Received: 10 February 2022 Accepted: 11 February 2022

W) Check for updates

DOI: 10.1002/hyp.14525

COMMENTARY

WILEY

llluminating the ‘invisible water crisis’ to address global water

pollution challenges

Benjamin W. Abbott?
Iseult Lynch! |

David M. Hannah? |
Christa Kelleher® |

Stefan Krause* © |

| Kieran Khamis! |
Adam S. Ward’

1School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK

2Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA

3Department of Earth and Environmental Science, Syracuse University, Syracuse, New York, USA

4LEHNA - Laboratoire d’ecologie des hydrosystemes naturels et anthropises, University of Lyon, France

5School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA

Correspondence

David M. Hannah, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Email: d.m.hannah@bham.ac.uk

Funding information

United Nations Educational, Scientific and Cultural Organization; USDA National Institute of Food and Agriculture; National Institute of Food and Agriculture;

University of Birmingham

The world faces an invisible crisis of water quality. Its
impacts are wider, deeper, and more uncertain than
previously thought and require urgent attention—The
World Bank— (Damania et al., 2019).

1 | THE ‘WATER QUALITY CRISIS’: THREE
PHASES OF RIVER POLLUTION

Healthy rivers provide vital services for humans and other life on
Earth. Water pollution can seem like a 20th century problem: solved
and sorted. In reality, gains in water quality have been hard won and
far from universal, with many pollutants persisting or even increasing.
Without widespread awareness and action, growing anthropogenic
pressures could threaten anew the integrity of our water resources.
Over the last half century, water quality has improved—most
notably in upper income countries (UICs)—with declining pollution
attributed to better monitoring, treatment and regulation such as
the EU Water Framework Directive, US Clean Water Act, Chinese
Water Pollution Control Law, and Ghana National Water Policy.
Globally, there are fewer deaths now from waterborne pathogens, it
is rare for rivers to catch fire from industrial waste, and advisories
against swimming and fishing have been lifted in many regions

(Landrigan et al., 2018). As we congratulate ourselves on abatement

of ‘classical’ pollutants (human waste, nutrients, sediment), it is
tempting to assume that adequate standards of water quality have
been achieved.

Unfortunately, poor water quality remains a pervasive problem.
Water pollution still causes 2 M deaths each year and yields an addi-
tional critical burden of chronic diseases (Landrigan et al., 2018).
Across Europe, 34% of the 130 000 water bodies surveyed in 2020
failed to meet “good” chemical status. Notably, 100% of rivers in
England, Germany, Belgium and Sweden failed standards, and less
than one-third of rivers met comparable ratings used in the USA
(Kristensen et al., 2018). Moreover, deteriorating water quality is evi-
dent for Asian, African and South American rivers (UNEP, 2016).
These reports demonstrate that we have not solved our water
quality woes.

The current state of river water quality reflects an intertwined
history of human development and governance. We propose river
pollution can be conceptualized in three historical ‘Phases’, character-
ized by distinct contaminant types and mitigation methods:

Phase 1. Chronic organic pollution and pathogens associated with
limited treatment of faecal waste, exacerbated by a rapidly increasing
population density.

Phase 2. Point source and diffuse pollution associated with the
intensification of primary (agriculture, mining, forestry) and secondary

(textiles, manufacturing, petroleum refining) industry.
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Phase 3. Emerging contaminants associated with industrial (per-
and poly-fluoroalkyl substances, nanomaterials), medical and veteri-
nary (pharmaceuticals) advances.

