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As we strive to create a more diverse and inclusive scientific community, it is worth
reflecting on the importance of mentors, collaborators, role models, and friends.
This is my story. From collaborators who have guided me to new and exciting
research directions to mentors who have provided much-needed support and
perspective, it is my “village” (i.e., the close members of my scientific community)
that has been critical in shaping my professional journey. This article is a
retrospective of the people and experiences that have had significant impacts on
my research portfolio, on my teaching and mentoring of students, and on my
involvement in the scientific community. It begins in 2006 when, as a second-year
Ph.D. student in the Department of Mathematics and Computer Science, Emory
University, | was awarded the Department of Energy Computational Science

Graduate Fellowship.

s we celebrate the 30th year of the Depart-
Ament of Energy (DOE) Computational Science

Graduate Fellowship (CSGF) program, | take a
moment to reflect on the impact of the CSGF on my
professional paths and experiences. After completing
my Ph.D. in 2009, which was supported by the DOE
CSGF program from 2006 to 2009, | held a National
Science Foundation (NSF) Mathematical Sciences
Postdoctoral Research Fellowship in the Department
of Computer Science, University of Maryland, College
Park, from 2009 to 2011, a faculty position at the
University of Texas at Arlington, from 2011 to 2012,
and a faculty position at Virginia Tech, where | am
currently an Associate Professor in the Department of
Mathematics.

When [ reflect on the biggest impact of the CSGF,
it is the establishment of community—the vibrant
research community, the opportunities, the role mod-
els, the personal connections, and the friendships.
Navigating the world of academia is rife with chal-
lenges, from the application process to the tenure
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process. We are expected to establish an internation-
ally renowned research program, develop innovative
teaching materials, engage students in research,
secure funding, and strike a delicate balance of pro-
fessional service (all while many of us are also starting
families!)—so it is important not only to have estab-
lished mentors as role models but also to have friends
who are in similar career stages, also known as “near-
to-peer” colleagues, for empathy and support. The
CSGF program has been pivotal in creating and sus-
taining such a community, and | believe it is what truly
sets this program apart.

My goal for this article is to provide a retrospective
since my time as a CSGF fellow, looking back at various
highlights from my research contributions in the field
of large-scale inverse problems to educational and out-
reach endeavors that have been particularly meaning-
ful to me. | also hope to provide some inspiration and
ideas about what we can do to create and nurture the
next generation of computational scientists.

My research is on the development of computational
methods for large-scale inverse problems. Inverse
problems arise naturally and are of core importance in
many scientific fields, such as astronomy, biology, and
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FIGURE 1. Image deblurring is an inverse problem, where the
goal is to reconstruct the true image, x., given the observed
image, b, and knowledge of the forward blurring process, A.
The problem is ill-posed, so the inverse solution computed as
A~ 'bis severely corrupted with noise and errors.

medicine.! A classic example of an inverse problem is
image deconvolution (or deblurring), where signals
measured by machines (e.g., cameras) are distorted,
and the aim is to recover the original input signal. See
Figure 1 for an example of a deblurring problem.
Another example of an inverse problem arises in atmo-
spheric inverse modeling where the primary goal is to
estimate greenhouse gas fluxes or air pollution emis-
sions at the Earth’s surface using satellite observa-
tions of these gases collected in the atmosphere. See
Figure 2 for three-hourly reconstructed fluxes from
Orbiting Carbon Observatory 2 satellite observations.?

