presented with 100x 100 with k = 0.04, and 130x 130 with
k = 0.06 for training.

Examples of generated positive training images based on the

depth images if there is no reflected ray from certain viewing
angles. The regions with missing depths in the image are
referred to as “holes” [28]. Holes degrade the quality of the
3D reconstruction of a structure and the 3D metric
measurements. Fig. 6 illustrates some examples of the
occurence of empty regions in depth image data within a
sliding window. Inspired by [29], we introduce a depth
inpainting model (named InpaintNet) which is illustrated in
Fig. 7. InpaintNet is developed based on U-Net [30] which
has an auto-encoder framework work with five groups of
down-convolutions for the encoder and five groups of up-
convolutions for the decoder. Each group has two
convolutional layers and each layer has the same number of
channels as U-Net. InpaintNet is composed two U-Net
frameworks connected in parallel, one of which learns a
surface normal embedding from RGB images and the other
one performs depth inpainting from depth and surface normal
embeddings. The depth inpainting framework inputs depth
images to an encoder to forms depth embedding. The depth
embeddings are then concatenated with surface normal
embeddings. The decoder portion of the depth inpainting
networks decodes complete depth images from the combined
depth and surface normal embeddings.

In this paper, we do not have the ground truth depth nor the

(2)

Fig. 6.
sensors, and percentage of the missing depth increases from the left to the

Illustration of raw depth images (represented by hot) from RGB-D

right. It is almost impossible to obtain the depth of a box if it is located in the
black area as shown in (d).
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AdaNet was proposed to perform depth adaptive defect detection. AdaNet uses depth information to estimate the scale of the slide-box, then performs

defect detection over the target image with a multi-resolution sliding window detector. Based on our experience, we select a three resolution image pyramid for

our detection task.

surface normal data for training. We therefore use classical,
computationally expensive approaches to develop estimates of
the complete depth and surface normal images. These
approaches, though they can not be implemented in real-time,
are able to generate accurate estimates of the complete depth
and surface normal images to use as a ground truth for the
neural network. The neural network then has the benefit of
being able estimate complete depth image and surface normal
images in real-time. Inspired by [31], we introduce a bilateral
filter with color guiding to complete the depth images. The
bilateral filtering approach is 10 times slower compared to
using a neural network model. For the surface normal, we first
introduce a Sobel filter to estimate the gradient of the estimate
depth images in the x and y directions.

-1 0 1 -1 -2 -1
A= -2 0 2|am=l 0 0 o0 )
-1 0 1 1 2 1

then the surface normal of each pixel is N/ = A(x) X A(y).

C. Multi-Resolution Detection

For robotic on-the-fly defect inspection in the field test,
especially using a drone, it is quite challenging to keep a
consistent distance between the camera and the surface image
aquisition. Since we can obtain the depth aligned with each
RGB frame, we can easily using this information to adjust the
sliding window size based on the depth measurement. Thus,
the detection model should be robust to images taken at any
distance.

It has been discussed in our previous research [18] that a
fine-tuned VGG model is not able to perform well in field
tests, achieving an average of 70.05% detection accuracy due

to the spatial resolution of a region depending on the
inspection distance. To tackle this problem, this research
further introduces
inspired by [24], by implementing a multi-resolution input
image feature pyramid. Given a sliding window cropped input
I, we resize to 1/2 and 1/4 and perform feature extraction in a
parallel framework, that is

a Multi-resolution Detection model,

X! = CNN(wI+b)

X CNN(WI% +b)

X2 =CNNWI% +b)
where CNN(wI i +b),i=1,2,4 denotes the CNN feature
encoder, w and b are symbolic representations of the
convolution kernel and bias respectively. [1-24 denotes the
input image where the superscript denotes the corresponding
scale. X represents the corresponding output to 7124, Because
all levels of the pyramid use the same network architecture,
the output also differs with the size. We further up-sample the
size of the coarse output feature for 1/2 and 1/4 sized images
with a factor of 2 and 4, respectively. In this paper, we take
the raw sliding window input and resize to 224 x 224, that is,
size(I) = 224 x 224,

To reduce the channel dimension after concatenation, we
introduce a convolutional layer with kernel size | x 1 to reduce
the channel dimension to 256, then apply an average pooling
operation

(€)

Bl— o=

. C!
R @
size(CY)
where C’ is channel i € {0, 1,...,255} and f' is the output after
average pooling. A three-layered fully connected convolution
is used to regress and predict whether the current region is a

defected area or not.
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D. Loss Design and Training

AdaNet is designed to perform concrete defect detection and
classification with distance adaptable capability, and is trained
through a joint approach for finding the optimal weight to
regress to an expected prediction. For InpaintNet, it is a per
pixel value prediction model where we evaluate the model
performance using a perpixel photometric loss as

Loss = argmin(L1(N',NL)+ L1(D", D)) (5)
where N’ is the predicted normal, Né is the normal ground
truth, p! is the predicted depth, D’G is the depth ground truth.
We jointly optimize over both loss terms.

