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ABSTRACT: Container Aedes mosquitoes are responsible for the transmission of anthroponotic and zoonotic viruses to people. The surveillance
and control of these mosquitoes is an important part of public health protection and prevention of mosquito-borne disease. In this study, we
surveyed 327 sites over 2weeks in late June and early July in 2017 in North Carolina, USA for the presence and abundance of Aedes spp. eggs
in an effort to better target potential Ae. aegypti collections. We examined the ability of 2 types of landscape data, Light Detection And Ranging
(LIDAR) and National Land Cover Database (NLCD) to explain the presence and abundance of eggs using principal component analysis to deal
with collinearity, followed by generalized linear regression. We explained variation of both egg presence and abundance for Aedes albopictus
(Skuse) and Aedes triseriatus (Say) using both NLCD and LIDAR data. However, the ability to make robust predictions was limited by variation
in the data. Increased sampling time and better landscape data would likely improve the predictive ability of our models, as would a better

understanding of oviposition behavior.
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Introduction

In the southeastern United States there are several important
mosquito vectors that utilize artificial container habitats.! The
3 most important are the naturalized Aedes aegypri L., the inva-
sive Aedes albopictus (Skuse), and the native Aedes triseriatus
(Say). As container-ovipositing mosquitoes, they lay desicca-
tion resistant eggs, which allows for easy sampling through
artificial containers as traps (ovitraps) and the transport of live
eggs.? Both Ae. aegypti and Ae. albopictus are found throughout
the globe and are implicated in the transmission of dengue,
chikungunya, and Zika viruses, with Ae. aegypti considered the
principal vector.3* Aedes triseriatus is also an important vector,
responsible for the transmission of La Crosse virus, a zoonotic
pathogen that primarily afflicts children in North Carolina.>®
Transmission of these viral pathogens is determined in part by
the presence and abundance of vectors, which is, in turn, deter-
mined by biogeographic factors at a variety of scales.

Aedes aegypti is confined to urban areas in the tropics and
subtropics, while Ae. albopictus (Skuse) is a cosmopolitan
mosquito, found in all continents except Australia and
Antarctica.”® Aedes albopictus is limited by dry conditions, but
can persist in Mediterranean climates, and is now found in
California, along with Ae. aegypti.>'° Aedes albopictus is ubiq-
uitous in human dominated areas throughout the eastern
United States, as far north as New York.”1113 Historically, Ae.
aegypti was found in North Carolina, but has only been
caught twice in the state since 2000, and in these instances
were likely transient populations.’*1> On the other hand, Ae.
albopictus is found in nearly every sampled location in North
Carolina, although its abundance varies.!3 The native eastern
tree-hole mosquito, Ae. friseriatus is found in deciduous
wooded areas east of the Rocky Mountains.1¢

The factors that determine the abundance of Ae. albopictus
and Ae. triseriatus are not well known at a local scale. There is

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).


https://uk.sagepub.com/en-gb/journals-permissions
mailto:mhreiski@ncsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1178630220952806&domain=pdf&date_stamp=2020-09-21

Environmental Health Insights

|:| Area Does Not Meet Criteria
- Low
[ Low-Mod
[ ] Mod
Mod-High
I High
—— Roads

A Sampling Sites

Brunswick County

Carteret County

Figure 1. Maps showing egg sampling locations in 6 counties in North Carolina. Blue to red scale shows estimated probability of Aedes aegypti, based
upon a priori land-use modeling from low to moderate (mod) to high. White areas failed to meet any criteria for inclusion, often either open water or
agricultural fields without any tree canopy. Black triangles show sampling locations within each county. At least half of sites were in areas proposed to

have a high risk of Ae. aegypti, but no Ae. aegypti were found.

some evidence that socio-economic factors are important,!7-1?
as well as environmental factors at various scales.”813:20-22
Several studies have suggested that local land-use is the most
important determinant of relative Ae. albopictus abundance,
outweighing socio-economic and temporal factors,!%23
although land-use may interact with temporal (eg, climate/
weather) and/or socioeconomic (eg, income/property value)
factors.?3

