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ABSTRACT
In order to accurately predict the performance of materials

under dynamic loading conditions, models have been developed
that describe the rate-dependent material behavior and irrecov-
erable plastic deformation that occurs at elevated strains and
applied loads. Most of these models have roots in empirical fits
to data and, thus, require the addition of specific parameters that
reflect the properties and response of specific materials. In this
work, we present a systematic approach to the problem of cali-
brating a Johnson-Cook plasticity model for 304L stainless steel
using experimental testing in which the parameters are treated as
dependent on the state of the material and uncovered using ex-
perimental data. The results obtained indicate that the proposed
approach can make the presence of a discrepancy term in cali-
bration unnecessary and, at the same time, improve the predic-
tion accuracy of the model into new input domains and provide
improved understanding of model bias compared to calibration
with stationary parameter values.

INTRODUCTION
In order to accurately predict the performance of materials

under dynamic loading conditions, such as those encountered
in metal forming operations, high speed impacts, or explosive
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deformations, much work has been carried out to try and de-
scribe the complex, strain rate-dependent material behavior and
irrecoverable plastic deformation that occurs at elevated strains
and applied loads [1]. A wide number of computational models
have been developed to describe this viscoplastic phenomenon,
such as the Mechanical Threshold Stress (MTS) model [2, 3],
the Zerilli-Armstrong model [4], and the Preston-Tonks-Wallace
(PTW) model [5]. These various methods try to improve the
ability of scientists and engineers to predict material behav-
ior by incorporating various dislocation mechanics, hardening
physics, and thermodynamic effects that are present in materi-
als under loading. Other models that are commonly used include
the Johnson-Cook [6] and the Steinberg-Cochran-Guinan-Lund
(SCGL) [7, 8] flow stress models.

Most of these models have roots in empirical fits to data,
which can lead to difficulty in extrapolating to new material sys-
tems. Thus, these models require the addition of specific param-
eters that reflect the properties and response of new materials.
The appropriate values of these parameters may not be exactly
known, however, so the application of techniques in the field of
model calibration becomes an important resource to both achieve
model accuracy and quantify output uncertainty. Accuracy, as
well as interpretability, of model calibration becomes especially
important in cases where experimental testing may not be avail-
able in the input domain of the true system and the model is,
therefore, forced to extrapolate when used as a predictor.

Model calibration techniques commonly formulate the prob-
lem as an attempt to find the set of stationary parameter value
distributions that allow the best model fit, on average, to the ex-
perimental observations across the input domain. In reality, how-
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ever, the best values of the calibration parameters often shift ac-
cording to the model inputs due to an inadequate inclusion of all
the true system physics in the underlying model form. There-
fore, an additive bias or discrepancy term is often included to
account for output inaccuracy across input values. Alternatively,
a model calibration approach capable of treating parameter val-
ues as functions of the model input can reveal a more inter-
pretable result than discrepancy methods. A better understanding
of the input domain to calibration parameter relationships serves
to both reduce model output uncertainty and parameter value un-
certainty while simultaneously providing valuable information
about the physics-based bias present in the model without re-
sorting to using discrepancy terms. The implementation of input
state-dependent parameters into the model has the potential to
not only improve model accuracy in reproducing experimental
observations, but—more importantly—allow for more accurate
predictions into untested input domains by better representing
missing physics phenomena in the model.

The paper presents a review of several Bayesian model cal-
ibration techniques and methods commonly used to tune com-
puter model parameters using experimental data. This review
is followed by a presentation of a systematic approach to the
problem of calibrating a Johnson-Cook plasticity model for 304L
stainless steel using both quasi-static and Hopkinson bar experi-
mental testing in which the parameters are treated as dependent
on the input states of the material temperature, strain, and strain
rate. The parameter relationship form is established using non-
parametric techniques that allow the most likely relationships to
be uncovered using the experimental observations without need-
ing to specify a functional form. This procedure is compared
to the other Bayesian model calibration formulations with and
without both functional parameters and discrepancy. Addition-
ally, the results of the calibrated functional relationships are ex-
amined to provide an experimentally-informed and interpretable
assessment of the Johnson-Cook model form bias that exists over
the input domain. This better understanding of the physics-based
bias serves as a direct method to extend the model formulation to
improve the model fit for new materials and input domains.

