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Abstract
In this work, we describe a new approach that uses deep neural networks (DNN)
to obtain regularization parameters for solving inverse problems. We consider
a supervised learning approach, where a network is trained to approximate the
mapping from observation data to regularization parameters. Once the network
is trained, regularization parameters for newly obtained data are computed by
efficient forward propagation of the DNN. We show that a wide variety of
regularization functionals, forward models, and noise models may be consid-
ered. The network-obtained regularization parameters can be computed more
efficiently and may even lead to more accurate solutions compared to exist-
ing regularization parameter selection methods. We emphasize that the key
advantage of using DNNs for learning regularization parameters, compared to
previous works on learning via bilevel optimization or empirical Bayes risk
minimization, is greater generalizability. That is, rather than computing one set
of parameters that is optimal with respect to one particular design objective,
DNN-computed regularization parameters are tailored to the specific features
or properties of the newly observed data. Thus, our approach may better han-
dle cases where the observation is not a close representation of the training set.
Furthermore,we avoid the need for expensive and challenging bilevel optimiza-
tion methods as utilized in other existing training approaches. Numerical results
demonstrate that trained DNNs can predict regularization parameters faster
and better than existing methods, hence resulting in more accurate solutions
to inverse problems.
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1. Introduction & background

Many scientific problems can be modeled as

b = A(xtrue)+ ε, (1)

where xtrue ∈ R
n is a desired solution, A : Rn → R

m models some forward process map-
ping onto observations b ∈ R

m at pre-determined design points, with unknown additive noise
ε ∈ R

m. The goal in inverse problems is to obtain an approximate solution x̂ to xtrue, given b
andA(·). However, solving inverse problemsmay be challenging due to ill-posedness, whereby
a solution does not exist, is not unique, or does not depend continuously on the data [23, 39].
Regularization in the form of prior knowledge on the distribution of xtrue must be included to
compute reasonable solutions. There are many forms of regularization, and we consider vari-
ational regularization and regularization via early stopping techniques. The goal of variational
regularization is to minimize some loss function,

min
x

J (x, b)+R(x,λ), (2)

whereJ :Rn × R
m → R characterizes amodel-datamisfitmeasuring the discrepancy between

a model prediction and the observations b and the functional R : Rn × R
� → R represents a

regularization term defined by some parametersλ. A commonly used model-data misfit is the
(squared) Euclidean distance, i.e. J (x, b) = ‖A(x)− b‖22. We assume that the regularization
term carries prior knowledge of the desired solution xtrue and that the parameters in λ define
the regularity of the desired parameters in x and hence the regularization term. For instance,
λ may contain one regularization parameter that determines the weight or strength of the
regularization term, e.g. R(x,λ) = λ2‖x‖22 corresponds to standard Tikhonov regularization.
Another example arises in the identification of inclusions (e.g. cancers or other anomalies) in
images, where λ characterizes the regularity of the inclusion and must be estimated. In other
scenarios,λmay contain a set of parameters (e.g. for the prior covariance kernel function) that
fully determine the regularization functionalR( · ,λ). For simplicity and illustrative purposes,
we assume that optimization problem (2) is sufficiently smooth, convex, and has a unique
global minimizer x̂(λ) for any suitable λ, and that x̂(λ) is continuous with respect to λ.

A major computational difficulty in the solution of (2) is that λmust be determined prior to
solution computation. Selecting appropriate parameters λ can be a very delicate and com-
putationally expensive task, especially for large-scale and nonlinear problems [24, 25, 34,
62, 83]. Common approaches for estimating the regularization parameters require solving (2)
multiple times for various parameter choices, which may require solving many large-scale
nonlinear optimization problems, until some criterion is satisfied. For example, the discrep-
ancy principle (DP) seeks parameters λ such that J (x̂(λ), b) ≈ T where T is some target
misfit (e.g. based on the noise level of the problem). Since the parametersλ determine the prior,
they may also be referred to as hyper-parameters, and hierarchical prior models may be incor-
porated in a Bayesian formulation to include probabilistic information about the hyper-priors
[5, 82].

For applications where training data is readily available or can be experimentally generated
(e.g. via Monte Carlo simulations), supervised learning approaches have been used to learn
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regularization parameters or more generally ‘optimal’ regularizers for inverse problems. A
new paradigm of obtaining regularizers was first introduced in [31]. In their groundbreaking,
but often overlooked publication, Haber and Tenorio proposed a supervised learning approach
to learn optimal regularizers. This framework leads to a bilevel optimization problem, where
the inner problem consists of the underlying inverse problem assuming a fixed regularization
functional. The outer problem—often referred to as the design problem—seeks an optimal
regularization functional, given training data. More specifically, given training data of true

solutions and corresponding observations,
{
x( j)true, b

( j)
}J

j=1
optimal regularization parameters

are computed as

min
λ

1
2J

J∑
j=1

∥∥∥x̂( j)(λ)− x( j)true
∥∥∥2
2
with x̂( j)(λ) = arg min

x
J (x, b( j))+R(x,λ).

(3)

This bilevel learning approach has shown great success in a variety of problems and has given
rise to various new approaches for optimal experimental design (OED) [8, 10, 32, 33, 78] and
for obtaining optimal regularizers [10, 11, 17]. Various other research groups build on the same
bilevel supervised learning principle, e.g. [2, 18] and references therein. A main challenge of
this approach is to numerically solve the bilevel optimization problem. We emphasize that
computed parameters are expected to be optimal on average or with respect to other design
criteria and may fail in practice if the observation is very different than the training set, see [4].

There is another class of supervised learning methods that has gained increased atten-
tion for solving inverse problems in recent years. These methods exploit deep neural network
(DNN) learning techniques such as convolution neural networks or residual neural networks
[59, 61]. Initially, these machine learning techniques were used for post-processing solutions,
e.g. to improve solution quality or to perform tasks such as image classification [86]. How-
ever, deep learning techniques have also been used for solving inverse problems. The prevalent
approach, especially in image processing, is to take an end-to-end approach or to use deep
learning methods to replace a specific task (e.g. image denoising or deblurring). For example,
in [54] neural networks are used to learn the entire mapping from the data space to the inverse
solution and in [18, 37, 84] DNNs were used to learn the entire regularization functional. Note,
these approaches do not include domain-specific knowledge, but rather replace the inversion
of a physical system with a black-box forward propagating process also referred to as sur-
rogate modeling. Hence, the limitations of these approaches appear in the sensitivity of the
network (e.g. to large dimensional input–output maps as they appear in imaging applications).
Work on unsupervised learning approaches such as deep image priors have been considered
as an alternative [19]. Another remedy is to reduce the size of the network inputs. In [58] a
machine learning-based prediction framework is used to estimate the regularization parameter
for seismic inverse problems. Using a list of 19 predefined features (e.g. including energy
power and distribution characteristics of the data and residual) for the synthetic observation
data, the authors use a random forest algorithm to train a decision tree for the task of regression.
Although the idea to learn the regularization parameter (representing the strength of regulariza-
tion) is a special case of the frameworkwe consider, the main distinction of our approach is that
we consider DNNs to represent the mapping from the observation to the optimal regularization
parameter.

In this work, we described a new approach to learn the parameters λ that define the
regularization by training a neural network to learn a mapping from observation to regu-
larization parameters. We begin by assuming that there exists a nonlinear target function
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Φ : Rm → R
p that maps an input vector b ∈ R

m to a vector λ ∈ R
p,

λ = Φ(b). (4)

The function Φ is a nonlinear mapping that takes any vector in R
m (e.g. the observations) to

a set of parameters in λ (e.g. the regularization parameters). Thus, in the inverse problems
context, we refer to Φ as an observation-to-regularizationmapping, and we assume that this
function is well-defined.

