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Abstract
Purpose – This paper aims to present an approach for calibrating the numerical models of dynamical
systems that have spatially localized nonlinear components. The approach implements the extended
constitutive relation error (ECRE) method using multi-harmonic coefficients and is conceived to separate the
errors in the representation of the global, linear and local, nonlinear components of the dynamical system
through a two-step process.
Design/methodology/approach – The first step focuses on the system’s predominantly linear dynamic
response under a low magnitude periodic excitation. In this step, the discrepancy between measured and predicted
multi-harmonic coefficients is calculated in terms of residual energy. This residual energy is in turn used to spatially
locate errors in the model, through which one can identify the erroneous model inputs which govern the linear
behavior that need to be calibrated. The second step involves measuring the system’s nonlinear dynamic response
under a high magnitude periodic excitation. In this step, the response measurements under both low and high
magnitude excitation are used to iteratively calibrate the identified linear and nonlinear input parameters.
Findings – When model error is present in both linear and nonlinear components, the proposed iterative
combined multi-harmonic balance method (MHB)-ECRE calibration approach has shown superiority to the
conventional MHB-ECRE method, while providing more reliable calibration results of the nonlinear
parameter with less dependency on a priori knowledge of the associated linear system.
Originality/value – This two-step process is advantageous as it reduces the confounding effects of the
uncertain model parameters associated with the linear and locally nonlinear components of the system.
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1. Introduction
Local nonlinearities are pervasive in engineering applications (Shi and Atluri, 1992; Fey
et al., 1996; Wojtkiewicz and Johnson, 2011). In some cases, local nonlinearities are
deliberately designed into the system to avoid excessively high responses or stresses (Fey,
1992), and in others, they arise from large deformations or material stress (Clough and
Wilson, 1979). Examples include nonlinear bearings (Nelson and Nataraj, 1989), dry friction
damping (Ferri and Dowell, 1988), local nonlinear springs and dampers (Qu, 2002),
structural joints with an opening and closing ability (Niwa and Clough, 1982) and concrete
cracking (Atamturktur et al., 2013; Llau et al., 2015).

In these systems, as the nonlinear effects are localized within a component of a larger
linear system, the dynamic response tends to remain predominantly linear for small
magnitude forces (Clough and Wilson, 1979). However, when sufficiently high magnitude
forces are applied, the dynamic behavior becomes nonlinear and is governed by the
interaction between the linear and nonlinear components. Hence, when developing
numerical models to represent such systems, one must pay attention to accurate modeling of
both the global system that exhibits the underlying linear behavior and the spatially local
component that introduces nonlinearity. It is important to note that modeling error in the
underlying linear behavior could degrade the prediction accuracy of the overall nonlinear
behavior, resulting in large deviations from the measured dynamic response (Lenaerts et al.,
2001; Kerschen et al., 2003; Kerschen et al., 2005; Hot, 2012). As such, the accuracy with
which model error in local, nonlinear components can be identified is naturally dependent on
errors which may be associated with linear components.

Common approaches for calibrating models of nonlinear dynamical systems can be
grouped into two categories. The first category of approaches corrects errors in the
representation of both the linear and nonlinear responses of the system simultaneously
(Lenaerts et al., 2001; Meyer and Link, 2003; Bellizzi and Defilippi, 2003; Kerschen et al.,
2005). These approaches may face the identifiability problem due to the large number of
confounding parameters that need to be calibrated using an inevitably finite set of available
measurements (Lenaerts et al., 2001; Kurt et al., 2005; Jaishi and Ren, 2007; Van Buren and
Atamturktur, 2012). The second category of approaches, on the other hand, corrects the
representation of only the nonlinear response, and therefore assumes the linear system to be
modeled accurately. This assumption in turn mandates the availability of reliable a priori
knowledge of the linear system (Kerschen et al., 2005; Isasa et al., 2011). Hence, this second
approach risks that during calibration of the locally nonlinear component parameters errors
in the linear system may be compensated for as the linear model accuracy is seldom
guaranteed. Separately identifying the modeling errors that govern the system’s linear and
nonlinear behavior offers a solution that can mitigate the issues related to identifiability
faced by both of these categories of approaches (Lenaerts et al., 2001; Ewins et al., 2015).

In this paper, a two-step process is presented for calibrating numerical models of
dynamical systems with local nonlinearities. The process involves separately measuring the
system’s predominantly linear and nonlinear dynamic response under periodic excitation at
low and high force magnitudes, respectively. This is a development over other published
approaches that face from the previously mentioned identifiability issues. From these
response measurements, multi-harmonic coefficients, a commonly used set of features for
characterization of nonlinear dynamical systems (Cardona et al., 1994), are extracted. When
coupled with the extended constitutive relation error (ECRE), the multi-harmonic
coefficients allow the calculation of the residual energy, which reflects the discrepancy
between the model predictions and the experimental measurements (Isasa et al., 2011; Hu
et al., 2017). In the first step of this study, the residual energy in the predominantly linear
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behavior is calculated for each discretized finite element allowing us to identify the model
input parameters that need calibration. These input parameters, when combined with the
poorly known parameters associated with the local nonlinearity constitute the total set of
calibration parameters.

