
A Mean-risk Mixed Integer Nonlinear Program
for Network Protection

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mathematical Science

by

Amy Elizabeth Burton

May 2020

Accepted by:

Dr. Akshay Gupte, Committee Chair

Dr. Cole Smith

Dr. Matthew Saltzman

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

27956080

27956080

2020

Abstract

Many of the infrastructure sectors that are considered to be crucial by the De-

partment of Homeland Security include networked systems (physical and temporal)

that function to move some commodity like electricity, people, or even communication

from one location of importance to another. The costs associated with these flows

make up the price of the network’s normal functionality. These networks have limited

capacities, which cause the marginal cost of a unit of flow across an edge to increase

as congestion builds. In order to limit the expense of a network’s normal demand we

aim to increase the resilience of the system and specifically the resilience of the arc

capacities.

Divisions of critical infrastructure have faced difficulties in recent years as in-

adequate resources have been available for needed upgrades and repairs. Without

being able to determine future factors that cause damage both minor and extreme to

the networks, officials must decide how to best allocate the limited funds now so that

these essential systems can withstand the heavy weight of society’s reliance.

We model these resource allocation decisions using a two-stage stochastic pro-

gram (SP) for the purpose of network protection. Starting with a general form for a

basic two-stage SP, we enforce assumptions that specify characteristics key to this type

of decision model. The second stage objective—which represents the price of the net-

work’s routine functionality—is nonlinear, as it reflects the increasing marginal cost

ii

per unit of additional flow across an arc. After the model has been designed properly

to reflect the network protection problem, we are left with a nonconvex, nonlinear,

nonseparable risk-neutral program.

This research focuses on key reformulation techniques that transform the prob-

lematic model into one that is convex, separable, and much more solvable. Our ap-

proach focuses on using perspective functions to convexify the feasibility set of the

second stage and second order conic constraints to represent nonlinear constraints in

a form that better allows the use of computational solvers. Once these methods have

been applied to the risk-neutral model we introduce a risk measure into the first stage

that allows us to control the balance between an efficient, solvable model and the need

to hedge against extreme events. Using Benders cuts that exploit linear separability,

we give a decomposition and solution algorithm for the general network model. The

innovations included in this formulation are then implemented on a transportation

network with given flow demand.

iii

Acknowledgements

This work would not have been possible without the support and guidance

of a number of important individuals. First, I would like to thank my research

advisor, Dr. Akshay Gupte. His support of my growth not only as a student but

as a professional is beyond measure. He has helped and guided me throughout the

entire process of developing this work and enabled me to develop relationships that

will stay with me for life. Second, I would like to thank the other two members of

my committee, Dr. Cole Smith and Dr. Matthew Saltzman. Both of these individuals

have been supportive of my work and helped me through the many challenges I have

faced through my course work and research. They have served as role models and I

am thankful for the lessons they have taught me.

I would also like to thank the many friends and peers that I have met and

worked with while at Clemson University. They have served as a source of support,

advice, and friendship and have helped me though the peaks and valleys of graduate

school.

iv

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction . 1

2 Two-stage Stochastic Programs . 4
2.1 Formulation . 5

3 Convexification and Reformulation of Recourse Function 11
3.1 Convexifying the Union of Disjunctive Sets 12
3.2 Second Order Cone Programming . 17
3.3 Separability of First and Second Stage Variables 32

4 Mean-Risk Stochastic Programming Model 34
4.1 Risk-Neutral Stochastic Programming 34
4.2 Introducing Risk into Optimization Models 37
4.3 Commonly Used Risk Measures . 38
4.4 Implementing Conditional Value-at-Risk 41

5 Decomposition and Algorithm for Solution 43
5.1 Challenges in Mixed Integer Nonlinear Programming 43
5.2 Generalized Benders Decomposition 45
5.3 A Variation of GBD Under Separability 47
5.4 Decomposition Method for the Mean-Risk Model 50
5.5 Solution Algorithm . 54

6 A Mean-Risk Program for Transportation Network Protection . . 57
6.1 Introduction to Problem . 57

v

6.2 Optimization Parameters . 58
6.3 Reformulation of Second Stage . 62
6.4 Decomposition . 71

7 Conclusion . 75
7.1 Discussion on Model Size and Complexity 75
7.2 Contributions of this Research . 79

Appendices . 81
A Proof of Unique Partition (Jx, Jv) . 82
B An Explicit Description of Ak . 84
C Notation associated with Transportation Network Model 88

Bibliography . 91

vi

List of Tables

7.1 Number of Variables and Constraints Added to each Qs(x) throughout
the Reformulation Process. 77

7.2 Number of Variables and Constraints Added to each Qs(x) throughout
the Reformulation Process. 78

3 Notation of initial variables and given information for the transporta-
tion network problem. 89

4 Parameters whose values are set by decision makers to best fit the
model to their needs. 90

vii

List of Figures

3.1 Boundary of the quadratic (second order, Lorentz) cone x1 ≥
√
x2

2 + x2
3

(left) and rotated quadratic cone 2x1x2 ≥ x2
3,x1, x2 ≥ 0 (right) [MOSEK,

2018]. 18
3.2 The Binary Tree Leaf Nodes case k = 3. 27
3.3 The Binary Tree Diagram used to derive CQR for the case k = 3. . . 29

4.1 An example distribution for F (x∗, ω), F (x∗, ω) ∼ Normal(3, 1). . . . 35
4.2 An example distribution for F (x∗, ω), F (x∗, ω) ∼ Beta(2, 20). 36

5.1 A Visual Illustration of the GBD Method [Rahmaniani et al., 2017]. 48

6.1 The Binary tree created for SOCP constraints of stable edges a ∈ A \ Ā. 67
6.2 The Binary tree created for SOCP constraints of critical edges a ∈ Ā,

∀h ∈ H. 68

viii

Chapter 1

Introduction

Critical infrastructure systems such as energy grids, telecommunication net-

works, and food distribution systems are essential to the function of all modern soci-

eties. Within the 16 infrastructure sectors deemed vital by the Department of Home-

land Security, a countless number of systems are in need of refurbishment, repair,

or replacement [Directive, 2013]. How to address this problem with the inadequate

amount of resources available has become a popular topic of debate and discussion

amongst decision makers in our government. Critical infrastructure such as trans-

portation and cyber systems can be modeled as networks, making these difficult

decisions network protection problems. There are large amounts of uncertainty and

risk in finding the best way to allocate limited resources, especially taking into ac-

count possible future events that can affect the network’s condition and performance.

Stochastic programming (SP) is a commonly used method for making deci-

sions under uncertainty [Wallace and Ziemba, 2005]. In a general sense, a two-stage

stochastic program finds the decision that can be made now that minimizes the ex-

pected cost of all future scenarios. Two-stage SPs are often applied to network pro-

tection problems [Barbarosoǧlu and Arda, 2004, Liu et al., 2009, Lu et al., 2017]. For

1

this type of network protection problem, our first stage deals with how we decide

to allocate resources. For each possible scenario, the second stage minimizes costs

associated with the network functioning under these conditions.

This research focuses on networks depicted as directed graphs G(N,A) whose

functionality involves moving units of flow between locations of significance (nodes).

To study the networks properly we must be given necessary information including

edge capacities, normal flow demand between pairs of nodes in the graph, and a

way to measure the cost of pushing flow across each link. Within these networks we

distinguish a subset of edges to be critical. Critical edges are in need of repair or

improvement and thus vulnerable to possible capacity loss subject to future condi-

tions. We wish to allocate our limited resources across the critical links in a way that

best hedges against future damage and increases the resilience of the system. Similar

research has been done on this type of problem, including mean-risk SPs [Liu et al.,

2009, Lu et al., 2016, 2017]. This study aims to make improvements on the current

methods by establishing a stronger, more tractable formulation second stage problem

in network protection models.

The main objective of this research is to build a risk-averse two stage stochas-

tic program that can be used to make the best decision for our network. We start

with the basic two stage SP and enforce certain conditions that shape the type of

problems we are trying to solve. To avoid any assumptions that might limit the ap-

plicability of the model, we use the sum of univariate polynomials as a general second

stage function. We then reformulate this program to eliminate issues that arise in

efficiently finding the optimal solution. The remainder of this work is organized in

the following way: Chapter 2 introduces the general form of a two-stage stochastic

program; Chapter 3 demonstrates the convexification and reformulation of the second

stage; Chapter 4 makes arguments for a mean-risk model as well as demonstrates how

2

to implement a risk measure into the objective of our model; Chapter 5 outlines the

decomposition of the mean-risk model and provides a solution algorithm; Chapter 6

provides an application of the discussed methods for a transportation network.

3

Chapter 2

Two-stage Stochastic Programs

To build a risk-averse decision model for our network protection problem, we

begin with a general two-stage stochastic program. The first stage decision includes

making m different decisions. For each decision i = 1, . . . ,m there are ni possible

strategies that can be chosen, each with some cost ci,j for j = 1, . . . , ni. The first

stage decision variable is a binary vector denoted x = (x1, . . . , xm) ∈ {0, 1}n (where

n =
∑m

i=1 ni). For each of decision i, we must make exactly one choice j. For

i = 1, . . . ,m

xi ∈ {0, 1}ni , xij =


1 If we choose strategy j for decision i

0 If we do not choose strategy j for decision i

∀j = 1, . . . , ni

Since we can only make one choice for each decision i, there can only be one nonzero

element in each subvector xi. This type of vector is referred to as a special ordered set

of type 1, denoted xi ∈ SOS-1. Since xi is binary, it is equivalent to say
∑ni

j=1 x
i
j = 1.

After the realization of some uncertainty set ω ∈ Ω, (a future unknown event occurs)

we hope that our first decision x results in minimal cost Q(x, ω). The general two-

4

stage SP allows us to solve for the first stage decision x that minimizes the total

expected cost incurred on the network.

2.1 Formulation

Our research is focused on stochastic programming problems of the form

min E [F (x, ω)] (2.1a)

s.t. x = (x1, x2, . . . , xm) ∈ X (2.1b)

xi ∈ {0, 1}ni ∀i = 1, . . . ,m (2.1c)

ni∑
j=1

xij = 1 ∀i = 1, . . . ,m (2.1d)

where x ∈ {0, 1}n is a vector of binary first stage decision variables; X ⊆ {0, 1}n is

the set of feasible solutions; (Ω,F , P) is a probability space with elements ω; and F :

{0, 1}n×Ω 7→ R is a cost function with F (x, ·) being F -measurable and P -integrable

for all x ∈ {0, 1}n. The set X contains solutions that satisfy constraints associated

with the particular type of problem. The mapping E : F → R denotes the expected

value, where F is the space of all real random cost variables F (x, ·) : Ω 7→ R with

finite expectation [Birge and Louveaux, 2011, Kall and Wallace, 1994]. Specifically

we study a class of two-stage stochastic programming problems with

F (x, ω) = cTx+Q(x, ω),

under the following assumptions Shapiro et al. [2009]:

(A1) The set of feasible first stage decision variables is nonempty, that is X 6= ∅.

5

(A2) For all x ∈ X and almost every ω ∈ Ω, F (x, ω) <∞.

(A3) The outcomes of the random variable ω ∈ Ω can be approximated by a finite

discrete set of scenarios s ∈ S, each with probability ps.

Together assumptions (A1) and (A2) guarantee that an optimal solution does ex-

ist with assumption (A2) additionally requiring that the recourse function Q(x, ω)

be relatively complete. The recourse function Q(x, ω) is relatively complete if, for

all feasible first stage decisions x ∈ X, the set of second stage feasible solutions is

nonempty for almost every ω ∈ Ω. Assumption (A3) is required for the model to be

tractable and allows us to discretize the expectation of the cost function. Therefore

the general two-stage objective (2.1a) can be written as:

min
x

E [F (x, ω)] = min
x

∑
s∈S

psF
s(x)

= min
x

∑
s∈S

ps
[
cTx+Qs(x)

]
= min

x
cTx+

∑
s∈S

psQ
s(x)

where F s(x) = cTx+Qs(x) is the total cost function for the s-th scenario with Qs(x)

being the optimal value for the second stage cost, given the first stage decision vector

x. The recourse function for each scenario s is defined as

Qs(x) = min
y,z

f s(x, y)

s.t. Bsy + Csz ≥ ds

z ≥ 0

y ∈ Rm
+ .

6

where the superscript s on the function f s : {0, 1}n×Rm
+ 7→ R, vector ds and matrices

Bs and Cs represents how the realization s of the probability space (Ω,F , P) has an

effect on the recourse function. In the study of this general model, we do not have

an explicit description for how Qs(x) changes based on specific s ∈ S. The following

assumptions and subsequent formulation should hold for all s ∈ S. For that reason

we, when able, denote the recourse function as

Q(x) = min
y,z

f(x, y) (2.2)

s.t. By + Cz ≥ d

z ≥ 0

y ∈ Rm
+ .

though we do acknowledge and respect how the discretized outcomes of the random

variable ω ∈ Ω can greatly affect the second stage of a stochastic model.

For this research, we consider four additional assumptions about the second

stage problem Q(x). These assumptions specify the type of recourse functions we are

studying while still allowing the model to be applied to a wide variety of problems

(A4) Problem (2.2) has a finite optimal value for all x ∈ X.

(A5) The objective of Q(x), f(x, ·), is a convex function in Rm for all x ∈ {0, 1}n.

(A6) For all x ∈ {0, 1}n, f(x, y) =
m∑
i=1

fi(x
i, yi) where fi : {0, 1}ni × R+ 7→ R is a

univariate function that depends only on xi ∈ {0, 1}ni ∩ SOS-1. Since xi has ni

possible values, we denote the function fi(x
i, yi) = fi(ej, yi) = gi,j(yi) when xi

is equal to ej, the j-th standard basis vector in Rni , meaning the only nonzero

7

element in xi is a 1 in the j-th position. Thus,

f(x, y) =
m∑
i=1

fi(x
i, yi) =

m∑
i=1

ni∑
j=1

xijgi,j(yi).

(A7) For all i = 1, . . . ,m and j = 1, . . . , ni the function gi,j(yi) is a univaraite poly-

nomial of degree di.

gi,j(yi) = ai1(yi) + ai2(yi)
2 + · · ·+ aidi(yi)

di ,

where ai,j0 , a
i,j
1 , a

i,j
2 , . . . , a

i,j
di
∈ R are constant coefficients. The polynomial gi,j(yi)

does not contain any terms of degree zero as those costs would be solely deter-

mined by the first stage variable xij and therefore are included as part of the

first stage.

By assumption (A4), every first stage solution x ∈ X has a feasible completion in

the second stage [Birge and Louveaux, 2011]. Therefore, the model has complete

recourse. The convexity enforced by assumption (A5) implies that the coefficients

of gi,j(yi) must be nonnegative thus, ai,jk ≥ 0 for all i = 1, . . . ,m j = 1, . . . , ni and

k = 1, . . . , di. Together assumptions (A6) and (A7) gives that the objective of (2.2)

can be written as

f(x, y) =
m∑
i=1

ni∑
j=1

xijgi,j(yi)

=
m∑
i=1

ni∑
j=1

xij
(
ai,j1 (yi) + ai,j2 (yi)

2 + · · ·+ ai,jdi (yi)
di
)

=
m∑
i=1

ni∑
j=1

xij

[
di∑
k=1

ai,jk (yi)
k

]

8

Thus, for a given feasible first stage decision vector x ∈ X the recourse function Q(x)

is:

Q(x) = min
y,z

m∑
i=1

ni∑
j=1

xij

[
di∑
k=1

ai,jk (yi)
k

]

s.t. By + Cz ≥ d

z ≥ 0

y ∈ Rm
+ .

Therefore the current formulation of our two-stage stochastic program is:

min
x

cTx+
∑
s∈S

p(s)Qs(x) (2.3)

s.t. x = (x1, x2, . . . , xm) ∈ X

xi ∈ {0, 1}ni ∀i = 1, . . . ,m

ni∑
j=1

xij = 1 ∀i = 1, . . . ,m

where for all scenarios s ∈ S

Qs(x) = min
ys,zs

m∑
i=1

ni∑
j=1

xij

[
di∑
k=1

ai,js,k(ys,i)
k

]
(2.4)

s.t. Bsys + Cszs ≥ ds

zs ≥ 0

ys ∈ Rm
+ .

The optimal solutions y∗s , z
∗
s represent optimal values for y and z given (ai,js,k, B

s, Cs, ds).

