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Abstract— Time-synchronized state estimation for reconfig-
urable distribution networks is challenging because of limited
real-time observability. This article addresses this challenge by
formulating a deep learning (DL)-based approach for topology
identification (TI) and unbalanced three-phase distribution sys-
tem state estimation (DSSE). Two deep neural networks (DNNs)
are trained for fime-synchronized DNN-based TI and DSSE,
respectively, for systems that are incompletely observed by
synchrophasor measurement devices (SMDs) in real time. A data-
driven approach for judicious SMD placement to facilitate
reliable TI and DSSE is also provided. Robustness of the proposed
methodology is demonstrated by considering non-Gaussian noise
in the SMD measurements. A comparison of the DNN-based
DSSE with more conventional approaches indicates that the
DL-based approach gives better accuracy with smaller number
of SMDs.

Index Terms—Deep neural network (DNN), state estimation,
synchrophasor measurements, topology identification (TI).

I. INTRODUCTION

EAL-TIME monitoring and control of distribution net-

works was traditionally deemed unnecessary because it
had radial configuration, unidirectional power flows, and pre-
dictable load patterns. However, the fast growth of behind-the-
meter (BTM) generation, particularly solar photovoltaic (PV),
electric vehicles, and storage, is transitioning the distribution
system from a passive load-serving entity to an active market-
ready entity, whose reliable and secure operation necessitates
real-time situational awareness [1], [2]. Phasor measurement
units (PMUs), distribution-PMUs (D-PMUs), and/or micro-
PMUs, collectively referred to as synchrophasor measurement
devices (SMDs) in this article, have been introduced into
the distribution system to provide fast (subsecond) situational
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awareness by enabling time-synchronized estimation [3]-[5].
However, the number of SMDs in a typical distribution net-
work is not large enough to provide an independent assessment
of the system state. The assumption of Gaussian noise in
synchrophasor measurements has also been disproved recently
[61. [71.

At the same time, modern distribution systems are being
equipped with advanced metering infrastructure (AMI) in the
form of smart meters. By 2020, 100 million+4 smart meters
had been installed in the U.S. alone [8]. Hence, prior research
has combined smart meter data with SMD data for facilitating
distribution system state estimation (DSSE) [9]. However,
smart meters measure energy consumption from 15 min to
hourly time intervals and report their readings after a few
hours or even a few days [10]. These two aspects make smart
meter data unsuitable for real-time DSSE. Moreover, smart
meter data are not time-synchronized, which makes their direct
integration with SMD data a statistical challenge.

To overcome the need for large numbers of real-time
sensors, prior approaches for performing DSSE have used load
forecasts as pseudo-measurements [11], [12]. However, it has
been shown in [13] that using forecast/pseudo-measurements
in real time can deteriorate estimation performance. Instead,
the work of [13] proposed a Bayesian approach that trained
a deep neural network (DNN) to circumvent the real-time
unobservability problem. However, the approach was not vali-
dated for three-phase unbalanced distribution systems. In [14],
an artificial neural network was created for three-phase unbal-
anced DSSE. However, smart meter measurements were not
considered in the analysis (only micro-PMU measurements
were used) and loads were varied by a Gaussian distribution
which might not correctly represent system behavior. A sparse-
tracking state estimator for unbalanced distribution systems
that are incompletely observed by D-PMUs was developed
in [15]. However, it required additional information from event
data that may not be always available and was restricted to
radial networks. A three-phase DSSE based on a Bayesian
fusion procedure was proposed in [16] to account for the
different temporal aspects of the states and measurements.
However, due to the heavy computational burden of the
procedure, it could not handle non-Gaussian loads and mea-
surement noise. Moreover, in [11]-[16], the system topology
was assumed to be fixed.

As the topology of a distribution network changes with
time, it is important to consider its impacts on DSSE [17].
In [18], mixed integer linear programming was used to
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estimate the topology of distribution networks. However,
the methodology required real-time measurements from line
flow meters and smart meters, which are not available in
most distribution systems. In [19], a graph-based optimization
framework was proposed to recover the topology of radial
distribution networks using a limited number of real-time
meters. However, meshed grids and unbalanced multiphase
distribution systems were not considered. In [20], a data-
driven probabilistic network model was used for topology
recognition. However, the method relied on smart meter data
which made it unsuitable for real-time knowledge of network
topology. In [21], a time-series signature verification method
was used to track topology changes from streaming micro-
PMU measurements. One switching at a time and prior
information of the switch status were two assumptions that
limited the usefulness of this method. In [22], a machine
learning (ML)-based framework was proposed for topology
identification (TI). However, the need for nodal currents,
voltages, and power-factor angle of each phase limited its
real-time applicability. In [23], a two-step numerical method
was proposed to perform topology estimation. However, the
method was too slow for real-time monitoring and was limited
to balanced networks. Xu et al. [24] performed real-time state
and topology estimation in unbalanced distribution networks.
However, it used forecast load data as pseudo-measurements,
which can deteriorate its performance. Lastly, a systematic
approach for identifying measurement locations that boosted
estimation performance was not considered in [18]-[24].

This article addresses the knowledge gaps identified above
by making the following salient contributions.

1) A DNN-based TI is proposed to estimate switch statuses
in real time from sparsely placed SMDs.

2) A DNN-based DSSE for unbalanced three-phase distrib-
ution networks is developed that estimates states (voltage
phasors) in a fast, time-synchronized manner for both
radial and meshed networks.

3) Transfer learning is employed to account for the effects
of topology changes on DNN-based DSSE.

4) A judicious approach for SMD placement to facilitate
reliable TI and DSSE is presented.

5) Robustness of the proposed method is demonstrated by
considering non-Gaussian noise in SMD measurements.

II. MOTIVATION AND THEORETICAL BACKGROUND

A. Need for ML for Time-Synchronized DSSE

Time-synchronized state estimation in distribution networks
using classical approaches, such as least-squares, requires the
system to be completely observed by SMDs. However, it is
highly unlikely that, at least in the near future, a distribution
system will be equipped with as many SMDs as is required for
complete real-time observability. To circumvent the problem
of scarcity of SMDs for doing time-synchronized DSSE,
a Bayesian approach is formulated in this article in which
the state, x, and the measurement, z, are treated as random
variables. A minimum mean-squared error (MMSE) estimator
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is then created to minimize the estimation error as follows:
min E(l x —2@) I”) = £*@) =E(x | 2). (1)

The MMSE estimator directly minimizes the estimation
error while classical estimators, such as least-squares, mini-
mize the modeling error embedded via a measurement function
that relates the measurements with the states. By circum-
venting the need for the measurement function, the real-time
observability requirements get bypassed in a Bayesian state
estimator [13]. However, in (1), there are two underlying chal-
lenges to compute the conditional mean. First, the conditional
expectation, which is defined by

+oo
E(x|2) = f Pl @)

o0

requires the knowledge of p(x, z), the joint probability density
function (PDF) between x and z. When the number of SMDs
is scarce, the PDF between SMD data and all voltage phasors
is unknown or impossible to specify, making direct compu-
tation of £*(z) intractable. Second, even if the underlying
joint PDF is known, finding a closed-form solution for (2)
can be difficult. A DNN is used here to approximate the
MMSE state estimator as a DNN has excellent approximation
capabilities [25]; i.e., the DNN for DSSE finds a mapping,
X(-), that relates x and z.

