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   Abstract—The  concrete  aging  problem  has  gained  more
attention  in  recent  years  as  more  bridges  and  tunnels  in  the
United  States  lack  proper  maintenance.  Though  the  Federal
Highway Administration requires these public concrete structures
to  be  inspected  regularly,  on-site  manual  inspection  by  human
operators  is  time-consuming  and  labor-intensive.  Conventional
inspection approaches for concrete inspection, using RGB image-
based  thresholding  methods,  are  not  able  to  determine  metric
information as well as accurate location information for assessed
defects  for  conditions.  To  address  this  challenge,  we  propose  a
deep  neural  network  (DNN)  based  concrete  inspection  system
using a quadrotor flying robot (referred to as CityFlyer) mounted
with an RGB-D camera. The inspection system introduces several
novel  modules.  Firstly,  a  visual-inertial  fusion  approach  is
introduced  to  perform  camera  and  robot  positioning  and
structure  3D  metric  reconstruction.  The  reconstructed  map  is
used to retrieve the location and metric information of the defects.
Secondly,  we introduce a DNN model,  namely AdaNet,  to detect
concrete spalling and cracking, with the capability of maintaining
robustness  under  various  distances  between  the  camera  and
concrete  surface.  In  order  to  train  the  model,  we  craft  a  new
dataset,  i.e.,  the concrete structure spalling and cracking (CSSC)
dataset,  which  is  released  publicly  to  the  research  community.
Finally,  we  introduce  a  3D  semantic  mapping  method  using  the
annotated  framework  to  reconstruct  the  concrete  structure  for
visualization.  We  performed  comparative  studies  and
demonstrated  that  our  AdaNet  can  achieve  8.41% higher
detection  accuracy  than  ResNets  and  VGGs.  Moreover,  we
conducted  five  field  tests,  of  which  three  are  manual  hand-held
tests  and  two  are  drone-based  field  tests.  These  results  indicate

that  our system is  capable  of  performing metric  field  inspection,
and can serve as an effective tool for civil engineers.
    Index Terms—3D  reconstruction,  concrete  inspection,  deep  neural
network, quadrotor flying robot, visual-inertial fusion.
 

I.  Introduction

S TRUCTURAL  health  monitoring  (SHM)  plays  a
significant  role  in  performance  evaluation  and  condition

assessments  for  the  nation’s  highway  transportation  assets.
SHM  can  augment  the  operational  safety  and  longevity  of
highway  transportation  assets  based  on  data-driven  analysis
and  decision-making.  The  Federal  Highway  Administration
(FHWA) of the U.S. Department of Transportation (DOT) has
launched a  Long-Term Bridge Performance (LTBP) program
in  2015  to  facilitate  the  SHM  by  collecting  critical
performance data [1]. According to the FHWA’s latest bridge
element  inspection  manual  [2],  New  York  Bridge  inspection
manual  [3],  and  tunnel  operations,  maintenance,  inspection,
and  evaluation  (TOMIE)  manual  [4],  it  is  crucial  to  identify,
measure,  and  evaluate  condition  state  during  a  routine
inspection  on  bridges  and  tunnels.  Such  condition  states
include  concrete  spall  (delamination,  patched  area),  exposed
rebar, cracking, abrasion (wear), and other damages.

There are several robotic inspection systems that have been
developed  for  automated  concrete  inspection.  Lim et  al. [5]
proposed  a  visual  pavement crack inspection  and  mapping
system  using  a  mobile  robot  platform.  The  robot  used  a
camera  to  perform  visual  inspection  using  an  edge  detection
algorithm with a machine learning method. Lidar was used for
location  tagging  and  mapping.  Under  the  support  of  the
FHWA  LTBP  program,  Prasanna et  al. [6],  [7]  proposed  an
autonomous  bridge  deck  inspection  mobile  robotic  system
using  a  mono-visual  camera,  ground  penetrating  radar,  and
acoustic  sensors.  The  robot  was  developed  to  perform
pavement crack detection which are relatively planar surfaces.
Unmanned  aerial  vehicles  (UAVs)  have  also  been  deployed
for  bridge  visual  inspection  [8].  UAVs  are  able  to  perform
remote  inspection  for  areas  that  are  not  accessible  to  human
operators. However, none of these robotic inspection systems
were able to retrieve metric information of the defects such as
width,  length,  and  area  information.  Also,  though  these
robotic systems used GPS to obtain location information, they
were not accurate enough to build a 3D map for visualization
nor were they applicable in GPS-denied areas.

To facilitate automatic inspection, acoustic sensors [9], [10],
ground  penetrating  radar  [11],  and  visual  cameras  [12]–[14]
are  the  three  most  commonly  used  sensors  in  the  civil
engineering  community  over  the  past  decade.  For  visual
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camera-based  inspection,  previous  researches  were  mainly
focused on using entropy or intensity thresholding methods by
highlighting high contrast distinct visual areas. These methods
include edge detection, fast Fourier transform (FFT), and fast
Haar  transform  (FHT).  Besides  using  pure  thresholding
methods,  researchers  also  introduced  new  detection
algorithms  by  combining  image  segmentation,  image
thresholding (such as OSTU’s method [15]), and morphology
operations  [15]  to  produce  high-quality  detection  results.
Histogram analysis and automatic peaks detection approaches
were  also  used  for  visual  inspection  [16].  The crack-
defragmentation  approach  for  fragment  grouping  and
fragment  connection  was  proposed  in  [17],  and  an  artificial
neural  network  (ANN)  was  introduced  for crack detection
classification.  However,  these  methods  only  work  well  on  a
simple  clear  surface  and  are  not  able  to  indicate  defect
categories.

In  this  paper,  we  propose  an  automatic  robotic  system  for
concrete structure visual inspection, using an RGB-D camera
with  a  deep  neural  network  and  RGB-D  reconstruction
method  to  build  a  3D  map  with  defects  highlighted.  This  is
illustrated in Fig. 1.  Unlike  the  previous  research which only
performed crack or spalling detection  using  pure  RGB
images,  we  introduce  an  RGB-D  visual  simultaneous
localization  and  mapping  (SLAM)  method  for  structure
reconstruction  and  combine  a  deep  neural  network  to
recognize and highlight defects. The defects are registered and
labeled in the 3D map to reveal the physical location in the 3D
structure  model,  facilitating  condition  assessment.
Furthermore,  we  introduce  a  depth  adaptive  windows  size
predictor  based  on  depth-inpainting  to  effectively  predict  the
optimized sliding window size. Then, a sliding window based
multi-resolution  detection  model  is  used  to  detect  the  defect
area.  Finally,  to  visualize  the  defects,  we  introduced  a
conditional random field (CRF) method to perform 2D to 3D
registration and fusion.

