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Hydrothermal liquefaction (HTL) has potential for converting abundant wet organic wastes into renewable fuels.
Because HTL consists of a complex reaction network, deterministic, physics-based prediction of its biocrude yield
is prohibitively difficult. Data-driven methods provide an alternative to the physics-based approach; however,
rigorous testing must be performed to ensure the accuracy of predictions made by data-driven methods. To this
end, a data set was assembled consisting of 570 data points appearing in the open literature. The data set was
divided into training, validation, and test sub-sets and used for evaluating different machine learning regression
approaches to predict biocrude yield. Among the tested algorithms, Random Forest and eXtreme Gradient
Boosting (XGBoost) predicted biocrude yields in a test set that had not been used for training with the greatest
accuracy, with root mean square errors (RMSE) of 8.34 and 8.57, respectively. Further refinement of the Random
Forest model reduced its RMSE to 8.07. In comparison, predictions of a series of literature models resulted in
RMSE ranging from 9.16 in the most accurate case to 27.6 in the least accurate; most literature models yielded
RMSE values > 10. Using biocrude yield predictions from the most accurate Random Forest model and a
probabilistic economic analysis found that the model accuracy is sufficient to prioritize allocation of resources
based on projected minimum fuel selling price. The models and analysis presented here represent a major
advance in the ability to use readily available data to predict biocrude yields on new feedstocks that have not
previously been studied.

1. Introduction method for producing an energy-dense biocrude that can be upgraded

into liquid transportation fuels [7,8]. In a near sub- or supercritical state,

An increasing number of nations have set aggressive goals to reach
carbon neutrality within the next four decades in an effort to avert the
most damaging impacts of global climate change [1]. Achieving the
ambitious carbon neutrality goals requires abandoning nearly all fossil-
based energy sources and substituting with carbon-free energy sources
including biomass, nuclear, solar, wind, geothermal, and hydro energies
[2-4]. Among these options, thermochemical conversion of nonedible
biomass sources to produce liquid fuels has potential for decarbonizing
the transportation sector due to biofuel compatibility with current
infrastructure and the abundance of biomass [5,6].

Hydrothermal liquefaction (HTL) of algae, biomass, and wet organic
waste streams has attracted attention in recent years as an efficient
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water acts as a reactant, catalyst, and reaction solvent to effectively
decompose biomass components into smaller organic molecules that
serve as precursors to form biocrude [9].

Maximizing biocrude yield and minimizing feedstock cost is one
pathway to economically viable HTL-based production of liquid fuels
[10,11]. Biocrude yield is mainly determined by feedstock properties
[12,13], meaning that maximizing yield requires understanding of the
relationship between feedstock properties and biocrude yield. Predictive
methods that utilize readily available data are especially needed to help
prioritize feeds for commercial development.

A classical approach for maximizing reaction yield is to optimize
reaction conditions using a system of chemical pathways, which can
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either be elementary or phenomenological [14]. However, waste feeds
consist of many dozens of chemically distinct components, and HTL it-
self proceeds via a vast manifold of incompletely understood reactions
consisting of hundreds or thousands of reactants, intermediates, and
products [15]. Modeling this complex reaction system using physics-
based models is clearly challenging. The common alternative used for
making yield predictions is instead to measure yields for a handful of
representative model compounds and use these as the basis for what can
be termed multi-term or multi-component linear additivity models
[16,17].

In multi-component linear additivity models, yields obtained for a
family of model feeds are used to establish empirical values of co-
efficients that are then applied to generalize for other feeds with
different compositions. In principle, terms can be added for any
component that is suitable for HTL and well defined feeds with multiple
components can be used to assign empirical coefficients to cross terms,
intended to capture component-component interactions [18-21].

The advantage of the multi-component linear additivity model
approach is that it maximizes the use of a limited data set for prediction
of a wider range of feedstocks. The limitation is potential over reliance
on empirical data obtained from a handful of feedstocks and subsequent
overfitting of the empirical parameters that detract from the accuracy of
predictions made for feedstocks that were not included in model
development. The result is models that cannot be generalized to new
feedstocks with confidence [22]; these models may retain accuracy for
feedstocks included in the model development stage, but without testing
them their accuracy cannot be guaranteed for new feeds.

Recent advances in machine learning can be harnessed for devel-
opment of new types of data-driven models that relate feedstock prop-
erties to yields obtained by HTL conversion of biomass [23-25]. Unlike
multi-component linear additivity models, machine learned models
must be trained on much larger data sets consisting of hundreds, thou-
sands, or even millions of data points, validated for robustness to avoid
over fitting, and tested for predictability of data not included in the
original data set [26]. Assuming that sufficient data are available, the
resulting models can avoid the problem of over fitting, thereby
permitting them to be used in a truly predictive manner — in other words
achieving accuracy for feedstocks not explicitly considered during
model development. Here, a distinction is drawn between model accu-
racy for data used in model regression (usually termed training data)
and accuracy of predictions for conditions that were not explicitly
included in the regression. A model that accurately fits data provided to
it can be useful for many purposes; however, truly predictive models can
be used for new situations that were not included in the regression and
are therefore preferred in these cases.

Unfortunately, most modern machine learned models require mil-
lions of data points for training without overfitting [27,28]. Overfitting a
machine learned, data-driven model detracts from the accuracy of its
predictions, which defeats the purpose of the model [12,16]. Individual
HTL experiments are labor intensive and generating a data set consisting
of millions of biocrude yield data points is time and cost prohibitive. The
need for machine learning methods that avoid overfitting and retain
predictive accuracy without the requirement of millions of data points is
a clear need for the chemical engineering community. Selecting an
appropriate model type and then validating model performance to avoid
overfitting becomes crucial in the low-data limit [29], yet the impor-
tance of this step is often over looked. As a result, machine learned
models developed for <1000 data points are routinely over fit, thereby
detracting from the accuracy for their predictions outside the original
training data.

Encouragingly, some types of machine learning models have been
proven to be retain predictive accuracy for regression of systems with
hundreds of — rather than hundreds of thousands or more — data points
[30,31]. That stated, machine learning in the low-data limit requires
careful selection of the algorithm, as some are more prone to overfitting
than others [32]; new strategies for selecting training data;
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generalizable methods for validating results [33]; and guidance for se-
lection of independent variables that lead to accurate and reliable pre-
dictions [34].

To date, appropriate protocol for the aforementioned steps does not
appear in the literature, despite reports on the use of data-driven models
for predictions of HTL biocrude yields [35]. A recent study on machine
learning predictions of biocrude yields implemented a validation step to
minimize over fitting, but did not set aside data for testing [36], which
means the model accuracy for fitting the training and validation is
quantified but the predictions for feeds that did not appear in the
training data set is not. Without comparison with a data test set, the
accuracy of true model predictions cannot be ascertained.

The objective of this study was to evaluate the methodology for
developing generalizable machine learning models to predict HTL bio-
crude yield in the low data limit (i.e., <1,000 data points). The study
consisted of training eight different regression models, validating their
predictions to determine the extent to which accuracy is influenced by
random selection of training data; and testing them on a new subset of
the data to determine accuracy when the models are used predictively.
The most accurate model was then refined to predict biocrude yield
based on new data that was not included in the training data. The ac-
curacy of this model was compared with the accuracy of other literature
models, especially multi-component linear additivity models
[16-19,37]. Finally, the relationship between the accuracy of biocrude
yields and economic performance was evaluated using Monte Carlo
simulations to propagate biocrude uncertainty into uncertainties of
projected minimum fuel selling price (MFSP).

2. Methodology
2.1. Overview

Fig. 1 is a schematic representation of the process that was followed
for the study. Step 1 was assembly of a data set from studies present in
the literature. Steps 2-4 are model development, which includes eval-
uating the effects and accuracy of different regression methods, different
data handling protocols, and different ways to ensure accuracy of pre-
dictions made for conditions not included in initial model development.
The end of Step 4 is down selection of the most promising models. Step 5
is the use of the most promising model for biocrude yield prediction,
which was then used to determine the relative importance of different
independent variables on performance and tested with several different
modifications to the independent variables to investigate if model per-
formance could be improved.