For the multi-resolution detection model, aims at
determining the existence of defects in an image frame. f()
predicts the probability of the class y; given x; as an input.
Thus, the loss can be simplified to a cross-entropy style.

2
Loss(x,y) == > yilog(f(x;, WA%NeY)) (6)
i=0
where x; is the ith input patch, WA9Net denotes the
convolutional kernel, and y; € {0,1,2} is the label of each
class. In this paper, we use the above cross entropy loss to
perform detection regression for our AdaNet model.

Training: The training dataset for multi-resolution
DetectionNet contains three classes, as discussed in Section
III-A, and we annotate the labels as O : back _ground, 1 : crack,
2 : spalling, respectively. Besides initializing the model with
pre-trained model parameters, we also augment the dataset
using 1) random rotation with several pre-defined angles; 2)
gamma correction ranging from 0.5 to 2.0. For training, we
split all the images into three sub-datasets: the training dataset
(75% of all the images), validation dataset (15% of all the
images), and testing dataset (10% of all the images). For
InpaintNet, we used all 10000 field collected data. The
ground truth depth and normal are obtained through the
method proposed in Section III-B.

IV. POSE ESTIMATION AND 3D SEMANTIC REGISTRATION

Our final goal is to reveal where the defects are in a 3D map
by registering concrete defects to the 3D map. In this section,
we discuss using an RGB-D camera to perform 3D
positioning and semantic 3D reconstruction based on the
conditional random field (CRF) method to highlight the
concrete defects in the map.

A. Visual Positioning and Association

The 3D model of the concrete structure is widely used for
structure analysis in civil engineering. Moreover, metric
defects could be registered to the 3D model with color coded
overlays. This provides further assistance to civil engineers to
perform concrete structure condition comprehensive
assessments [32]. In this paper, we propose a 3D mapping
system taking advantage of visual-inertial (VI) SLAM and
deep defect detection.

As discussed in Section II, the CityFlyer requires high
localization accuracy and update frequency to enable stable
navigation. In this paper, we introduce an MS-EKF [33] to
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fuse high-frequency IMU propagation and low-frequency
visual odometry (VO) towards real-time pose estimation. For
VI fusion, the IMU measurement is used to predict the state
transition and VO observations were used to update the state.
The difference in measurement frequency allows us to
accommodate the fusion of multiple sensors. For the IMU, its
evolving state vector is

XIMU:[WP]T i Wal L4 ba bg] (7

where "PI' denotes the position of the IMU in the world
frame W. {,Vq is the unit quaternion that represents the rotation
from the world frame W to the IMU frame 7. "'V] and Val
are the IMU linear velocity and linear acceleration with
respect to the world coordinate system. b, and b, denote the
biases affecting the accelerometer and gyroscope measurements.
The system derivative form can be partially represented as

following in an east-north-up (ENU) coordinate system (partly
referred in [33], [34]):

WP[ =V V1+Wa1><AT

Wy, =W a;x AT =¥V Clan—by)+g

ar=j+xxXV4+wyXap

Wi = 3Qwm)q
where }}VC is the translation from the IMU frame to the world
frame, a,, is the acceleration measurement, w,, is the angular
velocity measurement, AT denotes the time interval, and g
denotes the gravity. The acceleration, ay, is subject to rotation
and translation in the IMU frame. w; denotes the angular
velocity and Q is the matrix product referred to in [33].

Meanwhile, the VO performs pose estimation using the

RGB-D measurement, and outputs the pose P,, = [r,¢] (Where
r denotes the rotation, ¢ denotes the translation). Once VO
finished pose estimation for each frame, we can update the
state based on the measurement model.

Pyo = HXtmu +V )

V denotes the measurement noise. H denotes the measurement
matrix which represents the mapping between IMU state and
the VO pose. Then, the prediction from IMU propagation can
be corrected by updating using the EKF filter, achieving a
100 Hz pose estimation rate.