Extending our preliminary work [18], [19], instead of using
the  VGGs  with  fixed  sliding  windows  size  to  solve  the
detection  problem,  we  proposed  a  depth  adaptive  model  to
optimize the detection. To summarize, our main contributions

are:

522
298 10000

1)  A  high-quality  labeled  dataset  for crack and spalling
detection,  which  is  the  first  publicly  available  dataset  for
visual  inspection  of  concrete  structures.  It  has  (labeled)
crack images and  spalling images, and over  field-
collected images from the concrete structure.

100

2) A robotic inspection system with visual-inertial fusion to
obtain pose estimation using an RGB-D camera and an IMU.
The visual-inertial system has a  Hz pose estimation rate to
enable online navigation and 3D mapping.

3)  A  depth  in-painting  model  that  allows  depth  hole  in-
painting  in  an  end-to-end  approach  with  real-time
performance.

4) A multi-resolution model that adapts to image resolution
changes and allows accurate defect detection in the field. 

II.  System Architecture

100

10 cm

We  propose  a  novel  robot  inspection  system  using  the
CityFlyer [20] which consists of a control and mission module
(CMM),  a  visual-inertial  positioning  module,  and  a  deep
inspection and 3D registration module as illustrated in Fig. 2.
The  CMM  implements  autonomous  navigation  which  is
developed under the Robot Operating System (ROS) platform.
The  CMM  receives  visual  inertial  odometry  (VIO)  as
feedback  to  navigate  the  CityFlyer.  The  VIO  has  a  Hz
frame  rate  that  meets  state  control  requirements  and  also
decreases  the  frame-to-frame  pose  estimation  error  (within

).  Meanwhile,  the  concrete  defects  prediction  output  is
registered  to  3D  space  using  the  depth  information  and  the
target defect’s 3D location and surface normal [21] are used to
navigate  the  CityFlyer  to  the  best  viewing  angle.  By
navigating  the  CityFlyer  to  the  front  view  perspective  of  the
target  defect  area,  our  system  can  achieve  better  inspection
data acquisition.

3/3/3

100
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CityFlyerVP

The  visual-inertial  positioning  module  fuses  the  output  of
visual  odometry  and  IMU  propagation  to  achieve  real-time
pose  estimation  of  the  CityFlyer.  We  use  ASUS  Xtion  Pro
RGB-D camera as the visual  perception unit  to perform pose
estimation and 3D perception. Its data sheet is listed in Table I.
The  IMU  sensor  is  Phidgets  Spatial  sensor.  For  VIO
fusion,  it  follows  the  following  steps.  First,  RGB  and  depth
images  are  used  to  estimate  the  pose  of  the  UAV,  using
feature  matching  and  optimization  approaches  [22].  Second,
we implement a multi-state extended Kalman filter (MS-EKF
[23])  to  fuse  IMU state  propagation  and  the  visual  odometry
observation,  allowing  real-time  positioning  and  control  at  a

 Hz.  It  should  be  noted  that  we  perform  an  off-line
calibration to obtain the transformation, , between
the camera and CityFlyer body.

The adaptive defect detection and 3D registration module is
proposed to solve the significant problem of providing metric
information  during  inspection,  allowing  civil  engineers  to
perform  condition  evaluation  [4]  and  have  a  context  on  the
spatial characteristics and location of the defects. An AdaNet
with  depth  in-painting  and  multi-resolution  approach  is
proposed  to  augment  defect  detection  accuracy.  We  first
introduced  a  depth-varying  sliding  window  size  optimizer.
Then, the detection result is registered and fused in a 3D map

 

RGB-D

camera
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Fig. 1.     Illustration  of  our  robotic  inspection  system,  it  is  developed  based
on  the  CityFlyer  quadrotor  robot  aiming  to  perform  the  concrete  structure
inspection. The right side image shows the inspection result that we got under
a  bridge  located  at  Riverside  Drive  &  West  155th  Street,  New  York.  The
robot is equipped with an RGB-D camera which is used for localization and
3D mapping with defect visualization.
 

 992 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020



for visualization. 

III.  Concrete Inspection Method

This  section  discusses  the  DNN  model-based  concrete
inspection method, which is able to tell the defects’ 2D region
information  by  taking  RGB  images  as  inputs.  Inspired  by
feature  pyramids  [24],  we  propose  a Multi-resolution
DetectionNet taking  multi-resolution  RGB  image  inputs  to
detect  the  concrete  defects.  Moreover,  we  introduce  a  depth
adaptive  sliding-window  size  selection  method,  with  the
capability to adjust bounding box size based on the distance to
the  surface.  In  the  rest  of  this  section,  we  provide
comprehensive theoretical analysis of the model, and we also
compare  the  detection  performance  between  our  AdaNet  and
ResNets [25], VGGs [26], and AlexNet [27].

X = {x1, x2, ..., xN} N

xi ∈ R3

yi ∈ Y Y ⊂ N
0 f : X → Y

Loss(x,y) Y

{0,1, ...,n−1} n

For visual inspection, we treat the concrete defects detection
task  as  a  multi-class  classification  problem.  For  all  input
images ,  denotes  the  number  of  the
images  falling  in  three  categories,  e.g., crack,  spalling, and
background.  Each  image  is  associated  with  a  ground
truth label , where  is natural number starting from
. The detection goal is to find a mapping function 

that  minimizes  a  pre-defined loss .  For  the  label ,
we  encode  the  label  of  each  image  as  an  integer  from

,  denotes the number of classes. In this paper,
we  define  the crack images’ label  as  1,  the spalling images’

0label as 2, and the background images’ with label . 