The characterization of land-use to predict mosquito species
presence and abundance has generally taken 3 approaches.?* First
is hand digitization from aerial images,?¢ which is very accurate,
but time consuming and 2-dimensional. The second is the use of
satellite images with classified land-use patterns as predictors,
which can provide large-scale coverages of areas with existing
data, but may be limited by pixel size (30m in commonly used
Landsat derived classification) and 2-dimensionality.?” Finally,
the recent availability of Light Detection And Ranging (LIDAR)
data, which uses light to image objects at various scales, provides
a third landscape data source. LIDAR data can be very fine-scale,
accurate, and 3-dimensional, possibly providing the best of hand-
digitization and widespread land-classification approaches.
However, LIDAR has not been applied frequently to mosquito
data, and then only in a limited context.?8

We had 2 goals in this study: (1) to develop and implement
an a priori landscape classification to assist local cooperators
with Ae. aegypti surveys and surveillance in North Carolina,

and (2) to examine the influence of spatial factors, as measured
by 2-dimensional National Landcover Classification Database
(NLCD) and 3-dimensional LIDAR data, on the presence and
abundance of artificial container utilizing mosquitoes in North
Carolina. To achieve these goals, we conducted a cross sectional
survey of container mosquitoes in 6 counties in North Carolina,
and then examined the ability of LIDAR and NLCD data to
explain variation in egg presence and abundance of container
mosquitoes.

Methods
Owerview of study system

In this study, we examined the distribution of container mos-
quitoes across the coastal plain and piedmont areas of North
Carolina, including the 2 major urban counties of Wake and
Mecklenburg. We chose these counties as the most likely
areas to encounter Ae. aegypti, being either coastal with a
moderate climate or urban.230 For each one of these 6 coun-
ties (Figure 1), we developed 4 priori landscape predictions of
Ae. aegypri habitat, then asked cooperators in those counties
to set 60 ovitraps, with at least 30 placed in areas with the
highest predicted likelihood of having Ae. aegypti (see red
areas in Figure 1). Cooperators were asked to place the other
30 ovitraps throughout their respective counties at their con-
venience. Cooperators were county or municipal workers
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Table 1. Priority of site selections for Ae. aegypti.
CATEGORY (GEOMETRY TYPE) LOGIC

Tire dump (point)

Concentration of migrant mosquitoes and many

WEIGHT (100%=PRIORITY SAMPLING)

100% (these are rare)3*

potential habitats for container-ovipositing mosquitoes

Impervious surfaces
(continuous)

Canopy cover (continuous)

Positively associated with Ae. aegypti in south Florida

Negatively associated with Ae. aegypti in south Florida

75% with more impervious surfaces?s

25% with canopy?®

(about 50%), but positively associated with Ae.
albopictus. May be important in providing habitat near
impervious surfaces (eg, the parking lot effect)

Housing density (continuous)
Ports (point)
Vehicular traffic (continuous) More migrant mosquitoes

Landfills/dumps/convenience

centers (point) probability of migrants

Cemeteries (point)
container mosquitoes

Outdoor recreation (point)
Ae. aegypti preferred habitats

Historic districts (area)
Commercial traffic nodes (point)

Socioeconomic status

More humans=more human associated mosquitoes

Traffic flow node, likely entry site for mosquitoes

Container and junk concentrations, increased

Convenient sampling; used in other studies of

Preferred Ae. aegypti habitat in Key West
Increased opportunity for migrant mosquitoes

Poorer housing construction/accumulation of container

50% with high housing density3®
100% with presence (ports are points
and not polygons, potentially
underestimating area)3é

25% with higher traffic37.38

75% with presences?4:38

50% with presence??

Concentrations of humans for blood-feeding, may be 75%

90% with older housing
50%°57

50% with lower SES"

habitats/less reliance on air conditioning

already engaged in some mosquito surveillance or control
activities as a part of their normal routines. Ovitraps are use-
ful because of their ease of use, sensitivity to the presence of
Aedes

mosquitoes.?31,32

container spp., and correlation with biting

A priori Landscape Prediction of Aedes aegypti

Presence

We generated predictions of likely Ae. aegypti populations
based upon several factors taken from the literature, as well as
expert opinion of the authors based upon field experience
(MSD and MHR) concerning both population establishment
(eg, migration) and persistence (Table 1).33 The weights given
to factors were decided based upon the literature as well as
desiring to capture certain landscape features, including sites of
tire or trash concentration. As these predictions needed to be
operational for mosquito control personnel, certain abiotic fac-
tors, like temperature and precipitation that are highly predic-
tive of Ae. aegypti presence at coarse-scales® were not useful in
this context, because the variation in available temperature and
precipitation data was not large enough within a county. We do
suspect that fine-scale variation of precipitation and tempera-
ture could impact population dynamics, but as we were col-
lecting data over a short time frame, we did not deem this
critical. Some factors were not weighted, but included in

instructions for placement, such as prioritizing outdoor areas
where people are likely to congregate.