More precisely, most inverse problems have an
underlying mathematical model, where the measure-
ments in b can be represented as

b= F(Xtrue) +34 (1)

where x;.,. € R" represents the desired solution or
unknown parameters, the functional F(-):R" — R™
models the forward data acquisition process, and §
R™ represents inevitable noise or errors that arise
from measurement error, discretization error, or
round-off error. For the image deblurring example, the
forward model is defined by the kernel or point spread
function that describes the blur, and for the atmo-
spheric inverse modeling problem, F' is defined by an
atmospheric transport model. Although errors in the
forward model may be incorporated in the definition
of F, we assume that we have near-perfect knowledge
of the forward model. Then, the inverse problem can
be stated as follows.
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Inverse problem

Given measured data, b, and forward model, F(-), the goal
of the inverse problem is to compute an approximation of

Xtrue-

State-of-the-art inverse problems that we target
present enormous computational challenges, and
tackling these challenges requires sophisticated tools
from mathematics, statistics, and computer science
as well as synergistic collaborations with engineers.
For example, in atmospheric inverse modeling, the
fast and accurate estimation of greenhouse gasses
and air pollution emissions is important because of
the threats they pose to energy security (i.e., the avail-
ability of natural resources for energy consumption),
public health, and safety. However, due to the massive
amounts of satellite data that need to be processed
and the fine-scale resolution at which the reconstruc-
tions are needed, the sheer size of the inverse problem
poses many computational challenges especially in
the context of threat detection. Solving these inverse
problems requires recovering unknown parameters in
Xuuwe Which number in hundreds of millions from
observed data in b which number on the order of sev-
eral millions. High-performance computing resources
have proved to be invaluable for handling these large
datasets, but this alone is not enough. Like most
inverse problems, reconstructing greenhouse gas
fluxes from satellite data is both an underdetermined
and an ill-posed problem.? By using a Bayesian
approach, we can incorporate prior information about
the parameters of interest, in a process that is com-
monly referred to as regularization, and provide a nat-
ural framework for uncertainty quantification (UQ).
Unfortunately, for very large inverse problems, com-
puting the maximum a posteriori or “most likely” esti-
mate and quantifying the uncertainty associated with
the reconstructions can be prohibitively expensive.

Furthermore, there are enormous statistical chal-
lenges. It is well known that the quality of the recon-
struction depends crucially on the statistical model
for the prior and the noise distributions as well as on
the appropriate choice of hyperparameters that gov-
ern these distributions. For capturing abnormally
large, disproportionate atmospheric emissions, so-
called “super-emitters,” that are surrounded by spa-
tially diffuse emissions sources, new computational

2A problem is ill-posed if a solution does not exist, or is not
unique, or does not depend continuously on the data.
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FIGURE 2. In atmospheric inverse modeling, the goal is to reconstruct spatio-temporal greenhouse gas emissions, X, given

satellite observations, b, and atmospheric transport model, F. Shown above are three-hourly reconstructed gas fluxes from

Orbiting Carbon Observatory 2 satellite observations. A video demonstrating the measurement acquisition is available.

methods are needed to be able to incorporate nontra-
ditional regularization terms. Moreover, many of the
existing regularization methods can be implemented
efficiently if regularization parameter(s) are known a
priori but fall short of clear strategies for simultaneous
parameter selection.

In a world with a growing abundance of data, we
have great interest in both learning from data (e.g.,
extracting relevant information from data) and han-
dling massive amounts of data. Machine learning tech-
niques, in particular, supervised learning, have had
transformative impacts on computer vision applica-
tions. Open problems remain, however, regarding how
to combine data-driven and traditional knowledge-
driven approaches for the solution of inverse problems.
A key question is how to find the right balance in treat-
ing bias on the training data, statistical accuracy and
robustness, stability, and interpretability.? Furthermore
for extreme-scale scientific computing, randomized or
sampling algorithms are transforming the way in which
we handle massive or streaming data.

Many of these computational and statistical chal-
lenges are common to a broad range of scientific appli-
cations, and addressing these challenges requires a
careful integration of advanced tools from numerical lin-
ear algebra, numerical optimization, statistical analysis,
and high-performance computing. In the following

Phttps://ocov2.jpl.nasa.gov/science/
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sections, | highlight some of my key research contribu-
tions in the area of computational inversion and analysis.