A major goal of this work is to estimate the observation-to-regularization mapping Φ by
approximating it with a neural network and learning the parameters of the network.We consider
DNNs, which have gained increased popularity and utility in recent years due to their univer-
sal approximation properties [16]. That is, we assume that the observation-to-regularization
mapping can be approximated using a feedforward network that is defined by some parame-
ters θ. The network is a mapping Φ̂(·;θ) :Rm → R

p that is defined by the weights and biases
contained in θ. Given an input b, the output of the network is given by

λ̂(θ) = Φ̂(b;θ), (5)

see figure 1 for a general schematic and section 2 for details of the network. Notice that for a
well-chosen set of parameters θ, the DNN can approximate the desired mapping, Φ̂ ≈ Φ, but a
robust learning approach is needed to estimate network parameters θ that result in a good net-
work approximation of the function. More specifically, the goal is to minimize the Bayes risk,
i.e. the expected value of some loss functionD :Rp × R

p → R. Let b = A(xtrue)+ εwhere xtrue
and ε are random variables. The learning problem can be written as an optimization problem
of the form,

argmin
θ

Extrue,εD
(
Φ̂(A(xtrue)+ ε;θ),λopt

)
, (6)

where λopt may be provided or computed. For example, for some problems, λopt could be
obtained by solving bilevel optimization problem,

λopt = arg min
λ

‖x̂(λ)− xtrue‖2 with

x̂(λ) = arg min
x

J (x, b)+R(x,λ). (7)

The Bayes risk minimization problem (6) is a stochastic optimization problem, and the lit-
erature on stochastic programming methodologies is vast [79]. The learning problem can
also be interpreted as an OED problem, where the goal is to design a network to represent
the observation-to-regularization mapping. This is different than OED problems that seek to
optimize for the regularization parameters directly, e.g. [10, 31, 32].

Notice that the expected value in (6) is defined in terms of the distributions of xtrue and ε, and
thus if such knowledge is available or can be well-approximated, then Bayes risk minimiza-
tion can be used. However, for problems where the distributions of xtrue and ε are unknown
or not obtainable, we consider empirical Bayes risk design problems, where training data or
calibration data are used to approximate the expected value. Assume that we have training

data
{
x( j)true, ε

( j)
}J

j=1
and that the goal is to estimate the regularization parameters λ that are

deemed optimal. Then for each training sample, we would first obtain λ( j)
opt for j = 1, . . . , J by

(7). Then, we can approximate the Bayes risk problem (6) with the following empirical Bayes
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Figure 1. Illustration of a DNN Φ̂(b;θ) with L hidden layers. An input b is mapped
by the network Φ̂ onto an output λ given weights W� and biases y� for each layer. All
weight and biases terms constitute the network parameter θ.

risk minimization problem,

θ̂ = arg min
θ

1
2J

J∑
j=1

D
(
Φ̂(b( j);θ),λ( j)

opt

)
, (8)

where b( j) = A(x( j)true)+ ε( j). Given some loss function D, DNN Φ̂, and the data set{
b( j),λ( j)

opt

}J

j=1
, the goal of the supervised learning approach is to compute θ̂ in an offline stage.

Then in an online phase, given a newly-obtained observation b, regularization parameters for
the new data can be easily and cheaply obtained via forward propagation through the network,
i.e. λ̂ = Φ̂(b; θ̂). Once λ̂ is computed and fixed, a wide range of efficient solution techniques
may be used to solve the resulting inverse problem (2).

Overviewofmain contributions: in this work,we describe a new approach to estimate reg-
ularization parameters by training a DNN to approximate the mapping from observation data
to regularization parameters. Once the network is trained, regularization parameters may be
computed efficiently via forward propagation through the DNN. There are various advantages
of our proposed approach.

(a) The DNN computed regularization parameters are tailored to the specific features or
properties of the newly obtained data (e.g. the computed parameters are adapted to the
amount of noise in the data). This is a significant benefit compared to OED or empirical
Bayes risk minimization approacheswhere one set of design parameters is obtained that is
(e.g. on average) good for the training set.

(b) Given a new observation, the network-computed regularization parameters can be com-
puted very efficiently in an online phase, only requiring a forward propagation of the
neural network. Since this process requires only basic linear algebra operations and activa-
tion function evaluations, computing regularization parameters in this way is significantly
faster than many existing regularization parameter selecting methods that may require
solving multiple inverse problems for multiple parameter choices or may need derivative
evaluations.

(c) Our numerical results show that in many scenarios, DNN computed parameters lead to
solutions that aremore accurate than existing methods. Notice that after the regularization
parameters are computed via a DNN, regularization is applied to the original problem
and well-established solution techniques and software can be used to solve the resulting
regularized problem.

(d) Contrary to black-box inversion methods, the physical forward model (which might be
slightly different than the one used for training) is used during inversion. Incorporating
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Algorithm 1. Learning regularization parameters via DNNs.

1: Offline phase
2: Require model A(·), noise model ε, and x( j)true
3: Generate appropriate training signals b( j) = A(x( j)true)+ ε( j), for j = 1, . . . , J
4: Obtain λ( j)

opt (e.g. solve (7))
5: Set up DNN Φ̂

6: Use training data
{
b( j),λ( j)

opt

}J

j=1
to compute network parameters θ̂ as in (8)

7: Online phase
8: Obtain new data b
9: Propagate b through the learned network to get λ̂ = Φ̂(b; θ̂)
10: Compute inverse solution x̂(λ̂) in (2)

the forward model into the machine learning-based prediction in the context of inverse
problems is not new, see [1, 37, 81] for a non-exhaustive list. However, our method results
in DNNs with significantly smaller output dimension compared to such methods. This
accelerates the training of the network and provides better generalization of the network
to unseen data.

(e) A key advantage of the proposedwork is the flexibility of the approach in that a wide range
of forwardmodels and regularizers,most notably nonlinear ones, may be included, and the
framework can learn other important features from data such as the degree of regularity
of solutions.

We also mention a few shortcomings of learning regularization parameters via DNNs. Cer-
tainly, a downside of our method compared to full network inversion approaches is that we still
require solving the resulting inverse problem in the online phase. Furthermore, our proposed
method can be computationally challenging for large network output dimensions p in (5).

An overview of the paper is as follows. Section 2 is dedicated to our proposed approach for
learning a neural network for regularization parameter selection. We describe various details
about the process from defining the network to optimization methods for learning. In section
3 we focus on the special (and most common) case where we seek one regularization param-
eter corresponding to the strength of the regularization. Numerical experiments provided in
section 4 illustrate the benefits and potential of our approach for applications in tomography
reconstruction, image deblurring, and diffusion. Conclusions and future work are provided in
section 5.

2. Parameter learning via training of neural networks

In this section, we describe various components of our proposed approach to learn reg-
ularization parameters via DNNs for solving inverse problems. We begin with a general
overview of the approach in algorithm 1. Notice that there is an offline phase and an online
phase. In the offline phase, the training data is used to learn the network parameters. This
requires solving a large scale optimization problem. However, once the network parameters
are computed, forward propagation of any new observation b through the network will pro-
duce a set of regularization parameters (e.g. for use in defining and solving the regularized
problem).

In essence, our approach constructs a surrogate model using feedforward DNNs. Surrogate
modelingmethods are popular techniques used in scientific computing, where an approximate,
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trained model replaces the original model. The surrogate model can be used for predicting
outputs in unexplored situations or for reducing overall computational complexity [30]. An
illustration of a DNN is given in figure 1. For simplicity of presentation, we illustrate and
discuss fully connected neural networks in section 2.1 and introduce the loss function for
regularization parameter selection (i.e. the difference between the predicted and the optimal
regularization parameter) in section 2.2.