A.  Data Preparation and Augmentation
There  is  no  publicly  accessible  concrete  defect  dataset

available to train our model, let alone an RGB-D dataset with
depth  information.  In  order  to  train  the  inspection  model  for
defects  detection,  we  developed  a  new  concrete  structure
spalling and  cracking  (CSSC)  dataset  for  training.  We  met
with and organized discussions with civil engineers to catalog
the  terminology  used  in  concrete  defect  assessment
applications. This provided key terms for image-based search
engines  and  allowed  us  to  mine  images  from  image  search
results.  The  following  terms  used  for  web-based  datamining
are listed below:

1) Concrete  spalling/Rebar: Concrete spalling,  concrete
rebar,  concrete  delamination,  concrete  bridge spalling,
concrete  column spalling,  concrete spalling from  fire,
concrete spalling repair, and concrete wall.

2) Concrete  Crack: Concrete crack, crack repair,  concrete
scaling, concrete crazing, and concrete crazing texture.

954
278

20
298

We searched the image data through Google, Yahoo, Bing,
and  Flickr.  Then,  we  collected  a  total  of  concrete crack
images  and  concrete spalling images.  For spalling
images,  we further added  images collected from the field,
obtaining  a  total  of  spalling images  for  training  and
validation purposes.

After  assembling  the crack and spalling images,  we
annotated  them  using  Photoshop.  An  illustration  of  some  of
the annotated images are shown in Figs. 3 and 4. For spalling
images,  we  annotated  the  exposed  rebars  and  annotated  the
regions (contours) of spalling damage. These are two regions
of  interest  for  civil  engineering  diagnosis  with  areas  of
exposed  rebar  being  areas  of  more  serious  degradation.
Examples  of  exposed  rebar  and spalling contour  annotation
are shown in Fig. 4. For concrete cracks,  the annotators were
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Fig. 2.     The CityFlyer inspection system uses an RGB-D camera and an IMU to perform online visual positioning and navigation. We propose a F-ResNet 34
model to perform defects detection. Afterward, 3D reconstruction and registration is performed to visualize the inspection result.
 

 

TABLE I  
ASUS Xtion Pro Data Sheet

Field of view Horizontal: 58, Vertical: 45, Diagonal: 70

Depth range 0.35 → 8.0 meters (we tested)

Frame rate 30 Hz

Image resolution VGA (640 × 480)

Depth resolution 1 (mm) (but accuracy varies with distance)
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asked  to  carefully  annotate  the  entire crack areas  in  order  to
develop a binary mask as a ground truth (shown in Fig. 3).

100×100 130×130

n(I)

N(I)

n(I) ≥ N(I)× k k

n(I) == 0
0

0 < n(I) < N(I)× k

Since  our  AdaNet  is  a  sliding-window  detector,  we
randomly  crop  the  images  around  the  regions  of  interests
(ROIs) using two size settings:  and .  This
is  illustrated  in Fig. 5.  For  each  cropped  image  output,  we
determine whether it  is a defect or background image via the
rule  defined  in  (1).  We  first  count  the  number  pixels, ,
located  inside  of  the  defect  region  in  its  corresponding  label
image  (with  a  total  pixels).  Then,  if  the  defect  pixel
number  is  greater  than  or  equal  to  a  pre-defined  threshold
condition,  (where  represents  an  empirical
percentage threshold value), we claim the cropped image as a
defect  image  and  label  them  with  1  (as crack)  or  2  (as
spalling).  If  there  are  no  defected  pixels,  i.e., ,  we
classify the cropped image as background and label with . It
should be noted that a cropped image will be discarded if the
number of  defected pixels  is  between zero and the threshold,
i.e., .
 

f lag =
{0, if n(I) == 0
discard, if 0 < n(I) < N(I)× k
1 or 2, if n(I) ≥ N × k

(1)

f lag discard

k = 0.04 100×100 k = 0.06
130×130

k = 0.8

where  denotes  the  category  of  the  image  and 
denotes the image is not used for training. In this paper, we set

 for crack if  cropped  size  is ,  and 
for crack if cropped size if . For concrete spalls, we
set  to  obtain  spalls  sub-images.  These  values  are
selected to consider the constraints of the dataset size and the
data quality for better detection accuracy. 

B.  Depth In-Painting Model
Commercial  RGB-D  cameras  normally  output  incomplete

depth images if there is no reflected ray from certain viewing
angles.  The  regions  with  missing  depths  in  the  image  are
referred  to  as “holes” [28].  Holes  degrade  the  quality  of  the
3D  reconstruction  of  a  structure  and  the  3D  metric
measurements. Fig. 6 illustrates  some  examples  of  the
occurence  of  empty  regions  in  depth  image  data  within  a
sliding  window.  Inspired  by  [29],  we  introduce  a  depth
inpainting  model  (named InpaintNet)  which  is  illustrated  in
Fig. 7. InpaintNet is  developed  based  on  U-Net  [30]  which
has  an  auto-encoder  framework  work  with  five  groups  of
down-convolutions  for  the  encoder  and  five  groups  of  up-
convolutions  for  the  decoder.  Each  group  has  two
convolutional  layers  and  each  layer  has  the  same  number  of
channels  as  U-Net. InpaintNet is  composed  two  U-Net
frameworks  connected  in  parallel,  one  of  which  learns  a
surface  normal  embedding  from  RGB  images  and  the  other
one performs depth inpainting from depth and surface normal
embeddings.  The  depth  inpainting  framework  inputs  depth
images  to  an  encoder  to  forms  depth  embedding.  The  depth
embeddings  are  then  concatenated  with  surface  normal
embeddings.  The  decoder  portion  of  the  depth  inpainting
networks decodes complete depth images from the combined
depth and surface normal embeddings.

In this paper, we do not have the ground truth depth nor the

 

 
Fig. 3.     Illustration of raw crack images and the annotated binary images in
CSSC dataset.
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Fig. 4.     Illustration  of  raw spalling images  and  the  annotated  images  in
CSSC dataset.  We annotated the exposed rebars and spalling contour. In the
third  row,  the  red  pixels  denote  the  background,  and  the  pink  pixels  denote
the spalling area.
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100×100 k = 0.8 130×130 k = 0.8
100×100 k = 0.04 130×130

k = 0.06

Fig. 5.     Examples  of  generated  positive  training  images  based  on  the
proposed  selection  criteria.  The spalling images  are  presented  with  size  of

 with ,  and  with  for  training.  The crack
images  are  also  presented  with  with ,  and  with

 for training.
 