In UICs, these Phases occurred sequentially over several decades
or even centuries, tracking industrialisation and technological
advances (Figure 1; Arden & Jawitz, 2019). This enabled development
of infrastructure such as wastewater treatment facilities and capacity
to monitor and regulate contaminants in Phases 1 and 2 (Figure 2).
Today, many lower- and middle-income countries (LMICs) are facing

pressures from compressed and overlapping water pollution phases.
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FIGURE 1 Relationships between water pollution and economic
development. (a) The mean amount of each pollution type in
freshwaters (rivers, lakes, groundwater) expressed on a relative scale.
The World Bank thresholds for per capita annual income are indicated
by the colors on the axis. The gray boxes indicate the three pollutant
phases with example pollutants. (b) The exchange of pollutants across
economic development levels, including physical transport

(e.g. shipping of plastics, livestock, or e-waste) and virtual exchange
(e.g. resource extraction in one level due to demand in another). Size
of arrows represents magnitude of exchange and colors correspond to
the pollutant categories in panel (a). (c) Local capacity to prevent or
remediate pollution expressed on a relative scale. Data are primarily
from the World Bank and Our World in Data. Panels (a) and (c) show
the smoothed means for a subset of countries where data were
available. Most categories include multiple parameters, which were
scaled and averaged, and patterns should be interpreted qualitatively

Sanitation challenges from rapid urbanization coincide with industrial
development fuelled by outsourcing of manufacturing and agriculture
from UICs to LMICs. With even the highest income countries strug-
gling to reduce Phase 2 and 3 pollutants, it is unsurprising that many
countries lack the resources to address the multiplicative pressures of
all three Phases simultaneously.

2 | ‘INVISIBLE’ BUT IMPOSSIBLE TO
IGNORE

With water technologies at an all-time high, what accounts for this
lack of progress and even degradation of water quality worldwide?
While water quantity challenges have attracted attention due to their
visually dramatic manifestation (floods, drought), water quality issues
are often inconspicuous or invisible. Several converging factors are
making the three Phases of water pollution increasingly visible and
impossible to ignore:

21 | We are polluting more rapidly and diversely
than ever

Thousands of pollutants now exist at detectable concentrations in
the environment (Figure 1a). Agricultural applications (fertilizers,
pesticides, pharmaceuticals) are increasing worldwide, and freshwa-
ter environments are affected by salinization due to irrigation and
sea level rise. Meat consumption continues to increase, with its
associated nutrient and pharmacological burdens. Surges in pollu-
tion are generated by unforeseen global crises, such as plastic pol-
lution linked to personal protective equipment against COVID-19
(Prata et al., 2020). The diversity and concentration of pollutants
can result in non-additive interactions—mixtures that affect mobil-
ity, toxicity and bioavailability of the various ingredients (Niu
et al., 2020).

2.2 | Environmental change and globalization are
focusing impacts of pollution in space and time

Land use and climate change are short-circuiting the water cycle
(Levia et al., 2020). Extreme storms and altered surface and subsur-
face drainage accelerate pollution transport and reduce ecosystem
removal processes. Moreover, human disturbance can result in long-
term release of legacy contaminants into soils, aquifers, and rivers
(Van et al., 2018). At the same time, abrupt increases in global trade
have supercharged transnational transport of livestock, crops, man-
ufactured goods, and waste. This has resulted in imbalances in nutri-
ents, metals, plastics, and other contaminants (Figure 1b). Because
resource extraction and waste disposal are concentrated in LMICs,
they bear the water quality burden of global markets and consump-
tion in UICs. As LMICs typically have less capacity to treat waste
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FIGURE 2 Timeline of legislation and regulations related to the pollution of freshwaters. Four countries (Ghana, China, UK and USA) were
selected to represent a gradient of economic development, with the UK included specifically due to its longer regulatory history. Legislation and
regulations are categorized by the pollutant Phases (Phase 1 - wastewater related, Phase 2- intensification of primary and secondary industry,
Phase 3 - emerging contaminants). When legislation and regulations were not linked distinctly to a pollutant Phase (e.g. when associated with
specific habitats such as the EU Groundwater Directive), they were classified as multi-phase. For the UK, legislation and regulations associated
with the European Union (EU) are noted. The World Bank’s US$ GDP estimate for each country is displayed in parentheses. The information
displayed was compiled by authors from government and other authoritative sources

(Figure 1c), this results in more water pollution per tonne and much

higher human exposure.