For a different scenario s′ ∈ S any of the given information in the second stage prob-

9

lem may fluctuate. Therefore y∗s , z
∗
s does not necessarily hold for other s′ ∈ S. One

of the goals in this study is to formulate a model that preforms well even as the size

of S increases. Very large sets S model the randomness in the second stage much

better than small sets and therefore return optimal solutions better suited for prac-

tical application.

Based on the above assumptions the second stage problem Qs(x) is a nonlin-

ear optimization problem for all s ∈ S. The objective function of (2.4) includes the

product of first stage variable x and second stage variable y, thus the first and sec-

ond stages are nonseparable in this non-convex formulation of the recourse function.

Though separability of first and second stage variables is not required to implement

Benders Decomposition (BD) Fischetti et al. [2016], Floudas [1995], it along with

convexity are properties that can be exploited by the BD algorithm [Benders, 2005,

Geoffrion, 1972]. Methods for decomposition and solution of the model will be dis-

cussed in Chapter 5. First we must derive a reformulation of Qs(x) that is a linear

function of first stage decision x, convex, and separable in first and second stage

variables.

10

Chapter 3

Convexification and Reformulation

of Recourse Function

The specific information constraining each scenario is information given for a

particular model. Thus, we focus our reformulation on the general recourse problem

Q(x) = min
y,z

m∑
i=1

ni∑
j=1

xij

[
di∑
k=1

ai,jk (yi)
k

]

s.t. By + Cz ≥ d

z ≥ 0

y ∈ Rm
+ .

as the following reformulation techniques hold for all s ∈ S, regardless of (ai,js,k, B
s, Cs, ds)

given. For i = 1, . . . ,m and k = 1, . . . , di the objective term

ni∑
j=1

xij

[
di∑
k=1

ai,jk (yi)
k

]

11

is non-separable in first (x) and second stage (y) variables and contains nonlinear

terms for k > 1. Though assumption (A5) requires that the objective of Qs(x) be

convex for all x ∈ {0, 1}n this does not gives us that Qs(·) is convex in general. To

better handle these problems, we move the complicating pieces out of the objective

and into the constraints. For every i = 1, . . . ,m we introduce an auxiliary second

stage nonnegative continuous variable wi constrained by

wi ≥
ni∑
j=1

xij

[
di∑
k=1

ai,jk (yi)
k

]
, wi ≥ 0 ∀i = 1, . . . ,m

Then the recourse function can be written with a linear objective as

Qs(x) = min
w,y,z

m∑
i=1

wi (3.1a)

s.t. By + Cz ≥ d (3.1b)

z ≥ 0 (3.1c)

y ∈ Rm
+ (3.1d)

wi ≥
ni∑
j=1

xij

[
di∑
k=1

ai,jk (yi)
k

]
∀i = 1, . . . ,m (3.1e)

3.1 Convexifying the Union of Disjunctive Sets

For x ∈ X, since xi ∈ {0, 1}ni ∩ SOS-1, constraint (3.1e) causes a disjunction

in the set of feasible solutions. For all i = 1, . . . ,m we would like formulate the

closed convex hull of the union of these disjunctive convex sets each corresponding to

a different possible value of xi. We now present an efficient approach to dealing with

this disjunction.

Remark. For the simplicity of notation, we consider the single union of convex dis-

12

junctive sets for some 1 ≤ i ≤ m. We drop the indices i and k (other than when i

differentiates n from ni), and consider a single instance of taking the convex hull over

the set of disjunctive constraints in the second stage as well as the binary constraints

of the first stage decision vector.

For i = 1, . . . ,m we now formulate convex constraints for the following convex

set:

Πi = conv

(xi, yi, wi) :

ni∑
j=1

xij

[
di∑
k=1

ai,jk (yi)
k

]
≤ wi; xi ∈ {0, 1}ni ;

yi ≥ 0;
ni∑
j=1

xij = 1

 . (3.2)

3.1.1 Perspective Reformulation

Ceria and Soares, Ceria and Soares [1999] give a method for approximating

the union of convex sets based on a projection of the convex hull into a space of

some higher-dimensional set. This projection is due to the perspective mapping of a

function. This process has been used successfully to deal with disjunctions caused by

indicator variables [Aktürk et al., 2009, Günlük and Linderoth, 2008].

We derive the closure of (3.2) from the union of convex sets corresponding to

the indicator variables of this mixed integer program. Πi = conv

(
ni⋃
j=1

Pi,j

)
where we

define

Pi,j :=

{
(xi, yi, wi) ∈ {0, 1}ni × R+ × R+ :

di∑
k=1

ai,jk (yi)
k ≤ wi; x

i = ej

}

where ej is the j-th standard basis vector in Rni having only one nonzero element, 1

in the j-th row. Given a fixed first stage feasible solution xi = ej, Pi,j is the set of

feasible solutions to second stage constraints (3.1d) and (3.1e). It should be noted as

the intersection of two hyperplanes and a convex set, Pi,j is a convex, bounded set

13

in Rni × R+ × R+. The first inequality constraint of Pi,j,
di∑
k=1

ai,jk (yi)
k ≤ wi, can be

rewritten as

pi,j(yi, wi) ≤ 0 where pi,j : R2
+ 7→ R, pi,j(yi, wi) =

di∑
k=1

ai,jk (yi)
k − wi

giving way to an equivalent formulation of Pi,j:

Pi,j =

(xi, yi, wi) ∈ {0, 1}ni × R+ × R+ :
pi,j(yi, wi) ≤ 0;

xi = ej

 .

For a general f : Rn → R, the perspective function of f is the function

f̃ : Rn+1 → R defined as

f̃(λ, x) =


λf(x/λ) if λ > 0

0 if λ = 0

∞ otherwise

. (Perspective Function)

Proposition 3.1. If the function f : Rn → R is convex, then the perspective function

f̃ : Rn+1 → R is also convex.

Readers may visit Günlük and Linderoth [2012] for a proof of Proposition 3.1.

The perspective function of pi,j is

p̃i,j(λj, yi, wi) =



λjpi,j(
yi
λj
, wi
λj

) = λj

[
di∑
k=1

ai,jk

(
yi
λj

)k
− wi

λj

]
=

di∑
k=1

ai,jk (yi)
k

(λj)k−1 − wi if λj > 0

0 if λj = 0

∞ otherwise

.

14

Proposition 3.2 (Ceria and Soares [1999]). For j = 1, . . . , ni, Pi,j is convex thus,

(xi, yi, wi) ∈ Πi = conv

(
ni⋃
j=1

Pi,j

)
if and only if the following system is feasible :

yi =

ni∑
j=1

vi,j; wi =

ni∑
j=1

ui,j;

ni∑
j=1

λj = 1;

p̃i,j(λj, vi,j, ui,j) =

di∑
k=1

ai,jk (vi,j)
k

(λj)k−1
− ui,j ≤ 0 ∀j = 1, . . . , ni

vi,j, ui,j, λj ≥ 0 ∀j = 1, . . . , ni

Then (xi, yi, wi) ∈ Πi if and only if there exists
(
{vi,j}nij=1, {ui,j}

ni
j=1

)
such that:

Πi =


(
xi, yi, {vi,j}nij=1, wi, {ui,j}

ni
j=1,

)
:

yi =
ni∑
j=1

vi,j, wi =
ni∑
j=1

ui,j,
ni∑
j=1

xij = 1;

∀j = 1, . . . , ni
di∑
k=1

ai,jk (vi,j)
k

(xij)
k−1 ≤ ui,j,

∀j = 1, . . . , ni x
i
j ≥ 0, vi,j ≥ 0, ui,j ≥ 0


.

Therefore the disjunctive constraint (3.1e) can be replaced by the system of inequal-

ities that define Πi for i = 1, . . . ,m. The second stage problem Q(x) takes input of

a given first stage decision x. Since xi ∈ {0, 1}ni ∩ SOS-1 for i = 1, . . . ,m in any

feasible first stage decision, the constraint
ni∑
j=1

xij = 1 of Πi should not be included in

Q(x). Using the rest of the constraints from Πi, we can form a continuous relaxation

of Q(x) with the addition of 2ni auxiliary second stage nonnegative variables for each

15

i = 1, . . . ,m.

Q(x) = min
u,v,w,y,z

m∑
i=1

wi (3.3a)

s.t. By + Cz ≥ d (3.3b)

z ≥ 0 (3.3c)

y ∈ Rm
+ (3.3d)

yi =

ni∑
j=1

vi,j, wi =

ni∑
j=1

ui,j ∀i = 1, . . . ,m (3.3e)

di∑
k=1

ai,jk (vi,j)
k

(xij)
k−1

≤ ui,j ∀i = 1, . . . ,m j = 1, . . . , ni (3.3f)

vi,j, ui,j ≥ 0 ∀i = 1, . . . ,m j = 1, . . . , ni (3.3g)

16

3.2 Second Order Cone Programming

The current formulation of the recourse function Q(x) is a convex minimiza-

tion problem with linear objective. All of the constraints on the second stage are

also linear except for constraints (3.3f). Nonlinear constraints pose a computational

problem as nonlinear optimization solvers are not as efficient as linear solvers. Many

techniques used to solve mixed integer linear programs such as cutting planes cannot

be applied directly to mixed integer problems with nonlinear constraints.

Second order cone programs (SOCP) are convex nonlinear optimization prob-

lems that minimize a linear objective over the intersection of an affine linear space

and the Cartesian product of second order (Lorentz) cones. Figure 3.1 illustrates

the 3-dimensional Lorentz cone. The n-dimensional Lorentz (second order) cone is

defined by the set:

Ln :=

{
x = (x1, x2, . . . , xn) ∈ Rn : xn ≥

√
x2

1 + x2
2 + . . . x2

n−1

}
, n ≥ 2.

An SOCP is a conic problem of the form

min
x

{
cTx | Ax− b ≥K 0

}
where the cone K = Ln1×Ln2×· · ·×Lnk is a direct product of several Lorentz cones.

Second order cone programming falls in between linear programming and semidef-

inite programming and can be solved using interior point methods in polynomial

time, a far improvement to generic mixed integer nonlinear problems. SOCPs have

been formulated for use in many fields including structural optimization, Tcheby-

chev approximation, antenna array design, and portfolio optimization [Aktürk et al.,

2009, Alizedeh and Goldfarb, 2003, Lobo et al., 1998]. Second order cone program-

ming opens opportunity to solve previously difficult problems in a computationally

17

Figure 3.1: Boundary of the quadratic (second order, Lorentz) cone x1 ≥
√
x2

2 + x2
3

(left) and rotated quadratic cone 2x1x2 ≥ x2
3,x1, x2 ≥ 0 (right) [MOSEK, 2018].

tractable way. For these reasons we choose to address the nonlinear constraints in

the second stage by formulating them as SOCPs.

SOCPs, also known as conic quadratic problems, can be written as

min
x

cTx

s.t. Aix− bi ≥Lni 0, i = 1, . . . ,m

where the inequality constraints means that the last entry in the vector formed by

Aix− bi is greater than or equal to the Euclidean norm of vector made up of the first

ni − 1 entries in Aix− bi. Constraints such as this can also be written as:

‖A′ix− b′i‖2 ≤ pTi x− qi

where A′i and b′i are submatrices of Ai and bi respectively, consisting on the first ni−1

rows, while pTi and qi represents the last rows of Ai and bi respectively. To transform

a general nonlinear problem into a conic quadratic problem we must explicitly repre-

sent the set of feasible solutions using a finite number of conic quadratic inequalities

(CQIs).

18

Let X ⊂ Rn be the set of feasible solutions for some general minimization

problem. Then X is categorized as conic quadratic representable (CQr), meaning

we can represent it using a finite number of CQIs, if there exists a finite system of

inequalities, denoted Λ, of the form

Ai

(
x

τ

)
− bi ≥Lni 0 (3.4)

where x ∈ Rn are the original variables and additional design variables τ are added

in such a way that X is the projection of the solution set of Λ onto the x-space.

The system Λ is referred to as a conic quadratic representation (CQR) of the set X.

A function is said to be CQr if its epigraph is a CQr set. Simple examples of CQr

functions include constant functions, affine maps, and naturally the Euclidean norm.

Operations that preserve the conic quadratic representability of sets include the inter-

section of CQr sets, projection of a set to an affine image, and affine parameterization.

Lemma 3.3 (Ben-Tal and Nemirovski [2001]). Any set X ⊂ Rn that is CQr is also

convex. Since the epigraph of a CQr function is a CQr set and thus convex, it is a

necessary condition that a CQr function be convex.

Remark. Once again we simplify notation in an effort to clarify the reformulation

process. Constraint (3.3f) needs reformulation for i = 1, . . . ,m, j = 1, . . . , ni. We

focus on one instance with 1 ≤ i ≤ m and 1 ≤ j ≤ ni and remove the indices i and j

from the representation. The simplified form of the constraints (3.3f) and (3.3g) is

d∑
k=1

ak(v)k

(x)k−1
≤ u, x, v, u ≥ 0. (3.5)

We derive a conic quadratic representation (CQR) for the set defined by (3.5).

19

An instance of (x, v, u) satisfies the inequality of (3.5) if and only if it belongs to

epigraph of the function f+ : R2
+ 7→ R defined by

f+(x, v) =
d∑

k=1

ak(v)k

(x)k−1
.

The epigraph of f is defined as

Epi{f+} =
{

(x, v, u) ∈ R2
+ × R+ | (x, v) ∈ dom(f+), f+(x, v) ≤ u

}
.

The domain of f+ is defined in the nonnegativity constraints of (3.5), and therefore

can be written as such. Since the set defined by (3.5) is contained in the first quadrant

of R3, we relax the domain of f+ to the entirety of R2 and denote the relaxed function

f : R2 7→ R. A point (x, v, u) satisifies (3.5) if and only if it belongs to the intersection

of Epi{f} and R3
+, which we denote Epi+{f}.

Epi+{f} =
{

(x, v, u) ∈ R2 × R | x, v, u ≥ 0, f(x, v) ≤ u
}
. (3.6)

Ben-Tal and Nemirovski present a wide range of functions whose epigraphs

are CQr, as well as operations that preserve the conic quadratic representability of a

set [Ben-Tal and Nemirovski, 2001]. We now prove the set (3.6) can be formulated

as a system of conic quadratic inequalities using methods asserted by Ben-Tal and

Nemirovski [Ben-Tal and Nemirovski, 2001]. Once we have proven that a CQr exists

for (3.6), we use the binary tree method described by Alizedeh and Goldfarb [2003]

to derive the CQR. Ben-Tal and Nemirovski give a different approach by which to

derive the CQR of sets such as (3.6); however, the method requires the addition of

far more design variables and inequalities and is therefore not favorable for studies

such as this.

20

3.2.1 Proof of Conic Quadratic-Representability

Proposition 3.4. The set (3.6) is conic quadratic representable, i.e., there exists a

finite system Λ of vector inequalities of the form (3.4) such that (x, v, u) ∈ Epi+{f}

if and only if (x, v, u) can be extended to a solution (x, v, u, ξ) of Λ.

Proof. To begin, Ben-Tal and Nemirovski have proven that the intersection of CQr

sets is CQr as well as the half-spaces defined by x ≥ 0, v ≥ 0 and u ≥ 0 Ben-Tal and

Nemirovski [2001]. Therefore if the function f(x, v) is CQr, the set Epi+{f} is the

intersection of CQr sets and thus CQr. It should be noted that due to the convexity

assumption (A5) in Section 2.1, ak ≥ 0 for all k = 1, . . . , d. Hence the function f(x, v)

can be written as the summation of d functions f1, . . . , fd with nonnegative weights

a1, . . . , ak.

f(x, v) =
d∑

k=1

ak(v)k

(x)k−1

= a1v +
a2(v)2

x
+ · · ·+ ad−1(v)d−1

(x)d−2
+
ad(v)d

(x)d−1

= a1f1(x, v) + a2f2(x, v) + · · ·+ ad−1fd−1(x, v) + adfd(x, v)

where the functions fk(x, v) : R2
+ 7→ R are defined as

fk(x, v) =
(v)k

(x)k−1
for k = 1, . . . , d.

If the functions fk(x, v) are CQr for all k = 1, . . . , d, then the summation with

nonnegative weights, f(x, v) is also CQr. (Proven in [Ben-Tal and Nemirovski, 2001].)