2.1. Deep neural networks

Let us assume there exists a continuous target function Φ :Rm → R
p, mapping observations

b ∈ R
m onto the regularization parametersλ ∈ R

p. Our goal—in a supervised machine learn-
ing approach—is to find a neural network Φ̂ approximating the target functionΦ. We define a
fully-connected feedforward neural network as a parameterized mapping Φ̂ :Rm × R

q → R
p

with

Φ̂(b;θ) = ϕL+1(θL+1) ◦ · · · ◦ϕ1(θ1)(b), (9)

where ◦ denotes the component-wise composition of functions ϕ� :R
m�−1 × R

q� → R
m� for

� = 1, . . . , L+ 1 (m0 = m, and mL+1 = p). The vector θ =
[
θ�
1 , . . . , θ�

L+1

]� ∈ R
q is a

composition of layer specific parameters θ� defining so-called weightsW� and biases y�, i.e.
θ� =

[
vec(W�)� b��

]�
, whereW� ∈ R

m�×m�−1 and b� ∈ R
m� . The functionsϕ� are given by

ϕ�(θ�)(b�−1) = σ�(W�b�−1 + y�), (10)

where σ� :Rm� → R
m� are typically nonlinear activation functions, mapping inputs arguments

point-wise onto outputs with limiting range. Note that for the output layer ϕL+1(θL+1), we
assume a linear transformation with no bias term, ϕL+1(θL+1)(bL) = WL+1bL.

The architecture or design of the neural network Φ̂ is determined by the choice in the
number of hidden layers L,3, the width of the layers (the size of m�), and the type of the
activation functions σ�. A popular activation function choice is the rectified linear unit,
i.e. ReLU(x) = max(0, x), hence σ�(x) =

[
ReLU(x1), . . . , ReLU(xm�

)
]�
. The computa-

tionally efficient ReLU function is commonly used despite its non-differentiability. Practically,
it has been observed that gradient based trainingmethods are not impacted. The large numberof
degrees of freedom when defining the architecture of neural networks provides versatility and
flexibility in approximating different types of functions. Approximation quality of the network
Φ̂ is application dependent and depends on the properties and complexity of the underlying
function Φ. In this regard, universal approximation properties for neural networks have been
established, see for instance [16, 43, 44].

For imaging applications, it is appropriate for the DNN to integrate two dimensional dis-
tance structures into the design of the neural network. In section 4 we consider 2D convolu-
tional neural networks, see [29], where input data is convolvedby kernels or filters. Theweights
of fully connected layers W� become low dimensional filter factors W� (and bias terms y�),
which have the advantages of integrating the 2D structure of the problem and of reducing the
ill-posedness of the learning of the network, thus allowing for deeper networks.

3 A neural network is considered deep if the network exceeds three layers including the input and output layer.
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2.2. Loss function for the regularization parameter

Determining a parameter set θ̂ that leads to an accurate approximation Φ̂(b; θ̂) ≈ Φ(b) is the
key element of supervised learning via DNNs (see line 6 in algorithm 1). We assume that train-

ing data
{
b( j),λ( j)

opt

}J

j=1
comprising of inputs b( j) ∈ R

m and corresponding outputs λ( j)
opt ∈ R

p

are available, and we select a cost function indicating the performance of Φ̂. For regression
type problems, a common choice is the mean squared loss function D(·) = ‖ · ‖22. Then the
goal is to solve (8) to obtain the learned network parameters θ̂. However, there are two con-
siderations. First, to prevent overfitting toward the training data, it is common to include an
additional regularization term, e.g. L(θ) = α2‖θ‖22. For instance, we can solve a regularized
problem,

θ̂ = arg min
θ

1
2J

J∑
j=1

∥∥∥Φ̂(b( j);θ)− λ( j)
opt

∥∥∥2
2
+ L(θ). (11)

Indeed, the learning problem (11) is itself a nonlinear inverse problem [29]. Second, there are
various optimization methods that can be used to solve (11). An intense amount of research
in recent years has focused on the development of efficient and effective solvers for solving
optimization problems like (11).
Stochastic approximation (SA) methods are iterative minimization approaches where a

small subset of samples from the training set (e.g. a randomly chosen mini-batch) is used at
each iteration to approximate the gradient of the expected loss and to update the DNN weights
[76, 79]. Common SA approaches include stochastic gradient descent and variants like ADAM
[50]. This approach is computational appealing for massively large datasets since only a mini-
batch of the data is needed in each step. However, slow convergence and the nontrivial task of
selecting an appropriate step size or learning rate present major hurdles. As an alternative to
SAmethods, stochastic average approximation (SAA) methods can be used, where the sample
batch (or the entire training dataset) is used [51]. One advantage is that computationally effi-
cient deterministic optimization methods (e.g. inexact Newton schemes) can be used to solve
the resulting optimization problem, but the main disadvantages are that, first, a very large batch
is typically required since the accuracy of the approximation improves with larger batch sizes
and, second, the entire dataset must fit in computer memory, which minimizes its applicability
within the field of large scale machine learning problems.

3. Learning the strength of regularization: one parameter

Next, we investigate our proposed approach for the special but widely encountered problem
where we seek one regularization parameter, which represents the strength or amount of reg-
ularization. Without loss of generality, we consider a least squares loss function for the data
fit. Let λ = λ ∈ R, then consider the regularized problem,

x̂(λ) = arg min
x

‖A(x)− b‖22 + λ2R(x), (12)

where R(x) is a regularization functional that only depends on x. In this case, the value of
the regularization parameter λ determines the weight or strength of the regularization term.
Another interpretation of λ is that it represents the noise-to-signal ratio, which can be derived
from a Bayesian perspective, see e.g. [5, 9]. In this section, we begin with an investigation on
the use of a neural network to approximate the mapping from observation vector b to optimal
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regularization parameter λ for the standard Tikhonov case. Then, we address more general
regularization terms and approaches.

3.1. Standard Tikhonov regularization

The standard Tikhonov problem, also referred to as ridge regression, is often used to solve
linear inverse problems, see [5, 39, 82], where the regularized solution has the form,

x̂(λ) = arg min
x

‖Ax− b‖22 + λ2‖x‖22, (13)

with A ∈ R
m×n. An adequate choice of the regularization parameter λ is paramount, since a

parameter that is too small may lead to erroneous solutions and a parameter that is too large
may lead to overly smoothed solutions. Assuming xtrue is known, an optimal (balanced) reg-
ularization parameter can be computed as in (7) with x̂(λ) given by (13). In practice, xtrue
is not available, and there are various regularization parameter selection methods to estimate
λopt. Prominent methods include the DP, the generalized cross-validation (GCV) method, the
unbiased predictive risk estimator (UPRE), and the residual periodogram, see e.g. [5, 39] and
references therein. If an estimate of the noise variance σ2 is available, two popular approaches
include DP and UPRE. The DP parameter is computed by solving the root finding problem,

λDP =
{
λ : ‖Ax̂(λ)− b‖22 − mσ2 = 0

}
, (14)

and the UPRE parameter can be computed as,

λUPRE = arg min
λ

U(λ) = ‖Ax̂(λ)− b‖22 + 2σ2 tr (AZ(λ)) . (15)

Here, tr (B) denotes the trace of a matrixB andZ(λ) = (A�A+ λ2In)−1A�. A commonparam-
eter choice method that does not require an estimate of the noise variance is the GCV method,
which is based on leave-one-out cross validation [5]. The goal is to find a regularization
parameter that solves the following optimization problem,

λGCV = arg min
λ

G(λ) =
m‖Ax̂(λ)− b‖2
(tr (Im − AZ(λ)))2

. (16)