Computational Methods for Inverse
Problems

For many inverse problems, an important task is to
solve an optimization problem of the form

min J (b — F(x)) + AR(x) (2)

xeC

where J is a loss (or fit-to-data) function, R is a regu-
larization operator, A > 0 is a regularization parame-
ter that controls the amount of regularization, thereby
determining how faithful the modified problem is to
the original problem, and C denotes the set of feasible
solutions (e.g., those that satisfy some constraints).

Using tools from numerical linear algebra and
numerical optimization, we have developed efficient
and robust solution methods for solving inverse prob-
lems. For the case where 7 and R are expressed in
the 2-norm, forward models are linear F(x) = Ax
where A € R™*", and C = R", we get the so-called
standard-form Tikhonov problem

min [[b — Ax]l; + Allx|”. ®3)

This problem arises in many scientific applications and
has been widely studied in both the mathematics and sta-
tistics communities. Nevertheless, computing Tikhonov-
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FIGURE 3. "Semiconvergence” of iterative methods for ill-
posed problems is often revealed in the “U-shaped” plot of

the relative errors, W where x;, is the solution at the

kth iteration (here, the true image is known). Reconstructions
correspond to dots on the LSQR plot. HyBR corresponds to a

hybrid Tikhonov method.*

regularized solutions can still be challenging if the size of
x is very large or if \ is not known a priori.

Hybrid projection methods combine iterative projec-
tion methods with variational regularization techniques
in a synergistic way, providing researchers with a power-
ful computational framework for solving very large
inverse problems. These methods are computationally
efficient since the main costs per iteration are matrix—
vector multiplications or forward operator evaluations.
The significant benefits of hybrid projection methods
include avoiding semiconvergence, whereby later recon-
structions are no longer dominated by noise (see Figure 3
for an illustration) and adaptive selection of regulariza-
tion parameters.

However, realizing these benefits in practice is
nontrivial. As a DOE CSGF fellow, | developed a
weighted generalized cross-validation method for
hybrid methods” in collaboration with my Ph.D. advi-
sor James Nagy (Emory University) and my postdoc-
toral mentor Dianne O’Leary (University of Maryland,
College Park). During my CSGF practicum at the Law-
rence Berkeley National Laboratory under the supervi-
sion of Chao Yang, we developed a high-performance
implementation of hybrid methods and applied it to
cryo-electron microscopy reconstruction.® These
works formed the foundation for extending hybrid
methods to solve a larger scope of problems and to
impact more scientific applications. For example,
Arvind Saibaba (North Carolina State University) and
| developed generalized hybrid methods for problems
where explicit computation of the square root and/or
inverse of the prior covariance matrix are not
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possible,® and Silvia Gazzola (University of Bath) and |
developed flexible hybrid methods for ¢,-regularized
problems.” We have developed various extensions of
hybrid projection methods for nonlinear inverse prob-
lems and streaming inverse problems, with new appli-
cations in mining engineering (e.g., for making mines
safer using passive seismic tomography) and compu-
tational biology (e.g., for obtaining real-time endoge-
nous and exogenous signals in living organisms using
respirometry). | point the interested reader to a recent
survey on hybrid projection methods.®

Computational Methods for UQ

Once computed, a solution to an inverse problem can
help experts to make difficult decisions, but an
informed decision will rely on knowledge of model
assumptions, as well as an error analysis and quantifi-
able measures of confidence in the solution. We have
enabled sophisticated UQ tools for realistic, large lin-
ear models by exploiting tools from numerical linear
algebra, thereby paving the way for extensions to non-
linear models. For solving dynamic inverse problems,
where the underlying parameters of interest change in
time, such that the total number of unknowns is on
the order of millions, we showed that incorporating
prior information regarding temporal smoothness in
algorithms can lead to better reconstructions.® Fur-
thermore, we showed that low-rank approximations
obtained using the generalized Golub-Kahan bidia-
gonalization can be used to estimate pixel- and voxel-
wise solution variances and can be used to efficiently
generate samples from the posterior distribution.