 

(a) (b) (c) (d)
 
Fig. 6.     Illustration of  raw depth  images  (represented by hot)  from RGB-D
sensors,  and  percentage  of  the  missing  depth  increases  from  the  left  to  the
right. It is almost impossible to obtain the depth of a box if it is located in the
black area as shown in (d).
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surface  normal  data  for  training.  We  therefore  use  classical,
computationally expensive approaches to develop estimates of
the  complete  depth  and  surface  normal  images.  These
approaches, though they can not be implemented in real-time,
are able to generate accurate estimates of the complete depth
and  surface  normal  images  to  use  as  a  ground  truth  for  the
neural  network.  The  neural  network  then  has  the  benefit  of
being able estimate complete depth image and surface normal
images in real-time. Inspired by [31], we introduce a bilateral
filter  with  color  guiding  to  complete  the  depth  images.  The
bilateral  filtering  approach  is  times  slower  compared  to
using a neural network model. For the surface normal, we first
introduce a Sobel filter to estimate the gradient of the estimate
depth images in the  and  directions.
 

∆(x) =

 −1 0 1
−2 0 2
−1 0 1

 ∆(y) =
 −1 −2 −1

0 0 0
1 2 1

 (2)

N I = ∆(x)×∆(y)then the surface normal of each pixel is .
 

C.  Multi-Resolution Detection
For  robotic  on-the-fly  defect  inspection  in  the  field  test,

especially  using  a  drone,  it  is  quite  challenging  to  keep  a
consistent distance between the camera and the surface image
aquisition.  Since  we  can  obtain  the  depth  aligned  with  each
RGB frame, we can easily using this information to adjust the
sliding  window  size  based  on  the  depth  measurement.  Thus,
the  detection  model  should  be  robust  to  images  taken  at  any
distance.

70.05%

It  has  been  discussed  in  our  previous  research  [18]  that  a
fine-tuned  VGG  model  is  not  able  to  perform  well  in  field
tests, achieving an average of  detection accuracy due

I

to  the  spatial  resolution  of  a  region  depending  on  the
inspection  distance.  To  tackle  this  problem,  this  research
further  introduces  a Multi-resolution  Detection model,
inspired  by  [24],  by  implementing  a  multi-resolution  input
image feature pyramid. Given a sliding window cropped input
, we resize to 1/2 and 1/4 and perform feature extraction in a

parallel framework, that is
 

X1 =CNN(wI +b)
X

1
2 =CNN(wI

1
2 +b)

X
1
4 =CNN(wI

1
4 +b)

(3)

CNN(wI
1
i +b), i = 1,2,4

w b
I1,2,4

X I1,2,4

224×224
size(I) = 224×224

where  denotes  the  CNN  feature
encoder,  and  are  symbolic  representations  of  the
convolution  kernel  and  bias  respectively.  denotes  the
input  image  where  the  superscript  denotes  the  corresponding
scale.  represents the corresponding output to . Because
all  levels  of  the  pyramid  use  the  same  network  architecture,
the output also differs with the size. We further up-sample the
size of the coarse output feature for 1/2 and 1/4 sized images
with  a  factor  of  2  and  4,  respectively.  In  this  paper,  we  take
the raw sliding window input and resize to , that is,

.

1×1
256

To  reduce  the  channel  dimension  after  concatenation,  we
introduce a convolutional layer with kernel size  to reduce
the channel dimension to ,  then apply an average pooling
operation
 

f i =
∑
(Ci)

size(Ci)
(4)

Ci i ∈ {0,1, ...,255} f iwhere  is channel  and  is the output after
average pooling. A three-layered fully connected convolution
is  used to  regress  and predict  whether  the current  region is  a
defected area or not. 
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Fig. 7.     AdaNet was proposed to perform depth adaptive defect detection. AdaNet uses depth information to estimate the scale of the slide-box, then performs
defect detection over the target image with a multi-resolution sliding window detector. Based on our experience, we select a three resolution image pyramid for
our detection task.
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D.  Loss Design and Training

perpixel

AdaNet is designed to perform concrete defect detection and
classification with distance adaptable capability, and is trained
through  a  joint  approach  for  finding  the  optimal  weight  to
regress to an expected prediction.  For InpaintNet,  it  is  a  per
pixel  value  prediction  model  where  we  evaluate  the  model
performance using a  photometric loss as
 

Loss = argmin(L1(N I ,N I
G)+L1(DI ,DI

G)) (5)
N I N I

G
DI DI

G

where  is  the  predicted  normal,  is  the  normal  ground
truth,  is the predicted depth,  is the depth ground truth.
We jointly optimize over both loss terms.

f ()
yi xi

For  the  multi-resolution  detection  model,  aims  at
determining  the  existence  of  defects  in  an  image  frame. 
predicts  the  probability  of  the  class  given  as  an  input.
Thus, the loss can be simplified to a cross-entropy style.
 

Loss(x,y) = −
2∑
i=0

yilog( f (xi,WAdaNet)) (6)

xi ith WAdaNet

yi ∈ {0,1,2}
where  is  the  input  patch,  denotes  the
convolutional  kernel,  and  is  the  label  of  each
class.  In  this  paper,  we  use  the  above  cross  entropy  loss  to
perform detection regression for our AdaNet model.

0 : back_ground, 1 : crack,
2 : spalling

0.5 2.0

75% 15%
10%

10000

Training: The  training  dataset  for  multi-resolution
DetectionNet  contains  three  classes,  as  discussed  in  Section
III-A, and we annotate the labels as 

,  respectively.  Besides  initializing  the  model  with
pre-trained  model  parameters,  we  also  augment  the  dataset
using  1)  random  rotation  with  several  pre-defined  angles;  2)
gamma  correction  ranging  from  to .  For  training,  we
split all the images into three sub-datasets: the training dataset
(  of  all  the  images),  validation  dataset  (  of  all  the
images),  and  testing  dataset  (  of  all  the  images).  For
InpaintNet,  we  used  all  field  collected  data.  The
ground  truth  depth  and  normal  are  obtained  through  the
method proposed in Section III-B. 