Therefore it suffices for us to prove that the function fk(x, v) = (v)k

(x)k−1 is CQr (or

equivalently that the epigraph of fk is a conic quadratic representable set) for all

k = 1, . . . , d. For the case k = 1, f1(x, v) = v which is a linear function and therefore

21

CQr. No further reformulation is necessary to derive a CQI for k = 1 since linear

inequalities are also conic quadratic inequalities. For k > 1, we can rewrite the

epigraph of fk as:

Epi{fk} =

{
(x, v, u) ∈ R2

+ × R+ |
(v)k

(x)k−1
≤ u

}
=
{

(x, v, u) ∈ R2
+ × R+ | (v)k ≤ u(x)k−1

}
=

{
(x, v, u) ∈ R2

+ × R+ | v ≤ (u)
1
k (x)

k−1
k

}
= Hypo{g}

where Hypo{g} is the hypograph of the function g : R2
+ 7→ R+ defined by

g(x, u) = (u)
1
k (x)

k−1
k .

The function g is a concave monomial with positive rational powers that sum to 1.

Therefore the hypograph of g(x, u) is CQr [Alizedeh and Goldfarb, 2003, Ben-Tal and

Nemirovski, 2001]. This proves that the functions fk(x, v) are CQr for all k = 1, . . . , d

and thus Epi{f} can be represented by a system of conic quadratic inequalities.

Since Epi+{f} requires that a weighted summation of f1(x, v), . . . , fd(x, v) is

less than u, we add d nonnegative auxiliary variables t1, . . . , td such that

fk(x, v) ≤ tk ∀k = 1, . . . , d; and a1t1 + a2t2 + · · ·+ ad−1td−1 + adtd ≤ u.

If ak = 0 for any k = 1, . . . , d then there is no need to add the auxiliary variable

tk or derive a CQR for fk(x, v). For this general model we assume that ak > 0 for

all k. Let Λk(x, v, tk, τk) denote a set of conic quadratic inequalities that represents

(x, v, tk) ∈ Epi{fk} where x, v, tk are variables in R defined previously and τk is a

22

column vector in Rηk of ηk nonnegative design variables required to obtain the CQR

of Epi{fk}. (We derive the actual CQIs in Section 3.2.2.) Then the conic quadratic

representation of Epi{f} is the system

Λ(x, v, u, t1, τ1, . . . , td, τd) =

{
d∑

k=1

aktk ≤ u

}
&

d⋃
k=1

Λk(x, v, tk, τk). (3.7)

This means that (x, v, u) ∈ Epi{f} if and only if there exists (t1, τ1, . . . , td, τd) such

that the system Λ(x, v, u, t1, τ1, . . . , td, τd) is satisfied. Therefore the CQR of Epi+{f} =

Epi{f} ∩ {x ≥ 0} ∩ {v ≥ 0} ∩ {u ≥ 0} is the system

{x ≥ 0} & {v ≥ 0} & {u ≥ 0} & Λ(x, v, u, t1, τ1, . . . , td, τd) (3.8)

3.2.2 Deriving CQIs Using the Binary Tree Method

Our derivation exploits the following characteristic of hyperbolic inequalities.

Observation 3.5 stems directly from the CQR of the half cone

K2
+ =

{
(a, b, c) ∈ R3 : b, c ≥ 0, 0 ≤ a ≤

√
bc
}
.

Observation 3.5. Any hyperbolic inequality in R3 of the form a2 ≤ bc where a, b, c ∈

R+ can be formulated as the following second-order cone constraint:

∥∥∥∥∥∥∥
 2a

b− c


∥∥∥∥∥∥∥

2

≤ b+ c.

with a ≥ 0 still enforced. Figure (3.1) illustrates how these two types of cones are

related.

23

Proposition 3.6 (Aktürk et al. [2009]). . For integral k ≥ 0, there is an equivalent

formulation to the inequalities

(v)k ≤ tk(x)k−1, x, v, tk ≥ 0 (3.9)

using O(log2 k) variables and O(log2 k) conic quadratic constraints.

Based on the work of Alizedeh and Goldfarb [2003] Aktürk et al. [2009] give an

efficient representation of inequalities like (3.9) in R3
+ using a polynomial number of

conic quadratic constraints. The method published by Alizedeh and Goldfarb [2003] is

very different than the method discussed by Ben-Tal and Nemirovski [2001]; though

both are built from the hypograph for a concave monomial and exploit the use of

hyperbolic inequalities. Let L = min{L ∈ Z+ : 2L ≥ k}. Alizedeh and Goldfarb

[2003] demonstrate how to build the CQR of inequalities with rational powers using

a binary tree with exactly L + 1 levels. If r = 2L − k > 0, multiplying each side of

inequality (3.9) by (v)r results in

(v)2L ≤ tk(x)k−1(v)r = tk(x)k−1(v)2L−k. (3.10)

This inequality is equivalent to the hypograph of the geometric mean of 2L variables.

There are exactly L + 1 leaf nodes and thus at most 2L + 2 non-leaf nodes, each

requiring the addition of 1 new design variable τ (except for the root node). Each

non-leaf node represents a hyperbolic inequality formed between its corresponding

design variable and the variables corresponding to the children nodes. The following

procedure builds a full, inverted binary tree and converts the nodes into hyperbolic

inequalities and then second order cone constraints in R3. To start we have an empty

binary tree with L + 1 levels. Leaf nodes are added to levels 0 through L − 1. We

24

construct the root node in level L. This node is associated with the variable v and

corresponds to the left-hand side of (3.10), v2L .

3.2.2.1 Creating Leaf Nodes

The leaf nodes of the binary tree correspond to the variables in the right hand

side of (3.10). Through the process of creating the leaf nodes we break the exponents

on x and v into sums of powers of 2.

For each of the levels ` = 0, 1, . . . , L− 1, add exactly one leaf node corresponding to

either x2` or v2` .

Step 1: In order to decide which levels ` = 1, . . . , L−1 should have a node associated

with x and which should have one associated with v we create a partition (Jx, Jv) of

the set {0, 1, . . . , L− 2} such that if ` ∈ Jx, level ` contains a node corresponding to

x2` and similarly for Jv.

Step 2: To begin, let Jx = Jv = ∅. Define `x1 and `v1 as

`x1 = max{` ∈ Z+ : 2` ≤ k − 1} = blog2(k − 1)c,

`v1 = max{` ∈ Z+ : 2` ≤ 2L − k} = blog2(2L − k)c,

and update Jx and Jv such that Jx = Jx ∪ {`x1} and Jv = Jv ∪ {`v1}. Add leaf nodes

to level `x1 and `v1 corresponding to x2`
x
1 and v2`

v
1 respectively.

25

Step 3: Define `x2 and `v2 as

`x2 = max

{
` ∈ Z+ : 2` ≤ k − 1−

∑
j∈Jx

2j

}
= max

{
` ∈ Z+ : 2` ≤ k − 1− 2`

x
1
}
,

`v2 = max

{
` ∈ Z+ : 2` ≤ 2L − k −

∑
j∈Jv

2j

}
= max

{
` ∈ Z+ : 2` ≤ 2L − k − 2`

v
1
}
,

and again let Jx = Jx ∪ {`x2} and Jv = Jv ∪ {`v2}. Add leaf nodes to levels `x2 and `v2

corresponding to x2`
x
2 and v2`

v
2 respectively.

Step 4: Continue this process of finding `xi and `vi as

`xi = max

{
` ∈ Z+ : 2` ≤ k − 1−

∑
j∈Jx

2j

}
,

`vi = max

{
` ∈ Z+ : 2` ≤ 2L − k −

∑
j∈Jv

2j

}
,

updating Jx and Jv, and adding nodes at the appropriate level until either `xi or `vi is

equal to zero. (If k is even, `xi will equal zero first, while `vi will equal zero first if k

is odd.)

Step 5: At this point, whichever set Jx or Jv containing zero is complete. The

building process can continue for other set, or we can simply add the remaining

elements of {0, 1, . . . , L − 1} to the active set and add appropriate leaf nodes to the

binary tree.

Step 6: Lastly, create a leaf node at level 0 corresponding to tk.

Proposition 3.7. Given k > 0 and L = max{` ∈ Z+ : 2` ≥ k} the above process

26

forms a unique partition (Jx, Jv) of the set {0, 1, . . . , L− 1} such that

∑
`∈Jx

2` = k − 1 and
∑
`∈Jv

2` = 2L − k. (3.11)

Thus for all k > 0 there is a unique binary tree that can be used to derive the CQR

of (3.9) and at levels ` = 0, . . . , L− 1 there is exactly one leaf node corresponding to

either x2` or v2`.

The proof for Proposition (3.7) is included in Appendix A.

Remark. The leaf node added to level ` = L−1 must be associated with the variable

x. Otherwise we have that ` = L− 1 ∈ Jv which implies that 2L−1 ≤ 2L − k. If this

is true then 2L−1 ≥ k and L 6= min{L ∈ Z+ : 2L ≥ k} which is a contradiction.

Figure 3.2 illustrates the leaf nodes created by the above procedure for the case k = 3.

Level 0 t v

Level 1 τ1 x2

Level 2 v4

Figure 3.2: The Binary Tree Leaf Nodes case k = 3.

3.2.2.2 Connecting the Binary Tree

Before we start connecting the binary tree there are exactly 2 leaf nodes at

level 0 and 1 leaf node at levels ` = 1, 2, . . . , L− 1.

27

Starting at level 0, there are exactly two leaf nodes: one representing tk and the

other representing either x1 if k is even or v1 if k is odd. Connect the leaf-nodes via a

parent node added to level 1. This non-leaf node represents the addition of a design

variable τk,1 ≥ 0 such that

τ 2
k,1 ≤


tkx if k is even

tkv if k is odd

.

Step 1: Move to level 1 where there are now two nodes: one non-leaf node repre-

senting τk,1 and one leaf node corresponding to either x2 or v2. Connect these nodes

by adding a parent node in level 2 along with the design variable τk,2 ≥ 0 such that

τ 2
k,2 ≤


τk,1x if ` = 1 ∈ Jx

τk,1v if ` = 1 ∈ Jv
.

Step 2: Continue this process throughout the remaining L − 2 layers adding one

design variable τk,` to level ` at each step.

Step 3: At level ` = L − 1 there are exactly two nodes: one corresponding to the

design variable τk,L−1 and the other a leaf node representing x2L−1
. Connect these

two nodes to the root node which is associated with v2L such that

v2 ≤ τk,L−1x.

Figure 3.3 gives an example of a binary tree built using the procedure above for the

case k = 3. Leaf nodes are green while the root node is brown and design variables

are red.

28

Level 0 t v

τ 2
1 ≤ uv

Level 1 τ1

Level 2

x2

v2 ≤ τ1x

v4

Figure 3.3: The Binary Tree Diagram used to derive CQR for the case k = 3.

3.2.2.3 Forming Conic Quadratic Inequalities

Once the binary tree has been completed, we can replace the hyperbolic in-

equalities currently in the binary tree with their conic quadratic equivalents as illus-

trated in Observation 3.5. By replacing Λk(x, v, tk, τk) in the CQR system (3.7) with

these conic quadratic inequalities we get the CQR of Epi{f+}. For k = 1, . . . , d let

Lk = min{` ∈ Z+ : 2` ≥ k}. Then we can replace the system (3.8) with:

v ≤ t1 (*The case when k = 1) (3.12a)

Ak

(
x
v
tk
τk

)
≥Kk

0 ∀k = 2, . . . , d (3.12b)

tk ≥ 0 ∀k = 1, . . . , d (3.12c)

τk ∈ RLk−1 ∀k = 2, . . . , d (3.12d)

τk,` ≥ 0 ∀k = 2, . . . , d ` = 1, . . . Lk − 1 (3.12e)

d∑
k=1

aktk ≤ u (3.12f)

x, v, u ≥ 0 (3.12g)

29

The cone Kk in constraint (3.12b) is the direct product of Lk Lorentz cones L3. The

matrix Ak is an extraordinarily sparse 3Lk×Lk + 2 matrix for all k = 2, . . . , d. There

are only 5Lk nonzero elements in Ak while there are 3L2
k + 6L zeros. This matrix also

holds for each k, regardless of i or j. A detailed description of the columns of Ak is

included in Appendix B.

Now that we have a conic quadratic representation for the constraints (3.5)

we expand the system (3.12a)–(3.12g) for all i = 1, . . . ,m and j = 1, . . . , ni. The

indices of tk, and τk,1, . . . , τk,Lk−1 are updated to ti,j,k, and τi,j,k,1, . . . , τi,j,k,Lk−1 for

i = 1, . . . ,m, j = 1, . . . , ni and k = 1, . . . , di. Since Lk and Ak are determined solely

by k and independent of i and j their indices remain the same. We also leave Kk

indexed only by k as it is the direct product of Lk Lorentz cones L3, and therefore

independent of i and j. We can now replace the nonlinear constraints in the recourse

function (3.3f) with the following:

vi,j ≤ ti,j,1 ∀i = 1, . . . ,m, j = 1, . . . , n1, k = 1

Ak

(
xij
vi,j
ti,j,k
τi,j,k

)
≥Kk

0 ∀i = 1, . . . ,m, j = 1, . . . , n1, k = 2, . . . , di

di∑
k=1

ai,jk ti,j,k ≤ ui,j ∀i = 1, . . . ,m, j = 1, . . . , ni

ti,j,k ≥ 0 ∀i = 1, . . . ,m, j = 1, . . . , ni, k = 1, . . . , di

τi,j,k ∈ RLk−1
≥0 ∀i = 1, . . . ,m, j = 1, . . . , ni, k = 2, . . . , di

30

Therefore the second stage problem Q(x) can be written:

Q(x) = min
τ,t,u,v,
w,y,z

m∑
i=1

wi

s.t.By + Cz ≥ d

z ≥ 0

y ∈ Rm
+

yi =

ni∑
j=1

vi,j, 1 ≤ i ≤ m

wi =

ni∑
j=1

ui,j 1 ≤ i ≤ m

vi,j ≤ ti,j,1 1 ≤ i ≤ m, 1 ≤ j ≤ ni, k = 1

Ak

(
xij
vi,j
ti,j,k
τi,j,k

)
≥Kk

0 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 2 ≤ k ≤ di (3.13)

di∑
k=1

ai,jk ti,j,k ≤ ui,j 1 ≤ i ≤ m, 1 ≤ j ≤ ni

ti,j,k ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ di

τi,j,k ∈ RLk−1
≥0 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 2 ≤ k ≤ di

vi,j ≥ 0, ui,j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ ni

31

3.3 Separability of First and Second Stage Vari-

ables

This formulation of Q(x) minimizes a linear objective over a convex feasible

region found by intersecting linear constraints with the Cartesian product of second-

order cones. Though this is an improved formulation of Q(x), the second order

cone constraints (3.13) involve the product of first and second stage variables which

makes the second stage nonseparable. For i = 1, . . . ,m, j = 1, . . . , ni, k = 2, . . . , di

let
(
Jkx , J

k
v

)
be the unique partition of {0, 1, . . . , Lk − 1} found during the binary

tree method where Lk = min{` ∈ Z+ : 2` ≥ k}. Then the SOCP system (3.13)

includes |Jkx | conic quadratic nonseparable inequalities for i = 1, . . . ,m, j = 1, . . . , ni,

k = 2, . . . , di.

If k is even, i.e. ` = 0 ∈ Jkx ,
∥∥∥∥(2τi,j,k,1

ti,j,k − xij

)∥∥∥∥
2

≤ ti,j,k + xij

for all ` ∈ Jkx \ {0, Lk − 1},
∥∥∥∥(2τi,j,k,`+1

τi,j,k,`+1 − xij

)∥∥∥∥
2

≤ τi,j,k,`+1 + xij

Since ` = Lk − 1 ∈ Jkx ,
∥∥∥∥(2vi,j

τi,j,k,Lk−1 − xij

)∥∥∥∥
2

≤ τi,j,k,Lk−1 + xij

The hyperbolic inequality formulations of the above constraints shows clearly how

the first and second stage variables are nonseparable.