JOHNSON-COOK PLASTICITY MODEL
Johnson-Cook is a purely empirical model that describes the

material flow stress according to the following equation [6]:

σy(εp, ε̇p,T ) = [A+B(εp)
n]
[
1+Cln

(
ε̇
∗
p
)]
[1− (T ∗)m] (1)

where εp is the plastic strain, ε̇p is plastic strain rate, and A, B,
C, n, m are constants of the specific material. The normalized
plastic strain rate and temperature are computed as:

ε̇
∗
p =

ε̇p

ε̇p0

(2)

T ∗ =
T −T0

Tm−T0
(3)

where ε̇p0 is the quasi-static strain rate of 1.0s−1 is used to nor-
malize the plastic strain rate, T0 is a reference temperature (gen-
erally room temperature), and Tm is the melt temperature of the
material.

The general approach to calibrate the 5 material specific
parameters of the model is to collect stress-strain data at both
quasi-static strain rates (through traditional tensile testing) and
high strain rates (generally through Hopkinson bar tests) across
a range of material temperatures [9]. This data can then be used
to fit a complement of parameters that best describe the behav-
ior of the material across those strain rates and temperatures. A
difficulty arises, however, when it is desired to use the calibrated
model at temperatures or strain rates above that which is possi-
ble to be tested and measured in a laboratory setting. The Split-
Hopkinson Pressure Bar (SHPB) test, for example, is generally
limited to strain rates on the order of 103s−1 with some advanced
systems achieving approximately 104s−1, while the strain rates
encountered in Taylor rod impacts (a commonly used test to vali-
date plasticity models) can easily exceed 105s−1 and can often be
even higher [10,11]. Therefore, it becomes important to both un-
derstand the uncertainty and be able to validate these calibrated
models in regimes of interest, even if they may be outside of ex-
perimental data bounds.

Experimental Data
Specifically, the Johnson-Cook model is chosen to be used to

calibrate stress-strain experimental data for 304L stainless steel.
The data has been collected by the MST-8 group at Los Alamos
National Laboratory and the data sets consist of quasi-static, uni-
axial tensile testing data and higher strain rate SHPB testing data.
Tests at both of the two strain rate magnitude regions have been
conducted across a range of material temperatures. The available
stress-strain data for the 304L stainless steel is shown in Tab. 1
and plotted in Fig. 1.

A subset of this data is selected to use for each of the subse-
quent calibration approaches to both retain some data as holdout
data and ensure that there is a comparable amount of available
data for both temperature and strain rate levels.

CALIBRATION METHODOLOGIES DISCUSSION
Many of the physical behaviors studied in engineering and

science are complex and efforts to better understand these pro-
cesses require experiments that are often economically or tech-
nically difficult. Therefore, the use of computer models and sim-
ulations to study and better understand these systems are com-
monly used. The utility of models, however, is directly linked
to the ability of the simulation to accurate replicate the real-
world phenomenon. This accuracy is dependent upon the pro-
cess of being able to infer model inputs through a combination
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TABLE 1. STAINLESS STEEL (304L) STRESS-STRAIN EXPERI-
MENTAL DATA

Test Number Testing Type Temp (K) Strain Rate (1/s)

1 Uniaxial 293 0.001

2 Uniaxial 293 0.1

3 SHPB 293 3250

4 SHPB 473 3700

5 Uniaxial 673 0.001

6 SHPB 673 3600

7 SHPB 873 3500

FIGURE 1. PLOT OF THE EXPERIMENTAL STRESS-STRAIN
DATA FOR 304L STAINLESS STEEL ACROSS A VARIETY OF
TEMPERATURE AND STRAIN RATE SETTINGS

of model predictions and experimental data. This inference pro-
cess is commonly referred to as model calibration and the pop-
ular framework of Bayesian calibration is chosen to analyze in
this work. The following four subsections outline the chosen
methodologies that will be compared, each of which is a further
development of the general Bayesian calibration approach in the
following subsections.

Bayesian Calibration
Bayesian model calibration has become a commonly used

and widely accepted method for improving computer models us-
ing experimental data. The process involves using Bayesian in-
ference to learn about model inputs through the computation of
an output likelihood using both the model output and known un-
certainties [12, 13]. An advantage of this technique is that it can
allow for the incorporation of sources of uncertainty, which can
be from a combination of both parameter value uncertainties and

experimental error uncertainties. Incorporating uncertainties in
this way can provide an additional measure of confidence for
the resulting, posterior parameter distributions and also better
explain the impact of experimental variation on the parameters
values.