2.3 | Growing pollutant knowledge has improved
regulation with more stringent standards

Although the widespread detection of long-banned pollutants such as
Polychlorinated biphenyls could signal worsening pollution, often it
reflects improved measurement capabilities. Sensitive methods now
detect a wide array of pollutants at low concentrations. As egregious
water pollutants have declined, we have tightened acceptable expo-
sure standards with new knowledge of lethal and detrimental impacts
on the environment and society (Ward et al., 2018). In some cases,
our failures are a consequence of better-informed and increasingly

stringent standards rather than absolute decreases in water quality.

3 | FROMCRISISTO SOLUTIONS

The last two centuries of water problems and solutions (Figure 2)
demonstrate that we must be proactive in managing river pollution
rather than create new pollution legacies for future generations. In
the face of intermeshed phases of pollutants, we need compressed

and overlapping solutions that:

3.1 | Integrate understanding of human activity
into holistic water management

To address complex water quality challenges, rivers and their hinter-
lands must be managed as connected systems. This requires improved
understanding of linkages between human activities on the landscape
and water quality across space-time scales. Knowledge of water sci-
ence is needed to balance public expectations and inform policy.
Short-term interventions may take decades to result in improvements,
while mismanagement may trigger new issues far into the future (Van
et al., 2018). Actions to address poor water quality should begin with
identifying the specific places, times and conditions that degrade dis-
proportionately water quality and work to redress stoichiometric
imbalances introduced by globalized manufacturing and trade
(Figure 1b; Peters et al., 2008).

3.2 | Move beyond regulating individual chemicals

To date, most chemicals are regulated individually. This can initiate a
legislative wild-goose chase whereby slight changes to chemical com-
position circumvent regulation. A new EU model is emerging whereby
chemicals are regulated based on their combined impact, such as reg-
ulating ‘total estrogenicity’ as opposed to individual compounds. For

this approach to be effective for more emerging contaminants, we
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need improved knowledge of potential acute and chronic toxicity of
multi-contaminant cocktails. This will account for cumulative risks
from exposure to many stressors, such as the emerging ‘exposome

concept’ (Landrigan et al., 2018).

3.3 | Leverage long-term and novel data sources

Environmental regulation has been informed by manual sampling and
in situ monitoring. Insights from satellite imagery and unoccupied
aerial vehicles are expanding monitoring in inaccessible areas, enabling
detection of sources and consequences of pollution (Huang
et al., 2018). CubeSat missions are complementing longstanding satel-
lite missions with higher spatial resolution and higher frequency data
(Cooley et al., 2017), providing new pathways for regional to global
monitoring and modelling. Yet, there is a parallel need to extend long-
term monitoring to track progress and ground-truth newer methods.
However, these records' integrity is threatened by declining funding
for monitoring networks, inconsistent approaches to data collection
and lack of open data sharing (Lovett et al., 2007). A combination of

conventional and cutting-edge monitoring methods is needed.

3.4 | Engage and empower communities and
decision makers

Working directly with impacted communities to monitor water quality
augments observational capabilities and empowers local people (Nardi
et al., 2021). Stakeholder engagement and citizen science initiatives
can lead to improved decision-making and behavioural change
through community cohesion around relevant issues, particularly
when information is transparent and accessible to stakeholders.
Equally important is building trust and data literacy for decision
makers and stakeholders, to ensure findings are understood and the

best available science is used in decision-making.

3.5 | Share knowledge to boost human wellbeing

If knowledge and management actions are aligned with well-designed,
effectively implemented and enforceable regulations, we can illumi-
nate invisible water challenges, producing healthier river environ-
ments for the benefit of ecosystems and society. Through support of
international cooperation and by considering water pollution chal-
lenges in their global context, LMICs may benefit from the experi-
ences in UICs as well as from technological and legal advances
(Figure 2), resulting in faster progress on solutions with less environ-
mental degradation to generate a leapfrog effect for human wellbeing.
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