If k is even, i.e. ` = 0 ∈ Jkx , τ 2
i,j,k,1 ≤ ti,j,k · xij

for all ` ∈ Jkx \ {0, Lk − 1}, τ 2
i,j,k,`+1 ≤ τi,j,k,` · xij

Since ` = Lk − 1 ∈ Jkx , v2
i,j ≤ τi,j,k,Lk−1 · xij

32

To fix this separability problem we add a nonnegative auxiliary variable χi,j for all

i = 1, . . . ,m, j = 1, . . . , ni such that

0 ≤ χi,j ≤ xij ∀i = 1, . . . ,m, j = 1, . . . , ni

and replace occurrences of xij in the SOCP constraints (3.13) with χi,j. Therefore we

can write a final reformulation of Q(x) that is linear in first stage variables x, convex

in all second stage variables τ, χ, t, u, v, w, y, z, and does not contain the product of x

with any second stage variable.

Q(x) = min
τ,χ,t,u,
v,w,y,z

m∑
i=1

wi (3.14a)

s.t. By + Cz ≥ d (3.14b)

z ≥ 0 (3.14c)

y ∈ Rm
+ (3.14d)

yi =

ni∑
j=1

vi,j, 1 ≤ i ≤ m (3.14e)

wi =

ni∑
j=1

ui,j 1 ≤ i ≤ m (3.14f)

vi,j ≤ ti,j,1 1 ≤ i ≤ m, 1 ≤ j ≤ ni, k = 1 (3.14g)

Ak

(χi,j
vi,j
ti,j,k
τi,j,k

)
≥Kk

0 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 2 ≤ k ≤ di (3.14h)

di∑
k=1

ai,jk ti,j,k ≤ ui,j 1 ≤ i ≤ m, 1 ≤ j ≤ ni (3.14i)

0 ≤ χi,j ≤ xij 1 ≤ i ≤ m, 1 ≤ j ≤ ni (3.14j)

ti,j,k ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ di (3.14k)

τi,j,k ∈ RLk−1
≥0 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 2 ≤ k ≤ di (3.14l)

vi,j, ui,j ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ ni (3.14m)

33

Chapter 4

Mean-Risk Stochastic

Programming Model

4.1 Risk-Neutral Stochastic Programming

Recall the general form of a two-stage SP (2.1) from Chapter 2.

min
x∈X

E [F (x, ω)]

In general, stochastic programming is risk neutral as it takes the expectation of cost

over the set of all scenarios ω ∈ Ω [Shapiro et al., 2009]. Consider the above mini-

mization and let x∗, z∗ be the optimal solution and values respectively. Then,

z∗ = min
x∈X

E [F (x, ω)] = E [F (x∗, ω)]

It should be notes that F (x∗, ω) is a random variable representing cost. Since z∗ is

the expected value of this random variable, for a given realization of F (x∗, ω) the

34

probability that F (x∗, ω) ≥ z∗ is 0.5. Furthermore,

P [F (x∗, ω) ≥ z∗] = P [F (x∗, ω) ≤ z∗] = 0.5.

To illustrate how the general two-stage SP returns a risk-neutral solution, let F, F̄ be

the infimum and supremum respectively of F (x∗, ω) over ω ∈ Ω.

F = inf
ω∈Ω

F (x∗, ω) F̄ = sup
ω∈Ω

F (x∗, ω).

Then the probability that a realization of the random cost variable F (x∗, ω) falls

inside the interval [F, z∗] (respectively [z∗, F̄]) is 0.5.

P [F ≤ F (x∗, ω) ≤ z∗] = P
[
z∗ ≤ F (x∗, ω) ≤ F̄

]
= 0.5.

If the random cost variable F (x∗, ω) has a normal distribution, Figure (4.1) illustrates

the relation between the behavior of the probability density function of F (x∗, ω), cost

in the best case F, cost in the worst case F̄ , and z∗ = E [F (x∗, ω)].

z∗ = E[F (x∗, ω)] = 3

F = inf
ω∈Ω

F (x∗, ω) = 0 F̄ = sup
ω∈Ω

F (x∗, ω) = 6

Figure 4.1: An example distribution for F (x∗, ω), F (x∗, ω) ∼ Normal(3, 1).

On the other hand, this looks much different if the probability density func-

35

tion of F (x∗, ω) is instead skewed far right. In this case the worst case cost F̄ =

sup
ω∈Ω

F (x∗, ω) is much higher than E[F (x∗, ω)] and the probability F (x∗, ω) falls in the

interval [F̄ − ε, F̄] (ε > 0, small) is much smaller than the probability F (x∗, ω) is

within ε of z∗ = E[F (x∗, ω)]. Realizations in the interval [F̄ − ε, F̄] are considered

extreme events. The expectation in general stochastic programming gives a solution

x∗ that preforms well in the long-term with different (more probable) realizations of

ω ∈ Ω but can result in severe costs in the case of an extreme event. Figure (4.2)

illustrates an instance in which the probability density of F (x∗, ω) is highly skewed

right and results in extreme events.

F̄ − ε

E[F (x∗, ω)] ≈ 0.0909

F = min
ω∈Ω

F (x∗, ω) = 0

P [F̄ − ε ≤ F (x∗, ω) ≤ F̄] > 0

F̄ = max
ω∈Ω

F (x∗, ω) = 1

Figure 4.2: An example distribution for F (x∗, ω), F (x∗, ω) ∼ Beta(2, 20).

Robust optimization is an alternative to risk neutral stochastic programming

that considers the far less probable worst case scenario. This method results in

conservative decisions that help hedge against the drastic impacts of extreme events

and can also be useful when probability distributions are unknown. Since these events

are rare, robust optimization makes more costly decisions to prepare for a realization

that most likely will not come to fruition. Robust optimization also works well when

36

distributions are unknown. To balance our need for economic solutions that also

protect our network against extreme events we must consider how risk varies with

different decisions [Ben-Tal et al., 2009].

4.2 Introducing Risk into Optimization Models

In order to increase risk averseness in the optimal solutions of stochastic pro-

grams risk measures can be incorporated that quantify aspects of the uncertainty

involved in the random cost variable F (x∗, ω). Risk measures are real-valued func-

tions whose domain is the set of random cost variables F (x, ω) feasible for x ∈ X

Cotton and Ntaimo [2015]. The risk measure ρ : {F (x, ω)}x∈X → R can be included

in the objective of the general two-stage SP to form a mean-risk stochastic program.

A weight factor λ > 0 is used to control the trade-off between the risk measure ρ

and the expectation originally included. Hence, the mean-risk two-stage SP can be

written as

min
x∈X

E [F (x, ω)] + λρ [F (x, ω)] (4.1)

Larger values of λ give more consideration to the cost of ρ and resulting in solutions

x∗ associated with random cost variables F (x∗, ω) that have smaller variances and

thus include less uncertainty. If λ = 0, (5.1) returns to the risk-neutral form.

It should be noted random variables F (x̄, ω) are in the domain of ρ if and only

if F (x̄, ω) ∈ {F (x, ω) : x ∈ X} which is equivalent to requiring x̄ ∈ X. Each element

of {F (x, ω) : x ∈ X} corresponds to an instance of x ∈ X. Given the cost function

of F (x, ω) : Rm × Ω → R, we can denote the risk measure ρ(F (x, ω)) as ρ(x) for all

x ∈ X due to the fact that F (x, ·) is the random variable of interest Noyan [2012].

37

4.3 Commonly Used Risk Measures

Risk measures can be divided into two types: quantile measures that are

defined using the a quantile of the probability distribution of F (x∗, ω) and deviation

measures that compute the expected deviation of F (x∗, ω) from a given target. With

each of these categories, some risk measures also fall into the class of coherent risk

measures. Coherent risk measures posses certain properties that can be exploited for

easier implementation and computing. These properties are as follows [Artzner et al.,

1999]:

(C1) Convexity: For all x, x′ ∈ X and α ∈ [0, 1],

ρ (αx+ (1− α)x′) ≤ αρ(x) + (1− α)ρ(x′).

(C2) Monotonicity: If x, x′ ∈ X with F (x, ·) : Ω → R, F (x′, ·) : Ω → R such that

F (x, ·) ≥ F (x′, ·), then ρ (F (x, ω)) = ρ(x) ≥ ρ(x′) = ρ (F (x′, ω)).

(C3) Translation Invariance: For α ∈ R and x ∈ X,

ρ (F (x, ω) + α) = ρ(x+ α) = ρ(x) + α = ρ (F (x, ω)) + α

(C4) Positive Homogeneity: If α ∈ R such that α ≥ 0 then

ρ (αF (x, ω)) = ρ (αx) = αρ (x) = αρ (F (x, ω)) .

These properties are important in our ability to easily use risk measures as they do

not disrupt the linearity and convexity of existing models. We now present examples

of commonly used deviation and then quantile measures. For each risk measure we

38

define the function ρ as well as make note of important characteristics.

4.3.1 Deviation Measures

Let η ∈ R be a target, acceptable value of F (x, ω). expected excess (EE, ρEEη)

measures the expected excess of F (x, ω) above the target η [Märkert and Schultz,

2005].

ρEEη(x) := E [max{F (x, ω)− η, 0}] (EE)

Expected excess is a deviation measure commonly used in stochastic programs that

model decisions made in the electricity production market [Carrion, 2008, Carrión

et al., 2009, Schultz and Neise, 2006]. As electricity producers and retailers aim to

control the balance of supply and demand in the market expected excess helps to

estimate the amount of surplus given the targeted demand η.

If we set the target η to be the mean of F (x, ω) (i.e., η = E[F (x, ω) then EE

turns into another deviation measure, absolute semideviation (ASD, ρASD) [Ogryczak

and Ruszczynski, 2002].

ρASD(x) := E [max{F (x, ω)− E[F (x, ω)], 0}] (ASD)

For a given x ∈ X, the absolute semideviation of the random cost variable F (x, ω) is

its expected excess above its own mean.

4.3.2 Quantile Measures

Similar to expected excess, excess probability (EP, ρEPη) [Schultz and Tiede-

mann, 2003] is a quantile measure of the probability F (x, ω) exceeds a target η ∈ R.

39

ρEPµ(x) := P [{ω ∈ Ω : F (x, ω) > η}] . (EP)

For a given x ∈ X, the excess probability of F (x, ω) is the total probability of all

realizations ω̄ ∈ Ω such that F (x, ω̄) > η.

Given a confidence level α ∈ [0, 1] Value-at-risk (VaR, ρV aRα) [Artzner et al.,

1999] is measured as

VaRα(x) = ρVaRα(x) := min {η : P [F (x, ω) ≤ η] > α} . (VaR)

This value is the lower α-quantile, meaning the the probability of F (x, ω) taking a

lower value is α, and the probability of a greater cost is 1 − α. Value-at-Risk has

often been criticized for its difficult use as it is nonconvex [Krokhmal et al., 2013].

Based on VaR, Conditional Value-at-Risk (CVaR, ρCV aRα) [Pflug, 2000] mea-

sures the expected value of the 1−α worst scenarios. In consideration of our attempt

to minimize cost, this is the expected value of the 1 − α greatest costs. Given con-

fidence level α, and setting η to be the value of V aRα(F (x, ω)), CVaR is calculated

as

CVaRα(x) = ρCVaRα(x) := min

{
η̄ :

1

1− α
E [max {0, F (x, ω)− η̄}]

}
= η +

1

1− α
E [max {0, F (x, ω)− η}] . (CVaR)

With the exception of Value-at-risk (which is a highly nonconvex function making

it difficult to incorporate into models) all of the above measures are categorized as

coherent risk measures.

40

4.4 Implementing Conditional Value-at-Risk

CVaR has been widely used in stochastic models beginning in financial portfo-

lio models [Rockafellar and Uryasev, 2000] and eventually begin used in engineering

applications such as disaster management [Noyan et al., 2017]. When incorporating

CVaR into our current model with discretized probability distribution the first stage

becomes

min
x

cTx+
∑
s∈S

psQ
s(x) + λρCV aRα [F (x, ω)]

= min
x

cTx+
∑
s∈S

psQ
s(x) + λCV aRα

[
cTx+ E[Q(x, ω)]

]
= min

x
cTx+

∑
s∈S

psQ
s(x) + λcTx+ λ

(
η +

1

1− α
∑
s∈S

ps max {Qs(x)− η, 0}

)

= min
x

(1 + λ)cTx+
∑
s∈S

psQ
s(x) + λ

(
η +

1

1− α
∑
s∈S

ps max {Qs(x)− η, 0}

)
(4.2a)

s.t. x = (x1, x2, . . . , xm) ∈ X (4.2b)

xi ∈ {0, 1}ni ∩ SOS-1 ∀i = 1, . . . ,m. (4.2c)

As risk measures are functions on the probability distribution in which the second

stage exists, calculating CVaR has no effect on the structure of the second stage.

The term max {Qs(x)− η, 0} in (4.2a) is nonlinear and therefore must be

removed from the objective. For all scenarios s ∈ S, we introduce the auxiliary

variable ξs such that

ξs ≥ 0 ∀s ∈ S

ξs ≥ Qs(x)− η ∀s ∈ S.

41

The above constraints require that the value of ξs that minimizes the objective always

be the maximum of Qs(x)− η and zero. Therefore the mean risk formulation of our

two-stage stochastic program is:

min
x

(1 + λ)cTx+
∑
s∈S

psQ
s(x) + λ

(
η +

1

1− α
∑
s∈S

psξs

)
(Mean-risk SP)

s.t. x = (x1, x2, . . . , xm) ∈ X

xi ∈ {0, 1}ni ∩ SOS-1 ∀i = 1, . . . ,m

ξs ≥ 0 ∀s ∈ S

ξs ≥ Qs(x)− η ∀s ∈ S

where Qs(x) is defined by (3.14).

42

Chapter 5

Decomposition and Algorithm for

Solution

5.1 Challenges in Mixed Integer Nonlinear Pro-

gramming

In Chapter 3, we derived a convex reformulation for the recourse function

Qs(x) that linearly separates first and second stage variables, thus Qs(x) is convex

in x and can be approximated by supporting hyperplanes. Using this formulation of

Qs(x) (3.14) we can write a convex mixed integer nonlinear program (MINLP) for

43

the mean risk model .

min
x

τ,χ,t,u,
v,w,y,z

(1 + λ)cTx+
∑
s∈S

ps

(
m∑
i=1

ws,i

)
+λ

(
η +

1

1− α
∑
s∈S

psξs

)
(5.1)

s.t. x = (x1, x2, . . . , xm) ∈ X (5.2)

xi ∈ {0, 1}ni ∩ SOS-1 ∀i = 1, . . . ,m (5.3)

ξs ≥ 0 ∀s ∈ S (5.4)

ξs ≥
m∑
i=1

ws,i − η ∀s ∈ S (5.5)

(3.14b)–(3.14m) ∀s ∈ S

Though Qs(x) can be solved efficiently for a fixed x, MINLPs like the above model

can quickly become very expensive to solve, as the number of binary variables in-

creases [Nemhauser and Wolsey, 1988]. MINLPs are difficult to solve due to their

combinatorial and continuous domains. Many algorithmic methods have been de-

veloped in order to solve MINLPs more efficiently. Branch and bound [Gupta and

Ravindran, 1985], outer approximation [Fletcher and Leyffer, 1994] and generalized

Benders decomposition [Benders, 2005, Floudas, 1995, Geoffrion, 1972] are three such

methods that work by creating a sequence of non-increasing upper bounds as well as

a sequence of non-decreasing lower bounds that converge on the optimal solution.

For problems such as (5.1), we refer to the first stage decision variables x ∈

X ⊂ {0, 1}n as complicating variables. It should be noted that for a fixed x̄, the

second stage problems Qs(x̄) and Qs′(x̄) for differing scenarios s, s′ ∈ S are indepen-

dent of each other. Thus given a fixed x̄ ∈ X, (5.1) can be decomposed into |S|

independent SOCPs. Lobo et al. [1998] have shown how the primal-dual potential

reduction method [Nesterov and Nemirovskii, 1994] can be applied to SOCPs. GBD

44

[Geoffrion, 1972] exploits this structure by decomposing difficult MINLPs into smaller

subproblems. We first give an overview of Generalized Benders decomposition and

then discuss how this can lead us to develop a solution algorithm for our model.

5.2 Generalized Benders Decomposition

Geoffrion [1972] generalized the original Benders decomposition [Benders, 2005]

for a class of problems that includes the following general 0-1 MINLP case:

min
x,y

f(x, y) (5.6)

s.t. h(x, y) = 0

g(x, y) ≤ 0

x ∈ X = {0, 1}n

y ∈ Y ⊂ Rm

with Y 6= ∅ convex such that for all fixed x ∈ X = {0, 1}n: f(x, ·) : Rm → R

and g(x, ·) : Rm → Rp1 are convex; h(x, ·) : Rm → Rp2 is linear; the set Zx =

{z ∈ Rp1 : h(x, y) = 0, g(x, y) ≤ z, y ∈ Y } is closed; and (5.6) either has an optimal

solution or is unbounded. These conditions guarantee that the strong duality theorem

is satisfied.