Following previous work in the calibration of models with
functional output – as is the case with the Johnson-Cook stress-
strain curve outputs – the model form and calibration process is
followed as in Williams et al. [14] and Bayarri et al. [15] and is

y(x) = η(x,θ)+ ε (4)

where y(x) is the measured stress values according to the in-
puts x = {εp, ε̇p,T}, T corresponds to the output of the com-
puter model, η , at the same inputs, θ denotes the vector of un-
known model calibration parameters (here representing the five
Johnson-Cook model parameters), and ε represents the measure-
ment uncertainty in the experimental data. The calibration pro-
cess will thus seek to uncover the most likely values for the true,
but unknown, values for θ and ε that allow the model to best
represent the experimental data. In this approach, the posterior
values of θ remain constant throughout the model input domain
and will therefore be referred to as “stationary” parameters in
this paper.

Letting π(θ) represent the prior distributions of the calibra-
tion parameters and L(·|·) represent the likelihood function, the
posterior distributions of the parameters takes the form

π(θ ,ε|y) ∝ L(y|θ ,ε) ·π(θ) ·π(ε) (5)

that can be effectively explored with the technique of Markov
chain Monte Carlo (MCMC). A Gibbs sampler is used to take
draws from the distributions [16, 17].

Gaussian Process Discrepancy
It is often the case that even if we were able to know the

true values of the model parameters to input to the model, there
will be still be some error due to model bias. This model bias,
or discrepancy, is thus the difference between the mean output
of the true system and the model output at the true parameter
values. Following the framework established by Kennedy and
O’Hagan [12], we choose to represent this model discrepancy as
a Gaussian process (GP) over the model input domain. The pos-
terior distribution of the GP can then serve as a correction term
to the model in regions of the domain where there is model bias.
Using a GP for this approach has the advantages of both being
able to use a nonparametric form for the discrepancy and to ap-
ply prior distributions to the GP in the same fashion as the model
parameters themselves. The model form used in the calibration
procedures thus becomes

y(x) = η(x,θ)+δ (x)+ ε (6)
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where δ (x) represents the additive GP discrepancy term over the
same input vector, x, as both the model and experimental data. In
this work, the discrepancy is modeled as below using a squared
exponential kernel for the covariance function R(·, ·) [18]:

δ (x)∼ GP(µ(x),R(x,x′)) (7)

R(x,x′) = σ
2exp

(
−(x− x′)2

2l2

)
(8)

where µ(x) is the mean function of the GP (treated as mean zero
in this case), σ2 is the variance of the GP kernel, and l is the
length-scale of the kernel. The variance and length-scale terms
are generally referred to as the “hyperparameters” of Gaussian
process and become additional parameters for which to deter-
mine the posterior distributions during the model calibration pro-
cess.

Thus with this GP discrepancy formulation, the Bayesian
form of the problem representing the posterior distributions of
the parameters in Eqn. 5 becomes

π(θ ,ε,σ , l|y) ∝ L(y|θ ,ε) ·π(θ) ·π(ε) ·π(σ) ·π(l) (9)

where now the posterior distributions of the calibration param-
eters, experimental error, and the GP hyperparameters are ex-
plored simultaneously using MCMC.

State-Dependent Parameter Calibration
Similar to the idea that a model may be inadequate in rep-

resenting the experimental output in one or more regions of the
input domain, it is often common that the best posterior values
for the calibration parameters may shift according to the subset
of the input space considered for calibration [19–21]. In these
cases, it would make sense to then treat the parameters them-
selves as functions of the model inputs. In this approach, we es-
tablish each model parameter as a Gaussian process itself much
like the discrepancy in the previous section [21–23]. The choice
of a Gaussian process for representing the functional relationship
offers the same advantages as in the discrepancy and provides the
ability to learn complex input-output relationships at the same
computational complexity as simple functions.