The state estimation error of the VIO will continue to drift
as there is no loop-closure to correct the pose if there exists an
overlap between views (observations). To further correct the
pose, we record the key-frames “K = (*I,*P;lie (1,2,...,m)}
(i.e., vertex) based on a motion threshold, where */; and *P;
denote the key-frame image and the key-frame pose of a
frame i, respectively. VIO propagation and update allow us to
obtain the transformation between two consecutive frames i, j,
and the relative transformation T ; can also be derived at the
same time. In order to reduce the drift of the visual odometry,
this paper introduces graph-optimization to correct the pose
drift based on [35]. To perform graph optimization, the
following procedures have to be followed: 1) record the key-
frames, ¥ K, based on motion threshold method; 2) use image
features to facilitate loop-closure detection to find the edges
(correlation) between any pair of key-frames; 3) perform
graph optimization to update all poses simultaneously.

®)
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(kpi,kpj) = argr?[i)n(kpj - T,"ij]A),')T XQi’j 10
i

X(kf)j—Ti’ijp,‘) ( )
where Q; ; denotes the information matrix that describes the
correlation between parameters and *P;; denotes the
optimized poses. Equation (10) is able to update all frame’s
new poses at the same time. Here we just use i,j as an
example. Once the graph optimization is done, we take the
pose error of the last key frame, XTemor =K PixK P71, to
correct the current the VIO propagation. Then, we correct the
current VIO output using the correction,

Peurrent =X Terror X Peurrent, Where Peyrrent is the VIO output.

B. Spalling and Cracking Fusion Using CRF

After VIO pose estimation, we have the pose p;=r,t of
each RGB-D frame, and the corresponding region detection
results R; of each image frame J. Each depth frame ¢/, has
millimeter accuracy. In this paper, we aim to perform a metric
reconstruction and superimpose the defect class on the 3D
map for better visualization. For each RGB-D frame, we can
perform a backward-projection to register the current view
measurement to the 3D world.

[X,Y,Z] = [r,1]" " K[u,v] (11)

where [u,v] denotes the pixel coordinate in the image, [X,Y,Z]
is the corresponding 3D position in world coordinate system,
K is the inverse camera intrinsic parameter, and [r, 17!
denotes the transformation from the camera coordinate system
to world coordinate system. The output of the multi-resolution
DetectionNet is defect region information, allowing the
defected regions in the 3D model to be labeled with specific
colors. In this paper, the defects detection in an image is
performed using a sliding window approach. Each sliding
window defines a region bounding box U = (4min, Umax> Vmin»
vmax) Where the network can output the corresponding class
probability distribution Pc = {P.,|C;,i =1,...,n} on n classes.
One very important hypothesis we claim is that we assume
each pixel in a defect region should have the same
probabilistic distribution Pc, i.e., P, = P, for each pixel
(u,v)) eU.

In order to fuse a sequence of inspection results, we
introduce conditional random fields (CRF) to perform spatial
fusion based on our previous work [36]. For each image frame
I, the prediction Py, ,,) on region R; is performed via
AdaNet, where (ug,vy) is the image coordinate. The fusion
involves the following procedures: 1) we build a voxel map
and each voxel I'(i) is initialize with equal label probability,
1e., Prgy={ci=1/n,i=1,...,n}; 2) each new RGB-D frame
will have a new probabilistic image using the detection model,
and we perform fusion using CRF [37], [38] to fuse the label
probabilistic distribution.

For each pixel (ug,vg), we first perform a warping operation
to find the association between the voxel map and current
pixel, and check whether the corresponding voxel is initialized
or not. If not, we first initialize it with an equal distribution,
Prgy={c;i=1/n,i=1,..,n}. Then, with the next frame
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overlapping the region, we perform a warping via deployment
of a general homogeneous transformation to get the voxel
index in the voxel map.