Following model development, the most accurate and generalizable
model was then used to make biocrude yield predictions for a series of
feeds that appear in the literature, but for which no HTL data are pub-
lished. These yields were then used in an economic model [38] to
evaluate the effect of yield prediction and uncertainty on projected
economic performance. The final two steps, screening feedstocks and
performing HTL experiments on them are recommendations of how the
resulting regression models can be used.

2.2. Data collection, preparation, and curation

Development of a data-driven model requires careful selection and
preparation of data so that it generates reliable results. By reviewing 190
publications appearing in the open literature on HTL of various feeds,
570 data points were selected for inclusion in the data set. Consistent
criteria were applied for including a given data point in the data set: 1)
adequate reporting of uncertainty and reproducibility, including
reporting of at least two replicate runs as a measure of reproducibility;
2) thorough reporting of experimental conditions, including at a mini-
mum biochemical composition of the feed and reactor conditions; 3)
appearance in a peer-reviewed journal.

The impact of feedstock composition on model performance is the
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Fig. 1. Schematic diagram of the development and application of machine learning
artificial neural network. SVM: support vector machine. DT: decision tree. The pure
containing circle block means the work out of the scope of this study.

emphasis of this study. Therefore, to avoid feedstock overrepresentation
by inclusion of all of the data from studies reporting biocrude yield for a
single feedstock at many different conditions (as shown in Tables S.1
and S.2), only data reported at the “optimal” condition, i.e., conditions
at which the maximum biocrude yield was observed, are included here
from sources that report yields at many different reaction conditions.

Fig. 2 is a mosaic plot representation of the resulting data set divided
into different feed categories, where the number of data points in a
particular category and the number of sources used to extract data
points were provided for a given feed category. Algae, lignocellulosic
biomass, and model compounds (including fatty acids, proteins/amino
acids, cellulose, glucan, glucose, hemicellulose, xylan, xylose, extracted
lignin, etc.) are the most highly represented feeds. The rest of the data
set includes food waste, manure, sludge, bioethanol residue, municipal
solid waste, and seed plants.

Complete data tables are provided in the Supporting Information.
Table 1 provides several representative entries. Here, the feedstock,
sample type, and extractant are strings. All other independent and
dependent variables are integers.

No studies were intentionally excluded that met the three
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models in this study. HTL: hydrothermal liquefaction. RF: random forest. ANN:
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aforementioned criteria; however, as the appearance of new publica-
tions on HTL is increasing rapidly the study makes no guarantee of
including all published data. Instead, the methods used here guarantee a
representative sampling of reliable data that can be extended as new
data are published.

2.3. Selection of independent and dependent variables

Selecting independent and dependent variables is a key step in
development of a data-driven model. Biocrude yield was selected as the
dependent variable, as this is a key parameter determining economic
viability of an HTL process [47]. Based on their importance in deter-
mining biocrude yield and general availability in published data, the
independent variables included in the study are feedstock type,
biochemical composition, solids loading (3-30 wt%), reaction temper-
ature (220-370 °C), reaction time (0-120 min), heating rate (3-990 °C/
min), organic biocrude extraction solvent, reactor type, reactor size
(1.3-2000 mL), and yields of char, gas, and aqueous phase. Of these, the
biochemical composition was described using seven composition cate-
gories: lipid, lignin, cellulose, hemicellulose, carbohydrates (e.g.,
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Fig. 2. Conceptual schematic diagram of the data set used in this study. * Municipal solid waste includes two data points from one literature source. > Plant seeds

includes one data point from a single literature source.

glucose or starch), protein, and ash. Tables S.1 and S.2 in the Supporting
Information summarize these variables.

Some publications do not report all values for all of the aforemen-
tioned independent variables, resulting in data gaps. For example, not
all studies report heating rate. Missing data complicates comparisons
since model accuracy depends on both the independent variables and
the number of data points used in the regression. When the data related
to a certain independent variable was missing, the entire entry was
removed from the data set for that analysis (i.e., that row of the data
table was entirely removed). Table S.11 lists the number of data points
corresponding to different missing independent variables. To provide
even footing and because the statistical methods used here depend on
the number of data points, the impact of every individual independent
variable on model performance was evaluated by generation of two data
sets with the same number of data points, of which one included values
for the independent variable to be studied and one lacked it. The dif-
ference in the predictions of these models was used to infer the impact of
that variable.

2.4. Criteria for model evaluation

The criteria of model evaluation used in this study include mean
absolute error (MAE), root mean square error (RMSE), coefficient of
determination (%), and mean relative error (MRE). The Supporting In-
formation provides mathematical definitions of all four of these metrics.
For all practical purposes, MAE, RMSE, MRE, and r?all respond similarly
to changes in the model and/or modelled data set. Of these various
methods to quantify model accuracy, RMSE is most sensitive to a small
number of highly inaccurate predictions. For practical applications,
highly inaccurate predictions are especially troublesome and so this
work adopts RMSE as its primary way to quantify accuracy. For the
current data set, RMSE is always greater than or equal to MAE, making
RMSE a more conservative estimate of model accuracy.

2.5. Machine learning algorithms

After generating the data set, eight machine learning regression
methods were evaluated for their performance in predicting biocrude
yields. Table 2 summarizes these models as: (1) multiple linear regres-
sion, (2) Ridge regression, (3) Lasso regression, and (4) support vector

machine regression (SVM); or nonlinear (5) decision tree regression, (6)
multilayer perceptron (a form of “artificial neural network” or “ANN"),
(7) random forest regression, and (8) eXtreme Gradient Boost (XGBoost)
regression.

All regression methods were programmed, implemented, and opti-
mized using Python 3.6.9. The Supporting Information provides addi-
tional descriptions of each of these models. Each of these types of models
includes one or more parameters that can be optimized to improve
model performance, e.g., the number of trees included in a Random
Forest regression. Model parameters were carefully tuned to achieve
optimal validation model performance based on their error metrics
arising from regression of the complete data set (including RMSE, MAE,
r2, and MRE). The resulting optimized values of model parameters were
then used for all subsequent implementations of that regression method
and optimized values are provided in the Supporting Information.

2.6. Model training, validation, and testing

For development of regression models for each of the eight selected
methods, the data set was divided into test and training subsets with a
test to training ratio of 1:9. The training data were further split into data
used explicitly for training and data used for internal or cross validation.
Optimization to the training data resulted in a regressed model, which
was then used for predicting biocrude yields for the 10% of the data
initially set aside for testing. All performance metrics shown here are
based on this test data, unless otherwise noted. Fig. 3 is a schematic of
this process, showing the split between testing and training and the
further split for internal validation.

Two approaches were used for splitting the data into testing and
training/validation sets: 1) completely randomized sampling and 2)
stratified sampling. Stratified sampling avoids the potential for random
oversampling of a particular subset of the data, e.g., oversampling of
high yield data during training, that results in a poor fit of the test data.
Oversampling is especially problematic for small data sets, which are the
subject of this study. On the other hand, data stratification can inad-
vertently introduce artifacts into the regression, since all regression
models are based on the concept that sampling is totally random.

Analysis was performed first without stratification and then a second
time using stratified data. The result of this comparison was the finding
that data stratification is a beneficial technique for reducing RMSE,
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Table 1

Description of representative data points withdrawn from Tables S.1 and S.2.

Bio-crude Yield

Ash®
(wt.%) ©

Lignin®

Carbohydrate®

Hemicellulose®

Protein®  Cellulose®

Lipid®

Reactor Size

(mL)

Extractant

Time
(min)

Temp
[§9)
300
315

Solid Loading
(Wt%)

Sample Type

Feedstock

REF

3.6 16.3  39.2

0.0

0.0
26.2

20.3 24.5 3.8 27.3

100
50

Toluene
DCM

60
35

25.0
9.1

Manure
Algae

swine manure

Spirulina
platensis

[39]
[40]

21.0

0.0

0.0

0.0

70.0

3.8

5.9
43.1

0.0
11.4

0.0
14.3

100.0

0.0
24.3

0.0
31.3

0.0
0.0
0.0
42.2

0.0
0.0
0.0
22.4

DCM

20
30
20
16

300
300
350
340

15.0

Model Compound
Lignocellulosics

cornstarch
rice husk

[37]
[41]

0.0
0.0
35.0

50

DCM

21.5

0.3
5.4

22.0

38.0

37.0

200
20

Acetone
DCM

Lignocellulosics
Bioethanol
Residue

Sludge

Pinewood
DDGS?