B. Transfer Learning

Now, a DNN can successfully approximate E(x|z) for
a given topology. However, once the topology changes, the
distribution of the inputs (i.e., SMD measurements), for which
the DNN had been trained, changes. This is the best realized
from the fact that the direction of the currents in a feeder
can reverse when topology change occurs. Thus, there is a
need to update the trained DNN once the topology changes.
One way to do this is to train the DNN for DSSE afresh for
every new topology. However, doing so may take a long time.
An alternate (better) solution is to use Transfer learning to
transfer the knowledge gained from the old topology to the
new topology.

Transfer learning tries to improve the learning of the target
prediction function in the target domain using the knowledge
available in the source domain and task. A domain D com-
prises two parts: a feature space, Z, and a marginal probability
distribution, P(z). Given D, a task T comprises two parts: a
label space, X, and an objective prediction (mapping) function,
XK(-). In DNN-based DSSE under varying topologies, Z does
not change as the same SMD measurements will be used for
different topologies. However, P(z) changes because loads
are served by different paths when topology changes. i.e.,
Dy # Dr. Similarly, X does not change because the number
of states (i.e., voltage phasor at each node) and their nature
are the same. However, X(-), must be retrained for the target
domain, i.e., Ty # JT7. In accordance with this problem setup,
inductive Transfer learning [26] is applied in this article to
induce the transfer of knowledge gained from D, and T (old
topology) to Dy and Tr (new topology).
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Four approaches have been proposed for implementing
inductive Transfer learning: feature-representation transfer,
instance transfer, relational-knowledge transfer, and parameter
transfer [27]. Here, we use parameter transfer to update the
DNN for DSSE as the DNN’s parameters can be used for
multiple domains. Two well-known parameter-based trans-
fer learning methods are parameter-sharing and fine-tuning,
respectively. Parameter-sharing assumes that the parameters
are highly transferable due to which the parameters in the
source domain can be directly copied to the target domain,
where they are kept “frozen.” Fine-tuning assumes that the
parameters in the source domain are useful, but they must
be trained with limited target domain data to better adapt to
the target domain [28]. Since there is no guarantee that the
parameters of the DNN-based DSSE will be highly trans-
ferable for different topologies, fine-tuning is used in this
article to update the weights of the DNN for DSSE when
topology changes. Essentially, fine-tuning provides a more
effective initialization (than random initialization) by using the
weights from the previously well-trained DNN. By doing this,
it bypasses the need for large amounts of data (and time) for
DNN retraining (see Section V.D for the implementation of
the proposed methodology).

C. Hyperparameter Tuning

One of the main challenges in DNN training is hyper-
parameter tuning. The hyperparameters that typically need
tuning are batch size, dropout rate, number of hidden layers,
number of neurons in each hidden layer, learning rate, and
optimizer. Hyperparameter tuning is usually performed by
grid search, Bayesian search, or random search. Grid search
iterates over every combination of hyperparameter values and
is therefore computationally very expensive. The Bayesian
approach creates a probabilistic model of metric score as a
function of the hyperparameters and chooses parameters with
high probability of improving the metric. Although it shows
good performance for small number of continuous parameters,
it does not scale to large number of different hyperparameters.
The random search goes through different combinations of
predefined sets of hyperparameters to identify the combination
that gives the best result (lowest validation loss) [29]. As it
has reasonable computational burden and good scalability,
Random search was used in this article for hyperparameter
tuning.

III. DNN ARCHITECTURE FOR DSSE AND TI1
A. DNN Architecture for DSSE

The basic structure of the proposed DNN is shown in Fig. 1.
Its inputs are the z obtained from SMDs, the outputs are
the estimated voltage phasors, £%(z), m refers to the size
of z, n refers to the total number of states to be estimated,
a denotes the activation function, b denotes the bias, and
W refers to the weights conveying the output of previous
neurons to the neurons of the next layer. Dropout is also
applied to avoid overfitting; its effect is shown in Fig. 1 by
dotting some of the circles in the hidden layers. Note that
for a distribution network that is incompletely observed in
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Hidden layers

Fig. 1. Basic DNN architecture for DNN-based DSSE with dropout.

real time, n 3> m. The number of neurons and hidden layers
are hyperparameters that must be tuned offline. The rectified
linear unit (ReLLU) activation function is used for the hidden
layers, while a linear activation function is used for the output
layer. The loss function is chosen to be the empirical mean-
squared error which is consistent with the Bayesian approach.
During the offline training process, the weights are optimized
to minimize the mean-squared error using the backpropagation
algorithm [30]. In real-time operation, SMD data are fed into
the trained feed forward DNN and the estimated state, £*,
is obtained.

B. DNN Architecture for Topology Identification (TI)

The DNN for DSSE shown in Fig. 1 is trained based on the
assumption that the topology of the system is known and fixed.
However, when a topology change occurs, this DNN, which
is trained for the old topology, will receive test data from
another feature space that corresponds to the new topology.
As this might lower the performance of this DNN, a sequential
procedure is adopted in which the new topology is identified
first by a different DNN, and the DNN for DSSE is updated
afterward based on the identified (new) topology.

As opposed to the regression DNN that was built for DSSE,
a classification DNN is built for DNN-based TI in which
the measurements from sparsely placed SMDs are used to
track the switch statuses in real time. In the DNN for TI, the
number of neurons in the output layer is equal to the number
of feasible topologies in the network,! the SoftMax function
is used as the activation function for the output layer, and
the categorical cross-entropy is chosen to be the loss function
(the inputs and activation function for the hidden layers are
the same as the DNN for DSSE). For training the DNN
for TI, the database generation process (see Section V-A) is
repeated for all feasible topologies. A distinct advantage of the
proposed DNN-based TI is that it only requires high-speed
time-synchronized SMD measurements for online operation
as opposed to [18] and [20], which needed smart meter
measurements in real time.