Subsequently, in the second step, the residual energy calculated under both the low
magnitude excitation and the nonlinearity-inducing, higher magnitude excitation is
minimized to update the calibration parameters. Thus, model parameter calibration
becomes an optimization problem that is solved through an iterative approach combining
the multi-harmonic balance method (MHB) and ECRE into a method henceforth referred to
as iterative integrated MHB and ECRE (IIME). In this study, the performance and efficiency
of IIME are compared against discrete, sampling-based optimal value searches that are
commonly used for nonlinear model calibration.

This paper is organized as follows. In Section 2, we briefly review the MHB-ECRE
identification approach as applied to nonlinear dynamical systems. Section 3 describes the
procedure for the two-step model calibration approach. In Section 4, the calibration approach is
demonstrated on the finite element model of an academic example: a nonlinear beam with
model error in both the linear and nonlinear components, using synthetically generated
measurements. In this section, the efficacy of the proposed two-step approach is evaluated by
comparing the obtained results against those of a one-step MHB-ECRE nonlinear model
calibration. In Section 5, the limitations of the proposed approach when implemented with
reduced quantity (i.e. fewer measured degrees of freedom) and quality (i.e. higher noise levels) of
measurements is discussed. Moreover, the effect of the location of the excitation force andmodel
error on the performance of the proposed method is evaluated. Finally, Section 6 draws the
conclusions of this paper and summarizes the benefits and drawback of the proposed nonlinear
model calibrationmethod compared to the conventional, single-stepMHB-ECREmethod.

2. Background perspectives: nonlinear model calibration using the MHB-
ECRE approach
When calibrating numerical models of dynamical systems, the discrepancy between model
predictions and experimental measurements can be calculated using response features in
modal, time or frequency domains (Atamturktur et al., 2012). In modal domain, nonlinear
effects are projected into modal space in terms of nonlinear normal modes. Nonlinear normal
modes are amplitude-dependent, however, which prevents the direct separation of space and
time in the governing equations of motion (Vakakis, 1997; Kerschen et al., 2009). This energy
dependence complicates the analytical calculation of the nonlinear normal modes, and the
model calibration using nonlinear normal models often becomes computationally demanding
(Kerschen et al., 2006). The use of time domain response features is less computationally
demanding than modal domain features as measurement devices directly provide the desired
inputs (Masri and Caughey, 1979; Gondhalekar et al., 2009). Nonetheless, time domain response
features are large-dimensional and highly sensitive to measurement noise (Atamturktur and
Laman, 2012; Moaveni and Asgarieh, 2012), which makes direct comparisons between the
measurements and themodel predictions in the time domain highly unreliable.

Frequency domain response features are calculated by applying a transformation
process on the time domain signals to separate the response into a series of harmonics
(Meyer and Link, 2003; Böswald and Link, 2004). In frequency domain methods, the time
and space in the governing equations of motion can be easily separated through
linearization using Fourier series expansion. Thus, response features in frequency domain
can be expressed as a function of excitation frequency and amplitude (Ferreira and Serpa,
2005). Furthermore, frequency domain features are less sensitive to noise and more compact
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compared to the time domain features (Kerschen et al., 2006; Atamturktur and Laman, 2012).
In this paper, we implement a class of frequency domain response features known as multi-
harmonic coefficients calculated through the MHB method, chosen for their high accuracy
(Ren et al., 1998) and computational efficiency (Huang et al., 2006).

2.1 Multi-harmonic balance method
The equation of motion of a nonlinear structure with local geometrical nonlinearity can be
written as follows:

M €x tð Þ þ C _x tð Þ þ Kx tð Þ þ KNLx
3 tð Þ ¼ p tð Þ (1)

whereM;C;K 2 <N ;N are the mass, damping and stiffness matrices, respectively, and N is
the number of degrees of freedom (DOF) considered. The stiffness matrix is assumed to be
positive definite. Here, p tð Þ is the external force vector and x tð Þ is the displacement response
vector of theN DOFs at time t. In equation (1), a spatially localized, geometrical nonlinearity
is represented by the cubic stiffness, KNL, multiplied by the element-wise cube of the
displacement of each DOF (Worden and Tomlinson, 2000).

A local, cubic nonlinearity is used in this paper as it is one of the most common cases of
nonlinearity in dynamic systems (Kerschen et al., 2006; Wilson et al., 1972). It is important to
note, however, the approach presented herein can be used for a wide variety of nonlinear
systems (not just local nonlinearities) where the underlying system can be analyzed and
calibrated first using intentionally low excitations to the system to isolate the predominately
linear behavior of the system (Stricklin and Haisler, 1977).

In linear structural dynamics, the system is conveniently characterized by the structural
modes and their associated resonant frequencies. In nonlinear dynamical systems, however,
distinctly nonlinear features can be generated from a set of periodic response vectors. When a
periodic excitation is applied to a nonlinear dynamical system, the input energy is concentrated
at the excitation frequency making it relatively simple to generate nonlinear features through
the transformation from time domain response into frequency domain response. This approach
also yields higher signal-to-noise ratio compared to the response measured under random or
transient excitations (Worden and Tomlinson, 2000). Because of these benefits, solving the
equation of motion of a nonlinear system under periodic excitation has become common
practice for evaluating the dynamic behavior of nonlinear systems (Kerschen et al., 2006).