For each of the described methods, we assume a unique solution exists. Many of these
methods have sound theoretical properties (e.g. statistical derivations) and can lead to favor-
able estimates (e.g. providing unbiased estimates of λ). However, each approach has some
disadvantages. For example, DP and UPRE require estimation of the noise variance σ2 [21],
and the computational costs to minimize the UPRE and GCV functional are significant, since
computing U(λ) and G(λ) may involve O(n3) floating point operations. For small problems
or for problems where the singular value decomposition (SVD) of A is available, the SVD
can be used to significantly reduce the costs to compute parameters (14)–(16). Furthermore, in
recent years, variousmethods have aimed to reduce computational costs, e.g. through trace esti-
mation and other randomized linear algebra approaches [60]. However, for many large-scale
problems, the burden of computing a suitable regularization parameter λ still remains. Indeed,
the computational cost to compute an estimate of λ using standard techniques oftentimes
far outweighs the cost of solving the inverse problem (13) itself. One remedy is to consider
hybrid projection methods that combine an iterative projection method with a variational reg-
ularizer so that the regularization parameter can be automatically tuned on a much smaller,
projected problem [6, 13, 68]. Nevertheless, selecting an appropriate regularization parameter
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Figure 2. For the inverse heat condition problem, the left panel shows three sample
temperature signals xtrue at location 0 in time. The right panel depicts the corresponding
noisy temperature observations at location 1, with different noise characteristics.

using existing approaches may still be difficult or costly in practice. In the following, we con-
sider the use of DNN-predicted regularization parameters and begin with a small test problem
to provide comparisons to existing parameter choice methods.

Consider the classical inverse heat conduction problem: an unknown heat source is applied
to the end of an insulated semi-infinite bar (at location 0). Given noise contaminated tem-
perature measurements b = [b(t1), . . . , b(tm)]� at time points t1, . . . , tm at location 1, the
goal is to determine the temperature of the heat source x(t) at any time t at location 0, see
[52]. For the simulated problem, let m = n = 100 and assume a heat source of the form
xtrue = [x(t1), . . . , x(t100)]� with x(t) = sin(2πr1t)+ sin(2πr2t)+ c at location 0, where r1
and r2 are random parameters and c is selected such that x(t) � 0. Let A ∈ R

n×n represent the
forward operator, as computed in the regToolsMatlab toolbox [40]. Then the synthetic data
are generated as b = Axtrue + εwith noise ε ∼ N (0, σ2Im) for some noise varianceσ2. By ran-
domly selecting σ2 to be uniformly distributed between 10−3 and 10−1 and randomly setting
parameters r1 and r2, we generate a training set of size J = 200 000, see figure 2 depicting three
samples. Following step 4 of algorithm 1, we compute the optimal regularization parameter
λ( j)
opt for each of the samples.
We consider two network designs: a deep network and a shallow network.

DNN For the DNN, we utilize a fully connected feedforward network Φ̂( · ;θ) : R100 → R

with five hidden layers of widths 75, 50, 25, 12, and 6; hence, the network parame-

ters are contained in θ ∈ R
13 046. Using the training data

{
b( j),λ( j)

opt

}J

j=1
, we compute

an estimate of the DNN network parameters denoted as θ̂ by solving (8) (cf, step 6
of algorithm 1). Since this is a fairly small problem, the optimization of the regression
problem (11) is performed on the entire data set (not just in mini-batch as is typically uti-
lized in deep learning). Hence, sample average approximation (SAA) approaches can be
used [66, 79] and standard second order method from convex optimization can be utilized
[67]. Here we are using a Levenberg–Marquardt method with regularization functional
L ≡ 0.

LRM As a second network, we consider a linear regression model (LRM) which can also be
interpreted as an extreme learning machine, which consists of an output layer containing
weights w ∈ R

100 and a bias term, y ∈ R, see [45]. The LRM model corresponds to a
simple assumption that there is a linear relationship between the input data b and the output
λ, i.e. λ = w�b+ y. With regression, training this shallow neural network (i.e. estimating
w and y) simplifies to a linear least squares problem which can be solved efficiently using
an iterative method (e.g. lsqr [69]). Let ŵ, ŷ denote the computed LRM parameters.
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Figure 3. The left panel displays the distribution of the discrepancy between the esti-
mated regularization parameter λ and λopt for various parameter choice methods for
200 000 validation data. On the right we provide the distribution of relative reconstruc-
tion error norms for various parameter choice methods.

Next we describe the online phase. Using the same randomized procedure described above,
we generate a validation set of size J = 200 000. For each sample from the validation set, b( j),
we compute the DNN predicted regularization parameter as λ( j)

DNN = Φ(b( j); θ̂) and the LRM
predicted regularization parameter as λ( j)

lrm = ŵ�b( j) + ŷ. The corresponding DNN and LRM
reconstructions are denoted as x( j)DNN = x̂(λ( j)

DNN) and x( j)lrm = x̂(λ( j)
lrm) respectively. To evaluate

the performance of the network computed parameters, for each sample from the validation
set, we compute the discrepancy to the optimal regularization parameter λ( j)

opt and the relative
error norm of the reconstruction x̂ with respect to xtrue, ‖x̂− xtrue‖2/‖xtrue‖2. In figure 3, we
provide distributions of the discrepancy in computed regularization parameter in the left panel
and distributions of the relative errors in the temperature reconstructions in the right panel. We
observe that both of the network based approaches perform reasonably well.

For comparison, we also provide results corresponding to the UPRE-selected regulariza-
tion parameter λ( j)

UPRE and the GCV-selected regularization parameter λ( j)
GCV (see equations (15)

and (16)). We exclude results for DP due to significant under-performance. We also provide
a comparison to an OED approach where regularization parameter λOED is computed by min-
imizing (3) for the training set, and that one parameter is used to obtain all reconstructions
x( j)OED = x̂(λOED) for the validation set.

Recall λ( j)
opt corresponds to the theoretical optimal performance which cannot be obtained in

real world problems. Fromfigure 3 we observe that both GCV andUPRE are under-performing
and underestimate the optimal regularization parameter. Compared to standard methods, the
OED approach performs significantly better at estimating λ( j)

opt. LRM generates slightly better
results then the OED approach. However, results from the DNN are virtually indistinguishable
from results obtained using the optimal regularization parameters λ( j)

opt and therefore perform
extremely well.

In summary, both network predicted approaches (DNN and LRM) outperform existing
methods. While LRMs have slight computational advantages compared to DNNs, we will see
in section 4 that DNNs can better predict regularizationparameters, thereby resulting in smaller
reconstruction errors than LRMs. Notice that the network predicted parameters are very close
to the optimal ones, which corresponds to very accurate regularized solutions. Furthermore,
they are very cheap to compute. That is, given new data, the network-predicted regularization
parameter can be computed with one feedforward evaluation of the neural network. In fact, by
shifting the main computational costs, i.e. training the neural network, to the offline phase, the
computational complexity of the online phase is significantly reduced. Notice also that neural
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networks are more versatile than OED approaches, since in the OED approach only one regu-
larization parameter is computed and that parameter is strongly dependent on the design choice
as well as the training data. For a squared loss design function, the computed parameter is only
good on average for the training data of a given problem [4, 75]. Thus, a major drawback of
OED methods is limitations in generalizability (e.g. to observations with different noise levels
or other features). On the contrary, network learned parameters obtained in an online phase are
tailored to the new data.