The formulation of the model using state-dependent param-
eters thus becomes

y(x) = η(x,θ(x))+ ε (10)

where the calibration parameters, θ(x) are no longer stationary
and are now functions of the same inputs, x, as the experimental

data. Following the general approach of Brown and Atamturk-
tur [22] in calibrating models with nonparametric functional pa-
rameters the GP functions for each of the calibration parameters
can be represented as

θ(x) =


A(x) ∝ GP(µA(x),RA(x,x′))
B(x) ∝ GP(µB(x),RB(x,x′))
C(x) ∝ GP(µC(x),RC(x,x′))
n(x) ∝ GP(µn(x),Rn(x,x′))

m(x) ∝ GP(µm(x),Rm(x,x′))

 (11)

where each equation represents the functional representation of
each of the Johnson-Cook model parameters, µi(x) represents the
mean function for each of the GPs and in this case is treated as a
constant with the same prior distribution as in the previous cali-
bration forms, and Ri(·, ·) represents the independent covariance
function for each functional parameter.

This state-dependent approach will allow the GP for each
parameter to uncover, through the same MCMC sampling algo-
rithm, the posterior distribution of the relationship of the input
domain to the parameter value. The relationship for each param-
eter can be used to provide an improved fit between the model
output and the data and, in this case, add in the strain, strain rate,
and temperature material relationships that may be lacking in the
current model form.

State-Dependent Parameters with Discrepancy
The last approach considered in this work is combination

of the two previous formulations to add a GP discrepancy term
to the state-dependent parameter calibration method. The model
form in this case, therefore, becomes

y(x) = η(x,θ(x))+δ (x)+ ε (12)

where both the functional parameter equations and the discrep-
ancy term take the same forms as in Eqn. 7 and Eqn. 11.

In this approach, the Bayesian inference process samples
draws from the posteriors of both the state-dependent parame-
ters and the GP discrepancy simultaneously and both of which
use the same priors as in the previous approaches.

RESULTS
Based on the data described in the experimental data sec-

tion, four of the data sets (293K, 0.001/s; 293K, 3250/s; 673K,
0.001/s; 673K, 3600/s) were used to run the each of the calibra-
tion approaches. These data sets were chosen to give stress-strain
curves across a range of temperatures and strain rates, while re-
taining some data as holdout to allow for evaluation of the inter-
polation and extrapolation ability of each approach.

Prior distributions are first established over the model pa-
rameters based on a combination of literature review and expert
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knowledge regarding 304L stainless steel. The normal distribu-
tion priors for the five parameters are listed in Tab. 2 and are used
in each of the four different approaches.

TABLE 2. NORMAL PRIOR DISTRIBUTIONS ON JOHNSON-
COOK MODEL PARAMETERS

Parameter µ σ

A 160 10

B 1400 50

C 0.017 0.005

n 0.55 0.1

m 0.60 0.1

Using the standard Bayesian calibration approach, posterior
distributions for the five Johnson-Cook model parameters are
found after carrying out the MCMC algorithm. Figure 2 shows
the joint posterior distributions and the mean posterior values for
the five parameters. These computed parameter posterior distri-
butions can then be used to make predictions using the model to
better understand both the calibrated model output and its asso-
ciated uncertainty. Though repeated sampling from the posterior
distributions, the mean and standard deviation can be computed
and then compared to the experimental measurements. Figure 3
shows the posterior mean output values of the calibrated model
for each of the four sets of training data. The dotted lines in
this figure represent the 95% confidence interval about the mean
calibrated output.

Following calibration using the standard Bayesian approach,
the Gaussian process discrepancy approach is applied to the
problem using the same priors on the parameters and a zero-
mean prior on the GP discrepancy function. The results of this
approach can be seen compared to the standard Bayesian cali-
bration in Fig. 4 with the standard Bayesian approach in blue
and the discrepancy approach in black. Figure 4(a) represents
a comparison between the mean model outputs using the cali-
brated posterior parameter values without the addition of the ad-
ditive discrepancy. Despite the simultaneous calibration of the
parameter values and the additive discrepancy, it can be seen that
the resulting model fits to the experimental data are quite similar
across the temperature and strain-rate states and Fig. 5 shows the
posterior parameter values are quite similar as well.

Alternatively, Fig. 4(b) shows the same mean model outputs,
but this time with the discrepancy term added to the second ap-
proach. In this case, it can be seen that the discrepancy approach
does a much better job of fitting the experimental data and help-
ing to correct for the model bias that is present even after cali-
bration.