IV.  Pose Estimation And 3D Semantic Registration

3DOur final goal is to reveal where the defects are in a  map
by registering concrete defects to the 3D map. In this section,
we  discuss  using  an  RGB-D  camera  to  perform  3D
positioning  and  semantic  3D  reconstruction  based  on  the
conditional  random  field  (CRF)  method  to  highlight  the
concrete defects in the map. 

A.  Visual Positioning and Association
The  3D model  of  the  concrete  structure  is  widely  used  for

structure  analysis  in  civil  engineering.  Moreover,  metric
defects could be registered to the 3D model with color coded
overlays. This provides further assistance to civil engineers to
perform  concrete  structure  condition  comprehensive
assessments  [32].  In  this  paper,  we  propose  a  3D  mapping
system  taking  advantage  of  visual-inertial  (VI)  SLAM  and
deep defect detection.

As  discussed  in  Section  II,  the  CityFlyer  requires  high
localization  accuracy  and  update  frequency  to  enable  stable
navigation.  In  this  paper,  we  introduce  an  MS-EKF  [33]  to

fuse  high-frequency  IMU  propagation  and  low-frequency
visual odometry (VO) towards real-time pose estimation. For
VI  fusion,  the  IMU measurement  is  used  to  predict  the  state
transition and VO observations were used to update the state.
The  difference  in  measurement  frequency  allows  us  to
accommodate the fusion of multiple sensors. For the IMU, its
evolving state vector is
 

XIMU =
[
WPT

I
WVT

I
WaTI

I
Wq ba bg

]
(7)

WPT
I

W I
Wq

W I WVT
I

WaTI

ba bg

where  denotes  the  position  of  the  IMU  in  the  world
frame .  is the unit quaternion that represents the rotation
from the  world  frame  to  the  IMU frame .  and 
are  the  IMU  linear  velocity  and  linear  acceleration  with
respect  to  the  world  coordinate  system.  and  denote  the
biases affecting the accelerometer and gyroscope measurements.
The  system  derivative  form  can  be  partially  represented  as
following in an east-north-up (ENU) coordinate system (partly
referred in [33], [34]):
 

W ṖI =
W VI +

W aI ×∆T
W V̇I =

W aI ×∆T =W
I C(am−ba)+g

ȧI = j+χ×V +wm×am
I
W q̇ = 1

2Ω(wm)IW q̇

(8)

W
I C
am wm

∆T g
aI
wI

Ω

where  is the translation from the IMU frame to the world
frame,  is  the acceleration measurement,  is  the angular
velocity  measurement,  denotes  the  time  interval,  and 
denotes the gravity. The acceleration, , is subject to rotation
and  translation  in  the  IMU  frame.  denotes  the  angular
velocity and  is the matrix product referred to in [33].

Pvo = [r, t]
r t

Meanwhile,  the  VO  performs  pose  estimation  using  the
RGB-D measurement, and outputs the pose  (where
 denotes  the  rotation,  denotes  the  translation).  Once  VO

finished  pose  estimation  for  each  frame,  we  can  update  the
state based on the measurement model.
 

Pvo = HXIMU+V (9)
V H denotes the measurement noise.  denotes the measurement
matrix which represents the mapping between IMU state and
the VO pose. Then, the prediction from IMU propagation can
be  corrected  by  updating  using  the  EKF  filter,  achieving  a
100 Hz pose estimation rate.

FK = {kIi,k Pi|i ∈ (1,2, ...,m)}
kIi kPi

i
i, j

Ti, j

FK

The state estimation error  of  the VIO will  continue to drift
as there is no loop-closure to correct the pose if there exists an
overlap  between  views  (observations).  To  further  correct  the
pose,  we  record  the  key-frames 
(i.e.,  vertex)  based  on  a  motion  threshold,  where  and 
denote  the  key-frame  image  and  the  key-frame  pose  of  a
frame , respectively. VIO propagation and update allow us to
obtain the transformation between two consecutive frames ,
and the relative transformation  can also be derived at  the
same time. In order to reduce the drift of the visual odometry,
this  paper  introduces  graph-optimization  to  correct  the  pose
drift  based  on  [35].  To  perform  graph  optimization,  the
following procedures have to be followed: 1) record the key-
frames, , based on motion threshold method; 2) use image
features  to  facilitate  loop-closure  detection  to  find  the  edges
(correlation)  between  any  pair  of  key-frames;  3)  perform
graph optimization to update all poses simultaneously.
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(kP̃i,
kP̃ j) = argmin

kPi
(kP̂ j−Ti, j×kP̂i)T ×Ωi, j

×(kP̂ j−Ti, j×kP̂i)
(10)

Ωi, j
kP̃i, j

i, j

KTerror =
K P̃i×K P̂−1

i

P̂current =
K Terror×Pcurrent Pcurrent

where  denotes  the  information  matrix  that  describes  the
correlation  between  parameters  and  denotes  the
optimized  poses.  Equation  (10)  is  able  to  update  all  frame’s
new  poses  at  the  same  time.  Here  we  just  use  as  an
example.  Once  the  graph  optimization  is  done,  we  take  the
pose  error  of  the  last  key  frame, ,  to
correct the current the VIO propagation. Then, we correct the
current  VIO  output  using  the  correction,

, where  is the VIO output. 

B.  Spalling and Cracking Fusion Using CRF
pI = r, t

RI I dI
millimeter

After  VIO  pose  estimation,  we  have  the  pose  of
each  RGB-D  frame,  and  the  corresponding  region  detection
results  of  each  image  frame .  Each  depth  frame ,  has

 accuracy. In this paper, we aim to perform a metric
reconstruction  and  superimpose  the  defect  class  on  the  3D
map for  better  visualization.  For  each RGB-D frame,  we can
perform  a  backward-projection  to  register  the  current  view
measurement to the 3D world.
 