3.2. General regularization

The approach to learn a regularization parameter for Tikhonov regularization via training of
neural networks described in section 3.1 can be extended to more general regularization terms
and approaches. Indeed, the problem of estimating a good regularization parameter for (12)
becomes significantly more challenging for nonlinear problems and for non-traditional, non-
linear regularization terms. A common approach is to spend a significant effort to compute a
good regularization parameter a priori and then to solve the optimization problem for fixed
regularization parameter [23]. This can be very expensive, requiring many solves for different
parameter choices in the online phase. For nonlinear inverse problems, another approach uses
a two-stage method that first reduces the misfit to some target misfit value and second to keep
the misfit fixed and to reduce the regularization term. Although very popular in practice, this
approach is not guaranteed to converge (in fact diverging in some cases) and appropriate safety
steps and ad hoc parameters are needed [15, 72]. For nonlinear least-squares problems with a
Tikhonov term, Haber and Oldenburg in [34] combine a damped Gauss–Newton method for
local regularization with a GCV method for selecting the global regularization parameter, but
the overall scheme can still be costly.

For more general (non-Tikhonov) regularizers, selecting a regularization parameter can be
computationally costly even for linear problems [53, 56, 57, 85]. Total variation (TV) regular-
ization [48, 77] is a common approach, where the penalty term or regularizer takes the form

R(x,λ) = λTV(x) (17)

with regularization parameter λ > 0 and TV representing the total variation function.
Anisotropic TV is often used when one seeks to promote sparsity in the derivative, i.e. par-
tial smoothness. Standard regularization parameter selection methods (e.g. DP, UPRE, and
GCV approaches) are not easily extendable, although more elaborate methods based on these
principles have been considered, e.g. [63, 85]. Generic hyper-parameter estimation methods
such as k-fold cross validation techniques may be used to tune λ; however, the associated
computational costs are prohibitive for our numerical investigations in sections 4.1 and 4.2.
Sparsity-promoting regularizers based on �p regularization and inner-outer schemes for edge
and or discontinuity preservation have gained popularity in recent years [3, 77], but selecting
regularization parameters for these settings is not trivial. Various extensions of hybrid projec-
tion methods to more general settings have been developed [12, 27, 28]. Such methods exploit
iteratively reweighted approaches and flexible preconditioning of Krylov subspace methods
in order to avoid expensive parameter tuning, but can still be costly if many problems must
be solved. Furthermore, there are many works on supervised learning in an OED framework
[31, 32] for nonlinear problems [42] and general regularization terms (e.g. TV [17], and sparsity
[35]).

Another common form of regularization is iterative regularization, where regularization
is imposed by early termination of some iterative (often projection based) approach, applied
to the model-data misfit term of (2). Iterative regularization methods are widely used for
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solving large-scale inverse problems, especially nonlinear ones with underlying partial differ-
ential equations (PDEs) (e.g. parameter identification in electrical impedance tomography),
due to their ability to handle more complex forward models. For example, most iterative
methods only require the operation of the forward model A(x) at each iteration, which is
ideal for problems where the forward models can only be accessed via function evaluations.
For linear problems, matrices A and A� may be too large to be constructed, but evaluations
can be done cheaply (e.g. by exploiting sparsity or structure). The main challenge with iter-
ative regularization is determining a good stopping iteration, which is complicated due to a
phenomenon called semi-convergence. Many iterative Krylov subspace methods when applied
to inverse problems exhibit semi-convergence behavior, where during the early iterations the
solution converges to the true solution, but at some point, amplification of the noise components
in the approximate solution lead to divergence from xtrue and convergence to the corrupted and
undesirable naïve solution. This change occurs when the Krylov subspace begins to approxi-
mate left singular vectors corresponding to the small singular values. For a simulated problem
where we know xtrue, one way to visualize semi-convergence is to plot the relative reconstruc-
tion error norms per iteration, which exhibits a ‘U’-shaped plot; see the black line in figure 16.
Stopping the iterative process too early can result in images that are too smooth, and stopping
too late can result in severely degraded reconstructions. The stopping iteration plays the role of
the regularization parameter, and it can be very challenging to determine appropriate stopping
criteria.

By defining a neural network that maps the observed data b to an optimal regularization
parameter or an optimal stopping iteration, algorithm 1 can be used to efficiently estimate a
parameter defining the strength of regularization for different regularization approaches. In the
next section, we provide various numerical experiments from image processing to show that
DNNs are well suited to approximate the strength of regularization, as well as other parameters
describing regularity.

4. Numerical experiments

In this section, we provide several numerical examples from image processing that demonstrate
the performance of our proposed approach for learning regularization parameters. In section
4.1, we consider a tomographic reconstruction example where a DNN is used to approximate
the mapping from observation to the regularization parameter for TV regularization. In section
4.2, we consider an image deblurring example where the goal is to detect outlines of inclusions
in density fields from blurred images. We demonstrate how DNNs can be used to approximate
both the TV regularization parameter and the parameter quantifying the degree of an object’s
regularity. A third example is provided in section 4.3, where we consider an inverse diffusion
problemwhere regularization is enforced by early stopping of an iterative method (i.e. iterative
regularization), and we train a DNN to estimate an appropriate stopping iteration.

We remark that for all of our experiments, we noticed that the network learning process was
very robust in regards to the number of layers, the width of the layers, and the overall design
of the network. We attribute this to the fact that we have only a few output parameters.

4.1. Computerized tomography reconstruction

Computerized tomography (CT) is a widely used imaging technique for imaging sections or
cross-sections of an object using penetrating waves. For example, in biomedical imaging,
x-rays are passed through somemedium and, dependent on the properties of the material, some
of the energy from the x-rays is absorbed. Detectors with multiple bins measure the intensity
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Figure 4. Illustration of 2D x-ray parallel-beam tomography setup, modified from
[78]. Copyright ©2018 Society for Industrial and Applied Mathematics. Reprinted with
permission. All rights reserved.

of the x-rays emitted from the source (i.e. energy from x-rays that pass through the medium).
See figure 4 for a visualization in 2D.

By rotating the x-ray source and/or the detectors around the object, measurements are
collected from different angles. These measurements are contained in the sinogram. CT recon-
struction is a classic example of an inverse problem, where the goal is to infer the energy
absorbency of the medium from the sinogram.

With appropriate simplifications, the discrete CT problem can be stated as (1) with
A(xtrue) = Axtrue, see [49, 65]. In this example, xtrue ∈ R

16 384 represents a discretized version
of the observed medium (128× 128), the forward operator A represents the radon transform,
b represent the observed intensity loss between detector and x-ray source (with 181 parallel
rays over 180 equidistant angles θ), and ε reflects noise in the data. Tomography problems
are ill-posed inverse problems and regularization is required. We consider anisotropic TV
regularization, see (17).

The goal of this experiment is to train a DNN to represent the mapping from sinogram to TV
regularization parameter. First, we generate true images x( j)true using the random Shepp–Logan
phantom see [14, 78]. Then, sinograms are computed as b( j) = Ax( j)true + ε( j), where ε repre-
sents white noise with a noise level that is selected as uniform random between 0.1% and 5%.
For example, a noise level of 5% corresponds to ‖ε‖2/‖Axtrue‖2 = 0.05. The operator A is
determined via parallel beam tomography [41]. For each of the sinograms, we solve (7) using
a golden section search algorithm to obtain λ( j)

opt. This requires solving multiple TV regular-
ization problems which is performed using the split-Bregman approach, see [77] for details.
We denote the corresponding optimal reconstruction by x( j)opt = x̂(λ( j)

opt). In figure 5, we provide
three of the true images in the top row, the corresponding observed sinograms in the middle
row, and the TV reconstructions corresponding to the optimal regularization parameter in the
bottom row.