! Feasible topologies refer to those switch configurations for which the
system does not split into islanded sub-systems.
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IV. MEASUREMENT SELECTION

The proposed approach for DSSE and TI uses SMD data
in real time for state and topology estimation, respectively.
Now, due to economical constraints, it is not viable to place
many SMDs in the distribution system. Therefore, a systematic
algorithm is needed to select locations for placing a small
number of SMDs to obtain reliable and accurate results for
both DSSE and TI. An integrated framework is proposed here
to identify suitable locations for placing SMDs for performing
DNN-based DSSE and TI. Since it is crucial to know the
network model before doing DSSE, TI must be performed first
to estimate the current network topology. Hence, we initially
find the locations for accurate TI (see Section IV-A). If those
locations do not satisfy the criteria for measurement selection
for DNN-based DSSE, we find additional locations where
SMDs can be placed (see Section IV-B).

A. Measurement Selection for DNN-Based TI

DNN-based TI is a classification problem in which we
estimate the topology of the system, i.e., the status of all
the switches, from SMD measurements. Hence, measurement
selection for DNN-based TI can be viewed as a feature selec-
tion problem, whose objective is to find the suitable location of
SMDs required to achieve acceptable TI performance. Current
phasors (in contrast to voltage phasors) are used for training
the DNN classifier as opening/closing the switches will have a
bigger influence on the currents flowing through the network.
Sequential forward selection [31], a greedy search algorithm
that starts with an empty set and adds features based on the
ML classifier accuracy, is used to determine the appropriate
current phasor measurements. The number of desired features
is a hyperparameter that is tuned to find the required number
of SMDs for a given accuracy level/budget constraint. For
example, if a% accuracy is desired, then the number of desired
features (SMDs) is increased gradually until an accuracy of
a% is reached. However, if the budget constraint is violated
first, then the number of SMDs placed before the budget was
exceeded is used to perform both DNN-based TI and DSSE.

B. Measurement Selection for DNN-Based DSSE

DNN-based DSSE is a regression problem for which all
voltages and currents of the distribution network can be poten-
tial input features. The most common technique for finding the
best features for a regression problem is by using correlation
coefficients [32]. In this article, we use Spearman’s correlation
coefficient (SCC) computed using the voltage phasors for
feature selection for DNN-based DSSE. SCC can capture
the correlation between nonlinear random variables whose
behavior is monotonically increasing or decreasing, which is a
common feature of voltages along a distribution feeder. It was
observed that transformers/regulators and multiple outgoing
laterals from the feeder head split the SCC matrix into multiple
clusters. Hierarchical clustering is applied to the SCC matrix
to find the group of nodes that can be monitored by one
SMD. In hierarchical clustering, the number of clusters is
a hyperparameter that must be chosen in advance. We start
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Algorithm 1 Integrated SMD placement for DNN-based TI

and DSSE

Inputs: Budget, Tliccuracy, DSSEaccuracys DSSEcor, M

Output: Location of the SMDs

A. SMD placement for TI:

N feature = 1

If there are no switches in the system, go to (B)

Apply sequential forward selection with Nyeqyr. fea-

tures to place SMDs

If SMD cost > Budget, then End, else set Nyearure =

N feature +1

. If Tlyccuracy 18 satisfied, then go to (B), else go to (A.iii)
B. SMD placement for DSSE:

B.i. thusrer =1

B.ii. Calculate SCC between each voltage phasor V/'Vi €

{A, B, C},Vj € {mag, ang}, &Vk,l € {1,..., M}

If SCC Vk,1 € {1, ..., M} is greater than DSSE_,, for

Vi € {A, B, C}&Yj € {mag, ang} then go to (B.vii.)

thusrer = Nc.‘usrer =} 1

Apply hierarchical clustering to each SCC matrix for

Vi € {A, B, C}&Vj € {mag, ang}

Find common node in each cluster for each SCC and

place SMD on this node.

If DSSEccuracy 8 satisfied or SMD cost> Budget, then

End, else go to (B.iv.)

Al
Ai.
Aiii.

Aiv.

B.iii.

B.iv.
B.v.

B.vi.

B.vii.

with one cluster and add more clusters based on the budget
constraint. The distance between the clusters (say, r and s) is
calculated using the Ward method [33], as follows:

2n,ny
dir,s) = |———||x, — X
(r,s) "(nr+ns)” r—Xsllz

where |[|-||; is the Euclidean distance, X, and X; are the
centroids of clusters r and s, and n, and n; are the number
of elements in clusters r and s. Note that one SMD is placed
in every cluster since adding more SMDs to the same cluster
may not significantly reduce the estimation error of the overall
system as the features in the same cluster are more correlated.

An overview of the integrated measurement selection algo-
rithm is provided in Algorithm 1. In this algorithm, Budget
refers to the budget allocated for SMD placement, Tlaccyracy
and DSSE;ccyracy are the minimum desired accuracy for T1 and
DSSE, respectively, DSSE o, is the minimum SCC between
each pair of nodes, and M is the number of nodes in the
system.

3)

V. DATA CONSIDERATION AND ALGORITHM
IMPLEMENTATION

This section describes the steps that were followed to create
the database required to train the two DNNs, while accounting
for the unique characteristics of the distribution system and
the attributes of the sensing system. To avoid repetition, the
explanation is provided with respect to the DNN created for
performing DSSE. Finally, the implementation procedure is
described.
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A. Database Creation

As mentioned in Section I, smart meter measurements
become available after a delay of at least a few hours,
implying that they cannot be directly used for real-time DSSE.
Therefore, the proposed methodology uses the historical slow
timescale smart meter readings in the offline training process
of the DNNs. The smart meter energy readings are first
converted into average power by dividing the energy with
the corresponding time interval. Then, the aggregated net
injection at the distribution transformer level is calculated by
summing up the readings of the smart meters connected to the
transformer. The net load at each transformer is treated as a
random variable.

Next, a kernel density estimator (KDE) is used to learn
the (non-Gaussian) distribution of aggregated smart meter
readings. Although KDE is suitable for learning the PDF of
data samples that do not follow a parametric PDF, it is prone
to overfitting which causes loss of generality of the fitted
PDF [34]. To overcome this problem, we modify the KDE
by adjusting its bandwidth to achieve 95% confidence interval
ensuring that the fitted PDF effectively represents net load
behavior. After the PDF of active power injection is obtained,
the reactive power is computed by selecting a power factor
from a uniform distribution lying between 0.95 and 1. Monte
Carlo (MC) sampling is performed next to pick active and
reactive power injections from the learned distribution to run a
large number of power flows. The voltage and current phasors
obtained from the solved power flows are used to create the
training database.