With Arvind Saibaba and Scot Miller (Johns Hopkins
University) who is also a fellow DOE CSGF alum, we are
further extending these tools and developing new
computational tools for large-scale atmospheric inverse
problems for the specific purpose of quickly and effi-
ciently identifying superemitters for threat detection.
These computational tools can take advantage of new
observing capabilities, handle the large amount of data
collected by satellites, and distinguish anomalous emis-
sions at high spatiotemporal resolution.

Learning Approaches for Inverse
Problems

Learning has been used in various contexts for solving
inverse problems. In many real-life applications, train-
ing or calibration data are readily available and can be
used to inform the selection of regularization parame-
ters and to improve the prior. In my research, | have
developed computational and statistical tools for
designing optimal regularization. In collaboration with
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Matthias Chung (Virginia Tech) and Dianne O'Leary,
we proposed an optimal approach to select regulariza-
tion parameters using methods from optimal experi-
mental design.'® By utilizing an (empirical) Bayes risk
formulation, we introduced the selection of regulariza-
tion parameters in an offline stage by minimizing the
associated risk. The inversion can then be computed
efficiently online in a fraction of the time it takes for
standard methods and without requiring the user to
tune parameters. Our work on using training data to
design optimal filters quickly led to our consideration
of the more challenging problem of designing an opti-
mal regularized inverse matrix. We developed efficient
rank-update approaches for computing optimal regu-
larized inverse matrices, even for problems where the
forward model is not known. Using these approaches,
computed parameters are expected to be optimal on
average or with respect to other design criteria. These
approaches work well in many scenarios but may fail if
the observation is very different than the training set.

OUR WORK ON USING TRAINING
DATA TO DESIGN OPTIMAL FILTERS
QUICKLY LED TO OUR
CONSIDERATION OF THE MORE
CHALLENGING PROBLEM OF
DESIGNING AN OPTIMAL
REGULARIZED INVERSE MATRIX.

To remedy this, another class of supervised learning
methods that has gained increased attention in recent
years is based on deep neural networks (DNNs) such
as convolutional neural networks or residual neural
networks. Initially, these machine learning techniques
were used for postprocessing solutions, e.g., to
improve solution quality or to perform tasks such as
image classification. However, deep learning techni-
ques have also been used for solving inverse problems.
The prevalent approach, especially in image process-
ing, is to take an end-to-end approach or to use deep
learning methods to replace a specific task (e.g., image
denoising or deblurring). For example, neural networks
have been used to learn the entire mapping from the
data space to the inverse solution, and DNNs have
been used to learn the entire regularization functional.
Note that these approaches do not include domain-
specific knowledge, but rather replace the inversion of
a physical system with a black-box forward propagat-
ing process also referred to as surrogate modeling.

November/December 2021

Hence, the limitations of these approaches appear in
the sensitivity of the network (e.g., to large dimensional
input—output maps as they appear in imaging applica-
tions). In newer work with Babak Maboudi Afkham
(Technical University of Denmark) and Matthias
Chung, we are developing approaches that combine
DNNs and inverse problems so that we can exploit
advantages of the learning process, while still main-
taining the underlying physics of the problem."" We
assume that there exists a nonlinear target function
® : R™ — R? that maps an input vector b € R™ to a
vector of parameters defining the regularization strat-
egy, A € R?,

A= D(b). (4)

The function ® is a nonlinear mapping that takes any
vector in R™ (e.g., the observations) to a set of param-
eters in \ (e.g., the regularization parameters). By
approximating the observation-to-regularization map-
ping ® with a neural network and using training data
to learn the parameters of the network, we learn a
mapping from observation to regularization parame-
ters that exhibits better generalizability since the com-
puted regularization parameters are tailored to the
specific data.