[42]
[43]

34.6

2.8

0.0

0.0

80.0

16.7

34.0

34.2 0.0

0.0

0.0

28.5

3.2

41

Diethyl
Ether

DCM

15

350

26.7

Sewage Sludge

[44]

56.9

6.5

12.0 0.0

0.0

0.0

35.0

41.0

25

60

Plant Seed N.A. 290

Litsea cubeba

seed

[45]

55.6

1.6

0.0 0.0

0.0

0.0

39.6

58.7

60 DCM

Food Waste 10.0 320

Streaky pork

[46]

@ Water-soluble sugars. b Dried distillers grains with solubles. ¢ Dry basis. DCM: Dichloromethane.
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Table 2
The regression algorithms in this study.
Regression Methods Method Description Sources
Linear Multiple The most common-used and [48]
Regression Linear simplest linear regression method
Ridge The linear regression method [49,50]
Lasso modified by introducing a penalty

term to inhibit overfitting.

A supervised learning method to fit  [51]
data by finding hyperplane and

defining acceptable error.

A simple supervised learning [52]
method based on collecting data as

roots and nodes, following nodes

that meet required decision, and

reaching leaf node as outcome.

Support Vector

Machine
Non-Linear Decision Tree
Regression

Multilayer An artificial neural network, [53]
Perceptron consisting of an input layer, a non-

linear hidden layer, and an output

layer.
Random Forest An ensemble learning method that [54]

uses multiple decision tress and

bootstrap aggregation to improve

accuracy.

A decision tree-based algorithm that [55]
has been reported to be most

accurate for small to medium-sized
structured data sets.

XGBoost

without making the model susceptible to erroneous predictions of test
data due to biasing. Accordingly, results presented here utilize stratified
data splitting.

The training data set was subjected to validation, a necessary step
required to ensure that the model does not benefit from fortuitous se-
lection of training data. The cross-validation scheme used here entails
training the model multiple times on different sub-populations of the
data set to obtain average values of the various error metrics and their
corresponding standard deviations.

Internal validation was performed using a machine learning litera-
ture method termed the K-fold cross validation [56]. The K-fold method
divides the data set into k equal sized sub-datasets, which are then
assigned as training data or validation data (after test set has been split)
in a training to validation ratio of 1:K-1. The K-fold validation process is
then repeated k times, until all k subsamples have been used once as the
validation set. Subsequently, the results of the k distinct regression are
used to generate average values and standard deviations of RMSE that
are reported here.

Typically, the K-fold method utilizes 5 to 10 splits. For the small data
set, using 10 splits was found to result in a large standard deviation of
validation set RMSE, arising from over sampling within the small-size
dataset. Accordingly, a new modified K-fold validation method was
developed, where the K-fold splitting was repeated between 10 and
1,000 times to determine average values of error metrics and their
corresponding standard deviations.

The modified K-fold method was applied to the most accurate
models, with representative results shown in Fig. S.3. Fig. S.3 indicates
that splitting the dataset with >100 cycles reduces the standard devia-
tion of RMSE predictions to <1%, a value that provides confidence that
model performance is not impacted by fortuitous splitting of the data set
and that the corresponding model can be used in a predictive manner.

Comparison of predictions with the test data provides a measure of
model accuracy, and the dependence of model accuracy on how the data
are split provides the truest measure of model predictability that can be
obtained. A model lacking predictability can appear to be accurate by
randomly fortuitous selection of the training data; however, the models
which are less predictable offer no guarantee of performance for data
not included in the training set. Overfitting is one of the main reasons for
loss of predictability.

Some regression methods quantify the importance of the
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Fig. 3. Schematic diagram of the training, validation, and testing of the HTL data set. Training, validation, and testing all produce values of RMSE. Training and
validation produce families of values, corresponding to an average value and standard deviation. The value of RMSE arising from the test data is the truest measure of
model predictability. Here, RMSE values presented have been generated from the test data, unless otherwise noted.

independent variables appearing in their corresponding regression
models. The metric is termed as feature importance, and it is a measure
of how useful a given independent variable is for making a prediction.
Values of feature importance were estimated using the built-in feature
functions in Random Forest and XGBoost packages in Python.

2.7. Techno-economic analysis

A techno-economic model was built using the flowsheet published by
Pacific Northwest National Lab (PNNL) for analysis of HTL conversion of
sewage sludge to biocrude [38]. A discounted cash flow model, quan-
tifying capital investment (equipment and initial costs), fixed operating
costs (labor, insurance, and maintenance costs), and variable operating
costs (raw material and utility costs) was built, with process parameters
such as product yield and higher heating value (HHV) set as fixed pa-
rameters (as shown in Table 3). More details for each of these cash
streams can be found in Tables S.8-S.10.

A set of eight feed streams was selected from the literature for eco-
nomic modeling [57-62]. These feed streams were selected to represent
a range of different sources, as summarized in Table S.6. The selected
feed streams were characterized by distinct biochemical composition
from one another, but they had never been treated using HTL and
therefore represent feed streams that are completely unknown by the
model.

The Random Forest regression model was trained using totally 570

Table 3

Techno-economic analysis key parameters.
Variable Value*
Fixed Capital Investment ($) 34,118,811
Variable Operating Costs ($/yr) 1,545,000
Fixed Operating Costs ($/yr) 2,725,000
Internal Rate of Return 10%
Income Tax Rate 21%
Biocrude HHV (MJ/kg) 36.1
Plant Scale (DTPD) 110
Feedstock Cost ($/Dry Ton) 0

* Key economic parameters mirror the values used by Snowden-Swan
et al. 2017 [38].

data points obtained from Tables S.1 and S.2 and used to predict bio-
crude yield for the feed streams, as shown in Table S.6, along with a root
mean square error (RMSE) as a measurement of model yield uncertainty,
estimated based on the earlier dataset (including 570 data points). To
calculate distributions of biocrude selling prices, Monte Carlo simula-
tions were run, using the biocrude yield as the uncertain variable [63].
All other factors were held constant in this analysis to isolate the effect of
biocrude yield uncertainty on minimum fuel selling price (MFSP), a key
metric of economic performance.

Variable distributions were defined using the base-case yield for a
given feedstock as the expected value, and the base-case yield +/- the
RMSE as the upper and lower bounds of a triangular distribution, used to
represent an “expert opinion” [64]. Monte Carlo simulations were run
10,000 times, with each iteration resulting in an estimated value of the
MFSP [65,66]. The mean of the MFSPs was used as the expected MFSP
for a given feedstock [67]. The resulting upper and lower bounds of the
simulation are used as uncertainty bounds for the MFSP. The result is an
estimated biocrude yield and corresponding uncertainty from the
regression model, and a projected MFSP with corresponding uncertainty
estimated from the techno-economic analysis.

3. Results and discussions

The objective of this work is development and evaluation of
regression models for prediction of biocrude yields obtained by HTL of
different feed streams. A particular emphasis was placed on the accuracy
of the machine learned models for test data, that is, data which had been
withheld during training and validation, compared with that observed
for the multi-component linear additivity models common in the liter-
ature [16-19,37]. Accuracy for test data is the truest indication of model
predictability, which is a frequent goal of engineering models — whether
data driven or physics-based.

The structure of the Results follows the steps shown previously in
Fig. 1, beginning with selection and initial data evaluation and
continuing with evaluation of the accuracy of eight distinct, represen-
tative regression methods [68]. The most accurate method was then
refined to improve its accuracy in the small data limit [69,70], and its
accuracy for predicting test data not involved in any other step of model
development was compared with the accuracy of several literature



F. Cheng et al.

models. Finally, biocrude yields predicted by this same model were used
to project economic performance for a series of feeds that had not pre-
viously been evaluated for HTL.