[X,Y,Z] = [r, t]−1K[u,v] (11)
[u,v] [X,Y,Z]

K [r, t]−1

U = (umin,umax,vmin,

vmax)
PC = {Pci |Ci, i = 1, ...,n} n

PC P(ul,vl) = Pc

(ul,vl) ∈ U

where  denotes the pixel coordinate in the image, 
is the corresponding 3D position in world coordinate system,

 is  the  inverse  camera  intrinsic  parameter,  and 
denotes the transformation from the camera coordinate system
to world coordinate system. The output of the multi-resolution
DetectionNet  is  defect  region  information,  allowing  the
defected  regions  in  the  3D model  to  be  labeled  with  specific
colors.  In  this  paper,  the  defects  detection  in  an  image  is
performed  using  a  sliding  window  approach.  Each  sliding
window  defines  a  region  bounding  box 

 where  the  network  can  output  the  corresponding  class
probability  distribution  on  classes.
One  very  important  hypothesis  we  claim  is  that  we  assume
each  pixel  in  a  defect  region  should  have  the  same
probabilistic  distribution ,  i.e.,  for  each  pixel

.

I P(uk ,vk) RI

(uk,vk)

Γ(i)
PΓ(i) = {ci = 1/n, i = 1, ...,n}

In  order  to  fuse  a  sequence  of  inspection  results,  we
introduce conditional  random fields (CRF) to perform spatial
fusion based on our previous work [36]. For each image frame
,  the  prediction  on  region  is  performed  via

AdaNet,  where  is  the  image  coordinate.  The  fusion
involves  the  following  procedures:  1)  we  build  a  voxel  map
and  each  voxel  is  initialize  with  equal  label  probability,
i.e., ;  2)  each  new  RGB-D  frame
will have a new probabilistic image using the detection model,
and we perform fusion using CRF [37], [38] to fuse the label
probabilistic distribution.

(uk,vk)

PΓ(i) = {ci = 1/n, i = 1, ...,n}

For each pixel , we first perform a warping operation
to  find  the  association  between  the  voxel  map  and  current
pixel, and check whether the corresponding voxel is initialized
or  not.  If  not,  we  first  initialize  it  with  an  equal  distribution,

.  Then,  with  the  next  frame

overlapping the region, we perform a warping via deployment
of  a  general  homogeneous  transformation  to  get  the  voxel
index in the voxel map.
 

Γ( j) = π((uk,vk),D(uk,vk),TI) (12)
D(uk,vk) (uk,vk) Γ( j)

TI

π

A(uk,vk) (uk,vk)
P(uk,vk) = {P(A(uk,vk) ==

c
,
i), i = 0,1,2}

 is the depth measurement of pixel ,  is the
corresponding  voxel  in  the  world,  is  the  transformation
from world coordinate frame to the current view, and  is the
warping  operator  that  maps  the  current  view  to  the  world
coordinate  system.  With  the  AdaNet  output  the  class
probability  prediction  of  pixel ,  we  have  the
conditional probability distribution, 

.  Then,  we  can  update  the  global  probabilistic
distribution  of  each  voxel  following  a  recursive  Bayesian
update procedure [38]:
 

P(Γ( j)k+1|A(uk,vk)k+1,Γ( j)k)
= P(Γ( j)k)P(A(uk,vk)k+1)
= P(Γ( j)k)P(uk,vk) (13)

P(Γ( j)k+1|A(uk,vk)k+1,Γ( j)k)
Γ( j) k+1

A(uk,vk)k+1
P(Γ( j)k) k

P(Γ( j)k+1)

where  denotes  the  probabilistic
prediction  of  voxel  at  time  using  AdaNet

,  and  then  update  its  probabilistic  distribution.
 denotes  the  probabilistic  distribution  at  time .

Because  the  prediction  between  each  frame  is  independent,
the  update  becomes  a  simple  dot  operation  between  each
class.  The  posterior  update  is  performed  over  all  visible
voxels, and is finally normalized to obtain . 

V.  Experiments

In  this  section,  we  discuss  the  AdaNet  training  details  and
compare  the  experimental  performance  of  the  depth  in-
painting  model  and  defect  detection  model.  To  verify  the
effectiveness of our system, we perform several field tests in a
manual holding mode for the RGB-D camera and autonomous
inspection mode using the CityFlyer. 

A.  Depth In-Painting Analysis
We first perform an ablation study on the depth in-painting

performance  from  an  accuracy  and  time  performance
perspective. Table II shows  the  results  of  InpaintNet
compared  to  the  raw  output  and  in-painted  result  from  a
bilateral filter [31]. We performed four tests with each dataset
containing RGB-D frames from planar concrete surfaces. The
ground truth was manually obtained by measuring the distance
of  the  camera  to  the  surface  plane.  In Table II,  the  depth
images  of Cracks  1 and 3 have  large  holes  which  are  not
removable  through  a  bilateral  filter. InpaintNet,  however,  is
able  to  achieve  a  more  accurate  and  complete  depth  in-

  
1 https://github.com/ccny-ros-pkg/pytorch_Concrete_Inspection

 

TABLE II  
Depth Accuracy Comparison to Raw Image and [31] (Mean

Absolute Error (MAE) (mm))

Item Crack 1 Crack 2 Crack 3 Crack 4

Raw 278.1070 25.0388 100.2492 16.1562

Bilateral [31] 60.4663 2.8168 39.2606 1.1824

InpaintNet 17.4246 3.3215 27.9362 2.3362
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painting for Cracks 1 and 3. For the depth images of Cracks 2
and 4,  have  small  holes  and  can  be  easily  filtered  through  a
bilateral filter.

30

0.008

A graphic comparison is given in Fig. 8, where we can see
that InpaintNet is  able  to  fill  the  big  holes,  even  though  it
may not able to give precise prediction. Also, compared with
bilateral  filter, InpaintNet could  resolve  a  smoother  normal
estimation. The time performance between the two algorithms
were  compared  revealing InpaintNet to  be  times  faster
compared with the bilateral approach (as illustrated in Fig. 9).
The  runtime  of InpaintNet was  seconds  on  average
with a GTX 1080 GPU for each depth frame. 

B.  Detection Model Comparative Analysis

0

As discussed in Section III-A, we cropped images to obtain
training  patches,  and  we  made  the  cropped  dataset1 publicly
available for  the research community.  The dataset  has a  total
of  26 870  concrete crack image  patches,  15 950  concrete
spalling image  patches,  and  46 429 back_ground image
patches. We label back ground as , concrete crack as 1, and
concrete spalling as  2.  Representative  cropped  images  are
presented in Fig. 5. All of the network training and testing are
carried  out  on  a  GPU  server  with  GTX  1080  GPU  and
implementated using Pytorch.