We select a training set of 24 000 images and consider learning approaches to approximate
the input–output mapping b( j) → λ( j)

opt for j = 1, . . . , 24 000. Notice that the network inputs are
image sinograms of size 181× 180. For this application we consider a convolutional neural
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Figure 5. Samples from the tomography dataset: three training images x( j)true (first row),
noisy sinograms b( j) (second row) with white noise level 2.58%, 1.37%, and 0.48%,
respectively, and optimal reconstructions x( j)opt (last row).

network consisting of 4 single channel convolutional layers with 32× 32, 16× 16, 8× 8, and
4× 4 kernel weights, respectively and one bias term each. The convolutional layers are padded,
and the kernel is applied to each pixel, i.e. the stride is set to 1. To reduce the dimensionality
of the neural network we use an average pooling of 32× 32. We establish one fully connected
layer with 4× 22, 50weights, plus 4 bias terms, and a one dimensional output layer 1× 4, plus
one bias term. Each hidden layer has a ReLU activation function andwith a regression loss there
are 90 773 parameters in θ defining the DNN Φ̂(b;θ). We remark that various network designs
could be used here, and empirically we observed robustness to the choice of the network. Thus,
we aim for a networkwith a small numberof network parameters that is fast to train. To estimate
θ we utilize the ADAM optimizer with a learning rate of 10−4, while the batch size is set to
64, [50]. We learn for 30 epochs. Further, we also consider a shallow network and use an LRM
design as described in section 3.

A validation set of 3600 images are generated with the same properties as the training set.
The scatter plot in figure 6 illustrates the predictive performance of the DNN and the LRM
networks on the validation set. For each sample from the validation data set, we compute the
network predicted regularization parameters λDNN and λLRM and plot these against the optimal
regularization parameter λopt.

While the scattered data of the LRM vary greatly, the scattered data of the DNN clusters
around the identity line revealing the favorable predictive performance of the DNN. Another
way to visualize these results is to look at the discrepancy between the network predicted
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Figure 6. Scatter plot of network predicted regularization parameters λDNN and λLRM
versus the optimal regularization parameter λopt for the tomography reconstruction
example.

Figure 7. (left) Probability densities for the discrepancy between network predicted
regularization parameters and the optimal regularization parameter for the tomography
reconstruction example. (Right) Probability densities for the relative reconstruction error
norms.

regularization parameters λDNN and λLRM and the optimal regularization parameter. The prob-
ability densities of these discrepancies are provided in the left panel of figure 7 and further
reveal the alignment between the DNN computed and the optimal regularization parameter.
Next we investigate the translation of the network predictions of the regularization parame-
ters to the quality of the image reconstruction.We compute relative reconstruction error norms
as ‖x̂(λ)− xtrue‖2/‖xtrue‖2 for λDNN,λLRM and λopt and provide densities for the validation
data in the right panel of figure 7. While the LRM predicted regularization parameter resulted
in significant errors, partially due to large outliers, we observe that the DNN predicted regular-
ization parameters resulted in near optimal TV reconstructions. In fact, we found that in a few
instances the DNN predicted regularization parameter resulted in a smaller relative reconstruc-
tion error than the optimal, which revealed numerical errors in the computation of the optimal
regularization parameter λopt.

To further support the validity and generalizability of our approach, we use our learned
DNN and LRM networks on real world data. We consider data for the tomographic recon-
struction of a walnut available at http://fips.fi/dataset.php and described in [36]. The walnut
image that we take as ground truth is provided in figure 8 (top left). Then we generated
1000 noisy sinograms from the walnut image, with the same noise ranges as for the random-
ized Shepp–Logan phantom. One sinogram is provided in figure 8 (top right) to emphasize the
difference between the data for the walnut example and the data for the Shepp–Logan phan-
tom (cf, figure 5, second row). Nevertheless, we used our DNNs (trained on Shepp–Logan
phantoms) to predict the regularization parameters for the walnut sinograms, and ultimately
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Figure 8. In the top row, we provide the ground truth image of the walnut and one noisy
sinogram. In the bottom row, we provide the probability densities for the discrepancy
between the network predicted regularization parameter and the optimal regularization
parameter (left) and probability densities for the relative reconstruction error norm of
the reconstruction (right).

to reconstruct the walnut image. We observe that, while LRM estimates for λ are consistently
poor, resulting in reconstructions with high relative reconstruction errors, DNN predictions for
the regularization parameters are adequate and result in small reconstruction errors; see figure
8, lower left for probability densities for the discrepancy between network predicted regular-
ization parameters and the optimal regularization parameter and lower right for probability
densities for relative reconstruction error norms.

4.2. Image deblurring with star-shaped inclusions

Digital imaging is an important tool in medicine, astronomy, biology, physics and many indus-
trial applications and is frequently used to answer cutting edge scientific questions. Imper-
fections in imaging instruments and models can result in blurring and degradation of digital
images. Post-processing methods for removing such artifacts from a digital image have been
a topic of active research in the past few decades [38, 73, 74]. For the study in this section, we
consider an image deblurring example where the desired image contains an inclusion whose
degree of edge regularity can be characterized using a regularity parameter. We consider train-
ing a DNN to learn both the optimal TV regularization parameter and the regularity parameter
of the inclusion. It is natural to require the network to consider the dependency and coupling
of these parameters.

We consider a discrete image deblurring example, where the vectorized blurred image con-
tained in b can be modeled as (1) with A(xtrue) = Axtrue, see [38]. Here, xtrue represents the
vectorized desired image, A is a discretized linear blurring operator, and ε represents noise
in the observed data. The simulated true images contain piecewise constant ‘star-shaped’
inclusions [7, 22], see figure 9 first column. Such inclusions are characterized by their cen-
ter c0 and a radial function r. More precisely, let D ⊂ R

2 be the unit disk and τ : R2 → R be
the continuous mapping from the Cartesian to angular polar coordinates. We define the region
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of inclusion to be

A(r, c0) = {y ∈ D : ‖y− c0‖2 � r(τ (y− c0))} , (18)

where we set c0 to be the origin and radial function r represents a one-dimensional periodic
log-Gaussian random field [47] defined as

r(ξ) = r0 + c exp

(
1√
π

∞∑
i=1

(
1
i

)γ (
X1
i cos(iξ)+ X2

i sin(iξ)
))

. (19)

Here, we assume X1
i ,X

2
i to be random normal X1

i ,X
2
i ∼ N (0, 1), γ > 1 controls the regularity

of the radial function, r0 > 0 is the deterministic lower bound of the inclusion radius and c > 0
is the amplification factor. We construct an infinite-dimensional image as

χ(r) = a+𝟙A + a−𝟙D\A, (20)

where 𝟙 is the indicator function, a+ = 1 and a− = 0. Discretizing χ into pixels and reshaping
it into a vector yields the ground truth discrete image xtrue. For this test case, we fix the size
of the images to 100× 100 pixels. We generate a dataset of J = 20 000 true images x( j)true by
selecting the inclusion regularity parameter γ uniformly from the interval γ ∈ [1.25, 2.5], set-
ting the application factor c = 0.25 exp(0.2) and setting the deterministic minimum value to
r0 = 0.2/

√
2π. We truncate the sum in the log-Gaussian random field after 100 terms. Further-

more, we simulate the corresponding observed images b( j) = Ax( j)true + ε( j), whereA comprises
a two-dimensional discrete Gaussian blur with a standard deviation of σκ = 1 and a stencil of
the size 5× 5 pixels and ε( j) is white noise where the noise level is selected uniformly between
0.1% and 5%. Three sample inclusions corresponding to different choices of γ are provided in
figure 9, along with the true and observed images.