L'(j) = m((ux, vie), D(utge, vio), ) (12)
D(uy,vy) is the depth measurement of pixel (ug,vi), ['(j) is the
corresponding voxel in the world, 7 is the transformation
from world coordinate frame to the current view, and  is the
warping operator that maps the current view to the world
coordinate system. With the AdaNet output the -class
probability prediction A(ux,vx) of pixel (ux,vi), we have the
conditional probability distribution, P(u,vi) = {P(A(ug,vi) ==
¢;),i=0,1,2}. Then, we can update the global probabilistic
distribution of each voxel following a recursive Bayesian
update procedure [38]:

POt Ak i1, TG
= PN P A, ik 1)
= P(T()P(ug, vi) (13)
where P(T'(j)i+1A(ug, vidr+1,L(f)x) denotes the probabilistic
prediction of voxel I'(j) at time k+1 using AdaNet
A(ug,vi)k+1, and then update its probabilistic distribution.
P(T'(j)r) denotes the probabilistic distribution at time k.
Because the prediction between each frame is independent,
the update becomes a simple dot operation between each
class. The posterior update is performed over all visible
voxels, and is finally normalized to obtain P(I'(j)i+1)-

V. EXPERIMENTS

In this section, we discuss the AdaNet training details and
compare the experimental performance of the depth in-
painting model and defect detection model. To verify the
effectiveness of our system, we perform several field tests in a
manual holding mode for the RGB-D camera and autonomous
inspection mode using the CityFlyer.

A. Depth In-Painting Analysis

We first perform an ablation study on the depth in-painting
performance from an accuracy and time performance
perspective. Table II shows the results of InpaintNet
compared to the raw output and in-painted result from a
bilateral filter [31]. We performed four tests with each dataset
containing RGB-D frames from planar concrete surfaces. The
ground truth was manually obtained by measuring the distance
of the camera to the surface plane. In Table II, the depth
images of Cracks I and 3 have large holes which are not
removable through a bilateral filter. InpaintNet, however, is
able to achieve a more accurate and complete depth in-

TABLE I

DEPTH ACCURACY COMPARISON TO RAW IMAGE AND [31] (MEAN
ABSOLUTE ERROR (MAE) (mm))

Item Crack 1 Crack 2 Crack 3 Crack 4
Raw 278.1070 25.0388 100.2492 16.1562
Bilateral [31] 60.4663 2.8168 39.2606 1.1824
InpaintNet 17.4246 3.3215 27.9362 2.3362

! https://github.com/ceny-ros-pkg/pytorch_Concrete Inspection
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Result of using bilateral filter and InpainNet to perform depth in-painting. (a) denotes the raw depth and the corresponding normal; (b) is the in-

painted depth and normal using InpaintNet; (c) is the in-painted depth and normal using bilateral filter.
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Fig. 9. filter and

InpaintNet, where InpaintNet takes an average 0.008 seconds to in-paint per

Time performance comparison between bilateral

depth frame.

painting for Cracks 1 and 3. For the depth images of Cracks 2
and 4, have small holes and can be easily filtered through a
bilateral filter.

A graphic comparison is given in Fig. 8, where we can see
that InpaintNet is able to fill the big holes, even though it
may not able to give precise prediction. Also, compared with
bilateral filter, InpaintNet could resolve a smoother normal
estimation. The time performance between the two algorithms
were compared revealing InpaintNet to be 30 times faster
compared with the bilateral approach (as illustrated in Fig. 9).
The runtime of InpaintNet was 0.008 seconds on average
with a GTX 1080 GPU for each depth frame.

B. Detection Model Comparative Analysis

As discussed in Section III-A, we cropped images to obtain
training patches, and we made the cropped dataset! publicly
available for the research community. The dataset has a total
of 26 870 concrete crack image patches, 15950 concrete
spalling image patches, and 46 429 back ground image
patches. We label back ground as 0, concrete crack as 1, and
concrete spalling as 2. Representative cropped images are
presented in Fig. 5. All of the network training and testing are
carried out on a GPU server with GTX 1080 GPU and
implementated using Pytorch.

1) Does Multi-Resolution Help? We conducted various
comparative experiments between our multi-resolution
detection model and other models, especially F-VGG
employed in [19]. Besides VGGs, we also made comparisons

to current state-of-art models including ResNets [25] and
AlexNet [27]. From the comparative results presented in
Table III, we can conclude that our multi-resolution model
does not achieve the highest learning accuracy, but does
obtain the highest testing accuracy. We also conducted a
comparative study to the model used in [19] and listed results
in Table IV.

Inspection of the results in Table IV reveal that our multi-
resolution model is able to achieve higher detection accuracy,
with an average 8.405% higher detection accuracy. This is
also illustrated in Fig. 10 where it shows that the multi-
resolution model outputs better coverage predictions than that
of F-ResNet-34.

2) Does Deeper Model Has Better Performance? Research
has shown that increasing the depth of a neural network can
improve the classification accuracy to a certain extent [26].
However, the model degradation problem occurs if the model
is deeper than a suitable limit. Then, authors in [25]
introduced a deep residual network to overcome the
degradation problem, allowing the performance of networks to
increase to a higher degree with deeper layer architectures. In
this section, we focus on using a well-constructed model with
a suitable depth and perform fine-tuning. We do not discuss
the degradation problem.