Sampling of container Aedes mosquitoes

We provided instructions and sampling material to mosquito
control employees (hereafter “cooperators”) in each county to
collect the egg-stage of container Aedes, following published
protocols.3 Briefly, we sent all cooperators sixty 473-ml black
plastic cups (“ovitraps”) (www.discountfavors.com), printed
with information about the survey and contacts, 76# seed ger-
mination paper (Anchor Paper Co., Plymouth, MN USA) cut
into 8.9 X 25.4 cm strips for placing in the cups to collect eggs
(“ovistrip”), and a written protocol for trap placement and
handling (available upon request from the corresponding
author). Each cooperator was assigned an individual university
partner for the duration of the study and received mailing
information to send eggs to a university partner for hatching
and identification. Pitt and New Brunswick Counties used
East Carolina University (ECU), Wake and New Hanover
Counties used North Carolina State University (NCSU), and
Mecklenburg and Carteret Counties used Western Carolina
University (WCU). All cups had a weep-hole drilled to pre-
vent overflow (eg, due to rainfall), making the water volume in
each cup ~350ml. We instructed cooperators to attach the
cups to existing structures (eg, trees, fences, etc.) on the ground
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Table 2. Description of total eggs, Ae. albopictus and Ae. triseriatus larvae reared from egg, and proportion of sites positive for eggs, Ae.
albopictus, and Ae. triseriatus, by county.

COUNTY N TRAPS

SITES

PROPORTION
(+) FOR EGGS

MEAN
AEDES SPP.
EGGS/TRAP

PROPORTION
(+) FOR AE.
ALBOPICTUS

MEAN AE.
ALBOPICTUS/
TRAP

PROPORTION
(+) FOR AE.
TRISERIATUS

MEAN AE.
TRISERIATUS
PER TRAP

Brunswick 70 0.886 (62/70) 51.01
Carteret 63 0.841 (53/63) 74.4

Mecklenburg 58 0.931 (54/58) 96.77
New Hanover 51 0.902 (46/51) 66.96
Pitt 28 0.929 (26/28) 55.32
Wake 57 0.930 (53/57) 80.65
Total 327 0.896 (293/327) 71.65

level in a shaded location away from foot traffic; the specific
trap location within these parameters was guided by our a
priori Ae. aegypti preference maps (Figure 1). Cooperators
were asked to fill the cup with tap water, line it with the ovis-
trip, and set in the field for 7days. After 7 days, the ovistrip
was collected, and any water in the cup discarded. Cooperators
placed each ovistrip in a separate, labeled plastic bag (Whirl-
Pak®, Nasco, Fort Atkinson, WI USA) or sealable sandwich
bag, before sending it to the assigned university partner for
processing. Seven days was chosen as the maximum amount of
time without risk of generating adult mosquitoes, as well as a
standard for ovitrapping studies.*® Cooperators were asked to
conduct the survey over 2weeks, with 30 sites each week, in
late June to early July 2017 to standardize the timing across all
counties. This window was based upon seasonal activity pat-
terns of Ae. aegypti and Ae. albopictus in areas of co-occurrence
in Florida, which suggest Ae. aegypri (our main target) occurs
earlier in the summer.3%# Each site was only trapped once (for
1week), and we received a total of 373 ovistrips from the 6
participating counties over the course of the summer. Thirty-
two from Pitt County were collected late July and early
August, and were removed from the data set. Another 12 sites
had unidentifiable locational data, and were also removed
from the data set. Although 60 sites were the goal for each
county, 2 counties, Brunswick and Carteret, set 70 and 63
traps, resulting in a final data set of 327 sites out of a possible

377 sites (Table 2).