3.1. Evaluation of Machine learning regression models

Tables S.1 and S.2 in the Supporting Information provide the bio-
crude yield, reactor condition, and biochemical composition data used
in this study. Figs. S.1. and S.2 present Pearson correlation coefficients
determined for the data set, showing that the single strongest correlation
exists between lipid content and biocrude yield (0.79). While this cor-
relation is not predictive, it does foreshadow a prominent role for lipid
content in any accurate predictive model of biocrude yield.

The data in Tables S.1 and S.2 were divided into training and testing
subsets, as shown in Fig. 3, and used for development of a series of
regression models. Unfortunately, no theorem exists for selection of the
most appropriate regression method for a given data set. For example,
methods based on neural networks can be highly accurate, yet they are
prone to instability for small data sets and are easily misled by inclusion
of superfluous independent variables [71,72]. Accordingly, a careful
study must consider multiple options.

Many different types of regression methods are available for
modeling engineering data [68]. Based on these considerations, eight
popular and well-developed machine learning regression methods were
selected for modeling HTL biocrude yields. Of these, four of the
regression models were linear and four were non-linear (as shown pre-
viously in Table 2). Each of these models was trained, cross validated
using the K-fold method (with k = 10),[73] and then used to predict test
data, following the schematic shown in Fig. 3 in the Methods.

Physically, the various biochemical components can reasonably be
expected to interact with one another [18], and polynomial terms have
been proposed to capture these interactions [17,18,37]. Accordingly,
polynomial terms were included in the regression analysis to determine
the impact of interaction on biocrude yield predictions. Because new
variables can be added to decision tree based machine learning models
(a family that includes Random Forest and XGBoost) without risking
over fitting, both binary (21) and ternary (35) interaction terms were
included as polynomial terms. This contrasts with the situation
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encountered when regressing multi-component linear additivity models,
which can include interaction terms but at the risk of over fitting.
Accordingly, including both binary and ternary terms in the current
study is a conservative and comprehensive approach for capturing in-
teractions between feedstock constituents that goes beyond what has
already been evaluated in the literature. Table S.4. in the methods were
provided in the Supporting Information is a list of all the interaction
terms.

Fig. 4 summarizes the results of the initial implementation of the
eight regression methods. RMSE values are shown for training, valida-
tion, and test data and for models both with and without polynomial
interaction terms. Each of these sets of RMSE values is valuable and each
will be considered separately.

RMSE values obtained from training and validation provide an
indication of how well each model fits data input to it. Taken collec-
tively, the RMSE values obtained from training range from 9.7% for the
multi-linear regression (ML) to 2.9% for the XGBoost model with poly-
nomial interaction terms. Accordingly, XGBoost clearly is most able to
capture data that is supplied to it. In all cases, addition of interaction
terms decreases the value of the RMSE obtained from model training,
meaning that polynomial terms improve the fit of data fed to the model.

RMSE values obtained from validation provide a sense of how much
fortuitous data splitting impacts model accuracy. As expected, RMSE
values obtained from validation are always greater than or equal to
those observed for training. The reason why the validation RMSE is
greater than the training RMSE is that the model is not fit directly to this
data, and the effect of validation is to de-tune the model to minimize
over fitting. Validation set RMSE values vary from 9.7 (again for multi-
linear regression) to 8.3 (again for the XGBoost method with polynomial
terms). As with the training data, addition of polynomial terms reduces
validation set RMSE values.

Standard deviations of the RMSE values obtained from validation
range from 1 to 4%, with the largest value observed for the support
vector machine (SVM) method with polynomial terms. These values give
a sense of how important fortuitous splitting is to model performance.
Here, SVM is very sensitive to how the data are split and the large
standard deviation of its validation RMSE value recommends against
using this method. In comparison, the standard deviations of RMSE
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Fig. 4. The root-mean-square error (RMSE) of eight linear and non-linear regression models with/without the introduction of polynomial biochemical component
terms. The model parameters for all optimal regression methods were provided in the Supporting Information.
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values obtained for XGBoost and especially the Random Forest model
are less than those observed for other methods, without sacrificing
accuracy.

Interestingly, inclusion of polynomial terms always increases the
standard deviations of the RMSE obtained during validation, an indi-
cation of overfitting and sensitivity to fortuitous data selection that
detracts from predictability. Accordingly, while naive reliance on
training set RMSE values recommends inclusion of polynomial terms,
the performance of polynomial-based models is sensitive to fortuitous
splitting, recommending that they not be used in predictive models. For
this reason, models with polynomial terms should be used with caution.

Finally, Fig. 4 provides values of the test set RMSE. Testing is done
only one time, so the test set RMSE has no standard deviation — unlike
the training and validation RMSE values, which are calculated for each
K-split. As expected, based on the methodology used in this study, test
set RMSE values obtained for each method always fall within the range
determined by the corresponding mean value and standard deviation of
the RMSE value obtained from validation. This observation indicates
that the validation method properly captures sensitivity to data splitting.
Test set RMSE values range from 10.82 (SVM with polynomial terms) to
7.45 (Random Forest with polynomial terms).

Fig. 4 contains all of the information required to select the model that
is expected to be the most accurate for making predictions on feeds that
have not been included in training. That decision comes down to a
combination of test-set RMSE and the standard deviation of the vali-
dation set RMSE. Based solely on test set RMSE, the Random Forest,
XGBoost, and artificial neural network (ANN) models have clear ad-
vantages over the other models considered here. Of these, the test set
RMSE values obtained for Random Forest and XGBoost are less than
those observed for the ANN model; the standard deviations of the vali-
dation set RMSE are also less for Random Forest and XGBoost than ANN.
Accordingly, Random Forest and XGBoost are the preferred methods for
predictability of new data.

Having provided guidance on the type of model to select (Random
Forest or XGBoost), the next question was whether to include poly-
nomial terms in the regression. On the one hand, inclusion of polynomial
interactions further decreases test set RMSE for both Random Forest and
XGBoost. On the other hand, including polynomial terms increases the
standard deviation of the validation set RMSE, detracting from the
confidence of using the polynomial methods in a predictive manner. No
formal theory exists for balancing the merits of test set RMSE and
standard deviation of the validation set RMSE and selecting either
Random Forest or XGBoost with or without polynomial terms can be
justified. In fact, statistical analysis (summarized in the Supporting In-
formation, especially Table S.4) indicates that the only interaction terms
with significant correlation with biocrude yield were lipid x lignin and
protein x ash. Due to an abundance of caution for this small data set and
to be conservative to guard against over fitting and fortuitous selection
of test data, the Random Forest model without polynomial terms was
selected for further refinement.

Various approaches to improving the accuracy of the Random Forest
model were considered, including: extension of the K-fold method to >
10 cycles; inclusion of additional independent variables, such as reactor
temperature, reaction time, and reactor volume; and consideration of
co-product yields such as char, gas, and aqueous phases as independent
variables Complete details are provided in the Supporting Information,
especially Figs. S.3-S.13 and Table S.5.

Some of the aforementioned refinements resulted in modest im-
provements in model performance. Modifying the K-fold validation step
to >100 cycles (instead of the customary 10) yet still keeping the
training-validation ratio fixed at 8:2, reduced the standard deviation of
the validation set RMSE from 0.4 to 0.05 and — because the resulting
model is more robust — reduced the corresponding test set RMSE from
8.43 to 8.07. Full details are provided in the Supporting Information,
especially Fig. S.4. Future work on machine learning regression of small
data sets should adopt the modified K-fold method proposed in this
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work, in which the dataset was split with >100 cycles.

Treating char yield as an independent variable reduced test set RMSE
from 8.43 to 7.43. On the other hand, including gas or aqueous phase
yields did not reduce RMSE, indicating that these are not statistically
related to biocrude yield. To be conservative, the RMSE calculated
without using char as a regression variable is used for all comparisons
reported later in this study.