Since our task is to classify three classes, the texture
difference between crack and spalling are quite distinct.
However, some possible challenges are the illumination
variations and an insufficient dataset. We perform
comparative testing on our multi-resolution model, F-ResNets
[25], F-VGGs [26], and AlexNet [27]. For the comparison, we
set the batch size, epoch, learning rate, and loss as the same
for a fair comparison. The result is illustrated in Table III.
From the table it is clear that the deeper a model, the higher
the accuracy it can achieve. Table III shows that the highest
accuracy 96.88% was achieved by F-ResNet-101. Another
interesting finding is that F-ResNets have an average of 1.0%
higher accuracy in performance compared to F-VGGs.
However, deeper models cannot achieve the best detection
performance if the best input cropping practice is not used.

3) Batch Normalization: In this paper, we also discuss the
effect of batch normalization for neural network models.
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TABLE III
ACCURACY COMPARISON BETWEEN F-RESNETS, F-VGGS, AND ALEXNET

Model BathSize Epoch Learning rate Loss L-accuracy T-accuracy Loss
Ours 32 10 0.01 Cross entropy 0.9953 0.9732 0.1104
AlexNet 32 10 0.01 Cross entropy 0.9717 0.9543 0.1274
ResNet-18 32 10 0.01 Cross entropy 0.9967 0.9631 0.1405
ResNet-34 32 10 0.01 Cross entropy 0.9977 0.9639 0.1325
ResNet-50 32 10 0.01 Cross entropy 0.9931 0.9684 0.1205
ResNet-101 32 10 0.01 Cross entropy 0.9938 0.9688 0.117
VGG-11 32 10 0.01 Cross entropy 0.9773 0.9556 0.125
VGG-13 32 10 0.01 Cross entropy 0.9859 0.9589 0.1177
VGG-16 32 10 0.01 Cross entropy 0.9791 0.9595 0.1195
VGG-19 32 10 0.01 Cross entropy 0.9746 0.963 0.1075

TABLE IV
FIELD TEST DATA DETECTION COMPARISON
Method TestNo.  Average precision (%) Blurred image (frames) Average precision without blur (%) Over estimated (%)  Total image

F-VGG No.1 72.45 149 76.73 97.18 4998

F-VGG No.2 67.65 55 71.19 24.3 2650

Ours No.1 81.32 149 84.33 55.72 4998

Ours No.2 75.59 55 79.03 16.5 2650

Further tuned with field data

F-VGG No. 1 83.69 149 87.97 93.34 4998

F-VGG No. 2 81.38 55 84.92 33.57 2650

Ours No. 1 88.72 149 91.7 19.45 4998

Ours No. 2 85.12 55 88.66 13.3 2650

TABLE V

COMPARATIVE RESULTS OF USING BATCH NORMALIZATION (BN)

Learning accuracy Training accuracy

Model None BN None BN
VGG-11 0.9773 0.9936 0.9556 0.9645
VGG-13 0.9859 0.9947 0.9589 0.9662
VGG-16 0.9791 0.9954 0.9595 0.9645
VGG-19 0.9746 0.9942 0.963 0.9660

Batch normalization is proposed to solve the internal
covariate shift issue and can work on each neuron to allow
scale normalization during training. This enables the model to
converge even given larger learning rates and also removes
the need for dropout. In this paper, we compare the
performance of F-VGGs between given batch normalization
and no batch normalization. The results are illustrated in
Table V. The results in TableV reveals that batch
normalization can improve the accuracy by 0.65% on average.
This also proves that batch normalization can improve the
model performance even with less diversity in the data. A
quantitative comparison of detection accuracy illustrated in
Tables III and IV, shows that VGG-Nets are not able to
achieve comparable detection performance compared to our
multi-resolution detection model.

C. Field Tests and Comparisons
We conducted field tests at 155 St Broadway, Upper

Manhattan, on a concrete bridge. We performed the inspection
under the bridge using an RGB-D camera mounted CityFlyer.
The CityFlyer was also mounted with a MasterMind computer
to perform on-board computation and image streaming to the
ground station (a GPU computer for defect detection). Besides
the field tests via the CityFlyer, we also manually scanned the
concrete surface with the RGB-D camera.