B. Time Resolution Difference Between
Smart Meter and SMD

During the online operation, the trained DNN is fed
with streaming data from SMDs to perform DSSE at SMD
timescales (subsecond time interval). However, as SMD data
were not used in the training process, a question arises
regarding the effectiveness of using calculated average power
to represent instantaneous power injections at subsecond time
resolution. In fact, it is statistically not possible to obtain
the instantaneous power injections from the average power
for one particular time interval. However, we hypothesize that
if sufficient historical data for average powers are available,
it is possible to approximate the PDF of instantaneous power
injections using the historical average power measurements.

We perform two statistical tests, namely, the two sample
Kolmogorov—Smirnov (KS) test and the Mann—Whitney (MW)
U-test, two confirm our hypothesis. The two sample KS test
is a nonparametric test that examines the null hypothesis that
the data in set 1 and set 2 are from the same distribution.
The MW U-test is a nonparametric test that examines the
null hypothesis that the data in set 1 and set 2 are from the
distribution with the same median. Using these two statistical
tests, the PDFs of instantaneous power injections and average
power consumption are compared in terms of shape and
median. 1f the null hypothesis is not rejected for both tests,
it indicates that the PDF created based on historical average
power consumption data can reliably approximate the PDF
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Fig. 2. Modified DNN architecture for unbalanced distribution networks.

of instantaneous power injections. It should be noted that for
performing these tests, instantaneous power injections should
be available for a particular time and distribution system. Sub-
sequently, inferences drawn from these tests can be extended
to other distribution systems in which the instantaneous power
injections are not available (see Table II and its explanation).

C. Embedding Unique Characteristics of Distribution System
and Sensing System Attributes Into DNN Training

The salient characteristics of the distribution system that
were included in the physical network model used for creating
the samples for DNN training are: wye-delta loads, zero-
injection phases, distributed loads, single, double, and three-
phase laterals, voltage regulators, transformers, and capacitor
banks. Moreover, unlike transmission systems that are usually
balanced, distribution networks are unbalanced; hence, DSSE
was carried out for each phase separately. We modified the
DNN architecture shown in Fig. 1 to create separate neurons
and layers for each phase, as shown in Fig. 2. However,
measurements of all phases were fed into each block to
account for the mutual coupling that exists between the phases.

An SMD has six channels which measures three nodal
voltage phasors and three branch current phasors [3], providing
real-time observability of the individual phases of the node
where it is placed. To account for this attribute of SMDs during
DNN training, each phasor magnitude and angle is treated as
separate features that are fed into the input layer of the DNN.
The voltage magnitude and angle of every phase of every node
is estimated at the output layer (see Fig. 2).

In order to replicate actual SMD measurements, appropriate
measurement error must be added to the error-free voltages
and currents obtained from the power flow solution (see
Section V-A). According to the IEEE Standard [35], SMDs
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should meet the total vector error (TVE) requirement of 1%.
It has also been widely assumed that the errors in SMD
data follow a Gaussian distribution. However, SMDs are
connected to the grid through an instrumentation channel
consisting of instrument transformers, cables, and burden.
These components not only cause the total measurement error
to go beyond the 1% TVE limit, but also change the shape
of the error distribution, e.g., from a Gaussian to a three-
component Gaussian mixture model (GMM) [6]. Note that
the instrument transformer error alone for voltage magnitudes,
voltage angles, current magnitudes, and current angles can be
as high as +1.2%, +1°, +£2.4%, and +2°, respectively [36].
To account for these practical constraints, we proposed a
two-level error model in [37], which is also used here. In the
first level, the instrumentation channel error is modeled by
a three-component GMM with the corresponding magnitude
and angle errors added to the error-free voltages and currents.
In the next level, a Gaussian TVE is added to the previously
obtained erroneous measurements. This two-level error model
ensures the generation of realistic SMD data.

D. Implementation of DNN-Based Tl and DSSE

The procedure to be followed for implementing the pro-
posed methodology is presented in Fig. 3. The model is split
into an offline learning stage and a real-time operation stage.

1) Offtine Learning: In the offline learning stage, it is
assumed that the distribution system is equipped with smart
meters at all the nodes and the data produced from these meters
have been saved for some period of time (e.g., one-year). This
historical smart meter data are used to find the PDFs of the
power injections at a given node. MC sampling of the active
and reactive power injections is done from the best-fit PDF
to run three-phase unbalanced power flows (the power flow
solution process is explained in the Appendix). After a power
flow is solved, for a given value of active and reactive power
injections at all the nodes, the voltage and current phasors
of the nodes equipped with SMDs (with added measurement
noises) are used as the input of the DNN for DSSE, while
the voltage phasors of all the nodes are used as the output
of the DNN for DSSE. In addition, topology information is
saved for each solved power flow to train the DNN for TI. For
the current configuration of the system (called base topology).
a DNN is trained for performing DSSE. For other network
configurations, all voltage phasors and SMD data are saved
for each feasible topology. Once the data from power flow
results are saved for all feasible topologies, a separate DNN
is trained for performing TI.

2) Real-Time Operation: For real-time operation, the
trained DNN-based TI is used to estimate the current network
topology from real-time SMD data. If the estimated topology
is consistent with the base topology, the DNN trained for the
base topology is employed to perform DSSE. If the estimated
topology is different from the base topology, Transfer learning
(via fine-tuning) is used to update the DNN used for per-
forming DSSE, and the current topology becomes the new
base topology. In summary, the DNN trained for TI does not
need to be updated for different topologies as it is trained
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for all (feasible) topologies and can therefore estimate the
current topology in real time. When the network topology does
change, only the DNN trained for DSSE must be updated in
real-time using fine-tuning.