Era of Big Data

In the “Learning Approaches for Inverse Problems” sec-
tion, we described various computational approaches for
solving inverse problems that learn important information
(e.g., hyperparameters) from data, but another question is
how do we handle massive amounts of data or data that
are being streamed. With data being generated at ever-
increasing rates, sophisticated mathematical and statisti-
cal tools are needed to extract relevant information from
these large datasets. The size of the forward model matrix
may exceed the storage capabilities of computer mem-
ory, or the observational dataset may be enormous and
not available all at once. Row-action methods that iterate
over samples of rows can be used to approximate the
solution while avoiding memory and data availability con-
straints. However, their overall convergence can be slow.
We introduced a family of sampled iterative methods for
computing Tikhonov-regularized solutions that uses an
approximation of the global curvature of the underlying
least-squares problem to speed up the initial conver-
gence and to improve the accuracy of iterates.”” We
developed adaptive approaches to update the regulariza-
tion parameter that are based on sampled residuals, pro-
vided a limited-memory variant for larger problems, and
proved that the sampled Tikhonov method converges
asymptotically to a Tikhonov-regularized solution.
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Currently, we are extending these stochastic
approximation methods for nonlinear problems, e.g.,
for the training of DNN architectures where the neural
network can be separated into a nonlinear feature
extractor followed by a linear model. This is a joint
work with Matthias Chung, Elizabeth Newman (Emory
University), and Lars Ruthotto (Emory University).

My Research Community
Many of these research advancements were achieved
in collaboration with talented scientists from different
fields and required the integration of tools from
computational mathematics, statistics, and scientific
computing. The DOE CSGF program was pivotal in
helping me to establish a foundation for interdisciplin-
ary research and collaboration. The academic breadth
afforded by the CSGF program of study ensured that |
would have knowledge in mathematics, computer sci-
ence, and biomedical engineering, which has not only
been critical for my research developments but also
provided me the agility to jump into new research
topics. Also, my CSGF practicum experience at the
Lawrence Berkeley National Laboratory provided me
with hands-on experience with parallel computing and
forced me to think outside of my core discipline. Per-
haps the most valuable lesson that | learned from the
CSGF is the importance, and often great challenge, of
communicating across fields. With patience and hard
work (sprinkled with some lighthearted laughter), |
have found that these interdisciplinary collaborations
can make great impacts and can be very rewarding.
Although | am able to present only a subset of my
research projects, | would like to take this opportunity
to thank all of the research collaborators and students
who have contributed to my research program. My
research community includes many people: my collab-
orators in mathematics and statistics who work with
me to develop new methodologies and theoretical
developments, my collaborators in computer science
who provide the computational know-how for efficient
implementations, my collaborators in medicine and
engineering, my students who bring great enthusiasm,
dedication, and hard work to projects, and my friends
and colleagues in the research community who provide
support, conversation, and feedback.

Many of my research activities are closely integrated
with my educational goals, which include course devel-
opment, mentoring of students and early career
researchers, and scientific outreach. Building a support-
ive and diverse community is core to all of these goals.

Computing in Science & Engineering

Teaching and Coursework

At Virginia Tech, | have taught a range of courses (from
linear algebra and programming to numerical analysis
and mathematical optimization) and at various levels
(from first-year undergraduates to advanced graduate
students). In all of my courses, | challenge myself to
incorporate real-life examples from my research and to
use active-learning, group-based projects. For exam-
ple, | motivate methods for solving linear systems with
examples from image deblurring, and | provide MAT-
LAB projects on image compression for students to
experience the utility of the SVD.

CMDA MAJORS OBTAIN A BROAD YET
TECHNICAL EDUCATION IN
QUANTITATIVE SCIENCE, WITH
ELEMENTS FROM MATHEMATICS,
STATISTICS, AND COMPUTER SCIENCE.