Aside from the modified K-fold method and treating char yield as an
independent variable, none of the other refinements evaluated here
resulted in model improvement, either in terms of test set RMSE or the
standard deviation of the validation set RMSE. More details are provided
in the Supporting Information. The lack of improvement observed for
inclusion of reaction temperature is likely due to the fact that biocrude
yield is only weakly sensitive to reaction temperature near the optimal
value (approximately 300 °C) and the published data are biased to
reporting in this range. For this reason, when a study reported yields as a
function of temperature, only data at or near the optimum were included
in the data collection (Table S.1). Naturally, performing HTL at tem-
peratures much less than or greater than the optimum will negatively
impact yield.

The optimized version of the Random Forest model achieves test set
RMSE of 8.07, which should be regarded as approaching the practical
limit of predictive accuracy. Typical values of reported experimental
uncertainty are on the order of 5% [74]. The value of RMSE reported
here (8.07) is only slightly greater than this average value of experi-
mental uncertainty, and the accuracy of model predictions is not ex-
pected to be greater than the reported uncertainty of the data being
modeled. Accordingly, a test set RMSE of approximately 5% is a realistic
lower limit on the accuracy of a data-driven biocrude yield model. Any
reported value less than this should be treated with skepticism.

3.2. Comparison of biocrude yield predictions with literature models

The premise of this study was to understand predictability of bio-
crude regression models. A Random Forest model achieved an RMSE of
8.07, a value which includes use of an improved K-fold method. As
mentioned in the introduction, numerous other biocrude yield predic-
tion models appear in the literature [16,17]. The predictive capabilities
of these models is difficult to ascertain, as they are nearly uniformly
developed based on yields observed for a handful of model feeds and
then tested over a small sub-set of real feeds. Models of this type can be
termed “multi-component linear additivity models”. The other type of
model is a non-linear regression, which uses a training set usually con-
sisting of a few dozen data points to regress a family of parameters to fit
the training data. Again, the predictive power of a non-linear regression
cannot be determined solely from its ability to fit a limited training set.

The current study provides an opportunity to assess the predictive
capability of the multi-component linear additivity models and
nonlinear regression models, using the same test set as was used to select
the Random Forest model as the most accurate available method.
Accordingly, the various literature models were used to predict the
biocrude yields in the test set, with subsequent calculation of the RMSE.
Tables 4 and S.7 summarizes the results of this exercise.

Interestingly, values of the test set RMSE calculated for the various
literature models were always greater than found for the Random Forest
model. This comparison is completely fair since none of the literature
models nor the Random Forest model were developed for the test data.
Interestingly, the nonlinear regression models (27.6 and 12.01 RMSE)
are two of the least accurate models, despite their reported values of r?
> 0.98. In all likelihood, the poor predictive performance of the
nonlinear regressions is a result of overfitting to their respective training
data. The RMSE values corresponding to the two nonlinear regression
shows that 72 calculated for a training set is not a good indicator of
predictive capability. Models of this type can instead be used for other
purposes as they are highly accurate for capturing data provided for
training.
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Values of test set RMSE found for the multi-component linear addi-
tivity models vary over a wide range, from 9.16 (Li et al. [76]) to 17.1
(Deniel et al. [75]). This finding indicates that the basic form of the
multi-component linear additivity model can be nearly as accurate as
the Random Forest. In fact, using a published multi-component linear
additivity model is simpler and more convenient than using a published
Random Forest model, so for preliminary estimates the model of Li et al.
[76] will often be suitable. That stated, even the most accurate multi-
component linear additivity model results in errors greater than 10%
15 out of 53 times (i.e., 74% of the time the error was less than 10%). By
comparison, predictions made by the Random Forest model are more
accurate than 10% for 81% of the test set data points. Accordingly, the
Random Forest model appears to be more effective than the multi-
component linear additivity model at avoiding errors greater than 10%.

The analysis to this point indicates that Random Forest is the most
predictive available model type of those considered. Some versions of
the multi-component linear additivity model nearly duplicate the pre-
dictive capability of the Random Forest model. On the other hand, some
of the multi-component linear additivity models are much less accurate
than the Random Forest model. Moreover, no correlation exists between
the number of fitting parameters and the predictive capability of the
multi-component linear additivity models, implying that any benefit in
representing the training data is offset by over fitting and further
obscuring selection of an accurate model not guided by the analysis
provided here. As a consequence, only a rigorous study on test data that
the model had not used for training and as presented here can be used to
identify predictive forms of the multi-component linear additivity model

type.
Interestingly, the RMSE values of many of the multi-component
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linear additivity models cluster between 11 and 13. The reason for
this clustering arises from the fact that lipid content is the single most
important factor determining biocrude yield. Fig. 5 is a plot of “feature
importance”, as determined for the Random Forest, XGBoost, and De-
cision Tree algorithms. Feature importance plays a role similar to a
correlation constant in a linear regression, with its value increasing as
predictions become more sensitive to the values of a particular inde-
pendent variable, or feature [79].

In all three cases shown in Fig. 5, lipid content is the most important
feature for predicting biocrude yield. For the Decision Tree algorithm,
the simplest and least accurate of the three models shown in Fig. 5, lipid
content accounts for 89% of the variability observed in biocrude, a
remarkable agreement with the observation that many of the RMSE
values of multi-component linear additivity models cluster around
11-13.

The multi-component linear additivity models do not have a feature
importance metric. However, the magnitude of the coefficients in the
model plays a similar role as feature importance. Not surprisingly, the
lipid coefficient in the multi-component linear additivity models is al-
ways the greatest, regardless of the number of terms present in the
model. Similarly, a simple linear regression of the current data set to
lipid content as the sole independent variable (training), followed by
evaluating predictive accuracy using the test data, resulted in an RMSE
of 11.7. Any model that accurately captures the effect of lipid content on
biocrude yield can be expected to have an RMSE in the range from 11 to
13, which coincides exactly with the most frequent accuracy observed
here for multi-component linear additivity models.

Fig. 5 also shows that the feature importance of the lipid terms in the
more sophisticated algorithms, i.e., Random Forest and XGBoost, is

Decision Tree
Random Forest

XgBoost

u Cellulose

W Lignin

® LipidxCarbohydrate

® ProteinxAsh

m CellxHemicellulosexLignin

Fig. 5. Feature importance of Random Forest (RF), XGBoost, and decision tree (DT).
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Table 4
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Comparisons of the accuracy of biocrude yield predicted by the Random Forest regression model developed in the present study with some literature models.

Ref. Model Type Reported # RMSE on Current Test % of Test Set predicted with <10%
Error Parameters Set accuracy
Aierzhati et al. 2019 [12] Nonlinear Regression R? = 0.983 9 27.6 37
Deniel et al. 2017 [75] Multi-Component Component Additivity =~ R? = 0.998 10 17.12 42
Model
Sheng et al. 2018 [16] Nonlinear Regression R? = 0.981 6 12.01 62
Li et al. 2017 [76] Linear Component Additivity Model R?=0.884 3 9.16 72
Leow et al. 2015 [77] Linear Component Additivity Model R? = 0.463 3 9.38 74
Biller et al. 2011 [78] Linear Component Additivity Model MAE = 1.7% 3 16.1 40
Yang et al. 2018 [17] Multi-Component Linear Additivity R? = 0.9562 7 13.03 51
Model
Lu et al. 2018 [18] Multi-Component Linear Additivity SSE = 471 15 11.7 57
Model
Subramanya and Savage. 2021 Multi-Component Linear Additivity MAE=7.84% 10 11.7 58
[19]2 Model
Teri et al. 2014 [37] Multi-Component Linear Additivity Not Reported 6 11.95 60
Model
Teri et al. 2014 [37] Linear Component Additivity Model MAE = 3.2% 3 12 60
This study Random Forest N/A 7 8.07 81

2 For the 326-400 Celsius degree model.

much less than observed for Decision Tree. Accordingly, Fig. 5 indicates
that more accurate capturing of secondary factors, including especially
protein and cellulose, reduces RMSE from 11 to 13 to roughly 8. Simi-
larly, the more accurate predictions afforded by some of the multi-
component linear additivity models [19] can be attributed to more ac-
curate capturing of similar effects. The upshot is that, as a rule, simpler
models with fewer parameters and that emphasize lipid content are
preferred for predictive purposes, and that refinements should then
focus on cautious addition of secondary factors to improve accuracy
without overfitting.