1)  Does  Multi-Resolution  Help? We  conducted  various
comparative  experiments  between  our  multi-resolution
detection  model  and  other  models,  especially  F-VGG
employed in [19]. Besides VGGs, we also made comparisons

to  current  state-of-art  models  including  ResNets  [25]  and
AlexNet [27].  From  the  comparative  results  presented  in
Table III,  we  can  conclude  that  our  multi-resolution  model
does  not  achieve  the  highest  learning  accuracy,  but  does
obtain  the  highest  testing  accuracy.  We  also  conducted  a
comparative study to the model used in [19] and listed results
in Table IV.

8.405%

Inspection  of  the  results  in Table IV reveal  that  our  multi-
resolution model is able to achieve higher detection accuracy,
with  an  average  higher  detection  accuracy.  This  is
also  illustrated  in Fig. 10 where  it  shows  that  the  multi-
resolution model outputs better coverage predictions than that
of F-ResNet-34.

2) Does Deeper Model  Has Better  Performance? Research
has  shown that  increasing  the  depth  of  a  neural  network  can
improve  the  classification  accuracy  to  a  certain  extent  [26].
However, the model degradation problem occurs if the model
is  deeper  than  a  suitable  limit.  Then,  authors  in  [25]
introduced  a  deep  residual  network  to  overcome  the
degradation problem, allowing the performance of networks to
increase to a higher degree with deeper layer architectures. In
this section, we focus on using a well-constructed model with
a  suitable  depth  and  perform  fine-tuning.  We  do  not  discuss
the degradation problem.

96.88%
1.0

Since  our  task  is  to  classify  three  classes,  the  texture
difference  between crack and spalling are  quite  distinct.
However,  some  possible  challenges  are  the  illumination
variations  and  an  insufficient  dataset.  We  perform
comparative testing on our multi-resolution model, F-ResNets
[25], F-VGGs [26], and AlexNet [27]. For the comparison, we
set  the  batch  size,  epoch,  learning  rate,  and  loss  as  the  same
for  a  fair  comparison.  The  result  is  illustrated  in Table III.
From the  table  it  is  clear  that  the  deeper  a  model,  the  higher
the  accuracy  it  can  achieve. Table III shows  that  the  highest
accuracy  was  achieved  by  F-ResNet-101.  Another
interesting finding is that F-ResNets have an average of %
higher  accuracy  in  performance  compared  to  F-VGGs.
However,  deeper  models  cannot  achieve  the  best  detection
performance if the best input cropping practice is not used.

3)  Batch  Normalization: In  this  paper,  we  also  discuss  the
effect  of  batch  normalization  for  neural  network  models.

 

Raw RGB

image

(a)

(b)

(c)

 
Fig. 8.     Result  of  using  bilateral  filter  and  InpainNet  to  perform  depth  in-painting.  (a)  denotes  the  raw  depth  and  the  corresponding  normal;  (b)  is  the  in-
painted depth and normal using InpaintNet; (c) is the in-painted depth and normal using bilateral filter.
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Fig. 9.     Time  performance  comparison  between  bilateral  filter  and
InpaintNet,  where InpaintNet  takes an average 0.008 seconds to in-paint  per
depth frame.
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0.65%

Batch  normalization  is  proposed  to  solve  the internal
covariate  shift issue  and  can  work  on  each  neuron  to  allow
scale normalization during training. This enables the model to
converge  even  given  larger  learning  rates  and  also  removes
the  need  for  dropout.  In  this  paper,  we  compare  the
performance  of  F-VGGs  between  given  batch  normalization
and  no  batch  normalization.  The  results  are  illustrated  in
Table V. The  results  in Table V reveals  that  batch
normalization can improve the accuracy by  on average.
This  also  proves  that  batch  normalization  can  improve  the
model  performance  even  with  less  diversity  in  the  data.  A
quantitative  comparison  of  detection  accuracy  illustrated  in
Tables III and IV,  shows  that  VGG-Nets  are  not  able  to
achieve  comparable  detection  performance  compared  to  our
multi-resolution detection model. 

C.  Field Tests and Comparisons
We  conducted  field  tests  at  155  St  Broadway,  Upper

Manhattan, on a concrete bridge. We performed the inspection
under the bridge using an RGB-D camera mounted CityFlyer.
The CityFlyer was also mounted with a MasterMind computer
to perform on-board computation and image streaming to the
ground station (a GPU computer for defect detection). Besides
the field tests via the CityFlyer, we also manually scanned the
concrete surface with the RGB-D camera.

1)  Field  Tests (Manual  Field  Test): In  the  first  stage,  we
manually  carried  the  RGB-D  camera  to  scan  the  concrete
surface and collect the RGB-D frames for inspection. It should
be noted that  we have to  launch the VIO system to track the
motion of the camera to perform a reconstruction of the target
concrete surface.

80×80 200×200

We collected three sets of data for three different scenarios,
which  each  RGB-D  frame  having  a  location  tag.  Then,  we
performed  defect  inspection  using  our  deep  inspector  over
each image. The results are illustrated in Fig. 11, where green
rectangles denote spalling and cyan rectangles denote cracks.
To perform detection,  we deployed a sliding window to scan
through  the  whole  image  with  varying  region  sizes  from

 to .
We can see in the left-most  image and the center  image of

Fig. 11 that our model is able to recognize the spalling region
and crack region. Further demonstration of the performance of
the  model  is  shown  in  the  center  image  where  the spalling
region  is  distinguished  from  the crack region.  These  results
show  how  our  model  can  cover  the  whole  defect  area  in
consecutive frames and how this  method is  able to help civil

 