As part of an interdisciplinary team of faculty, |
have also been active in the development of the
Computational Modeling and Data Analytics (CMDA)
undergraduate program at Virginia Tech. Similar to the
interdisciplinary nature of the CSGF, CMDA majors
obtain a broad yet technical education in quantitative
science, with elements from mathematics, statistics,
and computer science. Newly developed integrated
courses emphasize techniques at the forefront of
applied computation and provide quantitative and
programming skills for tackling today’s massive data-
based problems. Students from this program have
gone on to various careers from industry to elite grad-
uate programs in computational science, some even
with the support of the DOE CGSF.

Mentoring and Networking

Each academic year, like the waves of the sea, we
observe the predictable ebb and flow of students—from
the surge of incoming first-year students who are eager
to begin their journey to the graduation of accomplished
students who expectantly move forward to their next
challenge. And as professors, we are honored to have
the time and opportunity to interact with these stu-
dents, to serve as their educators and mentors, and to
help them find their way. Sometimes we make an
impression on these students. Sometimes the students
make an impression on us. But what is important
throughout all of these interactions is the community
that we build, that we nurture, and that we leave behind.
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Mentorship is an investment of time and resources, but
itis core to building a positive and nurturing community.

| have had the great pleasure to advise and interact
with many undergraduate students, graduate students,
and postdoctoral researchers. From advising student
research projects to helping students prepare for their
first conference presentation, it is inspiring to work with
impressive, motivated, and determined students. When
| think about all of the people who mentored and
invested in me, helping others (especially students and
early career researchers) is my way of paying it forward.
The hope is that these students in turn inspire others,
creating a cascade of broader impact.

AS PROFESSORS, WE ARE HONORED
TO HAVE THE TIME AND
OPPORTUNITY TO INTERACT WITH
THESE STUDENTS, TO SERVE AS THEIR
EDUCATORS AND MENTORS, AND TO
HELP THEM FIND THEIR WAY.

The importance of networking and personal interac-
tions in the scientific community cannot be emphasized
enough, and community building often occurs at work-
shops and conferences. Beyond the CSGF program, there
are various initiatives that encourage these mentoring
relationships that can be pivotal in helping to create a
diverse and inclusive scientific community. For example,
the Sustainable Horizons Institute runs the Broader
Engagement program at the Society for Industrial and
Applied Mathematics (SIAM) Conference on Computa-
tional Science and Engineering, which is designed to make
conferences more accessible for students from underrep-
resented and underprivileged backgrounds. These activi-
ties make students feel welcome and provide
opportunities for connecting and sharing experiences.
Although everyone's experience is different, there are
common struggles, and connecting with others to share
strategies can have a major effect.

In addition to the Broader Engagement program, |
have been involved in programs such as the MIT Path of
Professorship that supports graduate students and
postdocs interested in academia. With support from
NSF and NSA, | am part of a group of faculty from Clem-
son University and Virginia Tech who are organizing
Mathematics - Opportunities in Research and Educa-
tion (MORE) workshops for undergraduate students to
learn about opportunities in research and education.
Other programs such as the Association for Women in
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Mathematics (AWM) mentor network and the SIAM
Workshop Celebrating Diversity provide opportunities
for finding mentors and highlighting diversity.

Mentoring and networking have become more criti-
cal than ever, especially during the COVID-19 pandemic.
With conferences and workshops being canceled or
moved online, we had to rethink how we can support
each other and how to build community virtually. As chil-
dren and pets became part of our zoom meetings, the
line between our work life and our personal life became
very blurry or even indistinguishable. Nevertheless, some
things became easier as we connected across time
zones and cultures to commiserate over how we juggle
becoming elementary school tutors, while engaging stu-
dents in online learning, on top of our already packed
agenda of research projects, students, and service.