Handling of ovistrips, egg counting, and

identification

When the ovistrips were received at each university, we counted
the total mosquito eggs, noting those that appeared to have
hatched (the apical cap having dehisced). We then placed ovis-
trips in a nutrient broth (1:1 ratio yeast:liver powder, 0.15 g/1 of
water) to facilitate hatching. Larvae were allowed to grow in

0.771 (54/70) 19.1 0 0
0.746 (47/63) 19.03 0.063 (4/63) 3.13
0.862 (50/58) 23.57 0.241 (14/58) 3.39
0.882 (45/51) 24.43 0 0
0.929 (26/28) 19 0 0
0.772 (44/57) 33.95 0.105 (6/57) 0.895
0.844 (276/327)  23.29 0.073 (24/327)  1.36

this media to fourth instar or pupae. We identified the mosqui-
toes as either fourth instar larvae or as adults, following

Harrison et al.* All hatched eggs were identified.

Landscape data

LIDAR data acquisition and processing. Light Detection and
Ranging (LIDAR) is a remote sensing method used to gen-
erate precise, 3-dimensional information about the shape of
the Earth and its surface characteristics. LIDAR data were
obtained from the NC Department of Public Safety (https://
sdd.nc.gov/sdd/). These data are part of a statewide LIDAR
dataset acquired for the NC Floodplain Mapping Program
over the course of 4years in 4 different phases (Table 3).42
Phases 1 to 3 were collected in leaf-off conditions during
2014 and 2015 using a traditional linear aerial sensor col-
lected at 2 points per square meter (ppsm). Phase 4 utilized
the new Geiger technology, which allowed for a 30 m post
spacing collection with 8 ppsm processed and delivered. All
data included multi-return and intensity values and were
collected to support a 9.25cm (3.36inch) RMSEz for non-
vegetated areas based on National Digital Elevation Program
(NDEP) guidelines. All data meet the United States Geo-
logical Service LIDAR Base Specifications, ASPRS Guide-
lines for Vertical Accuracy, and North Carolina Technical
Specifications for LIDAR Base Mapping.*3 LIDAR points
were classified by the vendor. All geospatial deliverables were
produced in NAD83 (2011) North Carolina State Plane
Coordinate System, US survey feet, NAVD88 (Geoid 12A),
US survey feet; data for Phase 4 is in Geoid 12B. LIDAR
data were processed for areas within a 100-m buffer around
each of the 327 sampling sites, consistent with other studies
focused on container Aedes sp., and their dispersal dis-
tances.*»* The classification of LIDAR data returns in
accordance with a classification scheme to identify the type

of target from which each LIDAR return is reflected. The
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Table 3. LIDAR data acquisition characteristics.

COUNTY ACQUISITION YEAR
Carteret Phase 1 2014
Pitt Phase 1 2014
Brunswick Phase 2 2014
New hanover Phase 2 2014
Wake Phase 3 2015
Mecklenburg Phase 4 2016

Table 4. LIDAR- and NLCD-derived model variables. Note that all NLCD
variables are percentages of the areas around each collecting site.

LIDAR-DERIVED VARIABLES NLCD-DERIVED VARIABLES

Elevation at the central point for Open water
each buffer zone (m)

Maximum canopy height (m)
Average canopy height (m)

Standard deviation for average
canopy height (m)

Percent vegetation cover from

Developed, open space
Developed, low intensity

Developed, medium
intensity

Developed, high intensity

ground level to 2m high (%)
Percent vegetation cover from 2m Barren land
to 7m high (%)

Percent vegetation cover from5m  Deciduous forest
to 7m high (%)

Percent vegetation cover above
7m high (%)

Evergreen forest

Ground (<1.0m) (%) Mixed forest

Low veg/strata (0.5m < 2.0m) (%)  Shrub/scrub

Medium veg/strata (2.0 < 5.0m) Grassland/herbaceous

(%)

Buildings (%) Pasture/hay

Roads (%) Cultivated crops

Woody wetlands

Emergent herbaceous
wetland

process allows future differentiation between bare-earth ter-
rain points, water, noise, vegetation, buildings, other man-
made features, and objects of interest. Various data were
extracted from the classified point cloud data (PCD) for use
as predictor variables in statistical models (Table 4). Noise
points subsequently identified during manual classification
and quality assurance/quality control were assigned the
appropriate standard LAS classification values for noise.
Noise classes are primarily used to denote points that are