VI. SIMULATION RESULTS
A. Simulation Settings

1) Distribution System Setup: Simulations are performed
on a radial IEEE 34-node system (System S1) [38] and
a meshed 240-node distribution network of Midwest U.S.
(System S2) [39]-[40]. In System S1, three distributed gener-
ation (DG) units having the ratings of 135, 60, and 60 kW
are also placed on nodes 822, 848, and 860, respectively,
to model the effect of renewable generation. The loads and
DG units are varied based on the Pecan Street historical
data [41] to create different scenarios for this system. System
S2 has smart meters installed at customer premises and all
the characteristics of a modern distribution network, such
as underground and overhead lines, capacitors and voltage
regulators, and single, double, and three-phase laterals and
loads. One-year of smart meter readings is also available
for this system. PDFs (computed using KDE) were fit to
the historical hourly smart meter data. Network models of
Systems S1 and S2 are available in OpenDSS [42]. The budget
constraint was set at two SMDs for System S1 and ten SMDs
for System S2. The

Tlaccuracy Was set at 95%, while the DSSEccyracy Was set
at 0.15° for phase angle mean absolute error (MAE) and
0.30% for voltage magnitude mean absolute percentage error
(MAPE). While the performance of DNN-based DSSE is eval-
uated for both systems, DNN-based TI results are presented
for System S2 only, as System S1 does not have any switches.

2) Neural Network Setup: The hyperparameter information
for the three DNNs found using the random search method
explained in Section II-C is summarized in Table 1. The
random search method was implemented using the WANDB
toolbox [43]. The search space for each hyperparameter was
identified based on our familiarity with DNNs and existing
literature on DNN for power system applications (e.g., [13]).
It should be noted that the number of neurons in each
hidden layer and the number of hidden layers for DNN-based
DSSE correspond to each block shown in Fig. 2. TensorFlow
v.2.3.0 was used in Python v.3.8 to carry out the training.
All simulations were performed on a computer with 256.0-GB
RAM, Intel Xeon 6246R CPU at 3.40 GHz, Nvidia Quadro
RTX 5000 16-GB GPU.

B. IEEE 34-Node System (System S1)

As historical smart meter data were not available for System
S1, Pecan Street data were used to generate realistic loading
scenarios for this system. Secondly, quarterly, and hourly
smart meter data are available for 25 houses in the Pecan
Street dataset. To compute aggregate loading at the distribution
transformer level, the power consumption of 6-8 randomly
chosen houses was added. Then, KS and MW U-tests were
performed between instantaneous secondly power and hourly
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Fig. 3. Implementation of the proposed DNN-based TI and DSSE.

average power (Scenario 1), and between instantaneous sec-
ondly power and quarterly average power (Scenario 2), for
both loads and DGs. The number of times that the null
hypothesis was rejected for each test is shown in Table II.
It can be realized from the table that the medians of the PDFs
of average and instantaneous power were the same as the MW
U-test was not rejected in any scenario. Similarly, the KS test
results show that the shape of the two PDFs for instantaneous
and average power measurements was the same in more than
96% of the scenarios. This implies that PDFs created from
quarterly or hourly historical smart meter data can be used
to reasonably approximate the PDF of instantaneous power
injections.

topology?

Yes

Tramn DNN for TI

Fig. 4 shows the DNN-based DSSE performance for volt-
age angle and magnitude estimation of phase A in terms
of MAE and MAPE. For hourly and quarterly errors, his-
torical data were used for both training and testing (blue
bars). Red bars show the DNN performance when train-
ing was done based on the PDF of hourly and quarterly
data and testing was done based on the scenarios where
secondly instantaneous injections were used. The difference
in the heights of the blue and red colored bars is an
indication of the unavoidable errors that will be present if
the PDFs are generated from slow timescale (hourly and
quarterly) measurements instead of instantaneous (secondly)
power injections. Thus, Fig. 4 shows the quantification of the
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TABLE 1

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. VOL. 71, 2022

HYPERPARAMETERS FOR DNN-BASED TI AND DSSE

Hyper-parameters

DNN-based TI for S2

DNN-based DSSE

s1 | s2

No. of neurons in
input layer

2xNo. of measured
phasors by all SMDs

2xNo. of measured
phasors by all SMDs

No. of neurons in
each hidden layer 800 xm 00
No. of hidden layers | 5 5
No. of output No. of f,:-asnble N o statas
neurons topologies
Hidden layer
activation function Rell) Rell
Output layer .
activation function Softhex Lingar
Initializer method He normal He normal
Optimizer ADAM ADAM
No. of epochs 50 1000
No. of samples 1,000 per topology 12,500
Training 80% training and 80% training and
percentages validation, 20% testing | validation, 20% testing
. 0.02726 with reduce 0'99456 l 0'09.88
Learning rate (Ir) loasis with reduce learning
earning rate on Plateau
rate on Plateau
— " 50% 50%
Regularization 30% Dropout Dropout Dropout
Loss function Categarical exors: Mean squared error
entropy
TABLE II

STATISTICAL TEST RESULTS FOR PECAN STREET DATA

Data type KS test [%] * MW test [%] *
Scenario 1 0.8 0
Load = enario 2 0.15 0
Scenario 1 3.9 0
W
G Scenario 2 0 0

* Percentages are calculated based on 1,000 MC samples
** DG refers to aggregated rooftop solar PV generation at the distribution
transformer level for varying weather conditions across multiple days

015 "'

0.1

0.05

Phase Angle MAE [degree]

H-S

Ma‘gnitude MAPE [%]

Qs

H-S

Q-S

Fig. 4. Comparison of DNN-based DSSE performance between Hourly (H).
Quarterly (Q) and Secondly (S) data.

inferences drawn from Table II in the context of DNN-based

DSSE.

There are no switches present in System S1., so only
measurement selection for DNN-based DSSE is required.

First, SCCs for voltage phasors were calculated. Subsequently,
hierarchical clustering was applied six times to SCC matrices
for each phase (A, B, C) and each type of state variable
(magnitude and angle). The cluster number that each node
belongs to is shown in Fig. 5. It can be observed from the
figure that regulator R2 splits the system into two clusters.
For instance, dark blue square shows that all the nodes before
R2 are grouped in cluster 1 in terms of voltage magnitudes
of phase A. Similarly, light blue squares indicate that all the
nodes after R2 belong to cluster 2 for voltage magnitudes of
phase A. This implies that the minimum number of SMDs
required to perform DNN-based DSSE is two (one in each
cluster). Note that all nodes in each cluster are potential
candidates for placing an SMD. However, the starting node
in each cluster is the most effective location as it captures
the total current entering the cluster [11]. Therefore, nodes
800 and 832 were chosen for SMD placement for cluster 1 and
cluster 2, respectively.

Fig. 6 shows the MAE and MAPE of phase C for
DNN-based DSSE for four cases. Case (a): one SMD is placed
inside cluster 1 (800-802, red dots). Case (b): one SMD is
placed in cluster 2 (832-858, blue dots). Case (c): two SMDs
are placed at two locations (800—802 and 828—830) that belong
to the same cluster (yellow dots). Case (d): two SMDs are
placed at two locations (800802 and 832-858) that belong
to two different clusters (green dots). Note that a location ij
means that the SMD monitors the voltage at node i and the
currents flowing from node i to node j. From Fig. 6, it is
clear that the overall error decreased when the two SMDs
were placed in two different clusters [see Case (d)], which is
consistent with the logic proposed in Section IV-B. Similar
results were also obtained for the angles and magnitudes of
the other phases. Some additional remarks regarding this figure
are provided below.