Regularization is an essential step in solving the image deblurring problem, and many
choices for the regularization term R(x) have been considered [20, 38, 46, 70, 71]. We con-
sider TV regularization (17) as discussed earlier, since it provides an excellent choice for
deblurring images with piecewise smooth components. Larger values of the partial deriva-
tives are only allowed in certain regions in the image [38], e.g. near edges and discontinuities.
Thus, an optimal choice of the regularization parameter λ in (17) depends on the edge proper-
ties of the particular image. For example, notice that for smaller γ the true star-shaped inclusion
in xtrue contains a longer boundary (in fact, the length of the boundary tends to∞ as γ → 1). In
this case, the TV regularization term (17) will have a larger contribution to the minimization
problem (2). The dependency of λopt on γ is in general nonlinear. We remark that an accurate
prediction of γ can have significance beyond its impact on the optimal regularization parame-
ter. For example, in some applications the prediction of the outline of inclusions in a degraded
image can be used to differentiate cancerous versus non-cancerous tissues. Furthermore, pre-
dicting the correct regularity of the outline, i.e. γ, can significantly enhance the uncertainty
quantification of such a prediction.

Next we describe the learning process. For each blurred image, we solve (7) to obtain
λ( j)
opt, using the split-Bregman approach [77] to find x̂(λ) that solves (12) with (17). We denote

the corresponding reconstruction by x( j)opt = x̂(λ( j)
opt), see figure 9. Thus, the dataset consists of{

b( j), x( j)true,λ
( j)
opt, γ

( j)
true

}
. We construct a DNN to predict the regularity parameter γ true and the

optimal regularization parameter λopt, simultaneously. The DNN comprises of 3 convolutional
sub-networks and 2 types of output networks for γ true and λopt, respectively. Each convolu-
tional sub-network consists of a two-dimensional convolution layer, a two-dimensional batch
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Figure 9. Example images of star-shaped inclusions. In each row, we provide the outline
of the inclusion, the true image, the blurred, noisy image, and the reconstruction using
TV with the optimal regularization parameter. Regularity of r is set to γ = 1.2, 1.75
and 2.5, with noise level 1.79%, 3.67% and 4.07%, for the first, second, and third row,
respectively.

Table 1. Description of DNN for image deblurring with star-shaped inclusions example.

Layer name Number of layers Output size Layer type

conv_1 — 50 × 50 with 16 channels Convolutional with kernel size: 5× 5
conv_2 — 25 × 25 with 32 channels Convolutional with kernel size: 5× 5
conv_3 — 12 × 12 with 64 channels Convolutional with kernel size: 5× 5
out_1 1 1 Feed-forward
out_2 3 1 Feed-forward

normalization, a ReLU activation function, and a two-dimensional max-pool layer. We con-
sider an output layer with a single ReLU layer for γtrue (out_1 in table 1) and an output layer
for λopt with 3 hidden layers (out_2 in table 1). Since the dependency of λopt on γ is nonlinear
in general, the output network for λopt is chosen deeper than the output network for γ to capture
the extra complexity. We summarize the architecture of this DNN in table 1.

Let Φ̂conv denote the convolutional part of the network and Φ̂γ and Φ̂λ denote the output
networks corresponding to γ true and λopt, respectively. Since the DNN produces multiple out-
puts, we train it in 2 separate stages. In the first stage we train the network Φ̂γ ◦ Φ̂conv which
maps b onto γ. In the second stage we fix the network parameters in Φ̂conv, denote the fixed
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Figure 10. Prediction of regularization parameter λopt for the image deblurring with
inclusions example with uniformly distributed γtrue ∈ [1.2, 2.5]. (Left) Scatter plot of
network predicted regularization parameter λDNN versus the optimal regularization
parameter λopt. (Right) Probability density for the discrepancies between the network
predicted regularization parameter and the optimal regularization parameter.

network by Φ̂γ
conv, and train the network Φ̂γ ◦ Φ̂γ

conv. The two stages for updating the network
can be carried out for a single batch of data, or after a complete training of each network. The
cost function in the first stage is chosen to be (11) where λ( j)

opt is replace by γ
( j)
true.

The process of taking a trained sub-network, (e.g. Φ̂conv), to train another network,
(e.g. Φ̂γ) is referred to as fine-tuning a network [55]. We choose fine-tuning Φ̂γ to avoid
exhaustive computations and network overfitting. These are common approaches in training
large neural networks, see [80] for details on fine-tuning. An alternative approach to fine-
tuning is to design a single loss function for both parameters. However, different scales in
the parameters makes designing a single loss function challenging and is beyond the scope
of the work.

Recall that the convolutional part of the network extracts information in an image that is
required in generating the output. The two-stage method in training the network assumes that
the necessary information required for reconstructing γ true is the same as that needed for the
reconstruction of λopt. Furthermore, this technique conserves the order of dependency between
the parameters, i.e. from γ true to λopt.

To train the network, we split the dataset into a training set of 15 000 data points, and a val-
idation set of 5000 data points. We utilize the ADAM optimizer with a dynamic learning rate
chosen in the interval [10−5, 10−1] with a batch size of 210 data points. The network is trained
for 104 epochs. The performance of the method is evaluated on the validation set. In figure 10,
we summarize the performance of the network in predicting the optimal regularization param-
eter. The scatter plot in the left panel indicates a strong correlation between the optimal and
the DNN predicted regularization parameter, and the plot in the right panel indicates relatively
small discrepancies. The performance of the predicted regularization parameter in terms of
the reconstructed image can be found in figure 11, where we provide the probability densities
for the relative reconstruction error norms compared to xtrue and calculated with respect to the
�1-norm. We observe an excellent match between the distribution of the error norms for the
image reconstructed by λopt and for the image reconstruction by λDNN. The authors found
comparable results when an �2-norm is utilized for the relative reconstruction errors.

Finally, we investigate the performance of the DNN in predicting γ, the parameter defining
the regularity of the star-shaped inclusion. The scatter plot in the left panel of figure 12 shows
high correlation between the true regularity parameter γ true and the DNN predicted parameter
γDNN. The plot in the right panel of figure 12 provides probability densities of γ true and γDNN.
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Figure 11. Probability distribution of relative reconstruction error norms computed with
respect to the �1-norm for the image deblurring with inclusions example.

Figure 12. Prediction of regularity parameter γtrue for the image deblurring with inclu-
sions example with uniformly distributed γtrue ∈ [1.2, 2.5]. (Left) Scatter plot of network
predicted regularity parameter γDNN versus the true regularity parameter γtrue. (Right)
Probability densities of γDNN and γtrue.

We notice larger errors in the prediction for larger values of γ. This can be due to the low
resolution of images where the smoothness information is lost in the discretization. Recall that
Φ̂conv only extracts information in an image that is needed to predict γ. Figure 11 validates that
this information is sufficient for the prediction of λopt.

4.3. Learning the stopping iteration for iterative regularization

In this example, we train a convolutional neural network to learn the mapping from observa-
tion to optimal stopping iteration. We consider a linear inverse diffusion example described in
[26, 64] where the goal is to determine an initial function, given measurements obtained at
some later time. The solution is represented on a finite-element mesh and the forward compu-
tation involves the solution of a time-dependentPDE. The underlying problem is a 2D diffusion
problem in the domain [0, T]× [0, 1]× [0, 1] in which the solution x satisfies

∂x
∂t

= ∇2x (21)

with homogeneousNeumann boundary conditions and a smooth function x0 as initial condition
at time t = 0. The forward problem maps x0 to the solution xT at time t = T, and the inverse
problem is then to reconstruct the initial condition from observations of xT . We discretize the
function x on a uniform finite-element mesh with 2(

√
n− 1)2 triangular elements, where the
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Figure 13. 2D inverse diffusion problem: for n = 28, we provide one example of the true
solution xtrue corresponding to the initial function x0 on the left and the corresponding
observed data b at time T = 0.01 on the right.