Most early approaches for predicting the steady-state oscillation of a nonlinear system
under periodic excitation were limited to approximate calculations of the fundamental
harmonic coefficients. These fundamental harmonic coefficients were assumed to have a
significantly larger value compared to higher order harmonic coefficients (Stoker, 1950;
Tondl, 1974). However, in the early 1980s, researchers began to recognize that the higher
order harmonic coefficients are also essential to accurately predict the steady state response
(Tamura et al., 1981; Leung and Fung, 1989). To include the higher-order harmonics for
steady-state oscillations of a nonlinear system, Tamura et al. (1981) suggested the MHB
method. As an extension of the fundamental harmonic balance approach, MHB operates in
the frequency domain to solve nonlinear equations of motion under periodic excitation using
a Fourier series approximation. MHB has proven capability solving the periodic response of
nonlinear systems more efficiently than time domain integration methods, such as
Newmark’s, central difference and Runge–Kutta methods (Cardona et al., 1994).

In MHB, the periodic displacement response vector of a nonlinear system is expressed as
a Fourier series:
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x tð Þ ¼ Q0 þ
Xn
j¼1

Qc
j cosmjv t þQs

j sinmjv t
� �

(2)

where Q0 is a constant; Qc
j and Qs

j represent the jth cosine and sine multi-harmonic
coefficients, respectively; mjis the harmonic of excitation frequency v ; and n is the
number of harmonics included in the analysis. Usually, the multi-harmonic coefficients
are obtained by directly applying a fast Fourier transform on the time history response
of measured DOFs. If excitation frequency is constant, Fourier series and harmonic
curve fitting tools can also be applied for calculating the multi-harmonic coefficients
(Isasa et al., 2011).

Introducing equation (2) into the equation of motion for the nonlinear system given in
equation (1) results in the following expression:

M
Xn
j¼1

� mjvð Þ2Qc
j cosmjv t � mjvð Þ2Qs

j sinmjv t
� � !

þC
Xn
j¼1

�mjvQc
j sinmjv t þmjvQs

j cosmjv t
� � !

þK Q0 þ
Xn
j¼1

Qc
j cosmjv t þQs

j sinmjv t
� � !

þ KNLx
3 tð Þ ¼ p tð Þ

(3)

Sequentially pre-multiplying all terms in equation (3) by the harmonic
functions 1; cosm1v t; sinm1v t:::cosmnv t; sinmnv tð Þ and integrating from zero to the
fundamental period of the system, T ¼ 2p

�
v
, the following frequency domain expression

can be obtained (Isasa et al., 2011):

Z vð ÞQx þ F Qx;vð Þ � P ¼ 0 (4)

where Qx ¼ fQ0;Q1; :::;Q2ng is the vector of harmonic coefficients with Qi 2 <N ;1. The
matrixZ vð Þ 2 < 2nþ1ð ÞN ; 2nþ1ð ÞN is a matrix of structural system properties in the frequency
domain and is expressed as:

Z vð Þ ¼

K 0 0 . . . 0 0
0 K� m1vð Þ2M m1vC . . . 0 0
0 �m1vC K� m1vð Þ2M . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . K� mnvð Þ2M mnvC

0 0 0 . . . �mnvC K� mnvð Þ2M

2
66666664

3
77777775

(5)

The nonlinear force vectorKNLx
3 tð Þ and periodic excitation force vector p tð Þ in equation (3) are

also transformed from nonlinear, time domain response into linearized, frequency domain
response (equation (6) and (7)). It is seen that each harmonic of the periodic excitation yields
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corresponding sine and cosine functions not only for the excitation, P, but also for the force due
to the localized nonlinearity,F Qx;vð Þ.

Nonlinear force vectors in frequency domainF Qx;vð Þ 2 < 2nþ1ð ÞN ;1 are then expressed as:

F Qx;vð Þ ¼

ðT
0
fNL x tð Þð Þdt

v

p

ðT
0
fNL x tð Þð Þcosm1v tdt

v

p

ðT
0
fNL x tð Þð Þsinm1v tdt

..

.

v

p

ðT
0
fNL x tð Þð Þcosmnv tdt

v

p

ðT
0
fNL x tð Þð Þsinmnv tdt

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

where fNL x tð Þð Þ ¼ KNLx
3 tð Þ (6)

Periodic excitation force vectors in frequency domainP 2 < 2nþ1ð ÞN ;1 are expressed as:

P ¼

ðT
0
p tð Þdt

v

p

ðT
0
p tð Þcosm1v tdt

v

p

ðT
0
p tð Þsinm1v tdt

..

.

v

p

ðT
0
p tð Þcosmnv tdt

v

p

ðT
0
p tð Þsinmnv tdt

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

(7)

Equation (4) can be solved using the Newton–Raphson method (Ferri, 1986). The number of
harmonics included must be considered as it increases the size of equation (4), and thus,
increases the computation time. Models with prohibitively large linear system matrices can
make use of reduction techniques (e.g. Guyan reduction) to reduce computational cost.