Remark 1: The phase angle MAE profile is relatively flat.
This is because the SCC values for the phase angles of all
the nodes are close to 1, implying that the intercorrelation
between the clusters is very high. As such, placing one SMD
in either cluster is able to lower the angle MAE of the nodes
belonging to both the clusters. Furthermore, adding more
SMDs is able to lower the angle MAE of all the nodes as more
information/features are provided to the DNN (for DSSE).

Remark 2: The voltage magnitude MAPE profile shows the
impact of SMD placement more clearly. There is a significant
difference in the SCC values between nodes belonging to the
two clusters. This is caused by regulator R2, which greatly
lowers the correlation between the clusters. As a result, placing
one SMD in one cluster has little impact on the MAPE of the
other cluster. A similar behavior would have been observed
for the angle MAE profile as well, if R2 was equipped with
a phase shifter; however, that is not the case for System S1.
Lastly, as Algorithm I accounts for both phase angles and
magnitudes, it will place sensors that will lower estimation
errors across the entire system while remaining within the
budget constraint.

Remark 3: Regulator R1 and the transformer between nodes
832 and 888 also impacted the DSSE performance (particu-
larly, the magnitude MAPE profile) of System S1. However,
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TABLE III
® 500-802
0.30 " COMPARING THE PERFORMANCE OF DNN-BASED DSSE
B P WITH CLASSICAL LSE FOR SYSTEM S1
800-802 and 828-830
025 $500-302 acd §32.958 Phase error Magnitude error
L o,
& "lll::::::::"..."..'..' Method | Error model [degreles] [%] Sh“i])
2 MAE T_o erance o\ pp 'I:olerance
@ 0.0 interval interval
S 1% Gaussi
= o \raussian
; LSE TVE 0.14 0.40 0.25 0.60 26
- b i
& 018 DNN- | 1% Gaussian | o5 | pag 0.26 0.61 2
' 3 based TVE
AEERTT YT DS LR At DSSE [ Two-level
GMM 0.14 0.42 0.26 0.62 2
0‘|0 b= = S o B = R = e - = B o D~ =T T o B i, ~ R~ T = = == ' | SVR Two_level 0'19 0‘50 0‘31 0'72 2
ERENScRcoBETURYE I IR IRy GuM
Node number
(2)

033 of instantaneous power injections and 2) SMD placement. The
Hg‘i H error caused by the former is unavoidable as it is statistically
i{)‘zg ° 2! Locnnnsnnse not possible to create the exact instantaneous power injections
LI-] 4

037 4 ® eeve®e,? 3 222288822 from the average value provided by smart meters. However,
é fos 980  2dgne : e the error caused by the latter is controllable and can be reduced

] : & -
—0023 soest st by intelligently placing SMDs.
'gn 021 S0z Remark 5: The number of measurements provided by the
S0.19 Saan two SMDs installed in System S1 is 24 (3 phasor measure-
0.17 SvAtrstpi ments of voltage and current, respectively, by each SMD),
500-802 and §32-858 : :

0.15 s while the number of states (voltage magnitude and angle)
fugsdxgesscIaangeIdIvezey : deri .
BEERrxSxUEBLE2E82802 028233 to be estimated, considering all phases in single and three

Node number phase nodes, is 172. As 172 > 24, it can be realized that the
®) proposed methodology is able to perform time-synchronized
Fig. 6. (a) Phase angle MAE and (b) voltage magnitude MAPE of phase C DSSE for System S1 when it is incompletely observed by

for DNN-based DSSE for System S1.

more SMDs could not be added to this system as the budget
constraint had been hit. Furthermore, for obtaining the results
shown in Fig. 6, the real-time knowledge of the tap settings
of the regulators and transformers was not required. This is
because during the offline learning stage, the tap settings were
automatically adjusted [44] based on loading and feeder head
voltage scenarios. Hence, the DNN (for DSSE) became aware
of the effects of different tap settings during the training itself.

Remark 4: By comparing Figs. 4 and 6, we can identify
two factors that can increase the estimation error: 1) using
historical smart meter energy readings to approximate PDFs

SMDs in real time.

Next, the performance of DNN-based DSSE is compared
with linear state estimation (LSE) [45]; the results are shown
in Table III. To satisfy the complete real-time observability
requirement of LSE, System S1 needed 26 SMDs (based
on the optimization framework proposed in [46]). It can
be observed from Table III that DNN-based DSSE gives
similar results as classical LSE in terms of both angle MAE
and magnitude MAPE with only two SMDs, validating the
outcome of Algorithm I for this system. Note that the LSE
results correspond to a purely Gaussian noise of 1% TVE and
no measurement redundancy. The results of LSE (and DNN-
based DSSE) can be further improved if a smaller TVE is
considered.
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Fig. 7. State estimates for Phase C voltage angle along with true values for

node 846 of System S1.

Furthermore, to give additional confidence in the results,
the folerance interval was computed. The tolerance interval
provides the upper and/or lower bounds within which, with
some confidence level, a specified proportion of the samples
fall [47]. The confidence level and population proportion were
both set at 95%; i.e., the upper bound of the tolerance interval
was used as a measure of the confidence of the state estimates.
In reference to Table III, 0.4° tolerance interval for voltage
angles implies that with a confidence level of 95%, 95% of
the error values in estimating the angles by the DNN-based
DSSE were less than 0.4°. It can also be observed from
Table III that the proposed DNN-based DSSE was robust to
non-Gaussian noise as its performance deteriorated negligibly
when the two-level error model was used.

In addition to the comparison between DNN-based DSSE
and LSE, support vector regression (SVR) with a polynomial
kernel was also used to perform DSSE for System S1 to pro-
vide a comparative study between two ML-based techniques.
We can see from Table III that DNN-based DSSE outperforms
SVR-based state estimation, highlighting the superior perfor-
mance of the proposed methodology.

Lastly, to demonstrate the ability of the proposed approach
to provide real-time state estimates, a stream of high-speed
data obtained from the Pecan Street dataset were set as
inputs to the trained DNN for DSSE. The DNN was able
to consistently track the variations in the states (see plot of
Phase C voltage angle in Fig. 7). Moreover, the DNN took
only 0.01 s to produce the estimates. This is because a trained
DNN performs a matrix multiplication of the input values
with the weights and biases of its neurons—a process that can
be done very fast. Thus, this study shows that the proposed
approach can provide fast (subsecond) situational awareness to
distribution systems that are incompletely observed by SMDs
in real time.