The next approach applied is that of the state-dependent pa-
rameter calibration. In this approach, the parameters are each

FIGURE 2. JOINT POSTERIOR DISTRIBUTION PLOT FOR THE
FIVE JOHNSON-COOK MODEL PARAMETERS COMPUTED US-
ING THE STANDARD BAYESIAN CALIBRATION APPROACH
WITHOUT DISCREPANCY

FIGURE 3. MEAN POSTERIOR JOHNSON-COOK MODEL OUT-
PUT RESULTS COMPARED TO THE EXPERIMENTAL DATA.
DOTTED LINES REPRESENT 95% CONFIDENCE INTERVAL
ABOUT THE MEAN

treated as a separate GP with a constant, non-zero mean function
with a prior distribution equal to those in Tab. 2. Calibration is
carried out by exploring the posterior distributions of the param-
eter functions using MCMC. The result of this process is a GP
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FIGURE 4. COMPARISON BETWEEN THE STANDARD
BAYESIAN APPROACH (BLUE) AND THE ADDED DISCREP-
ANCY APPROACH (BLACK). (A) COMPARES THE TWO
WITHOUT THE DISCREPANCY ADDED TO THE CALIBRATED
OUTPUT AND (B) COMPARES WITH THE ADDITIVE DISCREP-
ANCY

FIGURE 5. JOINT POSTERIOR DISTRIBUTION PLOT FOR THE
FIVE JOHNSON-COOK MODEL PARAMETERS COMPUTED US-
ING THE BAYESIAN CALIBRATION APPROACH WITH DIS-
CREPANCY

for each parameter that can be evaluated to obtain a parameter
distribution at each value of strain, strain-rate, and temperature.

This calibration is then carried out again for the state-
dependent approach with an additive GP discrepancy term. The
results of all four calibration approaches are shown Tab. 3. The
table compares the RMS error for each of the four calibra-
tion methods (standard Bayesian, discrepancy, state-dependent,
and state-dependent with discrepancy) when the mean calibrated

model output is compared to the four calibration data sets. In
general, as each of the approaches increase in complexity, the
overall error improves compared to the previous approach.

TABLE 3. COMPARISON OF THE COMPUTED RMS ERROR
FOR THE CALIBRATION APPROACHES

Data set Method 1 Method 2 Method 3 Method 4

293K, 0.001/s 49.9 32.2 34.5 29.3

293K, 3250/s 61.0 35.3 20.1 16.0

673K, 0.001/s 37.3 8.4 8.2 14.0

673K, 3600/s 28.4 24.8 15.9 17.8

Figure 6 illustrates the comparison between the discrepancy
approach and the state-dependence with discrepancy approach
when looking at the respective values of the strain-hardening ex-
ponent, n, in the Johnson-Cook model and the mean posterior
values of the discrepancy function. The discrepancy approach in
Fig. 6(a) illustrates the stationary value for n across the strain,
temperature, and strain-rate domain and the value of the GP dis-
crepancy can be seen to vary across the input domain to account
for the bias present in the material model, despite parameter cal-
ibration. Alternatively, in the state-dependent approach, shown
in Fig. 6(b), n varies across the input domain, while the value for
the GP discrepancy becomes essentially superflous and remains
at its prior value of zero even after calibration. This indicates
that the bias present in the model is being taken up by the cali-
brated, functional parameter relationships instead of the additive
discrepancy term.

While observing the value of the model discrepancy func-
tion can help the model creator locate and reduce model bias, the
experimentally-informed parameter relationships can provide a
more interpretable understanding of bias in specific components
of the model form. For example, the slope of the value of n
increases as a function of strain at higher strain-rates and the y-
intercept of the function increases with temperature, but only at
high strain-rates. At low strain-rates, the value of n is relatively
constant across temperature and strain. This relationship indi-
cates a model bias in the treatment of the strain-hardening expo-
nent that does not properly account for the complete temperature
and strain-rate dependence present in the experimental data. A
better understanding of this relationship can, therefore, provide
a directed path for model improvement compared to measures of
the overall model bias, like the discrepancy term.