2.2 The integrated MHB-ECRE approach
When coupled with the ECRE, a method to measure the element-wise discrepancy between a
model and a structure based on constitutive relations, the multi-harmonic coefficients allow the
calculation of the residual energy that reflects the discrepancy between predictions and
measurements (Charbonnel et al., 2013; Deraemaeker et al., 2002; Hu et al., 2017; Ladevèze and
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Leguillon, 1983). By integrating MHB and ECRE, we seek to minimize the constitutive error of
the system. This constitutive error,E2

v , accounts for the uncertainties in both the model
predictions and the experimental measurements and is expressed as:

E2
v ¼ rTKrv þ a HQv �Qe

v

� �TKR HQv �Qe
v

� �
(8)

whereK 2 < 2nþ1ð ÞN ; 2nþ1ð ÞN is the multi-harmonic stiffness matrix (Isasa et al., 2011) and is
expressed as:

K ¼

K 0 � � � 0 0
0 K � � � 0 0
..
. ..

. . .
. ..

. ..
.

0 0 � � � K 0
0 0 � � � 0 K

0
BBBBB@

1
CCCCCA (9)

In equation (8),Q is the multi-harmonic coefficient vector that is expanded from experimentally
identified, multi-harmonic coefficients to the total number of DOFs in the numerical model; and
Qe

v is the experimentally identified, multi-harmonic coefficient vector that is generated based on
the experimentally measured time history response. In this study, only excitation with a
constant frequency is considered; hence, Qe

v is obtained using a Fourier series expansion and
harmonic curve fitting. In equation (8), rv ¼ Qv � Vv is the relative multi-harmonic coefficient
vector that accounts for the discrepancy between model predictions and experimental
measurements. Vv expresses the multi-harmonic coefficients obtained from model predictions.
H is a transformation matrix that reduces the multi-harmonic coefficient matrix for all DOFs to
the size of the measured DOFs. a is a weighting factor that accounts for the confidence level of
experimental measurements (Deraemaeker et al., 2002). Finally,KR is the (2nþ 1)Ne� (2nþ 1)
Ne reduced multi-harmonic stiffness matrix of the numerical model obtained through Guyan
model reduction (Guyan, 1965), whereNe is the number of measured DOFs.

To evaluate rv andQ, we solve the followingminimization problem:
Minimize cost function:

E2
v ¼ rTKrv þ a HQv �Qe

v

� �TKR HQv �Qe
v

� �
(10a)

Subjected to constraint relationship:

Z vð ÞQv þ F Qv ;vð Þ � P ¼ Krv (10b)

The constraint in equation (10b) can be dualized using a Lagrange multiplier to form an
unconstrained minimization problem.

3. Calibrating the models of nonlinear dynamical systems: iterative integrated
MHB and ECRE (IIME)
The two-step process presented herein is conceived to identify the residual errors in the
underlying linear system and those in the nonlinear component. The strategy implemented
involves measuring the dynamical system vibration response under low magnitude periodic
excitation such that the system vibration response is predominantly linear. Using this low
magnitude excitation (P1) data, the experimental multi-harmonic coefficients (Qe

v1) are first
obtained. Next, model-predicted multi-harmonic coefficients (Vv1) are calculated and
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experimental multi-harmonic coefficients (Qv1) are expanded to match the degrees of freedom
of the numerical model. Through the error minimization step of ECRE, the difference between
experimental multi-harmonic coefficient and model predicted multi-harmonic coefficient
vectors (Qv1 � Vv1) is calculated. The knowledge of this disagreement, combined with the
stiffness matrix, allows us to calculate the elemental residual energy. The elements with high
residual energy indicate the existence of higher model error (Hu et al., 2017), and thus, themodel
parameters associated with these elements are selected for calibration. This model error
localization step is useful for parameter selection (Larsson and Abrahamsson, 1999; Kim and
Park, 2004; Hu et al., 2017) because the number of parameters that need to be calibrated can
often be significantly reduced in this step, which in turn helps mitigate the risk of rank
deficiency and ill-conditioning during calibration (Yu et al., 2007).

In the second step, a higher magnitude periodic excitation is applied to obtain the nonlinear
dynamic displacement response and the corresponding multi-harmonic coefficient is calculated
(Qe

v2). Using both multi-harmonic coefficients, Qv1 and Qv2, linear and nonlinear model
parameters are calibrated by minimizing the sum of the residual energy calculated for both
excitation magnitudes (P1 and P2). This way the model error in the locally nonlinear
component is accurately identified all while errors in the modeling of the underlying linear
system are corrected. Figure 1 schematically shows the proposed method as divided into two
steps: localization and parameter calibration. The details of these two steps are given below:

Step 1. Model error localization using lowmagnitude excitation,P1.
Based on the system response to low magnitude excitation, the optimization problem is

formulated in equation (11) that minimizes the residual energy between the numerical model
and the measurements. To minimize the objective function, we formulate a saddle-point
problem with the introduction of Lagrange multipliers. equation (11) yields the system of the
nonlinear equations shown in equation (12), based on which the two unknown multi-harmonic
coefficient vectors, rv1 and Qv1, that represent the predominantly linear dynamic response
features can be solved. The relative multi-harmonic coefficient vector rv1, combined with
elemental stiffness matrix, is then used for localizing the model error in the linear component.
Therefore, the linear parameters that are associated with identified model error, EL, are selected
from a large candidate set of parameters for the calibration in the next step.