domain is an (
√
n− 1)× (

√
n− 1) pixel grid with two triangular elements in each pixel. Then,

vector x ∈ R
n contains the n values at the corners of the elements. The forward computation

is the numerical solution of the PDE (21) using the Crank–Nicolson–Galerkin finite-element
method, and the discretized forward process is represented A ∈ R

n×n, see [26].
We generate a data set containing initializations x( j)true = x( j)0 for j = 1, . . . , 12 500 where

n = 784 = 28× 28. Each initialization is generated as

x0(ξ) = aψ(ξ, c1,ν1)+ ψ(ξ, c2,ν2), (22)

where ξ ∈ R
2 represents the spatial location, ψ(ξ, c,ν) = e−(ξ−c)� diagν(ξ−c) where the ampli-

tude a = 0.7|ζ| where ζ ∼ N (0, 1), the components of the centers c1, c2 ∈ R
2 are uniformly

randomly selected from the interval [0.1, 0.9], and the components of vectors ν1,ν2 ∈ R
2 are

uniformly randomly selected from the interval [5× 10−2, 2× 10−1]. The jth observation is
generated as

b( j) = Ax( j)true + ε( j), (23)

where the noise level is uniformly randomly selected from the interval [10−5, 5× 10−1]. An
example of one initialization along with the corresponding noisy observed data b is provided
in figure 13. The noise level for this example is 0.0974.

Next, we consider the reconstruction process for the 2D inverse diffusion problem.Although
many iterative projection methods could be used here, we consider the range-restricted
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Figure 14. Optimal and DNN predicted stopping iteration for each sample of the
validation set.

GMRES (RRGMRES) method, which does not require the transpose operation. For each
sample, we run RRGMRES to compute the corresponding optimal stopping iteration, i.e. the
stopping iteration that corresponds to the smallest relative reconstruction error,

k( j)opt = arg min
k∈N

‖xk − xtrue‖, (24)

where xk is the kth iterate of the RRGMRES approach applied to (23).

Now we have a data set containing 12 500 pairs,
{
b( j), k( j)opt

}
. We split the data into 12 000

samples for the training data and 500 samples in the validation data. Using the training data,
we employ a convolutional neural network with four convolutional layers. Each convolutional
layer consists of 3× 3 filters with the following number of channels 8, 16, 32 and 32 respec-
tively and a bias term for each. The convolutional layers are padded, and the stride is set to 1.
To reduce the dimensionality of the neural network we use an average pooling of 2× 2. We
establish one 20% dropout layer followed by one dimensional output layer 1× 1568, plus bias
term. Each hidden layer has a ReLU activation function. To estimate θ we utilize the stochastic
gradient descent with momentum method with a learning rate of 10−4, while the batch size is
set to 128. We learn for 50 epochs. Although the stopping iteration must be a whole number
that is greater than 1, we used a regression loss output layer and just rounded the outputs of
the DNN for prediction. The regression loss assumes that the distribution of errors is Gaussian
which is not the case with an integer output. We remark that a more suitable loss function (e.g.
a Poisson loss or negative binomial loss) could be used. For the jth sample, the DNN predicted
stopping iteration is denoted by k( j)DNN. In figure 14, we plot the optimal iteration kopt along
with the DNN predicted stopping iteration kDNN per (sorted) validation sample. Notice that
the predicted stopping iteration via the learned DNN network is close to the optimal stopping
iteration.

For the validation set, we provide comparisons to results using the DP to estimate the
stopping iteration. For these results, for each sample we estimate the noise level η from
the data b( j) using a wavelet noise estimator [21] and select the iteration k( j)DP such that∥∥∥b( j) − Ax( j)k

∥∥∥
2
/
∥∥b( j)∥∥

2
� ηδ( j) where x( j)k is the kth iterate of RRGMRES, δ( j) is the noise

level, and the safety factor η = 1.01 was suggested in [26]. We found that there were some
examples in the validation set where the DP failed, resulting in very large reconstruction errors.
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Figure 15. The left panel depicts the distribution of the discrepancy between the esti-
mated stopping iteration k for DNN and DP and the optimal stopping iteration kopt for
500 validation data. In the right panel, we provide the corresponding densities of relative
reconstruction error norms.

Figure 16. For the example in figure 13, we provide the relative reconstruction error
norms per iteration of the RRGMRES method. The markers correspond to the stopping
iteration that is predicted via the learned DNN, the optimal stopping iteration, and the
DP-selected stopping iteration.

Of the 500 validation examples, there were 25 examples where DP used to compute a stopping
iteration resulted in relative reconstruction error norms above 2. For visualization purposes,
these are not provided in the following results.

In left panel of figure 15 we provide the distribution of the discrepancies between the DNN
predicted stopping iteration and the optimal stopping iteration, k( j)DNN − k( j)opt. Notice that the
distribution of discrepancies is centered around zero. For comparison, we also provide the dis-
tribution of discrepancies for the DP, k( j)DP − k( j)opt. We observe that the DP often underestimates
the optimal stopping iteration. In the right panel of figure 15 we provide the distribution of the
relative reconstruction error norms with respect to xtrue, i.e. ‖xk − xtrue‖2/‖xtrue‖2 where xk are
reconstructions at stopping iterations k( j)DNN, k

( j)
opt, and k

( j)
DP. We observe that the DNN predicted

stopping iterations result in relative reconstruction errors that are very close to those at the
optimal stopping iteration.

Last, we provide reconstructions corresponding to one sample from the validation set, where
the true and observed signals are provided in figure 13. In figure 16, we provide the relative
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Figure 17. Reconstructions obtained using RRGMRES for the 2D inverse diffusion
example in figure 13, where the stopping iteration was determined via DNN, optimal,
and DP.

reconstruction errors per iteration of RRGMRES. The optimal stopping iteration (correspond-
ing to the minimizer of the relative reconstruction error norms is 12 and is marked in black.
The DNN predicted stopping iteration was also 12 and is marked by the blue circle. The DP
stopping iteration was 5 and is denoted in red. Corresponding reconstructions are provided
in figure 17, where it is evident that with DP, the reconstruction is too smooth and unable to
resolve the two peaks in the initialization.

5. Conclusions

In this paper, we propose a new approach that uses DNNs for computing regularization param-
eters for inverse problems. Using training data, we learn a neural network that can approximate
the mapping from observation data to regularization parameters. We consider various types of
regularization including Tikhonov, TV, and iterative regularization. We also showed that this
approach can be used to estimate multiple parameters (e.g. regularity of edges of inclusions
and the regularization parameter). We showed that DNN learned regularization parameters
can be more accurate than traditional methods (not just in estimating the optimal regulariza-
tion parameter but also in the corresponding reconstruction) and can be obtained much more
efficiently in an online phase (requiring only a forward propagation through the network).
Although the proposed approach bears some similarity to existing OED approaches since the
main computational costs are shifted to the offline phase, theDNN approach exhibits better per-
formance since the computed regularization parameters are tailored to the specific data. Our
results demonstrate that the mapping from the observation b to the regularization parametersλ
can be well-approximated by a neural network. We observed that our approach is flexible with
regards to the specific design of the network and that despite the large dimension of the net-
work input b, not a significant amount of training data is required to obtain a good approximate
mapping that results in good regularization parameter choices.

Furthermore, the simplicity of our proposedmethodmakes it widely applicable to many dif-
ferent fields of applications. Future work includes extensions to learning parameters for hybrid
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projection methods or multi-parameter regularizers. In addition, we plan to incorporate recent
works on physics informed neural networks to design better networks, for instance designing
convolutional neural networks to capture the geometry of the sinogram and including the phys-
ical model as a regularizer for the learning process to improve predictions. Further, we plan to
developmethods to estimate the number of inclusions in addition to the regularity of inclusions
in an image for further image analysis.
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