C. 240-Node Network of Midwest U.S. (System S2)

1) DNN-Based TI and DSSE: Due to switches being
present in System S2, SMD placement for TI was done
first based on the integrated measurement selection algorithm
(see Section IV). Considering the locations of the 9 switches
(see Fig. 8), 84 feasible topologies were identified. A total
of 1000 samples were generated by varying the loads for
each of the 84 topologies. Based on the sequential forward
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TABLE IV

COMPARING THE PERFORMANCE OF DNN-BASED DSSE WITH
CLASSICAL LSE FOR SYSTEM S2

Phase error Magnitude error
Error [degrees] %] #
Method
model MAE Tolerance MAPE 'I:olerance SMD
interval interval
1% Gaussian
LSE TVE 0.14 0.35 0.25 0.61 113
= -
DNN-  |1%Gaussian] 15 436 025 0.60 6
TVE
based Two-level
DSSE GMM 0.15 0.37 0.26 0.62 6
Two-level
SVR GMM 0.18 0.40 0.31 0.71 6

selection algorithm, four SMDs were placed at 1010-2057,
2012-2013, 2021-2026, and 3030-3031, respectively, to attain
a TT accuracy of 99.19%. The locations are depicted by green
ovals in Fig. 8.

Measurement selection for DNN-based DSSE using the
SCC was investigated next. It was observed that based on
this metric, System S2 could be split into five clusters: one
comprising feeder A, two comprising feeder B, and two
comprising feeder C; implying that at least five SMDs would
be required. However, four SMDs (= one in feeder A, two
in feeder B, and one in feeder C) had already been placed in
this system based on the measurement selection algorithm for
DNN for TI. These four SMDs satisfied the requirements for
DNN-based DSSE for three clusters. Thus, two more SMDs at
20442053 and 3118-3107 were added to complete the SMD
placement for DNN-based DSSE for this system.

The performance of DNN-based DSSE was now compared
with LSE and SVR-based state estimation for System S2.
The total number of SMDs required for complete real-time
observability of System S2 was 113 (based on the optimization
framework proposed in [46]). It can be observed from Table IV
that the DNN-based DSSE gives similar results as LSE and
outperforms SVR-based state estimation with only six SMDs.
Moreover, the accuracy of DNN-based DSSE is practically the
same with 1% Gaussian TVE and with the two level-GMM
error model, confirming that the DNN-based DSSE is robust
against both the noise model and the noise magnitude.

Lastly, note that the number of states to be estimated
for System S2 is 924, while the number of measurements
obtained from the six SMDs is 72 («924). These observations,
along with the analyses conducted in the previous subsection,
confirm that the proposed approach can successfully perform
time-synchronized DSSE for distribution systems that are
incompletely observed by SMDs in real time. It should be
noted that the DSSE results obtained in Table IV and the
achieved TI accuracy of 99.19% are based on the integrated
SMD placement strategy presented in Algorithm I. If SMD
placement targets only one task (DSSE or TI), the perfor-
mance of the other task will deteriorate. This is realized from
Table V which compares the DSSE and TI performance for
integrated and nonintegrated SMD placement. It can be seen
from Table V that for System S2, the minimum number of
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TABLE V

COMPARISON OF DSSE AND TI PERFORMANCE FOR INTEGRATED AND
NON-INTEGRATED SMD PLACEMENT FOR SYSTEM 52

Placement DSSE Performance TI
target SMD locations Angle MAE | Magnitude [accuracy
® |degrees] | MAPE [%) | _[%]
SMDs for | 1010-2057; 2012-2013;
Tlonly | 2021-2026: 30303031 | %17 431 M9
T010-2057; 20122013
Sgggsoﬁr 2044-2053: 3030-3031: | 0.15 026 80.27
y 3107-3118
T010-2057; 2012-2013
Integrated | 2021-2026: 2044-2053; | 0.15 026 99.19
3030-3031: 3118-3107

SMDs required to only achieve requisite Tlyccyracy is four.
However, the MAE for DSSE becomes 0.17° with four SMDs,
which is higher than the prespecified DSSE;ccypcy threshold of
0.15° (see Section VI.A.1). This increase in error from 0.15°
to 0.17° primarily occurred in the second cluster of feeder
C, in which during the measurement selection for DNN for
TI, no SMD was placed. Similarly, the minimum number of
SMDs required to only achieve requisite DSSE,ccyracy is five.
However, this decreases the TI accuracy to 80.27%, which
is less than the threshold set for T'/;ccuracy- The integrated
approach presented in Algorithm I picks six nodes as the
minimum number of locations where SMDs must be placed for
System S2. The last row of Table V confirms that this solution
is able to satisfy the requisite Tlaceyracy and DSSEgccuracy,
simultaneously. Finally, note that adding more than six SMDs

9003514

. T
@

”.:mn
[ EEl
i Tl e 3075 iy K6 ooy IETF o ATR .‘
g 4 b i [ 20
. @ 2
P—i oo -5 [ B
n @00
. = [ B
pie @
e -t al Mol 3102 5103
i~ R s 6
o m“:, ®:un
S AT - b
“_y - _ume W
3y i ¢31:|.
! i =
A ’31:5. i 2
" e o i .
=% ereren
- 3118 I M6 I 31
-
,Al!i‘
B 3 a6
w8 -8 -0
=)
,31:7.
]
[ T O» SMD
ey
.‘suy-

will have minimal effect on both TI and DSSE accuracy (due
to the reasons already mentioned in Remark 2 and explanation
of Fig. 6 for System S1), especially considering the hard
budget constraints typically associated with placing SMDs in
distribution systems.

2) Transfer Learning for Different Network Topologies:
When topology changes occur, after correctly identifying the
new topology using DNN-based TI, the DNN trained for doing
DSSE for the old topology, must be updated. As mentioned
in Fig. 3, the TI and DSSE work sequentially, and Transfer
learning is used to update the DNN for DSSE after the
topology of the system changes. Four different topologies
are considered below to show the ability of the proposed
approach in handling different system configurations. Initially,
the system is operating in the base topology, T/, which is
radial. Next, status of three switches is changed to create a
meshed network, described by T2. Then, configurations of five
switches are changed to create a new topology, T3. Finally,
in the fourth step, 73 changes to another topology, T4, which
is different from all the previous topologies. The summary of
network reconfigurations is shown in Table VI.