TECHNOLOGY RESOLUTION
Linear aerial sensor 2 ppsm
Linear aerial sensor 2 ppsm
Linear aerial sensor 2 ppsm
Linear aerial sensor 2 ppsm
Linear aerial sensor 2 ppsm
Geiger sensor 8 ppsm

valid but not earth-bound (for example, birds) or spurious
(for example, artificially induced deviations in elevation at or
near land/water interfaces). Further, unclassified points can
also result in “noise” in the point cloud dataset as these points
are processed and present in the dataset, but are not assigned
to a particular class, so they can be representative of one of
several classes (eg, road, water, vegetation, etc.). Predictor
variables were generated by rasterizing the PCD then calcu-
lating land cover class percentage statistics. By rasterizing
the PCD, pixels were created and assigned the primary land
cover class that occurs in the 100-m PCD directly above that
pixel. The result is a “bird’s eye view” of the land cover class
present in each 1-m pixel. The advantage of this type of ras-
ter-based land cover classification is the ability to look
beneath the tree canopy rather than seeing only the tree tops.
For example, in a traditional image-based land cover classifi-
cation, if a tree canopy is dominant across several pixels in an
image, they will be classified as vegetation. By using the clas-
sified PCD to create a LIDAR-based land cover classifica-
tion, we are able to see other classes, such as grassy or
impervious surfaces, that may cover the ground beneath the
tree canopy, and these pixels can be classified accordingly.

National land cover database (NLCD) acquisition and process-
ing. National Land Cover Database (NLCD) is an ongoing
land cover modeling effort to produce current, nationally con-
sistent, land cover products for all 50 states and Puerto Rico
using satellite imagery and remote sensing-based image clas-
sification techniques. The most recent NLCD product from
2016 was obtained from the Multi-Resolution Land Charac-
teristics Consortium. The NLCD is a ready-to-use remote
sensing product so no analysis is needed to extract land cover
information. These data, however, are created from Landsat
satellite imagery, and thus have 30 m pixels, versus the 1 m pix-
els of the LIDAR-based classification. That said, these prod-
ucts contained much more detailed land cover information
than the LIDAR-based classification (see Table 4), such as the
locations of open water, and more detailed information about
vegetation and impervious class characteristics (eg, deciduous
versus evergreen forest and low-, medium-, and high-intensity
development). We used the same 100-m buffers around the
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327 sampling sites to examine NLCD-based land cover class
percentages for pixels within buffers at each location, and these
were used as predictor variables in statistical models.

Statistical analyses

We examined and compared the ability of 3-dimensional
LIDAR PCD and 2-dimensional NLCD data to explain the
variation in the presence and number of dedes eggs, Ae. albopic-
tus,and Ae. triseriatus between ovitraping locations. Abundance
of Ae. albopictus, and Ae. triseriatus, and total eggs was modeled
using a negative binomial distribution, while presence was
modeled using a binomial distribution. In addition, a hurdle
model was included for all models to account for zero-infla-
tion. We found strong support for using zero-inflated models,
with the zero-inflated parameter significant in all cases
(P<.0001), and visual inspection of the distribution of egg
counts.*® Models were fit in R,* using the pscl package*®* for
hurdle models.

Three datasets were used to model each of the response
variables. The first used exclusively variables from the LIDAR
dataset, the second exclusively used variables from the NLCD
dataset, and the third combined both datasets. Due to issues
with non-identifiability and correlation that are inherent to
both the LIDAR and NLCD data, model fits using the origi-
nal datasets were not possible. Instead, we chose to transform
the datasets using principle component analysis (PCA).%
Models were then fit to the transformed observations for each
dataset.

Model fits using the LIDAR and NLCD dataset were then
compared using AIC to determine which dataset provided a
better fit for the responses, with each then compared to the
final combined model to determine if any additional informa-
tion was gained by using both datasets in conjunction. Data are

available on Dryad (www.datadryad.org).

Results

Descriptive results

In spite of our @ priori attempts to identify and trap in likely Ae.
aegypri habitats, no Ae. aegypti were found. Likewise, Ae. hen-
dersoni was not caught in any locations. Aedes japonicus was rare,
with only 8 sites positive for this species across the 327 sur-
veyed sites, which precluded statistical analyses. On the other
hand, container Aedes spp. eggs were commonly found (89.6%
of sites), and Ae. albopictus was by far the most common species
found (84.4% of sites, found in every county). Aedes triseriatus
was not common, found in only 7.3% of sites, only in Carteret,
Wiake, and Mecklenburg Counties (Table 2), but had sufficient

numbers to be analyzed.