1) Field Tests (Manual Field Test): In the first stage, we
manually carried the RGB-D camera to scan the concrete
surface and collect the RGB-D frames for inspection. It should
be noted that we have to launch the VIO system to track the
motion of the camera to perform a reconstruction of the target
concrete surface.

We collected three sets of data for three different scenarios,
which each RGB-D frame having a location tag. Then, we
performed defect inspection using our deep inspector over
each image. The results are illustrated in Fig. 11, where green
rectangles denote spalling and cyan rectangles denote cracks.
To perform detection, we deployed a sliding window to scan
through the whole image with varying region sizes from
80 x 80 to 200 % 200.

We can see in the left-most image and the center image of
Fig. 11 that our model is able to recognize the spalling region
and crack region. Further demonstration of the performance of
the model is shown in the center image where the spalling
region is distinguished from the crack region. These results
show how our model can cover the whole defect area in
consecutive frames and how this method is able to help civil
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Two automative field tests, Test 1 and Test 2, are carried out using CityFlyer. In both tests, we illustrate the drone’s trajectory, region detection

Fig. 11.
crack region.

engineers be aware of the condition of the concrete structure.

2) Autonomous Field Test Using CityFlyer: We also
performed two sets of field tests using our CityFlyer, and the
results are illustrated in Fig. 10. In Fig. 10, Test1 is carried
out at the entrance of the area under a bridge, and Test 2 is
carried out at the middle of the area under the bridge where
the illumination is low.

For Test 1, the trajectory of the drone is illustrated in the
left-most image, this illustrates how the CityFlyer was
maneuvering to capture the target area. The defect inspection
result is illustrated in the second to the left image, where cyan
and green rectangles denote crack and spalling, respectively.
The right-most image is the front view of the 3D map (point
cloud) with color overlayed on the defects, and the second to
the right image shows the same point cloud but with a
different view from the back. We can see that the spalling and
cracks are well highlighted.

The second test was carried under the bridge, which suffers
from low illumination for inspection and localization. The
trajectory of the drone is given in the left-most image of
Test 2, and the inspection result at this location is given in the

We performed 3 field tests in a manual held RGB-D camera mode. The green rectangles indicate the spalling region, and cyan rectangles denote the

second to the left image and the second to the right image.
The second to the left image indicates that our model is able to
perform correct spalling detection even in a low-illumination
environment. However, the second to the right image indicates
that it missed detection of a crack region (indicated with a red
dashed rectangle) due to low illumination.

3) Semantic 3D Fusion and Visualization: The semantic 3D
highlighted results are illustrated in Fig. 10, where we
performed back-projection using the predicted output and the
corresponding depth image to the 3D world coordinate frame
and the 3D spatial data is fused using consecutive frames. We
use a voxel map to represent 3D structure information, where
each voxel has to be updated through a back-projection
manner. Since we deploy an image-based fusion approach, a
global probabilistic map searching is not required, enabling
non-GPU computation. The reconstructed 3D map with
semantic highlighted areas is illustrated in the right-most
images of Fig. 10. It can be seen in the figure that the regions
of defect are well highlighted using green and cyan color. This
helps civil engineers identify the defect categories as well as
their location.
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VI.

In this paper, we introduced a new automatic concrete
structure inspection system using the CityFlyer robot mounted
with an RGB-D camera toward visual inspection. For visual
concrete inspection, we introduced an AdaNet to perform a
detection of defects within a sliding window approach. The
AdaNet consists of two sub-models, which are, a depth
inpainting model (InpaintNet) to fill holes in a depth image
and multi-resolution defect detection model for concrete
inspection. The depth adaptive multi-resolution detection
model considers both distance and resolution effects, aiming
to provide a robust concrete crack and spalling detection task
in the field. Meanwhile, we pioneeringly propose using visual
SLAM and deep neural network inspection to perform a 3D
semantic reconstruction to highlight the defects in a 3D
model. It can achieve an average 8.41% higher detection
accuracy compared to F-VGG and F-ResNets. Furthermore,
we introduce an RGB-D visual-inertial fusion with filtering
and global bundle adjustment to perform pose estimation for
the CityFlyer state control. The pose information is used to
provide location tags defects predicted in images.
Comparative experiments and field tests indicate that the
system is able to perform high-quality detection and
reconstruction. For future work, we will try optimal tuning of
super parameters of the proposed models via intelligent
optimization methods [39] and also work on pixel-level
detection toward metric reconstruction.

CONCLUSION
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