Minimize the cost function for force levelP1:

E2
v1 ¼ rT1 Kv1rv1 þ a HQv1 �Qe

v1

� �TKR HQv1 �Qe
v1

� �
(11a)

Subjected to constraint relationship:

Z vð ÞQv1 þ F Qv1;v ;KNLð Þ � P1 ¼ Krv1 (11b)

Nonlinear matrix equation:

Z vð Þ þ @F Qv1;v ;KNLð Þ
@Qv1

aHTKRH

K �Z vð Þ

0
@

1
A rv1

Qv1

� �
þ 0

�F Qv1;v ;KNLð Þ
� �

¼ aHTKRQ
e
v1

�P1

� �
(12)
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The derivation of equation (12) can be found by considering equation (11a) as a saddle-point
problem and applying Lagrange multipliers. The terms that compose equation (11a) are
classified as being “less reliable,” namely, the error in the model (first term) and the mode
shape expansion error (second term) that is introduced when the experimentally measured
information is extrapolated to the Nmodel DOFs (Zimmerman and Kaouk, 1994; Charbonnel
et al., 2013). By subsequently applying the constraint to the optimization problem that the
solution must satisfy the more reliable equilibrium equation of equation (11b), the errors in
less reliable equations can be minimized.

Step 2. Nonlinearmodel calibration using both low and highmagnitude excitations, P1 and P2.
In the second step, we combine the measurements of multi-harmonic coefficients for both

low and high magnitude excitations. The sum of the residual energy for both excitation
magnitudes is then minimized.

Minimize the cost function forP1 andP2:

E2
v_combined ¼ r T

v1K rv1 þ a HQv1 �Qe
v1

� �TKR HQv1 �Qe
v1

� �þ r T
v2 Krv2

þ a HQv2 � Qe
v2

� �TKR HQv2 �Qe
v2

� �
(13a)

Subjected to the following constraints:

Figure 1.
The calibration
procedure for the
proposed method
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Z vð ÞQv1 þ F Qv1;v ;KNLð Þ � P1 ¼ Krv1 (13b)

Z vð ÞQv2 þ F Qv2;v ;KNLð Þ � P2 ¼ Krv2 (13c)

A new cost function gc is obtained after applying the Lagrange multipliers and is expressed
as follows:

gc ¼ rT1 Kv1rv1 þ a HQv1 �Qe
v1

� �TKR HQv1 �Qe
v1

� �
þc 1

T Krv1 �Z vð ÞQv1 � F Qv1;v ;KNLð Þ þ P1
� �

þrT2 Kv2rv2 þ a HQv2 �Qe
v2

� �TKR HQv2 �Qe
v2

� �
þc 2

T Krv2 �Z vð ÞQv2 � F Qv2;v ;KNLð Þ þ P2
� �

(14)

where c 1 and c 2are the Lagrange multipliers for the constraint relationships for P1 and P2,
respectively. Through the calculation of the stationary conditions of gc with respect to the
unknowns rv1, Qv1, rv2, Qv2, EL, KNL, c 1, and c 2, the solution of equation (14) is
calculated using the followingmatrix relationship:

Z vð Þ þ @F Qv1;v ;KNLð Þ
@Qv1

aHTKRH 0 0 0 0

K �Z vð Þ 0 0 0 0

0 0 Z vð Þ þ @F Qv2;v ;KNLð Þ
@Qv2

aHTKRH 0 0

0 0 K �Z vð Þ 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666666666666664

3
7777777777777775

rv1

Qv1

rv2

Qv2

EL

KNL

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

þ

0

�F Qv1;v ;KNLð Þ
0

�F Qv2;v ;KNLð Þ
@g
@EL

@g
@KNL

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

¼

aHTKRQ
e
v1

�P1

aHTKRQ
e
v2

�P2

0

0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

(15)

where EL are the linear structural parameters corresponding to the identified model error in
the linear component.

All the above objective functions are convex, thus facilitating the use of efficient local
optimization algorithms in the calibration process. A modified Newton–Raphson algorithm
is chosen to solve this nonlinear problem due to its desirable convergence characteristics
(Nocedal and Wright, 2006; Stevens et al., 2017) and because the parameter gradients are
calculated numerically. In each of the Newton–Raphson iterations, the parameters are
calibrated and the residual error term is recalculated. A new iteration consisting of a
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localization step, and a correction step is performed until the prescribed convergence
criterion is satisfied.

Instead of iteratively calibrating the parameters corresponding to linear and nonlinear
behavior (i.e. using IIME), calibration can also be conducted based on a discrete set of
inputs�henceforth referred to as discrete integrated MHB-ECRE (DIME). In the DIME
approach, a sample set of values are generated for the poorly knownmodel input parameters
and then used for calculation of the residual energy using equation (13) and (14). As such,
the minimum residual energy is expected to be achieved when the calibration parameters
associated with the linear and nonlinear components are closest to the true parameter
values. In DIME, a large number of instances must be calculated, which means the discrete
approach is more computationally demanding than IIME. In the following section, the
results obtained with the DIME approach are used as a reference to compare against those
obtained with the proposed two-step IIME approach.