In addition to the multi-component linear additivity models shown
in Table 4, Random Forest models of biocrude yields appear in the
literature [35]. Table 4 does not include predictions from previously
reported Random Forest regression models [25,31,35,80]. This is
because unlike the multi-component linear additivity models, a Random
Forest model is not a closed form equation, which means direct inter-
comparison is difficult as variance of model outcomes among different
studies depends on the natures of original data set (e.g., data size and
types of independent variables), the way to pre-process data set (e.g.,
stratification, as used here), as well as the way to split data set (e.g., if
the databased include a test set that never used for training model).

While a direct comparison of the current Random Forest model
without considering the prerequisite may not be entirely appropriate, a
qualitative comparison is nonetheless instructive. One of the Random
Forest models previously appearing in the literature reports an RMSE of
6.42 [35], an apparent improvement over the value of 8.07 reported
here for a similar model. That stated, the previously reported model did
not include a testing step [35], where the true accuracy of predictions
for data was not included in model regression was ascertained. As a
result, comparing the two RMSE values to one another is not appro-
priate. In fact, few bioenergy studies report machine learning perfor-
mance using accuracy of test set predictions [23,30,81]. The benefit of
the current study is to establish the predictive accuracy of the Random
Forest method as corresponding to an RMSE value of approximately 8
(8.07, to be precise, as reported here).

3.3. Evaluating the limits of accuracy for economic projections

Regression analysis and model refinement results in predictions with
accuracy of 8.07 (RMSE) (as shown in Table 4). In other words, for an
actual biocrude yield of 50%, the most accurate models developed here
would predict a value between 42% and 58%. The question becomes: is
this level of accuracy sufficient for practical applications? Of course, the
answer to this question depends on the application. A common situation,
prediction of minimum fuel selling price (MFSP) using model predicted

10

values of biocrude yields, was used as a case study. MFSP is highly
dependent on biocrude yield [38,63,82,83], making the projection of
MFSP and especially its corresponding uncertainty based on predicted
biocrude yields and their corresponding uncertainties a practical and
discerning test. Naturally, economic projections are sensitive to many
factors, particularly scale, and feedstock costs [84-86]. Accordingly, all
other factors were held constant during this analysis, so that the impact
of the uncertainty of biocrude yield predictions could be isolated from
other factors of obvious importance in a full economic analysis.

For a blind test, data for several viable HTL feeds were obtained from
the literature and used as the starting point for economic analysis
[57-62]. These feeds had never been used for HTL, meaning that the
model was used in a predictive fashion. These feeds are shown in
Table S.6 in the Supporting Information. As shown in Table S.6, bio-
crude yield was then predicted using the RF model, after its refinement
using the modified K-fold method to reduce its RMSE to 8.07.

This economic analysis serves to demonstrate how uncertainty in
modeled biocrude yields propagates in practical usage of the model — in
this case, through calculation of MFSP. Biocrude yield predictions with
sufficient accuracy will permit discernment between feedstock options,
assuming that all other factors are held constant. In a full analysis, these
other factors will not be constant, and so the outcomes presented here
are limited to understanding the relationship between the accuracy of
yield predictions and estimated MFSP. Further analysis, which takes into
account other key factors [87,88], can then be applied for final alloca-
tion of finite resources.

To place the analysis on a common basis, a previously published
economic analysis was used for estimating all costs [47]. Detailed cash
flows are provided in Tables S.8-S.10, in the literature [38]. Similarly,
the scale was held constant at 110 dry tons per day (DTPD) of feedstock
processed. Uncertainty in the biocrude yield, as estimated by model
RMSE, was then propagated through the economic analysis using a
Monte Carlo simulation method, consisting of a triangular distribution
around the predicted yield value with bounds +/- the RF RMSE.
Maximum and minimum values of the MFSP estimated using this Monte
Carlo method are used as the limiting values expected for a given feed.

The results of the accuracy analysis are summarized in Fig. 6 as a plot
of estimated MFSP in $ per gallon of gasoline equivalent (GGE) as a
function of predicted biocrude yield. As expected, MFSP decreases
monotonically with increased biocrude yield [89]. The effect is dra-
matic, with the “worst” feed (in this case a sewage sludge) resulting in a
MFSP more than twice that of the “best” feed (here, a type of pig
manure). The horizontal error bars in Fig. 6 represent the RMSE value
determined by regression analysis (+8.07) in terms of biocrude yield.
The vertical error bars represent the corresponding uncertainty in MFSP
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Fig. 6. The relation between estimated MFSP and biocrude yield predicted
from the Random Forest regression model. None of these feed streams appear in
the original data set. Biocrude yield error bar represents the RMSE obtained
from analysis of the original test set (8.07). MFSP error bar represents propa-
gation of the biocrude yield and uncertainty through an economic model.

determined via the Monte Carlo analysis.

For biocrude yields less than 35%, the uncertainty in MFSP is too
great to differentiate feeds from one another. In other words, for bio-
crude yield less than 35%, more accurate predictions are required than
afforded by the Random Forest model presented here to differentiate one
feed from another based on projected MFSP. On the other hand, as
predicted biocrude yield increases to values greater than 35%, the range
of projected MFSPs becomes increasingly compressed, a consequence of
the natural sensitivity of MSFP on biocrude yield [90]. Similar feeds —e.
g., meat/fish/cheese and food waste from an anaerobic digester (AD) —
cannot be differentiated solely based on predicted biocrude yields;
however, the current level of accuracy is sufficient to provide a rough
prediction of which feeds will be most promising for HTL. As a result,
resources can be properly allocated to generate further information for
only the most promising feeds, which signals the usefulness of the cur-
rent model.

To provide a common basis of comparison, the economic predictions
shown in Fig. 6 are based only on differences in biocrude yield. In actual
situations, factors such as feedstock abundance, and hence scale, feed-
stock cost, tipping fees, and other techno-economic factors such as
presence of impurities or foreign objects that detract from processibility,
should be included in a comprehensive analysis. The models presented
here allow for rudimentary understanding of yield impacts on techno-
economic outcomes without performing expensive experiments,
thereby allowing resources to be allocated optimally. Future work can
refine the model approach by inclusion of new data and by testing it
against data not used in the training, validation, or testing of the models
presented here.

4. Conclusions
A data set of HTL biocrude yields consisting of 570 data points was

assembled from the literature. The data set was divided into training
data — used to optimize regression models — and test data — used to
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determine model accuracy. Then, eight different regression algorithms
were evaluated for the accuracy of their biocrude yield predictions. The
Random Forest and XGBoost models provided the most accurate pre-
dictions of test set data, with values of root mean square error of 8.34
and 8.67, respectively. Further refinement of the Random Forest model
reduced its RMSE to 8.07, an improvement that was achieved by
development of a K-fold validation method that minimized overfitting.
In comparison, literature models for predicting biocrude yield were
generally over fit, with corresponding values of RMSE ranging from 9.16
to 27.6. Further model analysis revealed that lipid content is the most
important predictor of biocrude yield and that further improvements in
accuracy are gained when secondary factors such as cellulose and pro-
tein content are accurately captured.

The absolute accuracy of the Random Forest model was evaluated by
using it for making predictions of biocrude yield for a set of feeds that
have never been used for HTL. These predictions were then used in a
probabilistic economic model that projected minimum fuel selling price
for the different feeds. All other factors were held constant in this
analysis to isolate the dependence of the uncertainty of economic out-
comes on the accuracy of biocrude yield predictions obtained from the
Random Forest model. The accuracy of the Random Forest model was
sufficient to prioritize resource allocation to development of HTL pro-
cesses for different feeds based on predicted yields, with the greatest
predictive capability found for the most economically viable feeds.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was funded by the DOE Bioenergy Technology Office (DE-
EE0008513), the Massachusetts Clean Energy Center (MassCEC), and
the U.S. National Science Foundation (#2021871). Dr. N. Aaron
Deskins, Department of Chemical Engineering, WPI, and Mr. Jian, Jia-
min, Department of Mathematical Sciences, WPI, provided helpful
suggestions for conceptualization and methodology.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.cej.2022.136013.