TABLE III  
Accuracy Comparison between F-ResNets, F-VGGs, and AlexNet

Model BathSize Epoch Learning rate Loss L-accuracy T-accuracy Loss

Ours 32 10 0.01 Cross entropy 0.9953 0.9732 0.1104

AlexNet 32 10 0.01 Cross entropy 0.9717 0.9543 0.1274

ResNet-18 32 10 0.01 Cross entropy 0.9967 0.9631 0.1405

ResNet-34 32 10 0.01 Cross entropy 0.9977 0.9639 0.1325

ResNet-50 32 10 0.01 Cross entropy 0.9931 0.9684 0.1205

ResNet-101 32 10 0.01 Cross entropy 0.9938 0.9688 0.117

VGG-11 32 10 0.01 Cross entropy 0.9773 0.9556 0.125

VGG-13 32 10 0.01 Cross entropy 0.9859 0.9589 0.1177

VGG-16 32 10 0.01 Cross entropy 0.9791 0.9595 0.1195

VGG-19 32 10 0.01 Cross entropy 0.9746 0.963 0.1075
 

 

TABLE IV  
Field Test Data Detection Comparison

Method Test No. Average precision (%) Blurred image (frames) Average precision without blur (%) Over estimated (%) Total image
F-VGG No.1 72.45 149 76.73 97.18 4998

F-VGG No.2 67.65 55 71.19 24.3 2650

Ours No.1 81.32 149 84.33 55.72 4998

Ours No.2 75.59 55 79.03 16.5 2650

Further tuned with field data

F-VGG No. 1 83.69 149 87.97 93.34 4998

F-VGG No. 2 81.38 55 84.92 33.57 2650

Ours No. 1 88.72 149 91.7 19.45 4998

Ours No. 2 85.12 55 88.66 13.3 2650
 

 

TABLE V  
Comparative Results of Using Batch Normalization (BN)

Model
Learning accuracy Training accuracy

None BN None BN

VGG-11 0.9773 0.9936 0.9556 0.9645

VGG-13 0.9859 0.9947 0.9589 0.9662

VGG-16 0.9791 0.9954 0.9595 0.9645

VGG-19 0.9746 0.9942 0.963 0.9660
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engineers be aware of the condition of the concrete structure.

Test1
Test 2

2)  Autonomous  Field  Test  Using  CityFlyer: We  also
performed two sets of field tests using our CityFlyer, and the
results  are  illustrated  in Fig. 10.  In Fig. 10,  is  carried
out  at  the  entrance  of  the  area  under  a  bridge,  and  is
carried  out  at  the  middle  of  the  area  under  the  bridge  where
the illumination is low.

For Test 1,  the  trajectory  of  the  drone  is  illustrated  in  the
left-most  image,  this  illustrates  how  the  CityFlyer  was
maneuvering to capture the target area. The defect inspection
result is illustrated in the second to the left image, where cyan
and green  rectangles  denote crack and spalling,  respectively.
The right-most  image is  the front  view of the 3D map (point
cloud) with color overlayed on the defects, and the second to
the  right  image  shows  the  same  point  cloud  but  with  a
different view from the back. We can see that the spalling and
cracks are well highlighted.

The second test was carried under the bridge, which suffers
from  low  illumination  for  inspection  and  localization.  The
trajectory  of  the  drone  is  given  in  the  left-most  image  of
Test 2, and the inspection result at this location is given in the

second  to  the  left  image  and  the  second  to  the  right  image.
The second to the left image indicates that our model is able to
perform correct spalling detection even in a low-illumination
environment. However, the second to the right image indicates
that it missed detection of a crack region (indicated with a red
dashed rectangle) due to low illumination.

3) Semantic 3D Fusion and Visualization: The semantic 3D
highlighted  results  are  illustrated  in Fig. 10,  where  we
performed back-projection using the predicted output and the
corresponding depth image to the 3D world coordinate frame
and the 3D spatial data is fused using consecutive frames. We
use a voxel map to represent 3D structure information, where
each  voxel  has  to  be  updated  through  a  back-projection
manner.  Since  we  deploy  an  image-based  fusion  approach,  a
global  probabilistic  map  searching  is  not  required,  enabling
non-GPU  computation.  The  reconstructed  3D  map  with
semantic  highlighted  areas  is  illustrated  in  the  right-most
images of Fig. 10. It can be seen in the figure that the regions
of defect are well highlighted using green and cyan color. This
helps  civil  engineers  identify  the  defect  categories  as  well  as
their location. 
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Fig. 10.     Two  automative  field  tests, Test 1  and Test 2,  are  carried  out  using  CityFlyer.  In  both  tests,  we  illustrate  the  drone’s  trajectory,  region  detection
results, and the 3D reconstructed mapping with defect highlighting.
 

 

crack spalling

 
Fig. 11.     We performed 3 field tests in a manual held RGB-D camera mode. The green rectangles indicate the spalling region, and cyan rectangles denote the
crack region.
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VI.  Conclusion

8.41%

In  this  paper,  we  introduced  a  new  automatic  concrete
structure inspection system using the CityFlyer robot mounted
with  an  RGB-D  camera  toward  visual  inspection.  For  visual
concrete  inspection,  we  introduced  an  AdaNet  to  perform  a
detection  of  defects  within  a  sliding  window  approach.  The
AdaNet  consists  of  two  sub-models,  which  are,  a  depth
inpainting  model  (InpaintNet)  to  fill  holes  in  a  depth  image
and  multi-resolution  defect  detection  model  for  concrete
inspection.  The  depth  adaptive  multi-resolution  detection
model  considers  both  distance  and  resolution  effects,  aiming
to provide a robust concrete crack and spalling detection task
in the field. Meanwhile, we pioneeringly propose using visual
SLAM  and  deep  neural  network  inspection  to  perform  a  3D
semantic  reconstruction  to  highlight  the  defects  in  a  3D
model.  It  can  achieve  an  average  higher  detection
accuracy  compared  to  F-VGG  and  F-ResNets.  Furthermore,
we  introduce  an  RGB-D  visual-inertial  fusion  with  filtering
and  global  bundle  adjustment  to  perform pose  estimation  for
the  CityFlyer  state  control.  The  pose  information  is  used  to
provide  location  tags  defects  predicted  in  images.
Comparative  experiments  and  field  tests  indicate  that  the
system  is  able  to  perform  high-quality  detection  and
reconstruction. For future work, we will try optimal tuning of
super  parameters  of  the  proposed  models  via  intelligent
optimization  methods  [39]  and  also  work  on  pixel-level
detection toward metric reconstruction. 
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