4. Benchmark beammodel application
4.1 The description of the numerical model
The proposed approach is demonstrated on a simulated academic example based on
the COST action F3 project benchmark structure developed at Ecole Centrale de Lyon
(Thouverez, 2003; Worden, 2003). The model consists of a main beam clamped to a
thin, secondary beam with both ends of the structure clamped to fixed supports
(Figure 2). The main beam has a length of 0.7 m and a thickness of 0.014 m, whereas
the secondary beam has a length of 0.04 m with a thickness of 5 � 10�4 m. Both beams
have a width of 0.014 m and comprise steel with a Young’s modulus of 210 GPa and a
Poisson’s ratio of 0.33. Table I lists the reference configuration of the F3 project
benchmark model. The main beam is modeled with seven elements and the secondary
beam with four elements as shown in Figure 2. The connection of the beams is modeled
by a semi-rigid, rotational spring and a grounded, translational spring element with
cubic stiffness such that the nodes are constrained to have the same translation
displacement, but allowed to have different rotations. The value of the cubic stiffness
(KNL) is set to be 6.1� 109 N/m.

Vibration response measurements are synthetically generated for 21 DOFs along the
beam as shown in Figure 3. For the low magnitude excitation, a stepped sine force with a
magnitude of 0.5 N and frequency of 32 Hz, selected based on the value of the fundamental
frequency of the linear beam, is applied to the structure. For the high magnitude excitation, a
stepped sine force with a magnitude of 5 N and frequency of 32 Hz is applied to ensure
sufficiently large deflections to observe the nonlinear dynamic effects. In addition, simulated
measurement noise is introduced as an additive zero mean Gaussian white noise at a level
of 5 per cent of the maximum displacement time history response. The noise is added to the

Figure 2.
A linear beammodel
with local
nonlinearity under
periodic excitation
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time history measurements before the experimental multi-harmonic coefficients vectors are
calculated.

The initial model is preset to have error in two distinct forms (recall Figure 2): model
error in the linear beam structure that is simulated by intentionally reducing the Young’s
modulus for element 3 by 50 per cent (i.e. 105 GPa); model error in the nonlinear spring that
is simulated by intentionally altering the stiffness coefficient with cubic nonlinearity by 50
per cent (i.e. 3.05� 109 N/m).

4.2 The conventional approach: MHB-ECRE using only high magnitude excitation
This section presents the results of the conventional, one-step MHB-ECRE approach in
which the parameter of the nonlinear translational stiffness (KNL) is calibrated with the
presumption that the model of the underlying linear system is error-free. The effect of the
model error in the linear beam on the results of this conventional approach is evaluated
using both a model with and without the manually introduced reduction in the Young’s
modulus of element 3.

Owing to the need that the structure’s dynamic response must exhibit nonlinear behavior
for the one-step MHB-ECREmethod, synthetic response measurements are generated by the
model under the high amplitude excitation (5 N), using which the ECRE values are
calculated by solving equation (11).

Figure 4 depicts the ECRE values obtained for a range of nonlinear stiffness values
where the correction coefficient that multiplies the nonlinear stiffness parameter (KNL)
varies from 0.5 to 1.5 with an interval of 0.1, essentially representing a correction of 50
per cent below and above the nominal stiffness value. For this given range of nonlinear

Table I.
Reference

configuration of the
benchmark beam

model

Symbol Parameter Value

L1
L2

Length of main beam
Length of thin beam

0.7 m
0.04 m

b Width of cross section 0.14 m
h1
h2

Height of main beam
Height of thin beam

0.14 m
0.0005 m

r Density 7830 kg/m3

E Young’s modulus 210 GPa
� Poisson’s ratio 0.33
Nnode Node number 12
Ndof DOF number 21
Ne Beam element number 11
Nm Measured DOFs 21

Figure 3.
The experimentally

measured
translational and
rotational DOFs
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stiffness coefficients, the residual energy is calculated using both the “exact” linear model
(the solid curve in Figure 4) and the “erroneous” linear model (i.e. one with a reduced
Young’s modulus in element 3; the dashed curve in Figure 4). The results shown in Figure 4
indicate that the linear model error leads to a 30 per cent deviation from the true value for the
identified nonlinear stiffness parameter. This difference is due to the fact that the ECRE
values are biased by the model error present in the linear component and thus, the minima
no longer corresponds to the true value of the nonlinear stiffness.

4.3 The two-step approach: MHB-ECRE using two excitation magnitudes
In this section, the proposed, iterative, two-step approach is used to calibrate the model input
parameters of both the Young’s modulus of element 3 and the nonlinear stiffness (KNL) and
verify its ability to accurately calibrate the parameters without suffering the confounding
effects of error in both the linear and nonlinear components of the structure. The efficiency of
this iterative approach in its search algorithm to find the optimal input parameters is compared
to the discrete (DIME) approach which tests over a grid sampling of possible parameters.

The structure is excited at Node 3 using the lower amplitude periodic force (0.5 N) to obtain
the synthetic structural vibration response with negligible nonlinear effects. As shown in
Figure 5(a), the nonlinear effects lead to only a 1.5 per cent shift in the fundamental frequency of
the structural system, while no significant distortion can be observed in the frequency response
function (FRF) of the nonlinear beammodel with respect to the linear model. Hence, the obtained
dynamic response is predominantly linear. The ECRE calculated for all beam elements is shown
in Figure 6. From the figure, Element 3 (EL) is identified with the highest ECRE value, which is
consistent with the fact that an incorrect Young’smodulus value is assigned for this element.