Prediction of abundance

The summary results of all model selections are presented in
Table 5. Each principal component is comprised of all original

variables weighted to different degrees. The loadings for each
principal component for the 3 model sets is available in the
supplementary materials. The models built using principal
components from NLCD variables explained slightly more
variation in egg and 4. albopictus abundance than the principal
components constructed from LiDAR variables, though nei-
ther explained more than 3% of the variation in abundance.
The combined model built from both LiDAR and NLCD
variables explained the most variation in abundance for eggs, 4.
albopictus, and A. triseriatus, with a pseudo-R? of 1.87%, 2.39%,
and 5.73% respectively.

Prediction of Aedes albopictus and Aedes
triseriatus Presence

As with the abundance models, the principal components
models built using both LIDAR and NLCD variables explained
the most variation in presence of 4. albopictus and A. triseriatus
eggs (pseudo R2=12.27% and 43.64% respectively). The model
built using LiDAR variables explained more variation in both
A. triseriatus presence than the NLCD-based model (pseudo
R?=25.98% and 23.79% respectively), and 4. albopictus pres-
ence (pseudo R?>=6.28% and 4.26% for the LiDAR- and
NLCD-based models, respectively).

Discussion

We did not find Ae. aegypti in counties surveyed here, which
agrees with other recent surveys,'® and may suggest that other
reports represent transient observations.* Aedes aegypti is gen-
erally considered the principal vector of dengue, Zika, and chi-
kungunya viruses, and its absence likely means a lower risk of
transmission of these anthroponoses. However, we did find Ae.
albopictus in a vast majority of sites across the 6 counties. The
ubiquity of this competent vector of human arboviruses sug-
gests at least some risk of pathogen transmission and human
disease almost everywhere we sampled.

Although our data suggest the vast majority of eggs were Ae.
albopictus with a minority Ae. triseriatus (and no Ae. aegypti or
Ae. hendersoni were detected, although theoretically possible) we
decided to analyze presence of Aedes spp. eggs, even though it
might be confounded by the potential mixture of 2 (or more)
species. We did this because there were some ovitrap papers that
did not hatch, but we still wanted to see if there were landscape
correlates with Aedes spp. egg presence. In keeping with the
observation that >75% of eggs that did hatch were Ae. albopic-
tus, the model for any Aedes spp. egg presence and Ae. albopictus
presence was similar, and our model was only able to explain a
small amount of the variation in presence. The remarkable
ubiquity of Ae. albopictus eggs likely limited the ability of the
presence/absence model to explain variation, with Ae. albopictus
only absent at a few sites. The presence of Ae. triseriatus eggs
was the most well modeled of the outcomes compared, which
may reflect their relative rareness in the landscape. Our model
approach does not provide us with biologically interpretable
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Table 5. Summary results for models using principal components (PCs) derived from LiDAR variables, NLCD variables, and combined LIDAR &
NLCD variables, including the PCs retained using the broken stick method, the PCs that were statistically significant, and the pseudo R2. Variable

loadings available in supplementary materials.

MODEL SIGNIFICANT PCS
LIDAR models: 13 principal components

Egg abundance

A. albopictus abundance PC 2 (P=.0315); PC 5 (P <.0010)

A. triseriatus abundance PC 13 (P=.0427)
A. albopictus presence PC 6 (P=.0147); PC 13 (P=.248)

A. triseriatus presence

NLCD models: 14 principal components
Egg abundance

A. albopictus abundance
A. triseriatus abundance
A. albopictus presence None
A. triseriatus presence PC 1 (P=.0409); PC 2 (P=.0489)
Combined LiDAR & NLCD models: 27 principal components

Egg abundance

PC 2 (P=.0269); PC 5 (P <.0010); PC 7 (P=.0340)

PC 1 (P<.0010); PC 3 (P=.0233); PC 6 (P=.0043)

PC 5 (P=.0020); PC 9 (P=.0196); PC 11 (P=.0247)

PC 5 (P=.0115); PC 9 (P=.0024);PC 11 (P=.0148)
PC 5 (P=.0098); PC 8 (P=.0264); PC 10 (P=.0380)

PC 3 (P=.0136); PC 5 (P=.0057); PC 6 (P=.0061); PC 9 (P <.0010); PC 10

PSEUDO R?