Generalized Benders decomposition solves problems like (5.6) iteratively by

generating an upper bound and a lower bound for the solution at each step. We first

45

separate our minimization by variable and project (5.6) onto the x-space.

min
x

inf
y
f(x, y)

s.t. h(x, y) = 0

g(x, y) ≤ 0

x ∈ X = {0, 1}n

y ∈ Y ⊂ Rm

For our problems of interest, the inner problem is bounded for a given x ∈ X; thus,

the inner problem can be updated as a minimization over y. The inner problem forms

the primal problem:

P (x̄) = min
y∈Y

f(x̄, y)

s.t. h(x̄, y) = 0

g(x̄, y) ≤ 0

whose solution gives an upper bound for (5.6). Solving P (x̄) also provides the op-

timal solution y∗ and Lagrange multipliers ν∗, µ∗ corresponding to the equality and

inequality constraints respectively. We form a relaxed master problem

RM = min
x∈X

φLB

s.t φLB ≥ min
x∈X
L(x, y, ν, µ)

where L(x, y, ν, µ) is the Lagrange dual function of the primal problem. The optimal

φLB is a lower bound for (5.6) while the optimal solution x∗ gives a new fixed point

46

that is used in the primal problem at the next iteration.

5.2.1 Algorithmic Statement of GBD

Step 1: Pick an initial point x1 ∈ X∩V . Solve the primal problem P (x1) and denote

the optimal solution y1. Let ν1, µ1 be the corresponding Lagrange dual multipliers.

Set the iteration counter I = 1, initial upper bound UBDI = P (x1), and convergence

tolerance ε ≥ 0.

Step 2: Solve the relaxed master problem:

RM I = min
x∈X

φLB

s.t. φLB ≥ min
x∈X

{
f(x, yι) + νTι h(x, yι) + µTι g(x, yι)

}
, ι = 1, . . . , I

for optimal solution (x, φLB) which we record as (xI+1, φLB). Set the initial lower

bound as LBD = φLB. If UBD− LBD ≤ ε the algorithm terminates and (xI+1, φLB)

is the optimal solution of (5.6). Let I = I + 1

Step 3: Solve P (xI) for optimal solution yI and dual multipliers νI and µI . Update

the upper bound to be UBDI = min{UBDI−1, P (xI)}. If UBDI − LBDI−1 ≤ ε then

terminate with (xI , yI−1) as the optimal solution of (5.6), otherwise return to step 2.

Figure 5.1 depicts a schematic representation of the algorithmic process of the GBD

method discussed above.

5.3 A Variation of GBD Under Separability

There are several variants of the Generalized Benders Decomposition based on

assumptions made about (5.6). One such variant that is particularly helpful in this

47

Figure 5.1: A Visual Illustration of the GBD Method [Rahmaniani et al., 2017].

research was denoted by Geoffrion as Property P [Geoffrion, 1972]. This particular

variant of the GBD holds for certain classes of problems such as those with linearly

separable objective and constraints. We refer to use of Property P on this class of

problems are Property P under separability.

Theorem 5.1 (Floudas [1995]). If the objective function f , equality constraint func-

tion h, and inequality constraint function g are linearly separable in x and y the

following property holds. For every µ, ν ≥ 0, the infimum of L(x, y, µ, ν) with respect

to y ∈ Y can be taken independently of x so that the support function L(x;µ, ν) can

be obtained explicitly with little or no more effort than is required to evaluate it at a

single value of x.

Problems like (5.6) that meet the necessary conditions for Property P have

f(x, y) = f1(x) + f2(y),

h(x, y) = h1(x) + h2(y),

g(x, y) = g1(x) + g2(y).

48

Then we can write the support function L(x, y, νι, µι) explicitly as

L(x, y, νI , µI) = min
x∈X

{
f(x, yI) + νTι h(x, yI) + µTI g(x, yI)

}
= min

y∈Y

{
f1(x) + f2(y) + νI

T [h1(x) + h2(y)] + µI
T [g1(x) + g2(y)]

}
= f1(x) + νI

Th1(x) + νI
T g1(x) + min

y∈Y

{
f2(y) + µI

Th2(y) + µI
T g2(y)

}
= f1(x) + νI

Th1(x) + νI
T g1(x) + f2(yI) + µI

Th2(yI) + µI
T g2(yI)

Under these conditions the primal problem P (xI) takes the form:

P (xI) = min
y∈Y

f1(xI) + f2(y) min
y∈Y

f2(y)

s.t. h1(xI) = −h2(y) s.t. h1(xI) = −h2(y)

g1(xI) ≤ −g2(y) g1(xI) ≤ −g2(y)

Therefore the algorithmic procedure for the GBD method with Property P under

separability is as follows:

5.3.1 GBD with Property P under separability

Step 1: Pick an initial point x1 ∈ X∩V . Solve the primal problem P (x1) and denote

the optimal solution y1. Let ν1, µ1 be the corresponding Lagrange dual multipliers.

Set the iteration counter I = 1, initial upper bound UBDI = P (x1), and convergence

tolerance ε ≥ 0.

49

Step 2: Solve the relaxed master problem:

RM I = min
x∈X

φLB

s.t. φLB ≥ f1(x) + νι
Th1(x) + νι

T g1(x) + Lι, ι = 1, . . . , I

where Lι = miny∈Y
{
f2(yι) + µι

Th2(yι) + µι
T g2(yι)

}
= f2(yι) +µι

Th2(yι) +µι
T g2(yι).

for optimal solution (x, φLB) which we record as (xI+1, φLB). Set the initial lower

bound as LBD = φLB. If UBD− LBD ≤ ε the algorithm terminates and (xI+1, φLB)

is the optimal solution of (5.6). Let I = I + 1

Step 3: Solve P (xI) for optimal solution yI and dual multipliers νI and µI . Update

the upper bound to be UBDI = min{UBDI−1, P (xI)}. If UBDI − LBDI−1 ≤ ε then

terminate with (xI , yI−1) as the optimal solution of (5.6), otherwise return to step 2.

5.4 Decomposition Method for the Mean-Risk Model

We previously noted that for a fixed x̄ ∈ X, (5.1) can be decomposed into a

mixed 0-1 linear master problem and an SOCP subproblem for each scenario s ∈ S.

Given x̄ the subproblems can solved efficiently; however, these second stage costs

Qs(x̄) =
m∑
i=1

ws,i appear in the objective of the master problem. In order to minimize

over all possible decisions, we must see how these costs vary as a function of x, which

complicates the structure. Therefore we want to iteratively approximate these values

(along with the constraint ξs ≥ Qs(x) − η for all s ∈ S) using Benders cuts. We

replace instances of Qs(x) remaining in the objective with auxiliary variable φs for

all s ∈ S which we use in cut generation.

We can solve the master problem (5.1) using a branch-and-cut approach that

relaxes the integrality requirement on x. At integer nodes in the branch-and-cut tree

50

we have a fixed integer x̄ with which we can solve the subproblems and generate

supporting hyperplanes that lower approximate the function Qs(x). After finding

Qs(x̄) for all s ∈ S, η can be calculated using these values along with ps for all

s ∈ S. We bound φs and ξs below using these lower approximations which are found

by creating minimization problems analogous to the relaxed master problems used in

the property (P) variant of GBD. By approximating Qs(x) for each s ∈ S we using

what are known as disaggregate cuts as a opposed to one optimality cut that would

approximate
∑
s∈S

psQ
s(x). These cuts form a multi-cut approach which provides the

first stage with more information and thus may improve the number of iterations

needs to solve Birge and Louveaux [1988, 2011]. As previously stated, since it is

assumed that (5.1) has complete recourse, no feasibility cuts are needed.

Remark. To avoid repetitive information during the decomposition process we de-

note the second stage variables for a given scenario s ∈ S as

ys = (ys, zs, ws, vs, us, ts, τs, χs) . (5.7)

Recall that the only constraint in Qs(x) that contains both first and second

stage variables is

0 ≤ χi,j ≤ xij ∀ i = 1, . . . ,m j = 1, . . . , ni

We separate all other constraints into feasible sets X and Ys for the first stage variables

51

and second stage variables of scenario s ∈ S respectively.

X =


x ∈ {0, 1}n :

x = (x1, x2, . . . , xm) ∈ X

xi ∈ {0, 1}ni i = 1, . . . ,m
ni∑
j=1

xij = 1 i = 1, . . . ,m

ξs ≥ 0



Ys =



ys :

By + Cz ≥ d z ≥ 0,

∀i = 1, . . . ,m :
ni∑
j=1

vij = yi,
ni∑
j=1

vij = yi, yi ≥ 0

∀i, ∀j = 1, . . . , ni : vij, uij, χij ≥ 0 ti,j,1 ≥ 0
di∑
k=1

ai,jk ti,j,k ≤ ui,j, vi,j ≤ ti,j,1

∀i, ∀j, ∀k = 2, . . . , di : ti,j,k ≥ 0, Ai,j,k

(χi,j
vi,j
ti,j,k
τi,j,k

)
≥Kk

0

Lk = min
`∈Z+

{2` ≥ k}

∀i, ∀j, ∀k, ∀` = 1, . . . , Lk − 1 τi,j,k ∈ RLk−1
≥0


To apply the property (P) variant of GBD we must define for fixed x̄ a primal problem

analogous to P (x̄). Given first stage feasible decision x̄, for all s ∈ S we define the

primal problem Ps(x̄) as:

Ps(x̄) = Qs(x̄) = min
ys

m∑
i=1

wi

s.t. χij ≤ xij ∀i = 1, . . . ,m, j = 1, . . . , ni

ys ∈ Ys

Notice that with x̄ fixed, the objective is only in terms of second stage variables.

52

Thus, the linearly separated form of the objective is:

f(x,ys) = f1(s) + f2(ys) = 0 +
m∑
i=1

wi = Qs(X̄)

Similarly the inequality constraint can be rewritten and then linearly separated as:

gij(x,ys) = χij − xij = gij1 (x) + gij2 (ys) ≤ 0

with gij1 (x) = −xij and gij2 (ys) = χij. We can condense these inequalities in R into a

vector inequality g(x,ys) = g1(x) + g2(ys) ≤ 0 in Rn.

We solve the primal problem (or second stage) and obtain the optimal solution

ys
∗, as well as the optimal dual multiplier associated with inequality constraint χij ≤

xij, which we denote µ∗s,i,j. We can condense these multipliers into the vector µ∗s ∈ Rn.

Recall from the property (P) variant of GBD that the lower approximating hyperplane

(the right-hand side of the inequality constraint) is f1(x) + µ∗s
T g1(x) + L∗ where

L∗ = min
ys∈Ys

{
f2(ys) + µTs g2(ys)

}
. Notice that we do not need to explicitly solve for

L∗, as strong duality gives us that the solution to this minimization is the same as

the optimal solution ys
∗ found for Qs(x̄). Additionally, we have that for any optimal

solution of Qs(x̄), χi,j = x̄ij for all i = 1, . . . ,m j = 1, . . . , ni. Thus the lower

approximation of Qs(x) by supporting hyperplanes is

f1(x) + µ∗s
T g1(x) + f2(ys

∗) + µ∗s
T g2(ys

∗) = 0 + µ∗s
T (−x) +Qs(x̄) + µ∗s

Tχs

= Qs(x̄) + µ∗s
T (x̄− x)

= Qs(x̄) +
m∑
i=1

ni∑
j=1

µ∗s,i,j
(
x̄ij − xij

)
.

53

Therefore the relaxed master problems for each s ∈ S are

RMφs = min
x∈X

φs

s.t. φs ≥ Qs(x̄) + µ∗s
T (x̄− x) = Qs(x̄) +

m∑
i=1

ni∑
j=1

µ∗s,i,j
(
x̄ij − xij

)

RMξs = min
x∈X

ξs

s.t. φs ≥ Qs(x̄) + µ∗s
T (x̄− x)− η = Qs(x̄) +

m∑
i=1

ni∑
j=1

µ∗s,i,j
(
x̄ij − xij

)
− η

where η is the Value-at-Risk of the second stage problems and is calculated as Qs(x̄)

is found for all s ∈ S.

5.5 Solution Algorithm

We now give the solution algorithm for solving the model:

min
x,η,

ys,φs,ξs
∀s∈S

(1 + λ)cTx+
∑
s∈S

psφs + λ

(
η +

1

1− α
∑
s∈S

psξs

)

s.t. x ∈ X

ys ∈ Ys ∀s ∈ S

χs ≤ x ∀s ∈ S

ξs ≥ 0 ∀s ∈ S

with given weight factor λ ≥ 0 and risk level α.

Step 1: Set iteration counter I = 0 and begin building a branch-and-cut tree with

54

which to solve the following master problem.

min
x,η,φ,ξ

(1 + λ)cTx+
∑
s∈S

psφs + λ

(
η +

1

1− α
∑
s∈S

psξs

)

s.t. x ∈ X

ξs ≥ 0 ∀s ∈ S

When an integer node is found, let I = I + 1 and denote the current optimal solution

to the master problem as (x̄I , η̄, φ̄I , ξ̄I). Solve the second stage problem Qs(x̄I) for all

s ∈ S and let µIs denote the optimal dual multiplier associated with the one mixed

constraint χs ≤ x. .

Step 2: For all s ∈ S

• If φ̄Is < Qs(x̄I), add the following optimality cut to the master problem (all

existing nodes in the branch-and-cut tree)

Cut 1: φs ≥ Qs(x̄I) + µIs
T (
x̄I − x

)
.

• If ξ̄Is < Qs(x̄I)− η̄, add the following optimality cut to the master problem (all

existing nodes in the branch-and-cut tree)

Cut 2: ξs ≥ Qs(x̄I) + µIs
T (
x̄I − x

)
− η.

Step 3: Prune the current integer node and continue solving the master problem

with added cut constraints. When another integer node is reached, let I = I + 1 and

denote the current optimal solution to the master problem as (x̄I , η̄, φ̄I , ξ̄I). Solve

the second stage problem Qs(x̄I) for all s ∈ S and let µIs denote the optimal dual

55

multiplier associated with the one mixed constraint χs ≤ x. Return to Step 2.

56

Chapter 6

A Mean-Risk Program for

Transportation Network Protection

6.1 Introduction to Problem

In the United States, transportation networks are some of the most vulnerable

critical infrastructure systems. Together these networks stretch more than 4 million

miles of roads and make up the Highway and Motor Carrier subset of the Depart-

ment of Homeland Security’s Transportation Systems critical infrastructure sector.

In their 2017 infrastructure report, the American Society of Civil Engineers reported

that American’s spent 6.9 billion hours in traffic delays in 2014 resulting in 3.1 billion

gallons of fuel wasted (worth $160 billion). Due to a pattern of under-funding, the

back log of highway and bridge capital needs exceeds $836 billion dollars [of Civil En-

gineers, 2017]. Despite the United State’s dependency on the networks in this massive

system, the Department of Transportation (DOT) received less that 3% of the 2019

federal budget to maintain these and many other infrastructure systems.

In this example we use the mean-risk two stage stochastic model to study

57

transportation network protection. A transportation network can be modeled as a

directed graph G(N,A) with nodes (i ∈ N) representing location of significance and

edges (a ∈ A) representing roads connecting two locations. Given information in-

cludes the subset of critical edges Ā (A, edge capacities ca/cij, normal flow demand

drs from some origin node r ∈ O to another node s ∈ D, free flow speed of each link

fa, a set of possible retrofitting strategies for critical edges h ∈ H with known cost

bha, and a given budget b0. For a set of possible future scenarios k ∈ K of probability

pk, we are given or generate the ratio of expected remaining capacity for edge a given

strategy h, θh,ka .

The first stage decision is a binary vector uha that selects a retrofitting strategy

h ∈ H for critical edge a ∈ Ā. Exactly one strategy can be selected for each critical

edge. The second stage variables deal with how demand flows across the network.

The units of flow across edge a ∈ A due to demand from node r ∈ O to node s ∈ D is

denoted xrsa and must be nonnegative and obey flow balance constraints. The aggre-

gate of these flow is va the total flow across edge a ∈ A. A table listing the complete

notation used in this example is included in Appendix C.