References

[1] E. Newburger, Here’s what countries pledged on climate change at Biden’s global
summit, in, Consumer News and Business Channel, Englewood Cliffs, NJ, U.S.A.,
2021.

[2] DOE, DOE Announces $61.4 Million for Biofuels Research to Reduce
Transportation Emissions, in, Department of Energy, Washington, D.C., U.S., 2021.

[3] S. Harman, How We’re Moving to Net-Zero by 2050, in, Department of Energy,
Washington, D.C., U.S., 2021.

[4] R. Pielke, Net-Zero Carbon Dioxide Emissions By 2050 Requires A New Nuclear
Power Plant Every Day, in, Forbes, Jersey City, NJ, U.S., 2019.

[5] J. Zhang, X. Zhang, The thermochemical conversion of biomass into biofuels, in:
Biomass Biopolymer-Based Mater. Bioenerg., Elsevier, 2019, pp. 327-368.

[6] S.Y. Lee, R. Sankaran, K.W. Chew, C.H. Tan, R. Krishnamoorthy, D.-T. Chu, P.-
L. Show, Waste to bioenergy: a review on the recent conversion technologies, BMC
Energy 1 (2019) 1-22.

[7] A. Dimitriadis, S. Bezergianni, Hydrothermal liquefaction of various biomass and
waste feedstocks for biocrude production: a state of the art review, Renew. Sust.
Energ. Rev. 68 (2017) 113-125.

[8] B. de Caprariis, P. De Filippis, A. Petrullo, M. Scarsella, Hydrothermal liquefaction
of biomass: influence of temperature and biomass composition on the bio-oil
production, Fuel 208 (2017) 618-625.

[9] S.S. Toor, L. Rosendahl, A. Rudolf, Hydrothermal liquefaction of biomass: a review
of subcritical water technologies, Energy 36 (2011) 2328-2342.

[10] Y. Nie, X.T. Bi, Techno-economic assessment of transportation biofuels from
hydrothermal liquefaction of forest residues in British Columbia, Energy 153
(2018) 464-475.


https://doi.org/10.1016/j.cej.2022.136013
https://doi.org/10.1016/j.cej.2022.136013
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0030
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0030
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0030
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0035
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0035
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0035
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0040
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0040
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0040
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0045
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0045
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0050
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0050
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0050

F. Cheng et al.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

T.H. Pedersen, N.H. Hansen, O.M. Pérez, D.E.V. Cabezas, L.A. Rosendahl,
Renewable hydrocarbon fuels from hydrothermal liquefaction: a techno-economic
analysis, Biofuels Bioprod. Biorefining 12 (2) (2018) 213-223.

A. Aierzhati, M.J. Stablein, N.E. Wu, C.-T. Kuo, B. Si, X. Kang, Y. Zhang,
Experimental and model enhancement of food waste hydrothermal liquefaction
with combined effects of biochemical composition and reaction conditions,
Bioresour. Technol. 284 (2019) 139-147.

F. Cheng, Z. Cui, K. Mallick, N. Nirmalakhandan, C.E. Brewer, Hydrothermal
liquefaction of high-and low-lipid algae: mass and energy balances, Bioresour.
Technol. 258 (2018) 158-167.

J.D. Adjaye, N. Bakhshi, Catalytic conversion of a biomass-derived oil to fuels and
chemicals I: Model compound studies and reaction pathways, Biomass Bioenerg. 8
(1995) 131-149.

S. He, J. Wang, Z. Cheng, H. Dong, B. Yan, G. Chen, Synergetic effect and primary
reaction network of corn cob and cattle manure in single and mixed hydrothermal
liquefaction, J. Anal. Appl. Pyrolysis 155 (2021), 105076.

L. Sheng, X. Wang, X. Yang, Prediction model of biocrude yield and nitrogen
heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with
model compounds, Bioresour. Technol. 247 (2018) 14-20.

J. Yang, Q.(. He, H. Niu, K. Corscadden, T. Astatkie, Hydrothermal liquefaction of
biomass model components for product yield prediction and reaction pathways
exploration, Appl. Energy 228 (2018) 1618-1628.

J. Lu, Z. Liu, Y. Zhang, P.E. Savage, Synergistic and antagonistic interactions
during hydrothermal liquefaction of soybean oil, soy protein, cellulose, xylose, and
lignin, ACS Sustain. Chem. Eng. 6 (11) (2018) 14501-14509.

S. Mahadevan Subramanya, P.E. Savage, Identifying and modeling interactions
between biomass components during hydrothermal liquefaction in sub-, near-, and
supercritical water, ACS Sustain, Chem. Eng. 9 (41) (2021) 13874-13882.

D.C. Hietala, P.E. Savage, A molecular, elemental, and multiphase kinetic model
for the hydrothermal liquefaction of microalgae, Chem. Eng. J. 407 (2021)
127007.

J.D. Sheehan, P.E. Savage, Modeling the effects of microalga biochemical content
on the kinetics and biocrude yields from hydrothermal liquefaction, Bioresour.
Technol. 239 (2017) 144-150.

M.R. Forster, Key concepts in model selection: Performance and generalizability,
J. Math. Psychol. 44 (1) (2000) 205-231.

X. Zhu, Y. Li, X. Wang, Machine learning prediction of biochar yield and carbon
contents in biochar based on biomass characteristics and pyrolysis conditions,
Bioresour. Technol. 288 (2019), 121527.

J. Li, L. Pan, M. Suvarna, Y.W. Tong, X. Wang, Fuel properties of hydrochar and
pyrochar: prediction and exploration with machine learning, Appl. Energy 269
(2020), 115166.

T. Zhang, D. Cao, X. Feng, J. Zhu, X. Lu, L. Mu, H. Qian, Machine learning
prediction of bio-oil characteristics quantitatively relating to biomass compositions
and pyrolysis conditions, Fuel 312 (2022), 122812.

A. Ghorbani, J. Zou, Data shapley: Equitable valuation of data for machine
learning, in, International Conference on Machine Learning, PMLR (2019)
2242-2251.

X. Dastile, T. Celik, M. Potsane, Statistical and machine learning models in credit
scoring: a systematic literature survey, Appl. Soft Comput. J. 91 (2020) 106263.
D.R. Stockwell, A.T. Peterson, Effects of sample size on accuracy of species
distribution models, Ecol. Modell. 148 (2002) 1-13.

H. Jabbar, R.Z. Khan, Methods to avoid over-fitting and under-fitting in supervised
machine learning (comparative study), in: J. Stephen, H. Rohil, V. S (Eds.)
Computer Science, Communication and Instrumentation Devices, Research
Publishing, 2015, pp. 163-172.

A. Pathy, S. Meher, P. Balasubramanian, Predicting algal biochar yield using
eXtreme Gradient Boosting (XGB) algorithm of machine learning methods, Algal
Res. 50 (2020), 102006.

Q. Tang, Y. Chen, H. Yang, M. Liu, H. Xiao, Z. Wu, H. Chen, S.R. Naqvi, Prediction
of bio-oil yield and hydrogen contents based on machine learning method: effect of
biomass compositions and pyrolysis conditions, Energy Fuels 34 (2020)
11050-11060.

E. Kaiser, J.N. Kutz, S.L. Brunton, Sparse identification of nonlinear dynamics for
model predictive control in the low-data limit, Proc. R. Soc. A 474 (2018)
20180335.

T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins, N. Khovanova, Machine
learning for predictive modelling based on small data in biomedical engineering,
IFAC-Pap. 48 (2015) 469-474.

A. Tulsyan, C. Garvin, C. Undey, Advances in industrial biopharmaceutical batch
process monitoring: machine-learning methods for small data problems,
Biotechnol. Bioeng. 115 (2018) 1915-1924.

F. Cheng, M.D. Porter, L.M. Colosi, Is hydrothermal treatment coupled with carbon
capture and storage an energy-producing negative emissions technology? Energy
Convers. Manag. 203 (2020), 112252.