Fig. 9 presents the results for topology changes and its
impact on DSSE with and without Transfer learning. It can
be seen from the plots that it takes about 1 min for the
fine-tuning of the DNN, while complete training for a new
topology would have taken 2 h. This is because 10 000 samples
and 1000 epochs were needed for training and validation
of a completely new DNN for DSSE for a new topology
(see Table I), while by taking advantage of fine-tuning, only
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TABLE VI
SWITCH CONFIGURATIONS FOR DIFFERENT TOPOLOGIES

Switch name Network reconfiguration

T1 wep T2 =ip T3 = T4
CB_101 1 1 0 0
CB_102 0 1 1 1
CB 201 1 1 0 1
CB 202 1 0 1 1
CB 203 1 1 1 1
CB_204 0 1 1 0
CB_301 1 1 1 0
CB 302 1 1 0 1
CB_303 0 0 1 1

=
Ln

=
I

=
b

=

Tl T T3 T4
® Complete training ® Fine tuning _® Without training
Training time = 2h Training time = | min

Phase MAE for test data [degrees]
=
(=] L

Fig. 9. Comparative study of DNN-based DSSE with and without fine-tuning
of the DNN.

3000 samples and 32 epochs were needed, thereby reducing
the training time drastically. This is an important result because
if different switching events were to manifest every few
minutes, then without Transfer learning, we will not be able
to achieve fast and accurate DSSE results when it is needed
the most. Hence, this quick update of the DNN-based DSSE
considerably improves the real-time monitoring capability of
the proposed approach during switching events.

Lastly, the angle MAE results are now compared with and
without fine-tuning of the DNN for DSSE. It is observed
from Fig. 9 that if the old DNN for DSSE (created for T7)
was used for the new topologies (72, T3, and T4), the error
can increase by more than 1.5 times for the change from
T'1 to T2, more than two times for the change from T/ to
T3, and more than three times for the change from T'1 to
T'4 (compare the heights of the orange bars and blue bars in
Fig. 9), respectively. However, the state estimator performance
is similar for fine-tuning and complete training (compare
heights of green bars and blue bars in Fig. 9). Therefore,
by using Transfer learning, DNN-based DSSE can be done
quickly and accurately during varying network topologies.

VII. CONCLUSION

In this article, a DNN framework for performing unbalanced
three-phase time-synchronized DSSE for different network
configurations is proposed that does not require complete
network observability by SMDs in real time. The unique
feature of the proposed algorithm is that it neither relies on
forecast/pseudo-measurements nor does it use slow timescale
AMI data directly for DNN training. Instead, historical data
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are used to find a mapping between the states (voltage phasors)
and the SMD measurements, with the mapping being realized
using

a DNN. When a change in topology occurs, the proposed
framework first detects the change using a DNN built for TI
and, subsequently, employs Transfer learning via fine-tuning
to update the DNN for DSSE in real time for the new topology.

A detailed methodology for SMD placement is also pro-
posed to enhance the performance of DNN-based DSSE
for varying network configurations. Being a greedy search
method, this measurement selection strategy for SMD place-
ment is not guaranteed to be optimal. However, it is deemed
acceptable for the following reasons: 1) the problem being
solved here is un-solvable in the classical sense (i.e., it has
larger number of unknowns than knowns), therefore, there may
not be a sensor placement algorithm that consistently gives the
best results under all operating conditions and 2) the focus is
not on optimizing sensor placement but on getting reasonable
TI and state estimation results, which the proposed placement
strategy is able to provide.

The performance of the proposed DNN-based DSSE is
validated by comparing it with the classical LSE as well
as another ML-based state estimator (SVR-based state esti-
mation). The simulation results on a renewable-rich IEEE
34-node distribution feeder and the meshed 240-node Midwest
U.S. system show that the proposed method: 1) can achieve
similar DSSE accuracy with a significantly smaller number of
SMDs; 2) can efficiently detect varying network topologies for
reconfigurable distribution systems; 3) ensures reliable DSSE
for different topologies; and 4) is robust against non-Gaussian
measurement noise, nonparametric load variations, and renew-
able energy fluctuations. The ability of the proposed algorithm
to provide reliable state estimates with very few SMDs in
large distribution networks for different topologies makes it
a suitable candidate for enhanced monitoring, protection, and
control of actual distribution systems.

APPENDIX

In the scenario generation process, OpenDSS [42], which
is a distribution analysis software, was used to solve power
flow cases for different scenarios; here, scenario refers to
different values of active and reactive power injections at
all nodes of the network. OpenDSS uses Forward-Backward
sweep algorithm to calculate the voltage phasors of the system.
Forward-Backward sweep is an iterative algorithm based on
Kirchhoff’s circuit laws [48]. The Forward-Backward sweep
method comprises three steps for a distribution network,
as shown in Fig. 10.

The voltage phasor at root node is assumed to be known
and the initial voltage for all the other nodes is assumed to be
equal to the root node voltage.
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In Step 1, three phase nodal currents are calculated as
follows:

+ k1)

abe,i " abc,i

Iabc,i = Sabc,;' © =) {Al)

abe,i

where I,; is a vector of three phase current injections at
node i, Sgp-; is a vector of three phase power injections at
node i, and Vﬂ;\? is a vector of three phase voltages at node
i at iteration k — 1. Y p.; is a diagonal matrix comprising
admittance of all shunt elements at node i. © denotes element-
wise multiplication of vectors.

In Step 2, backward sweep is done to sum up line section
currents starting from the last line along the feeder toward the
root node. The current in line / is

o (k) (k)
Jabc,f = _Iabc,j + Z Jabc,m
meM

(A2)

where J g4, is the current flows in line section /, and M is
the set of line sections connected to node j.

In Step 3, forward sweep is done to update voltages at all
nodes. Starting from the root node and moving toward the end
of the feeder. The voltage at node j is

V{k)

abc, j (A3)

(k) (k)
= Vabc.j i Z"Jabr:,I

where Z; is a 3 x 3 matrix containing self and mutual
impedances of three phases.

After these three steps are run in one iteration, the power
mismatch at each node for all phases is calculated using (A.4)

k k B \* 2
Asfzb)c.f: z(zb)r:‘fe (Iz{:b)r,:') - ;bc.flvﬂbfvf| —Sapci-  (A4)

If the real or imaginary part (real or reactive power) of any
of these power mismatches is greater than the convergence
criterion, Steps 1, 2, and 3 are repeated until convergence is
achieved.
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