6.2 Optimization Parameters

6.2.1 First Stage Parameters

The objective in the first stage is to minimize the investment cost due to

retrofitting plus the mean-risk expectation of the second stage. Therefore the objec-

tive of the first stage is

min (1 + λ)bTu+
∑
k∈K

pkQ
k(u) + λ

(
η +

1

1− α
∑
k∈K

pkmax[Qk(u)− η, 0]

)
. (6.1)

58

where η is the Value-at-Risk of the second stage. The only constraints to the first

stage are binary and budgetary.

∑
a∈Ā

∑
h∈H

bhau
h
a ≤ b0

∑
h∈H

uha = 1 ∀a ∈ Ā

uha ∈ {0, 1} ∀a ∈ Ā, h ∈ H

We refer to the above constraints collectively as the set u ∈ U .

In order to linearize the calculation for CVaR in (6.1) we replace max{Qk(u)−

η, 0} with auxiliary variable ξk and enforce the following constraints:

ξk ≥ 0 ∀k ∈ K

ξk ≥ Qk(u)− η ∀k ∈ K

6.2.2 Second Stage Parameters

During the second stage we encounter more complicated equations. The ob-

jective is to minimize the total cost of flow over the network. To calculate this cost

we use the Bureau of Public Roads (BPR) [of Public Roads, 1964] function for link

travel time per unit flow which uses a ratio of flow across the link over capacity of

the link. Because vulnerable edges in Ā have an updated capacity in the second stage

based on the chosen retrofitting strategy and scenario we must reflect this choices in

59

the denominator.

∀a ∈ A \ Ā : fa

[
1 + ζ

(
va
ca

)4
]

∀a ∈ Ā : fa

[
1 + ζ

(
va

ca
∑

h∈H θ
h
au

h
a

)4
]

If the ratio of flow to capacity is greater than one the cost begins to grow by the power

of 4. Once this is multiplied by the flow over the link and our parameter γ which

translates travel time to monetary value we are given the objective of the second

stage.

Qk(u) = min
x,v

γ

∑
a∈A

fav
k
a + ζ

 ∑
a∈A\Ā

fa
c4
a

(vka)5 +
∑
a∈Ā

fa
c4
a

(vka)5

(
∑
h∈H

θh,ka uha)
4


 (6.2)

The first constraints for the second stage deal with the flow demand over the network.

We can break these constraints into four prongs: nonnegativity, flow balance at each

node in N , flow balance supply from each node in O, and flow demand to each node

in D. For simplicity all of the following constraints make up the set x ∈ X in later

formulations.

At the end of the second stage there must be no existing supply or demand

for flow at any node. Each node begins with a positive or negative value of flow

depending on it being a resource for flow or a sink. These values must all be zero at

the end of the stage.∑
j∈δ+(i)

xrs,kij −
∑

j∈δ−(i)

xrs,kji = 0 ∀(r, s) ∈ OD, i ∈ N \ {r, s}

A supply of drs units of flow originate at node r ∈ N and need to travel to node

s ∈ N . Regardless of where these units of flow actually end up, node r ∈ N must

60

push out drs more units of flow than it receives in order to push all of this flow along.

∑
j∈δ+(r)

xrs,krj −
∑

j∈δ−(r)

xrs,kjr = drs ∀(r, s) ∈ OD

Node s ∈ N has a demand for drs units of flow from node r ∈ N . The amount of

flow pushed into node s ∈ N (due to OD-pair (r, s)) needs to be drs units of flow less

than what it pushes out for demand to be met.

∑
j∈δ+(s)

xrs,ksj −
∑

j∈δ−(s)

xrs,kjs = −drs ∀(r, s) ∈ OD

Finally negative flow is not possible in our model and thus we must restrict x to

positive values.

xrs,ka ≥ 0 ∀(r, s) ∈ OD ∀a ∈ A

Remark. Our constraints require that all flow demand be met, regardless of link

capacity. We are able to make this generalization due to the way the objective

function increases when flow surpasses current capacity. This forces the model to

distribute flow to any link with remaining capacity before overloading a link.

The flow over each edge due to demand in an origin destination pair is then

added to calculate the aggregate flow over each link, va.

∑
(r,s)∈OD

xrs,ka = vka ∀a ∈ A

61

Therefore, for each scenario k ∈ K and given a value for u the recourse function is:

Qk(u) = min
x,v

γ

∑
a∈A

fav
k
a + ζ

 ∑
a∈A\Ā

fa
c4
a

(vka)5 +
∑
a∈Ā

fa
c4
a

(vka)5

(
∑
h∈H

θh,ka uha)
4


 (6.3)

s.t. xk ∈ X∑
(r,s)∈OD

xrs,ka = vka ∀a ∈ A

6.3 Reformulation of Second Stage

The second stage (6.3) poses a nonlinear, nonconvex, and non-separable prob-

lem. As demonstrated in Chapter 3 we must reformulate the recourse function in

order to decompose and solve.

Remark. During the reformulation process of the recourse function, we simplify

notation by focusing on a single Qk(u) for a single scenario k ∈ K. The only given

parameter that is affected by changing the scenario is the value of the expected

capacity ratio θh,ka . The notation Q(u) refers to the general second stage problem and

the index k is excluded from all variables,parameters and constraints.

6.3.1 Separating First and Second Stage Variables

To deal with the nonlinearity of the objective and the non-separability we

replace each instance of v5
a in the objective with a nonnegative auxiliary variable ya

and add the constraints:

ya ≥ v5
a ∀a ∈ A \ Ā (6.4)

ya ≥
v5
a(∑

h∈H θ
h
au

h
a

)4 ∀a ∈ Ā. (6.5)

62

Lemma 6.1 (Lu et al. [2017]). For a ∈ Ā, u ∈ U ,
(∑

h∈H θ
h
au

h
a

)4
=
∑

h∈H(θha)4uha.

Proof. Since
∑
h∈H

uha = 1 and uha ∈ {0, 1}, it is always the case that for each a ∈ Ā

there is some h′ ∈ H such that uh
′
a = 1 and uha = 0 ∀h ∈ H \ {h′}. Therefore(∑

h∈H θ
h
au

h
a

)4
=
∑

h∈H(θha)4uha = (θh
′
a)4.

Adding the auxiliary variables ya makes the objective function of Q(u) linear,

and by applying Lemma (6.1) to (6.5) we get

ya ≥
v5
a∑

h∈H(θha)4uha
=⇒ v5

a ≤

[∑
h∈H

(θha)4uha

]
ya ∀a ∈ Ā. (6.6)

As shown above, we can multiply ya in the first inequality of (6.6) by the denominator

of the right hand side forming a inequality involving only positive exponents. For con-

straints associated with stable edges a ∈ A\Ā, nonlinearity is now the main problem.

However, as in Chapter 3, the constraints added for critical edges cause a disjunc-

tion in the feasible set of second stage solutions we now remedy using perspective

reformulation as demonstrated in Section (3.1.1).

6.3.2 Convexifying the Union of Disjunctive Sets

For vulnerable edges a ∈ Ā, we must find the convex hull of the union of the

sets formed by each possible value of uha. The inequalities defining each set (6.6), are

convex constraints, therefore we are formulating the convex hull of a union of convex

set.

Remark. For brevity, we focus on the disjunctions for a single vulnerable edge a ∈ Ā

therefore the index a is excluded, as the disjunction for each edge is the same. For

63

the remainder of constraints, we also denote (θh)4 = βh since this is a constant value

and allows us to simplify constraints.

The feasible set of solutions associated with each strategy h ∈ H is

Ph =
{

(u, v, y) ∈ {0, 1}|H| × R+ × R+ : v5 ≤ βhy; u = eh
}

The inequality constraint in Ph can be rewritten as the following function being

bounded below zero

ph(v, y) ≤ 0 where ph : R2
+ 7→ R, ph(v, y) = v5 − βhy.

The perspective function of ph(v, y) is defined as

p̃h(v, y) =


v5

λ4h
− βhy λh > 0

∞ otherwise

.

Therefore, a solution (u, v, y) ∈ conv

(⋃
h∈H

Ph

)
if and only if there exists some

({wh}h, {zh}h) ∈ R|H|+ × R|H|+ such that the following set is feasible Ceria and Soares

[1999]:

Π = conv(
⋃
h∈H

Ph) =

(u, v, {wh}h, y, {zh}h) :

∑
h∈H

wh = v,
∑
h∈H

zh = y,

∀h ∈ H wh ≤ u4
hβhzh

∀h ∈ H wh ≥ 0, zh ≥ 0, uh ≥ 0

 .

When the above constraints are added to the recourse function for each critical edge

a ∈ Ā the set of feasible solutions to Q(u) becomes a closed convex set. The addition

of these constraints also adds 2|H| nonnegative auxiliary variables for each critical

edge: {wh}h and {zh}h. wh and zh represent the flow included in v and y respectively

64

from choosing strategy h ∈ H. When uh = 0 the value of wh is forced to be zero and

zh is free. Since the summation of zh over H must equal y which is included in the

objective the minimization problem pushes zh to zero.

Remark. The perspective reformulation Π has again introduced the binary first

stage decision variable being raised to an integer power. This exponent is important

in the convexification of the set Π as it allows uh to take non-integer values between

0 and 1. However, since the recourse function Q(u) is based on a given first stage

decision u ∈ U (that is always SOS-1) we are able to again apply Lemma (6.1) which

would eliminate the exponent of binary variable. Be that as it may, the second-order

cone representation of the inequality constraints from Π require the addition of less

auxiliary variables when we leave the exponent on uha. Therefore we add the following

constraints to Q(u)

∑
h∈H

wa,h = va ∀a ∈ Ā

∑
h∈H

za,h = ya ∀a ∈ Ā

wh ≤ βa,hza,h
(
uha
)4 ∀a ∈ Ā, h ∈ H (6.7)

wa,h, za,h ≥ 0 ∀a ∈ Ā, h ∈ H

βa,h = (θha)4 ∀a ∈ Ā, h ∈ H.

6.3.2.1 Second Order Cone Constraints

Constraints (6.4) and (6.7) have been added to Q(u) and are convex but they

are not linear which poses problems for efficient computation. In order to make

the second stage easier to compute we reformulate these inequalities into second-

order cone constraints. Constraints (6.4) and (6.7) are inequalities in R2 and R3

65

respectively with rational powers, a type of function for which there are many simple

SOCP formulation techniques like those mentioned in Section (3.2). We use the

binary tree method described by Alizedeh and Goldfarb [2003] as it often results in

the addition of few auxiliary design variables and constraints.

SOCP Reformulation for Stable Edges For (6.4) we are describing the epigraph

of a 1-dimensional function f(v) = v5. Let p = 5 as it is the highest power in the

inequality. ` = min{` : 2` ≥ p} = 3. Therefore our binary tree diagram has at most

3 levels. We begin by multiplying each side of the inequality by v2`−p = v3.

v8
a ≤ yav

3
a (6.8)

The resulting binary tree (Figure 6.1) adds two nonnegative auxiliary variables (sa,1

and sa,2) and three levels of hyperbolic inequalities:

s2
a,1 ≤ yava

s2
a,2 ≤ sa,1va

v2
a ≤ 1 · · · sa,2.

By working from the bottom level up we can demonstrate how these inequalities are

equivalent to (6.8).

v2
a ≤ 1 · sa,2 =⇒ v4

a ≤ 1 · s2
a,2 = sa,1va

=⇒ v8
a ≤ s2

a,1v
2
a = yavav

2
a = yav

3
a

=⇒ v8
a ≤ yav

3
a.

66

These hyperbolic inequalities can easily be translated into their conic quadratic equiv-

alents using the method described in Observation (3.5).

Level 0 ya va

s2a,1 ≤ yava

Level 1 sa,1

Level 2

v2
a

s2a,2 ≤ sa,1va

sa,2

Level 3

1

va

v2
a ≤ sa,2 · 1

Figure 6.1: The Binary tree created for SOCP constraints of stable edges a ∈ A \ Ā.

SOCP Reformulation for Critical Edges We begin by multiplying each side

of constraint (6.7) by w3
a,h and grouping the constant βa,h with the variable that is

raised to 1, za,h.

w8
a,h ≤ (βa,hza,h)(u

h
a)

4w3
a,h.

As in the case of stable edges we add two auxiliary variables sa,h,1, sa,h,2 and 3 con-

straints in the binary tree for each edge (Figure 6.2) The hyperbolic version of the

CQR is:

s2
a,h,1 ≤ (βa,hza,h)wa,h (6.9)

s2
a,h,2 ≤ sa,h,1wa,h (6.10)

w2
a,h ≤ sa,h,2u

h
a. (6.11)

67

Level 0 βa,hza,h wa,h

s2a,h,1 ≤ βa,hza,hwa,h

Level 1 sa,h,1

Level 2

w2
a,h

s2a,h,2 ≤ sa,h,1wa,h

sa,h,2

Level 3

ua,h

wa,h

w2
a,h ≤ sa,h,2 · ua,h

Figure 6.2: The Binary tree created for SOCP constraints of critical edges a ∈ Ā,
∀h ∈ H.

Therefore the entirety of second-order constraints added to Q(u) is:

s2
a,1 ≤ yava ⇔

∥∥∥∥∥∥
 2sa,1

ya − va

∥∥∥∥∥∥
2

≤ ya + va ∀a ∈ A \ Ā

s2
a,2 ≤ sa,1va ⇔

∥∥∥∥∥∥
 2sa,2

sa,1 − va

∥∥∥∥∥∥
2

≤ sa,1 + va ∀a ∈ A \ Ā

v2
a ≤ 1 · sa,2 ⇔

∥∥∥∥∥∥
 2va

1− sa,2

∥∥∥∥∥∥
2

≤ 1 + sa,2 ∀a ∈ A \ Ā

sa,1, sa,2 ≥ 0 ∀a ∈ A \ Ā

s2
a,h,1 ≤ (βa,hza,h)wa,h ⇔

∥∥∥∥∥∥
 2sa,h,1

(βa,hza,h)− wa,h

∥∥∥∥∥∥
2

≤ (βa,hza,h) + wa,h ∀a ∈ Ā, h ∈ H

s2
a,h,2 ≤ sa,h,1wa,h ⇔

∥∥∥∥∥∥
 2sa,h,2

sa,h,1 − wa,h

∥∥∥∥∥∥
2

≤ sa,h,1 + wa,h ∀a ∈ Ā, h ∈ H

w2
a,h ≤ sa,h,2u

h
a ⇔

∥∥∥∥∥∥
 2wa,h,2

sa,h,2 − uha

∥∥∥∥∥∥
2

≤ sa,h,2 + uha ∀a ∈ Ā, h ∈ H

sa,h,1, sa,h,2 ≥ 0 ∀a ∈ Ā, h ∈ H.68

After correcting the nonlinearity and nonconvexity of Q(u) we now must deal with

separability by replacing uha with υa,h in the hyperbolic inequalities associated with

critical edges a ∈ Ā. We also add the constraint

0 ≤ υa,h ≤ uha ∀a ∈ Ā, h ∈ H

Thus, we have the following final formulation for the recourse function (hyperbolic

69

inequalities are listed in lieu of the conic quadratic equivalents due to space):

Q(u) = min
x,v,y,w,z,s,υ

γ

[∑
a∈A

fava + ζ
∑
a∈A

fa
c4
a

ya

]

s.t. x ∈ X (6.12a)

sa,1, sa,2 ≥ 0 ∀a ∈ A \ Ā (6.12b)∑
(r,s)∈OD

xrsa = va ∀a ∈ A (6.12c)

s2
a,1 ≤ yava ∀a ∈ A \ Ā (6.12d)

s2
a,2 ≤ sa,1va ∀a ∈ A \ Ā (6.12e)

v2
a ≤ 1 · sa,2 ∀a ∈ A \ Ā (6.12f)

va =
∑
h∈H

wa,h ∀a ∈ Ā (6.12g)

ya =
∑
h∈H

za,h ∀a ∈ Ā (6.12h)

sa,h,1, sa,h,2 ≥ 0 ∀a ∈ Ā, h ∈ H. (6.12i)

wa,h, za,h ≥ 0 ∀a ∈ Ā, h ∈ H (6.12j)

s2
a,h,1 ≤ (βa,hza,h)wa,h ∀a ∈ Ā, h ∈ H (6.12k)

s2
a,h,2 ≤ sa,h,1wa,h ∀a ∈ Ā, h ∈ H (6.12l)

w2
a,h ≤ sa,h,2υa,h ∀a ∈ Ā, h ∈ H (6.12m)

0 ≤ υa,h ≤ uha ∀a ∈ Ā, h ∈ H (6.12n)

The second stage problem (6.12) is now linear in the first stage decision variable u,

convex in v, and maintains separability between first and second stage variables. Our

model also maintains complete recourse (one of the necessary assumptions of Chapter

2).