The structure is then excited at the same location using the higher amplitude periodic
excitation (5N) to observe the synthetic nonlinear vibration. The FRF of the translational
DOF associated with the nonlinear spring is presented in Figure 5(b). A significant
distortion of 12.5 per cent in the FRF plots is observed where the peaks shift from 32 to 36 Hz
under high magnitude excitation, confirming that a sufficiently high force is applied to
observe the nonlinear response.

Figure 4.
Nonlinear parameter
identification result
when the linear
stiffness coefficient is
0.5 and 1
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Both IIME and DIME approaches are used to calibrate the selected model
parameters as presented in the Figure 7. The IIME approach is applied by solving
equation (15) using the Newton–Raphson algorithm. The convergence threshold for the
IIME approach is set to 10�10 for the norm of the relative solution vector between
iterations. In Figure 7, it is noticed that the IIME approach is completed within 5
iterations. The calibrated linear and nonlinear model parameters are 210.21 GPa and
6.08 � 109 N/m, respectively, which represent a 0.1 and 0.4 per cent deviation from the
true values, respectively. The detailed calibration results for each iteration are also
provided in Table II. For the DIME approach, a range of coefficients that multiply the
nonlinear stiffness (KNL) and Young’s modulus in the linear component (EL) is created
from 50 to 150 per cent of the true value with an interval of 10 per cent. These pre-
defined sets of model parameters are substituted into equation (15) and a surface plot of
the residual energy is shown in Figure 7. The detailed calibration results for each
iteration are also provided in Table II.

Figure 5.
Comparison of FRFs

at node 8 for the
linear beammodel

with and without the
nonlinear spring

Figure 6.
The ECRE

localization of model
error in linear
component
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5. Discussions on the performance of proposed method
In this section, the impact of measurement noise, number of response measurement locations,
and model error location on the accuracy of the proposed method is examined. The purpose of
conducting these studies is to evaluate the proposed approach’s robustness and to understand
how the method performs under a variety of realistic scenarios. All the calibration results
presented in this section are obtained using an identical procedure as detailed in Section 4.

5.1 Model calibration considering varying noise levels
All practical experimental data is inevitably contaminated by noise to some degree (Modak
et al., 2002). To assess the impact of measurement noise, in this section, the performance of

Figure 7.
The calibration result
for the linear and
nonlinear parameters

Table II.
Model calibration
results using IIME
approach

Iteration no.
Calibrated linear
parameter (GPa)

(%)
error

Calibrated
nonlinear parameter

(N/m)
(%)
error ECRE

0 105 �50.00 3.05� 109 �50.00 1.81� 10–5

1 159.18 �24.20 4.28� 109 �29.80 3.50� 10–5

2 182.28 �13.20 4.98� 109 �18.30 7.91� 10–6

3 223.86 6.60 6.80� 109 11.50 4.40� 10–6

4 210.21 0.10 5.99� 109 �1.80 5.18� 10–7

5 210.21 0.10 6.08� 109 �0.40 4.34� 10–7
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the proposed model calibration method is evaluated in the presence of varying levels of
noise. Accordingly, the two-step model calibration process is applied in the presence of zero
mean Gaussian white noise with varying standard deviations of 5, 10, 15 and 20 per cent.
For each noise level, ten random realizations of noise are generated to contaminate the time
history data and the calibrated model parameters are obtained using these contaminated
measurements.

The mean and standard deviation for the calibrated stiffness coefficients for these ten
realizations are shown in Figure 8. The solid line in Figure 8 shows that the linear stiffness
parameter is estimated with less than 1 per cent deviation from the true value when the noise
level is less than 15 per cent. With 20 per cent noise, the calibrated linear stiffness parameter
deviates by 5.6 per cent. The calibrated nonlinear stiffness parameter is observed to be more
sensitive to the measurement noise. The dashed line in Figure 8 shows that the nonlinear
stiffness parameter is accurately estimated with less than 1 per cent deviation when the noise
level is less than 10 per cent. As the noise level increases to 15 and 20 per cent, the calibrated
nonlinear stiffness parameter deviates by 6.1 and 11.2 per cent, respectively.

5.2 Model calibration with reduced set of measurements
In practical application, the number of measured response locations is limited by the feasible
number of sensors, measurement channels available and the inaccessibility of some
measurement locations (Majumder and Manohar, 2003). To assess the effect of such
limitations, this section evaluates he performance of the proposed two-step model
calibration approach by hypothetically reducing the set of measured DOFs. Three reduced
sets of measurements are used to obtain the multi-harmonic coefficient vectors as shown in
Figure 9. The first two measurements are with 10 (Figure 9 (a) and 5 (Figure 9 (b)

Figure 8.
Mean and standard
deviation error bars

illustrating the
calculated value of

the calibrated linear
and nonlinear

stiffness parameters
under a variety of

noise levels using the
proposed approach
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translational DOFs including the DOF at the nonlinear spring, while the last set of
measurements is with 5 (Figure 9 (c)) translational DOFs excluding the DOF at the nonlinear
component. Using the reduced set of measurements, the residual energy plot for model error
localization is shown in Figure 10.