Finding Your Community
Throughout undergraduate and graduate schools, | never
had a female math professor, but | did not let that deter
me—instead, | had strong advocates in the department
who helped me to find strong female mentors and role
models in the community. The AWM has played a big role
in my professional development. In graduate school there
was a small group of female graduate students, and
together we established an AWM student chapter. | have
also served as a faculty mentor to AWM student chapters.
It has been wonderful to see the Virginia Tech AWM stu-
dent chapter provide programs to encourage women and
individuals from underrepresented backgrounds to pursue
careers in mathematical sciences, to expose students to
various research areas, and to provide students with men-
torship and role models. These events provide community
and leadership positions for female students but are open
to anyone who supports women in mathematics.

| have also led and been involved in outreach activi-
ties through the Science Museum of Western Virginia,
Career Days for middle-school girls, and multiple Sonia
Kovalevsky Days for middle-school and high-school girls.
The challenge (but fun!) in planning these activities is
finding creative ways to share the essence of research
projects using hands-on and age-appropriate activities.
For example, in one activity | take a glass jar, put a toy
object inside, and cover the jar with translucent paper to
mimic skin (see Figure 4). Then, | give the students a
flashlight and challenge them to determine the object.
Students are not allowed to open the jar but can shine
the flashlight into the jar at different angles. This is a fun
activity that mimics the inverse problem that radiologists
face when locating cancers inside the body.

Then, to emphasize the mathematical challenges and
to drive home the need for computational algorithms for
tomographic reconstruction, we do another activity
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FIGURE 4. Goal is to determine the hidden object, using only
a flashlight to illuminate the object from different angles.

where students use black and white plates to filla 3 x 3
grid, given the row and column sums (see Figure 5). Stu-
dents enjoy rearranging the plates to solve the “puzzle,”
especially for the more challenging 4 x 4 grid. We explore
various concepts from linear algebra (e.g., existence and
nonuniqueness of solutions). Many are in awe to realize
that radiologists use mathematics to solve similar prob-
lems for 500 x 500 grids, or even larger.

It is hard to quantify the impact of these outreach
activities, but if we can touch or inspire just one stu-
dent, then | believe it is worth it.

“One student expressed disinterest in any
topic even verging on math, but after your
activity, she spent much of the rest of the
week asking for more puzzles like the one you
presented and seeking out other math activi-
ties.” — Mrs. Weiss, Science Museum of West-
ern Virginia.

FIGURE 5. Activity to discover underlying mathematical chal-
lenges of tomographic reconstruction. Given row and column
sums, students need to place the black and white plates that

count for 0 and 1, respectively, to match the sums.

Computing in Science & Engineering

Some people know early on that a scientific research
career is what they want—that was never me.
Instead, it was a series of people and experiences
that have helped me to discover what | love and
have helped me along the way. Looking forward, |
hope to encourage more students to get involved in
computational science and to help them find their
passions.

Sometimes it is our love and enthusiasm for our
work that can be inspiring to students; but as a com-
munity, there is more that we can do.

» We can encourage love of mathematics at every
educational stage—through outreach and in the
courses we teach.

> We can value mentoring and networking
activities, whether that is advising a research
project for a driven, hard-working student or
engaging in a one-on-one conversation with a
mentee.

> We can make conferences and workshops more
welcoming by participating in programs such as
Broader Engagement or offering an encouraging
word to a student who just gave their first con-
ference talk.

> We can put a little extra effort to make our
research talks accessible for a wider audience.

Of course, these suggestions are based on my
experiences. Nonetheless, each of us can do our part
toward building a welcoming scientific community, as
this can have a significant impact on the recruitment
and retention of a diverse next generation of compu-
tational scientists. The question that remains is: What
will you do?

Thank you to the guest editors for the opportunity to
write this piece and in particular to Mary Ann Leung
for her support. | am also grateful to the reviewers for
helpful feedback. This work was supported by the
National Science Foundation under CAREER Grant
DMS-1654175 and under collaborative Grant DMS-
2026841 through the Algorithms for Threat Detection
program.
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