70

6.4 Decomposition

Combining the first and second stages we can formulate one convex mixed

integer nonlinear program (MINLP).

min
u,η,x,v,y,w,z,s,υ

(1 + λ)bTu+
∑
k∈K

pk

(
γ

[∑
a∈A

fava + ζ
∑
a∈A

fa
c4
a

ya

])
+ λ

(
η +

1

1− α
∑
k∈K

pkξk

)

s.t. u ∈ U

ξk ≥ 0 ∀k ∈ K

ξk ≥ γ

[∑
a∈A

fava + ζ
∑
a∈A

fa
c4
a

ya

]
− η ∀k ∈ K

(6.12b) - (6.12n) ∀k ∈ K

6.4.1 Benders Decomposition with Property (P)

Due to our reformulation of the second stage problem, we can decompose the

above MINLP into a master problem dealing with only first stage variables (u, η, ξ)

and |K| subproblems (one for each scenario k ∈ K, corresponding to Qk(u)). Recall

that we must again replace instances of the the recourse objective with an auxiliary

variable φk that can be lower approximated by cutting planes.

For each scenario k ∈ K we have the subproblem Qk(u) (6.12). The master

problem takes the following form:

min
u,η,ξ

(1 + λ)bTu+
∑
k∈K

pkφk + λ

(
η +

1

1− α
∑
k∈K

pkξk

)
(6.13a)

s.t. u ∈ U (6.13b)

ξk ≥ 0 ∀k ∈ K (6.13c)

71

Both the master and subproblems can be restated in a way that highlights compli-

cating constraints (those that contain both first and second stage variables).

min
u,η,ξ

(1 + λ)bTu+
∑
k∈K

pkφk + λ

(
η +

1

1− α
∑
k∈K

pkξk

)
(6.14a)

s.t. (u, η, ξ) ∈ U (6.14b)

Qk(u) = min
x,v,y,w,z,s,υ

γ

[∑
a∈A

fav
k
a + ζ

∑
a∈A

fa
c4
a

yka

]

s.t. (xk, vk, yk, wk, zk, sk, υk) ∈ X (6.15a)

υka,h ≤ uha ∀a ∈ Ā, h ∈ H (6.15b)

where U and X are the sets of constraints that contain only first and second stage vari-

ables respectively. The only remaining constraints that include first and second stage

variables are those bounding the auxiliary variable υa,h that was added to achieve

separability.

υa,h ≤ uha ∀a ∈ Ā, h ∈ H

Using Benders Property (P) on the mixed constraints, given a feasible first stage

decision ū and vector µk of optimal dual multipliers for the constraints (6.15b) for all

72

k ∈ K we can generate the following optimality cuts.

φk ≥ Qk(ū)− µkT (u− ū) = Qk(ū)−
∑
a∈Ā

∑
h∈H

µk,a,h(u
h
a − ūha) (6.16)

ξk ≥ Qk(ū)− µkT (u− ū)− η = Qk(ū)−
∑
a∈Ā

∑
h∈H

µk,a,h(u
h
a − ūha)− η (6.17)

We now give the solution algorithm for the transportation network model.

6.4.2 Transportation Network Model Solution Algorithm

Step 1: Set iteration counter I = 0 and begin building a branch-and-cut tree with

which to solve the following master problem (6.14).

min
u,η,ξ

(1 + λ)bTu+
∑
k∈K

pkφk + λ

(
η +

1

1− α
∑
k∈K

pkξk

)
(6.18a)

s.t. u ∈ U (6.18b)

ξk ≥ 0 (6.18c)

When an integer node is found, let I = I + 1 and denote the current optimal solution

to the master problem as (ūI , η̄, φ̄I , ξ̄I). Solve the second stage problem Qk(ūI) for all

k ∈ K and let µIk denote the optimal dual multiplier associated with the one mixed

constraint υk ≤ u.

Step 2: For all k ∈ K

• If φ̄Ik < Qk(ūI), add the following optimality cut to the master problem (all

existing nodes in the branch-and-cut tree)

Cut 1: φk ≥ Q(ūI) + µIk
T (
ūI − u

)
.

73

• If ξ̄Ik < Qk(ūI)− η̄, add the following optimality cut to the master problem (all

existing nodes in the branch-and-cut tree)

Cut 2: ξk ≥ Qk(ūI) + µIk
T (
ūI − u

)
− η.

Step 3: Prune the current integer node and continue solving the master problem

with added cut constraints. When another integer node is reached, let I = I + 1 and

denote the current optimal solution to the master problem as (ūI , ¯eta, φ̄I , ξ̄I). Solve

the second stage problem Qk(ūI) for all k ∈ K and let µIk denote the optimal dual

multiplier associated with the one mixed constraint υk ≤ u. Return to Step 2.

74

Chapter 7

Conclusion

7.1 Discussion on Model Size and Complexity

In this study we were able to develop a general form, mean-risk SP for making

m network protection decisions (with ni possible strategies for decision i = 1, . . . ,m).

Recall that our first stage decision x is a column vector of dimension n =
m∑
i=1

ni. Let

N denote the sum over all i = 1, . . . ,m, j = 1, . . . , ni of the degree di of the univariate

polynomial gi,j(yi).

N =
m∑
i=1

ni∑
j=1

di =
m∑
i=1

di

ni∑
j=1

1 =
m∑
i=1

nidi

We now discuss the size and complexity of our reformulated recourse function.

In order to find the convex hull of a union of convex sets to get rid of disjunctions in

the second stage problem we added 2n+m variables and 3m constraints (m of which

were nonlinear). Before creating second order conic constraints, for i = 1, . . . ,m,

j = 1, . . . , n1 we split the di degree polynomial inequality into di inequalities in R3

75

which created N variables and n constraints. When formulating the conic quadratic

constraints, we create N variables ti,j,k. If aki,j is nonzero for all i = 1, . . . ,m j =

1, . . . , ni k = 1, . . . , di (meaning each univariate polynomial gi,j(yi) of degree di does

include all di terms) the binary tree method [Alizedeh and Goldfarb, 2003] creates

Li =

di∑
k=1

[Lk − 1] =

di∑
k=1

[
min{L ∈ Z : 2L ≥ k} − 1

]
=

di∑
k=1

[dlog2(k)e − 1]

variables and constraints for all i = 1, . . . ,m and j = 1, . . . , ni. Then the number of

variables and constraints created for each I = 1, . . . ,m is

L(I) =

nI∑
j=1

L =

nI∑
j=1

dI∑
k=1

[dlog2(k)e − 1]

=

dI∑
k=1

[dlog2(k)e − 1]

(
nI∑
j=1

1

)

= nI

dI∑
k=1

[dlog2(k)e − 1]

= nILI

In total, the binary trees create

M =
m∑
I=1

L(I) =
m∑
i=1

niLi = niL
di∑
k=1

[dlog2(k)e − 1]

variables and constraints. This data is included in Table (7.1).

Though this can seem like a worrisome amount of variables and constraints,

it is important to note that for any first stage feasible x, xi ∈ {0, 1}ni ∩ SOS-1 for

i = 1, . . . ,m. Thus for i = 1, . . . ,m, xij = 0 for |ni| − 1 j’s which bounds χi,j = 0 for

76

Technique # of Variables Added # of Constraints Added
Perspective Reformulation 2n+m 3m

SOCP Reformulation N + M n+ M
Separability n n

Total: N + 3n+m+ M 2n+ 3m+ M

Table 7.1: Number of Variables and Constraints Added to each Qs(x) throughout the
Reformulation Process.

the same |ni| − 1 j’s.

(vi,j)
2 ≤ τi,j,k,Lk−1χi,j (7.1)

Since the variable χi,j is always on the right hand side of the hyperbolic inequality

created at level Lk−1 of the binary tree diagram associated with i, j (7.1), whenever

χi,j = 0, vi,j must also equal zero.

χi,j = 0 =⇒ vi,j = 0

(At level Lk − 2) =⇒


(τi,j,k,Lk−1)

2 ≤ τi,j,k,Lk−2vi,j if Lk − 1 ∈ Jv

(τi,j,k,Lk−1)
2 ≤ τi,j,k,Lk−2χi,j if Lk − 1 ∈ Jx

=⇒


(τi,j,k,Lk−1)

2 ≤ τi,j,k,Lk−20 if Lk − 1 ∈ Jv

(τi,j,k,Lk−1)
2 ≤ τi,j,k,Lk−20 if Lk − 1 ∈ Jx

=⇒ τi,j,k,Lk−1 = 0

Thus if xij = 0, then χi,j = vi,j = 0 and τi,j,k,` = 0 for all k = 1, . . . , di, ` =

77

1, . . . , Lk − 1. Therefore,

∣∣{xij 6= 0 : j = 1, . . . , ni}
∣∣ = 1 =⇒


|{χi,j 6= 0 : j = 1, . . . , ni}| = 1

|{vi,j 6= 0 : j = 1, . . . , ni}| = 1

=⇒

∣∣∣∣∣∣∣∣∣

τi,j,k,` 6= 0 :

j = 1, . . . , ni

k = 1, . . . , di

` = 1, . . . , Lk − 1


∣∣∣∣∣∣∣∣∣ =

m∑
i=1

ni∑
j=1

χi,jLi =
m∑
i=1

Li

Therefore each binary tree diagram creates at most M =
m∑
i=1

Li nonzero variables.

This does not change the number of variables and constraints that were added to the

second stage; however, it does limit the number of active variables over which Q(x) is

minimized given first stage feasible x ∈ X. Therefore it is important to consider the

number of variables created during reformulation that may be nonzero. This data

is included in Table (7.2). Therefore we have created at most 3m +
m∑
i=1

di∑
k=1

dlog2(k)e

Technique Variables Added # Nonzero Variables Constraints Added
Perspective Reform. n+m 3m 3m

SOCP Reform. N + M
m∑
i=1

di +M n+ M

Separability n m n

Total: N + 2n+m+ M 3m+
m∑
i=1

di∑
k=1

Lk 2n+ 3m+ M

Table 7.2: Number of Variables and Constraints Added to each Qs(x) throughout the
Reformulation Process.

nonzero variables in each subproblem. It is important to note that for many networks

within the realm of this research have arc cost functions with relatively low degree.

For instance the second stage objective of the transportation network model discussed

in Chapter (6) could be partitioned into the costs associated with each edge and that

arc cost function was a univariate polynomial of degree 5.

78

Aktürk et al. [2009] used very similar reformulation techniques for their machine-

job assignment problem. For their experiments with both quadratic and cubic ob-

jectives, the reformulation derived based on our discussed practices gave promising

results, solving the model to optimality more frequently for increasingly large prob-

lems.

7.2 Contributions of this Research

One major benefit of using perspective cuts and conic quadratic constraints

reformulation is the abundance of state-of-the-art solvers that can directly be applied

to problems like our reformulation second stage [Góez and Anjos, 2017, Frangioni and

Gentile, 2009]. Many experimental trials have returned promising results for prob-

lems such as unit commitment [Yuan et al., 2013] and network design [Günlük and

Linderoth, 2008] as well as general mixed integer nonlinear programs when compared

to using cutting planes [Frangioni and Gentile, 2009].

Our mean-risk model SP can be applied to resource allocation decisions for

any network that satisfies the assumptions from Chapter 1 regarding feasibility and

the structure of the second stage. As the uncertainty surrounding vulnerable infras-

tructure systems builds, there is an increasing need for mean-risk models that can

balance efficiency and robustness based on the needs of the decision maker and sys-

tem. Within networked systems, the underlying effects of congestion result in arc

cost per unit flow to take nonlinear forms. In order to solve network protection prob-

lems to optimality and build the resilience of these systems we must develop a way

to deal with the nonlinearity and other computational obstacles embedded within

these models. Though the reformulation techniques discussed in here are becoming

increasingly popular, there are still gaps in published research pertaining to perspec-

79

tive and second order cone reformulation, specifically in stochastic MINLPs such as

this model.

80

Appendices

81

Appendix A Proof of Unique Partition (Jx, Jv)

Proposition 3.7. Given k > 0 and L = max{` ∈ Z+ : 2` ≥ k} the above process

forms a unique partition (Jx, Jv) of the set {0, 1, . . . , L− 1} such that

∑
`∈Jx

2` = k − 1 and
∑
`∈Jv

2` = 2L − k. (3.11)

Thus for all k > 0 there is a unique binary tree that can be used to derive the CQR

of (3.9) and at levels ` = 0, . . . , L− 1 there is exactly one leaf node corresponding to

either x2` or v2`.

Proof. It can easily be shown that 2L−k+(k−1) = 2L−1 =
L−1∑̀
=0

2`. In order to show

that (Jx, Jv) is a partition we must show that Jx∪Jx = {0, 1, . . . , L−1} and Jx∩Jv = ∅.

From the construction in step 3.2.2.1 we have that Jx∪Jx = {0, 1, . . . , L−1}. Suppose

by contradiction that there exists `∗ ∈ Jx ∩ Jv. Since the union of Jx and Jv equal

the entire set,

∑
`∈Jx

2` +
∑
`∈Jv

2` = 2(2`
∗
) +

∑
`∈Jx\{`∗}

2` +
∑

`∈Jv\{`∗}

2`

= 2
(
2`
∗)

+
∑

`∈Jx∪Jv\{`∗}

2`

= 2
(
2`
∗)

+ 20 + 21 + 22 + · · ·+ 2`
∗−1 + 2`

∗+1 + · · ·+ 2L−1

= 2`
∗+1 + 20 + 21 + 22 + · · ·+ 2`

∗−1 + 2`
∗+1 + · · ·+ 2L−1

= 20 + 21 + 22 + · · ·+ 2`
∗−1 + 2

(
2`
∗+1
)

+ · · ·+ 2L−1

= 2L − 1 + 2`
∗

≥ 2L − 1.

82

This returns a contradiction, therefore Jx ∩ Jv = ∅. Since
`−1∑
i=0

= 2` − 1, there is only

one way to partition the set {0, 1, . . . , L− 1} such that

∑
`∈Jx

2` = k − 1 and
∑
`∈Jv

2` = 2L − k. (2)

This is due to the fact that no power of 2 can be rewritten as the sum of smaller

powers using each power at most once.

Therefore the above process generates a unique partition (Jx, Jv) of the set {0, 1, . . . , L−

1} and defines the leaf nodes of a unique binary tree that can be used to derive the

CQR of and at levels ` = 0, . . . , L− 1 there is exactly one leaf node corresponding to

either x2` or v2` .

83

Appendix B An Explicit Description of Ak

Recall the CQR for the nonlinear constraint

d∑
k=1

ai,jk (vi,j)
k

(xij)
k−1

≤ ui,j ∀i = 1, . . . ,m j = 1, . . . , ni (3)

found using the binary tree method. For k = 1, . . . , di let Lk = min{` ∈ Z+ : 2` ≥ k}.

Then for all i = 1, . . . ,m, j = 1, . . . , ni:

vi,j ≤ ti,j,1 (4)

Ak

(
xij
vi,j
ti,j,k
τi,j,k

)
≥Kk

0 ∀k = 2, . . . , di (5)

ti,j,k ≥ 0 ∀k = 1, . . . , di (6)

τi,j,k ∈ RLk−1 ∀k = 2, . . . , di (7)

τi,j,k,` ≥ 0 ∀k = 2, . . . , di; ` = 1, . . . Lk − 1 (8)

d∑
k=1

ai,jk ti,j,k ≤ ui,j (9)

xij, vi,j, ui,j ≥ 0 (10)

The cone Kk in constraint is the direct product of Lk Lorentz cones L3. The matrix

Ak is an extraordinarily sparse 3Lk × Lk + 2 matrix for all k = 2, . . . , di. We denote

the Lk + 2 columns of Ak based on the variable ti,j,k, τi,j,k,1, . . . τi,j,k,Lk−1, xij or vi,j

that elements in the column are multiplied with. For example the first column of Ak

is denoted A
xij
k as is contains coefficients of xij.