As seen in Figure 11, the calibrated values for the nonlinear stiffness coefficient
match the true parameter values even when the number of measurements is as low as 5
DOFs. The value of the parameter associated with the linear element with error is
correctly calibrated with 10 measured DOFs, while an 8 per cent deviation from the true
values is present when only 5 DOFs are measured. When the DOF at the nonlinear
spring is not included in the measurement, Figure 12 shows that the linear calibrated
stiffness coefficient has a 12.3 per cent deviation from the true value, and the nonlinear

Figure 9.
Three sets of reduced
DOFmeasurements
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calibrated stiffness coefficient has a 26.1 per cent deviation from the true value. The
calibration of the nonlinear stiffness coefficient parameter is less affected by a reduced
set of measurements as long as the response associated with the nonlinear spring is
measured. It is concluded that it is important to measure the response as close to where
local nonlinearity is present as possible to ensure the accuracy of the results of the
proposed model calibration method.

Figure 10.
The ECRE

localization of linear
model error using

reduced sets of
measurements

Figure 11.
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5.3 The effect of model error location
The objective of this section is to investigate the effect the spatial distribution of modeling
error on the linear system on the obtained results for the calibrated model. Specifically, we
introduced model error to 7 different elements (elements 1 to 7) of the main beam, simulated
by reducing the Young’s modulus by 50 per cent. The model error in the nonlinear
component is kept the same as defined in Section 4 for the seven sets of calibration cases.
The proposed approach is applied to calibrate the linear and nonlinear structural component
parameters, and the calibration results are plotted in Figure 13(a) and (b), respectively. As
shown in the Figure 13(a) and (b), the convergence rate to the true value for the linear and
nonlinear stiffness parameters is similar (five iterations) for all seven cases regardless of the
model error location.

5.4 The effect of excitation force location
In this section, the effect of the location of the excitation force, and thus the distance between
the applied force location and nonlinear spring component on the performance of model
calibration results is evaluated (Figure 14). Similar to the calibration results presented in
Section 5.3, the unknown structural parameters mostly converge to the true value with the
proposed calibration approach. The calibration results for all seven force locations are
presented in Figure 13(c) and (d). Figure 13(c) shows that the averaged calibrated nonlinear
stiffness coefficient relative to the true value for different locations is 0.9992 with a standard
deviation of 0.0029.

Compared to the calibration of the nonlinear structural parameter, the average
calibrated linear stiffness coefficient is 1.0232, which deviates slightly from the true
parameter value (Figure 13 (d)). Also, a larger standard deviation of 0.0362 is observed
relative to the nonlinear stiffness calibration. Moreover, it can be concluded from
Figure 13(b) and (d) that the calibration of linear model parameters is affected by the

Figure 12.
Calibration results
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location of the excitation force relative to the location of the model error. As the
excitation force moves from the left end of the beam to the right end, the calibrated
linear parameters deviate more from the true parameter value. This effect may be
because as the magnitude of response becomes larger as the distance between force
location and nonlinear spring element decreases, the total response is more likely to be
dominated by the nonlinear effect. Thus, the accuracy of the linear parameter
calibration results is influenced.

Figure 14.
Seven locations for
applied excitation

force

Figure 13.
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6. Conclusion
This paper presents a two-step, nonlinear model calibration framework referred to as
IIME that simultaneously corrects modeling error in both linear and nonlinear
components based on the combined MHB-ECRE algorithm. An appealing feature of this
approach is that modeling errors in the underlying linear model can be isolated and
corrected, reducing their degrading effects in the model calibration of the nonlinear
component. For this, the modeling errors in the linear system are localized by applying
low magnitude excitation that ensures the dynamic response of the system remains
predominantly linear. Accordingly, subsequent optimization step for parameter
calibration is formulated to determine both the parameters associated with poorly
modeled linear components and those associated with the nonlinear components
without making any assumptions regarding initial linear model accuracy.

The proposed method has been demonstrated on a numerical example (the F3 project
benchmark structure) using synthetic measurements. The results show that the
Integrated MHB-ECRE method is capable of calibrating nonlinear models with model
error in both linear and nonlinear components. When model error is present in both
linear and nonlinear components, this two-step integrated MHB-ECRE calibration
approach has shown superiority to the conventional one-step MHB-ECRE approach of
previous literature, while providing more reliable calibration of the nonlinear
component parameter with less dependency on a priori knowledge of the accuracy of
the associated linear system. An iterative optimization process is developed for solving
the calibration problem so that the model parameters can be calibrated with less
computational cost and more accurate results compared to a discretized approach.

Work has also been conducted to quantify the influence of measurement noise, a reduced
set of measurements, and model error location on the proposed method. These studies show
that the method is quite robust against introduced measurement noise, especially in the
calibration of the linear component parameter to the true value. In addition, as long as the
structural response is measured close to the location of the nonlinearity, the method has
shown calibration capability with a relatively scarce set of measured data points. The
proposed method has been evaluated for a case that entails a spatially localized nonlinearity,
there is room for further work in testing the approach in calibrating other types of
nonlinearity, such as nonlinear material properties. One area for further work includes the
natural extension of this approach in increasing the applied excitation in a gradual manner
and assessing the residual energy between model predictions and the experimental
measurements. This extension would expand the proposed approach from a “two-step”
method to an iterative, multi-step approach. The authors believe that complicated systems
could benefit from this iterative series of increasing excitations to gradually improve the
predominately linear and then nonlinear model accuracy if the two responses cannot be
clearly distinguished from one another with a single excitation step. This is certainly an area
of further research in the development of a more universally applicable framework for
nonlinear system identification and calibration.
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