Prediction Validation
In order to rely on the results of any model calibration ap-

proach, it is important to be able to understand and quantify the
uncertainty about model output when using the model in areas

V001T03A002-6

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/VVS/proceedings-pdf/VVS2020/83594/V001T03A002/6554370/v001t03a002-vvs2020-8816.pdf by C

lem
son U

niversity user on 09 February 2022



FIGURE 6. PLOT OF THE MEAN VALUE OF THE N PARAME-
TER AND THE DISCREPANCY VALUE FOR THE (A) STATION-
ARY APPROACH WITH DISCREPANCY AND THE (B) STATE-
DEPENDENT APPROACH WITH DISCREPANCY

of the input domain that were not used for calibration. This be-
comes especially important in many material models, when real-
world conditions are beyond that which can be tested and mea-
sured accurately in a laboratory setting. In this work, two sets
of data from the experimental campaign were selectively cho-
sen as holdout to compare the described calibration approaches
in their relative accuracy when tested over new data. The two
data sets are 293K, 0.1/s and 873K, 3500/s, which are at input
values within the calibration domain and beyond the calibration
domain, respectively. Therefore, the first set serves as a valida-
tion set for the calibration approaches and the second serves to
assess the extrapolation ability of the approaches.

Figure 7 shows the comparison between the standard
Bayesian, discrepancy, and stat-dependent approaches when val-
idated against the holdout data sets. As can be seen in Fig. 7(a),
at a new temperature and strain-rate within the calibration do-
main, all three approaches provide results that are very similar in
accuracy to the true experimental data (with the state-dependent
model providing a better capture of the linear stress-strain rela-
tionship that the other two). This is to be expected with a well-
calibrated model and is a positive indication as to the reliability
of the models when serving as a predictor for material behavior.

In Fig. 7(b), however, it can be seen that the state-dependent
calibration performs better than either of the other two ap-
proaches when extrapolating into a new temperature domain.
This is due to the fact that outside of the calibration input domain,
the value of the discrepancy GP returns to the mean zero prior
value due to the lack of experimental data. The state-dependent
model, on the other hand, can continue to extrapolate the learned
parameter relationships for each of the parameters according to
the posterior mean value of each GP with smoother functions

FIGURE 7. MEAN MODEL OUTPUT RESULTS FOR THE TWO
VALIDATION DATA SETS: 293K, 0.1/S (A) AND 873K, 3500/S (B)

that are essentially filtered through the model itself (see Fig. 6).
Thus, the state-dependent model calibration that provides gen-
erally improved RMS errors compared to discrepancy calcula-
tion can have greater extrapolation accuracy than the other ap-
proaches.

CONCLUSIONS
With the goal of accurately predicting the performance of

materials under dynamic loading conditions, models have been
developed that describe the rate-dependent material behavior and
irrecoverable plastic deformation that occurs at elevated strains
and applied loads. These models generally require the addition
of specific parameters for individual materials and systems. In
this work, we presented a systematic approach to the problem of
calibrating a Johnson-Cook plasticity model for 304L stainless
steel in which the parameters are treated as dependent on the
state of the material and uncovered using experimental data.

The use of state-dependent Bayesian parameter calibration
in determining values of the parameters of the Johnson-Cook
model for 304L stainless steel has the demonstrated the ability
to produce better model agreement with the experimental data
used for calibration compared to the other calibration approaches
described in this work. The results obtained during the model
calibration indicate that the proposed approach of defining pa-
rameters using state-dependent, nonparametric functions based
on Gaussian processes can make the presence of an additive dis-
crepancy term in the calibration formulation unnecessary and,
at the same time, improve the extrapolation prediction accuracy
of the model into new input domains. Additionally, the results
of the calibrated functional relationships of the parameters can
be examined to provide an experimentally-informed and more
interpretable assessment of the Johnson-Cook model form bias
that exists over the input domain compared to additive discrep-
ancy terms that can only describe to overall model bias. This
improved interpretability of the physics-based bias serves as a
direct method to extend the model formulation to improve the
model fit for new materials and input domains.

The improved parameter dependence understanding gained
through this work has served to improve the Johnson-Cook pre-
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dictive accuracy for 304L stainless steel and has led to methods
to extend the original model definition to account for the dis-
crovered model bias. Further work should be carried out to apply
the state-dependent Bayesian calibration to more materials using
the Johnson-Cook model and to further material models.
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