Remark. The index k is removed removed from the superscript of A
ti,j,k
k and A

τi,j,k,`
k

as they are redundant. Instead these columns are denoted as A
ti,j
k and A

τi,j,`
k for

` = 1, . . . , Lk − 1.

84

The 3Lk elements in column A
xij
k are denoted

(
A
xij
k

)
h

for h = 1, . . . , 3Lk and

similarly for all other columns.

Let (Jkx , J
k
v) be the partition of {0, 1, 2, . . . Lk − 1} found during the binary

tree procedure corresponding to the unique representation of (xij)
k−1 and (vi,j)

2Lk−k

as products of xij and vi,j raised to powers of 2. For ` = 0, . . . , Lk − 1, the rows

h = 3` + 2 and h = 3` + 3 are partitioned similarly for columns A
xij
k and A

vij
k . The

two by two submatrices


(
A
xij
k

)
3`+2

(
A
vij
k

)
3`+2(

A
xij
k

)
3`+3

(
A
vij
k

)
3`+3

 (11)

for ` = 0, . . . , Lk − 1 always contain exactly two nonzero elements: 1 and -1. There

are two possible forms the submatrices can take:


(

(A
xij
k

)
3`+2

(
A
vij
k

)
3`+2(

(A
xij
k

)
3`+3

(
A
vij
k

)
3`+3

 =


[−1 0

1 0] ` ∈ J i,j,kx

[0 −1
0 1] ` ∈ J i,j,kv

. (12)

Other than these submatrices, there is only one additional nonzero element in the

first two columns of Ai,j,k.

(
A
xij
k

)
3`+1

=
(
A
vij
k

)
3`+1

= 0 ` = 0, . . . , Lk − 2 (13)(
A
xij
k

)
3(Lk−1)+1

= 0 (14)(
A
vij
k

)
3(Lk−1)+1

= 2. (15)

Therefore in the first two columns of Ak there are exactly 2Lk + 1 nonzero elements

and 4Lk−1 zeros. Though these columns are sparse themselves, they are the densest

85

columns of Ak by far.

The third column of Ak has only 2 nonzero elements.

A
ti,j
k =


0
1
1
0
...
0

 (16)

The only elements in the third column Atijk come from the hyperbolic inequality

τ 2
i,j,k,1 ≤ ti,j,kx

i
j (or τ 2

i,j,k,1 ≤ ti,j,kvi,j) that is then translated into the following conic

quadratic inequality in R3:

∥∥∥∥∥∥∥
 2τi,j,k

ti,j,k − xij


∥∥∥∥∥∥∥

2

≤ ti,j,k + xij


∥∥∥∥∥∥∥
 2τi,j,k

ti,j,k − vi,j


∥∥∥∥∥∥∥

2

≤ ti,j,k + vi,j

 . (17)

The remaining columns A
τi,j,1
k , . . . , A

τi,j,Lk
k all contain exactly 3 nonzero elements each.

(
A
τi,j,`
k

)
h

= 0 h = 1, . . . , 3(`− 1) (18)(
A
τi,j,`
k

)
3`−2

= 2 (19)(
A
τi,j,`
k

)
h

= 0 h = 3`− 1, 3`, 3`+ 1 (20)(
A
τi,j,`
k

)
3`+2

= 1 (21)(
A
τi,j,`
k

)
3`+3

= 1 (22)(
A
τi,j,`
k

)
h

= 0 h = 3(`+ 1) + 1, . . . , 3Lk (23)

These terms correspond to the hyperbolic inequalities

τ 2
i,j,k,` ≤ τi,j,k,`−1x

i
j

(
τ 2
i,j,k,` ≤ τi,j,k,`−1vi,j

)
and (24)

τ 2
i,j,k,`+1 ≤ τi,j,k,`x

i
j

(
τ 2
i,j,k,`+1 ≤ τi,j,k,`vi,j

)
. (25)

86

Using the above information we can create a visualization for Ak for one possible

instance k. It should be noted that since the partition
(
Jkx , J

k
v

)
is unique, the matrix

Ak is also unique. For any 2Lk−1 + 1 ≤ κ ≤ 2Lk the matrix Aκ only differs from Ak

in the first two columns in the first 3(Lk − 1) rows.



xij vi,j ti,j,k τi,j,k,1 τi,j,k,2 τi,j,k,Lk−2 τi,j,k,Lk−1

0 0 0 2 0 0 0

L3 −1 0 1 0 0 0 0

1 0 1 0 0 0 0

0 0 0 0 2 0 0

L3 0 −1 0 1 0 0 0

0 1 0 1 0 0 0

...
...

...
...

...
...

...

0 0 0 0 0 0 2

L3 0 −1 0 0 0 1 0

0 1 0 0 0 1 0

0 2 0 0 0 0 0

L3 −1 0 0 0 0 0 1

1 0 0 0 0 0 1



(26)

87

Appendix C Notation associated with Transporta-

tion Network Model

88

Index and Set

i/j ∈ N Nodes in network

a/(i, j) ∈ A Links in network

Ā Set of all critical links in the network, a subset of A

r ∈ O Subset of nodes from which there is a flow demanded

s ∈ D Subset of nodes with which there is a demand of flow

rs/(r, s) ∈ OD Origin-Destination node pairs for which there is flow demand, a subset of O×D

h ∈ H All possible retrofitting strategies

k ∈ K Discrete set of possible future scenarios

Input Parameters

ca Units of capacity of link a

fa Free flow time of link a

drs Units of flow demanded for origin-destination pair rs

bha Investment cost associated with choosing strategy h for critical link a ∈ Ā

pk Probability of scenario k

θh,ka Expected remaining capacity ratio for link a given strategy h and scenario k

Decision Variables

uha Binary variable equal to 1 if strategy h is selected for critical link a, 0 otherwise

xrsa
k Quantity of flow across link a to meet demand for O-D pair rs in scenario k

vka Total flow over link a due to all flow demand in scenario k

Table 3: Notation of initial variables and given information for the transportation
network problem.

89

Model Parameters

b0 Total budget for retrofitting investment costs

β Empirical data value (often assumed 0.15) used in BPR calculation of cost per
unit flow

α Confidence level used in risk measure

λ Weight factor representing the trade-off between the risk measure and expected
value

γ Parameter converting travel time to a monetary value

Table 4: Parameters whose values are set by decision makers to best fit the model to
their needs.

90

Bibliography

M. Aktürk, A. Atamtürk, and S. Gürel. A strong conic quadratic reformulation for
machine-job assignment with controllable processing times. Operations Research
Letters, 37(3):187–191, 2009.

F. Alizedeh and D. Goldfarb. Second-order cone programming. Mathematical Pro-
gramming, 95(1):3–51, 2003.

Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent mea-
sures of risk. Mathematical Finance, 9(3):203–228, 1999. doi: 10.1111/1467-9965.
00068.

G Barbarosoǧlu and Y Arda. A two-stage stochastic programming framework for
transportation planning in disaster response. Journal of the Operational Research
Society, 55(1):43–53, 2004.

A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications. SIAM, 2001.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization,
volume 28. Princeton University Press, 2009.

J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Computational Management Science, 2(1):3–19, Jan 2005. ISSN
1619-6988. doi: 10.1007/s10287-004-0020-y. URL https://doi.org/10.1007/

s10287-004-0020-y.

John R. Birge and François V. Louveaux. A multicut algorithm for two-stage stochas-
tic linear programs. European Journal of Operational Research, 34(3):384 – 392,
1988.

J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Series
in Operations Research and Financial Engineering. Springer New York, 2011. ISBN
9781461402374. URL https://books.google.com/books?id=Vp0Bp8kjPxUC.

Miguel Carrion. Risk-aversion modeling: Medium-term electricity retailer decision-
making. In 2008 IEEE Power and Energy Society General Meeting-Conversion and
Delivery of Electrical Energy in the 21st Century, pages 1–3. IEEE, 2008.

91

https://doi.org/10.1007/s10287-004-0020-y
https://doi.org/10.1007/s10287-004-0020-y
https://books.google.com/books?id=Vp0Bp8kjPxUC

Miguel Carrión, Uwe Gotzes, and Rüdiger Schultz. Risk aversion for an electricity
retailer with second-order stochastic dominance constraints. Computational Man-
agement Science, 6(2):233–250, 2009.

S. Ceria and J. Soares. Convex programming for disjunctive convex optimization.
Mathematical Programming, 86:595–614, 1999.

T. Cotton and L. Ntaimo. Computational study of decomposition algorithms for
mean-risk stochastic linear programs. Mathematical Programming Computation, 7:
471–499, 2015.

Presidential Policy Directive. Critical infrastructure security and resilience. ppd-21,
released february 12, 2013, 2013.

M. Fischetti, I. Ljubić, and M. Sinnl. Benders decomposition without separability: A
computational study for capacitated facility location problems. European Journal
of Operational Research, 253(3):557 – 569, 2016.

Roger Fletcher and Sven Leyffer. Solving mixed integer nonlinear programs by outer
approximation. Mathematical Programming, 66(1):327–349, Aug 1994. ISSN 1436-
4646. doi: 10.1007/BF01581153.

C. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals and Applica-
tions. Oxford University Press, 1995.

A. Frangioni and C. Gentile. A computational comparison of reformulations of the per-
spective relaxation: Socp vs. cutting planes. Operations Research Letters, 37(3):206
– 210, 2009. ISSN 0167-6377. doi: https://doi.org/10.1016/j.orl.2009.02.003. URL
http://www.sciencedirect.com/science/article/pii/S0167637709000339.

Arthur Geoffrion. Generalized benders decomposition. Journal of Optimization The-
ory and Applications, 10:237–260, 10 1972. doi: 10.1007/BF00934810.

Julio C Góez and Miguel F Anjos. Second-order cone optimization formulations for
service system design problems with congestion. In Modeling and Optimization:
Theory and Applications, pages 97–120. Springer, 2017.

O. Günlük and J. Linderoth. Perspective relaxation of mixed integer nonlinear pro-
grams with indicator variables. Integer Programming and Combinatorial Optimiza-
tion, 5035:1–16, 2008.

O. Günlük and J. Linderoth. Perspective reformulation and applications. In The
IMA Volumes in Mathematics and its Applications. Springer, 2012.

Omprakash K. Gupta and A. Ravindran. Branch and bound experiments in convex
nonlinear integer programming. Management Science, 31(12):1533–1546, 1985. doi:
10.1287/mnsc.31.12.1533.

92

http://www.sciencedirect.com/science/article/pii/S0167637709000339

Peter Kall and Stein Wallace. Stochastic Programming, volume 46. 01 1994. doi:
10.2307/2584504.

Pavlo Krokhmal, Michael Zabarankin, and Stan Uryasev. Modeling and optimization
of risk. In HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECI-
SION MAKING: Part II, pages 555–600. World Scientific, 2013.

Changzheng Liu, Yueyue Fan, and Fernando Ordóñez. A two-stage stochastic pro-
gramming model for transportation network protection. Computers & Operations
Research, 36(5):1582 – 1590, 2009. ISSN 0305-0548. Selected papers presented at
the Tenth International Symposium on Locational Decisions (ISOLDE X).

M. Lobo, L. Vandenberghe, and S. Boyd. Applications of second-order cone program-
ming. Linear Algebra and its Applications, 284(1-3):193–228, 1998.

Jie Lu, Sez Atamturktur, and Yongxi Huang. Bi-level resource allocation frame-
work for retrofitting bridges in a transportation network. Transportation Research
Record: Journal of the Transportation Research Board, 2550:31–37, 01 2016. doi:
10.3141/2550-05.

Jie Lu, Akshay Gupte, and Yongxi Huang. A mean-risk mixed integer nonlinear
program for transportation network protection. European Journal of Operational
Research, 265, 07 2017. doi: 10.1016/j.ejor.2017.07.025.

Andreas Märkert and Rüdiger Schultz. On deviation measures in stochastic integer
programming. Operations Research Letters, 33(5):441–449, 2005.

ApS MOSEK. Mosek modeling cookbook, 2018.

G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization. Wiley-
Interscience series in discrete mathematics and optimization. Wiley, 1988. ISBN
9780471828198. URL https://books.google.com/books?id=uG4PAQAAMAAJ.

Y. Nesterov and A. Nemirovskii. Interior-point Polynomial Algorithms in Convex
Programming. Studies in Applied Mathematics. Society for Industrial and Ap-
plied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104),
1994. ISBN 9781611970791. URL https://books.google.com/books?id=MgWY_

clJXusC.

N. Noyan, M. Meraklı, and S. Küçükyavuz. Two-stage stochastic programming under
multivariate risk constraints with an application to humanitarian relief network
design. Mathematical Programming, 01 2017. doi: 10.1007/s10107-019-01373-4.

Nilay Noyan. Risk-averse two-stage stochastic programming with an application to
disaster management. Computers & Operations Research, 39(3):541–559, 2012.

93

https://books.google.com/books?id=uG4PAQAAMAAJ
https://books.google.com/books?id=MgWY_clJXusC
https://books.google.com/books?id=MgWY_clJXusC

American Society of Civil Engineers. 2017 infrastructure report card. 2017.

Bureau of Public Roads. Traffic assignment manual. Urban Planning Division, US
Department of Commerce, 1964.

WLodzimierz Ogryczak and Andrzej Ruszczynski. Dual stochastic dominance and
related mean-risk models. SIAM Journal on Optimization, 13(1):60–78, 2002.

Georg Pflug. Someremarks on the value-at-risk and the conditional value-at-risk. 09
2000. doi: 10.1007/978-1-4757-3150-7 15.

R. Rahmaniani, T. Crainic, M. Gendreau, and W. Rei. The benders decomposition al-
gorithm: A literature review. European Journal of Operational Research, 259(3):801
– 817, 2017. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2016.12.005. URL
http://www.sciencedirect.com/science/article/pii/S0377221716310244.

R. Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-at-
risk. Journal of Risk, 2:21–41, 2000.

Rüdiger Schultz and Frederike Neise. Algorithms for mean-risk stochastic integer
programs in energy. In 2006 IEEE Power Engineering Society General Meeting,
pages 8–pp. IEEE, 2006.

Rüdiger Schultz and Stephan Tiedemann. Risk aversion via excess probabilities in
stochastic programs with mixed-integer recourse. SIAM Journal on Optimization,
14(1):115–138, 2003.

A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Pro-
gramming. Society for Industrial and Applied Mathematics, 2009. doi: 10.
1137/1.9780898718751. URL https://epubs.siam.org/doi/abs/10.1137/1.

9780898718751.

Stein W Wallace and William T Ziemba. Applications of stochastic programming.
SIAM, 2005.

Xiaohui Yuan, Hao Tian, Shuangquan Zhang, Bin Ji, and Yanhong Hou. Second-
order cone programming for solving unit commitment strategy of thermal gen-
erators. Energy Conversion and Management, 76:20 – 25, 2013. ISSN 0196-
8904. doi: https://doi.org/10.1016/j.enconman.2013.07.019. URL http://www.

sciencedirect.com/science/article/pii/S0196890413003907.

94

http://www.sciencedirect.com/science/article/pii/S0377221716310244
https://epubs.siam.org/doi/abs/10.1137/1.9780898718751
https://epubs.siam.org/doi/abs/10.1137/1.9780898718751
http://www.sciencedirect.com/science/article/pii/S0196890413003907
http://www.sciencedirect.com/science/article/pii/S0196890413003907

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Two-stage Stochastic Programs
	Formulation

	Convexification and Reformulation of Recourse Function
	Convexifying the Union of Disjunctive Sets
	Second Order Cone Programming
	Separability of First and Second Stage Variables

	Mean-Risk Stochastic Programming Model
	Risk-Neutral Stochastic Programming
	Introducing Risk into Optimization Models
	Commonly Used Risk Measures
	Implementing Conditional Value-at-Risk

	Decomposition and Algorithm for Solution
	Challenges in Mixed Integer Nonlinear Programming
	Generalized Benders Decomposition
	A Variation of GBD Under Separability
	Decomposition Method for the Mean-Risk Model
	Solution Algorithm

	A Mean-Risk Program for Transportation Network Protection
	Introduction to Problem
	Optimization Parameters
	Reformulation of Second Stage
	Decomposition

	Conclusion
	Discussion on Model Size and Complexity
	Contributions of this Research

	Appendices
	Proof of Unique Partition (Jx,Jv)
	An Explicit Description of Ak
	Notation associated with Transportation Network Model

	Bibliography