0.0082

0.0094

0.0504
0.0628

0.2598

0.0096
0.0134
0.0417
0.0426

0.2379

0.0187

(P=.0436); PC 14 (P=.0196); PC 15 (P=.0208); PC 16 (P=.0029); PC 24 (P=.0185)

A. albopictus abundance

PC 3 (P=.0010); PC 5 (P=.0033); PC 9 (P<.0010), PC 10 (P=.0065);

0.0239

PC 14 (P=.0186); PC 15 (P=.0215); PC 16 (P=.0059)

A. triseriatus abundance

PC 2 (P=.0173); PC 3 (P=.0087); PC 4 (P=.0273); PC 9 (P=.0278); PC 11

0.0573

(P=.0107); PC 12 (P=.0303); PC 13 (P=.0431); PC 15 (P=.0187)

A. albopictus presence PC 18 (P=.0124), PC 19 (P=.0027)

A. triseriatus presence PC 22 (P=.0440)

variables. The abundance of all species eggs was poorly pre-
dicted by our models, possibly because egg abundance is deter-
mined by environmental and behavioral factors which are not
correlated with landcover, including weather events, presence of
other containers, and skip-oviposition behavior known from
these species.

Although significant models were generated to explain the
variation in egg counts using LIDAR, NLCD or a combina-
tion, neither LIDAR nor NLCD classifications resulted in
robust models capable of explaining much variation in egg
presence or abundance. There may be several reasons for this.
Although LIDAR data has the potential to provide a very fine-
scale estimation of surrounding landscape variables, many of
our sites had a large percentage of unclassifiable data points
(“noise”) that suggest the LIDAR data processing could be
improved. This is beyond the scope of our study to address. The
NLCD data was not very effective at explaining the egg distri-
bution patterns and may be due to the coarseness (30 m pixels)
of the coverage relative to the pertinent biological distribution
of these species. Furthermore, our biological sampling may also
be problematic. These data posed statistical difficulties, with an

0.1227

0.4364

inherently high degree of correlation between explanatory vari-
ables, in addition to the standard difficulties associated with
modeling count data. We address this using principal compo-
nent analysis,”® but we lose interpretability with this approach.

We attempted to describe the patterns of abundance across
a large area with synchronous, short term sampling of the egg
stage of container Aedes. This presented a number of advan-
tages and disadvantages. Ovitrapping puts minimal training
expectations on public health, environmental health, or other
municipal employees, allowing them to add the collection into
their routine work.? The desiccation resistance of eggs allows
them to be shipped to central receiving locations, hatched, and
identified by experts.>!® With some coordination, this allowed
us to sample from 327 sites within a 2-week period. However,
egg counts over a single trapping period present the statistical
difficulties of fitting a negative binomial model with inflation
of cups not having any eggs. In spite of the large sample size,
the structure of the data limited the strength of our inference.
Furthermore, egg counts may not strongly correlate with adult
abundance, so inferring risk of pathogen transmission may be
problematic from these data.3? This deficit might be addressed



Environmental Health Insights

by season long ovitrapping® or trapping host-seeking or egg-
laying adults. Targeting adult mosquitoes is one step closer to a
public health outcome (eg, biting abundance or pathogen
infection rates), but would likely require repeated sampling to
properly characterize the mosquito population at a given loca-
tion and may still lack predictability.>! Finally, we did not assess
the degree to which county cooperators were able to follow
instructions, so we cannot be sure of the consistency in trap
placement across counties. This may confound the biological
differences between counties with the implementation of the
surveillance program, and county level differences should be
interpreted with caution.

However, as a general conclusion neither of these data
sources explained much variation in egg counts. LIDAR data
still has tremendous promise in modeling mosquito distribu-
tions, but there will also be a need for appropriate, robust sam-
pling of mosquitoes. Furthermore, the LIDAR data itself,
provided by, in this case, the state of North Carolina, can be
improved with better processing and improved data capture
technology. The ultimate goal of making accurate predictions
of container Aedes densities via remotely sensed data remains
elusive, but is a worthwhile pursuit.
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