T. Katongtung, T. Onsree, N. Tippayawong, Machine learning prediction of
biocrude yields and higher heating values from hydrothermal liquefaction of wet
biomass and wastes, Bioresour. Technol. 344 (2022), 126278.

G. Teri, L. Luo, P.E. Savage, Hydrothermal treatment of protein, polysaccharide,
and lipids alone and in mixtures, Energy Fuels 28 (2014) 7501-7509.

L.J. Snowden-Swan, Y. Zhu, M.D. Bearden, T.E. Seiple, S.B. Jones, A.J. Schmidt, J.
M. Billing, R.T. Hallen, T.R. Hart, J. Liu, Conceptual Biorefinery Design and
Research Targeted for 2022: Hydrothermal Liquefacation Processing of Wet Waste
to Fuels, in, Pacific Northwest National Lab.(PNNL), Richland, WA (United States),
2017.

12

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]
[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

Chemical Engineering Journal 442 (2022) 136013

W.-T. Chen, Y. Zhang, J. Zhang, L. Schideman, G. Yu, P. Zhang, M. Minarick, Co-
liquefaction of swine manure and mixed-culture algal biomass from a wastewater
treatment system to produce bio-crude oil, Appl. Energy 128 (2014) 209-216.

B. Zhang, J. Chen, S. Kandasamy, Z. He, Hydrothermal liquefaction of fresh lemon-
peel and Spirulina platensis blending-operation parameter and biocrude chemistry
investigation, Energy 193 (2020), 116645.

Y. Hu, S. Wang, J. Li, Q. Wang, Z. He, Y. Feng, A.-E.-F. Abomohra, S. Afonaa-
Mensah, C. Hui, Co-pyrolysis and co-hydrothermal liquefaction of seaweeds and
rice husk: comparative study towards enhanced biofuel production, J. Anal. Appl.
Pyrolysis 129 (2018) 162-170.

Z. Liu, F.-S. Zhang, Effects of various solvents on the liquefaction of biomass to
produce fuels and chemical feedstocks, Energy Convers. Manag. 49 (2008)
3498-3504.

P. Biller, R.B. Madsen, M. Klemmer, J. Becker, B.B. Iversen, M. Glasius, Effect of
hydrothermal liquefaction aqueous phase recycling on bio-crude yields and
composition, Bioresour. Technol. 220 (2016) 190-199.

A.A. Shah, S.S. Toor, T.H. Seehar, R.S. Nielsen, A.H. Nielsen, T.H. Pedersen, L.
A. Rosendahl, Bio-crude production through aqueous phase recycling of
hydrothermal liquefaction of sewage sludge, Energies 13 (2020) 493.

F. Wang, Z. Chang, P. Duan, W. Yan, Y. Xu, L. Zhang, J. Miao, Y. Fan,
Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils, Bioresour.
Technol. 149 (2013) 509-515.

C. Yang, S. Wang, M. Ren, Y. Li, W. Song, Hydrothermal liquefaction of an animal
carcass for biocrude oil, Energy Fuels 33 (2019) 11302-11309.

Y. Zhu, S. Jones, D. Anderson, R. Hallen, A. Schmidt, K. Albrecht, D. Elliott,
Techno-economic Analysis of Whole Algae Hydrothermal Liquefaction (HTL) and
Upgrading System, Pacific Northwest National Laboratory. Richland, WA, USA,
2015.

R.A. Bottenberg, J.H. Ward, Applied multiple linear regression, 6570th Personnel
Research Laboratory, Aerospace Medical Division, Air Force Systems Command,
Lackland Air Force Base, 1963.

A.E. Hoerl, R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal
problems, Technometrics 12 (1970) 55-67.

R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc.
Series B Stat. Methodol. 58 (1996) 267-288.

C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995)
273-297.

J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1) (1986) 81-106.

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Springer Science & Business Media, 2009.

A. Liaw, M. Wiener, Classification and regression by randomForest, R News 2
(2002) 18-22.

T. Chen, C. Guestrin, Xgboost: a scalable tree boosting system, in: Proceedings of
the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data
Mining, 2016, pp. 785-794.

P. Refaeilzadeh, L. Tang, H. Liu, Cross-validation, in: L. Liu, M.T. Ozsu (Eds.)
Encyclopedia of Database Systems, Springer, Boston, MA, 2009, pp. 532-538.

S. Bayr, J. Rintala, Thermophilic anaerobic digestion of pulp and paper mill
primary sludge and co-digestion of primary and secondary sludge, Water Res. 46
(2012) 4713-4720.

Y. Li, H. Liu, K. Xiao, X. Liu, H. Hu, X. Li, H. Yao, Correlations between the
physicochemical properties of hydrochar and specific components of waste lettuce:
Influence of moisture, carbohydrates, proteins and lipids, Bioresour. Technol. 272
(2019) 482-488.

L. Alibardi, R. Cossu, Effects of carbohydrate, protein and lipid content of organic
waste on hydrogen production and fermentation products, Waste Manag. 47
(2016) 69-77.

A. Fekria, A. Isam, O. Suha, E. Elfadil, Nutritional and functional characterization
of defatted seed cake flour of two Sudanese groundnut (Arachis hypogaea)
cultivars, Int. Food Res. J. 19 (2012).

T.T.T. Cu, T.X. Nguyen, J.M. Triolo, L. Pedersen, V.D. Le, P.D. Le, S.G. Sommer,
Biogas production from Vietnamese animal manure, plant residues and organic
waste: influence of biomass composition on methane yield, Asian-Australas. J.
Anim. Sci. 28 (2) (2015) 280-289.

S. Xue, Y. Wang, X. Lyu, N. Zhao, J. Song, X. Wang, G. Yang, Interactive effects of
carbohydrate, lipid, protein composition and carbon/nitrogen ratio on biogas
production of different food wastes, Bioresour. Technol. 312 (2020), 123566.

L. Ou, R. Thilakaratne, R.C. Brown, M.M. Wright, Techno-economic analysis of
transportation fuels from defatted microalgae via hydrothermal liquefaction and
hydroprocessing, Biomass Bioenerg. 72 (2015) 45-54.

V. Molak, Fundamentals of Risk Analysis and Risk Management, CRC Press, 1996.
L.-C. Ma, B. Castro-Dominguez, N.K. Kazantzis, Y.H. Ma, A cost assessment study
for a large-scale water gas shift catalytic membrane reactor module in the presence
of uncertainty, Sep. Purif. Technol. 166 (2016) 205-212.

M.S. Peters, K.D. Timmerhaus, R.E. West, Plant Design and Economics for Chemical
Engineers, McGraw-Hill New York, 2003.

L.-C. Ma, B. Castro-Dominguez, N.K. Kazantzis, Y.H. Ma, Integration of membrane
technology into hydrogen production plants with CO2 capture: an economic
performance assessment study, Int. J. Greenh. Gas Control. 42 (2015) 424-438.
M. Aghbashlo, W. Peng, M. Tabatabaei, S.A. Kalogirou, S. Soltanian,

H. Hosseinzadeh-Bandbatha, O. Mahian, S.S. Lam, Machine learning technology in
biodiesel research: a review, Prog. Energy Combust. Sci. 85 (2021) 100904.

Y. Zhang, C. Ling, A strategy to apply machine learning to small datasets in
materials science, Npj Comput. Mater. 4 (2018) 1-8.


http://refhub.elsevier.com/S1385-8947(22)01511-X/h0055
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0055
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0055
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0060
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0060
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0060
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0060
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0065
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0065
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0065
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0070
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0070
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0070
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0075
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0075
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0075
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0080
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0080
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0080
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0085
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0085
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0085
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0090
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0090
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0090
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0095
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0095
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0095
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0100
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0100
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0100
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0105
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0105
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0105
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0110
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0110
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0115
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0115
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0115
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0120
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0120
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0120
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0125
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0125
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0125
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0130
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0130
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0130
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0135
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0135
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0140
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0140
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0150
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0150
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0150
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0155
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0155
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0155
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0155
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0160
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0160
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0160
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0165
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0165
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0165
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0170
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0170
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0170
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0175
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0175
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0175
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0180
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0180
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0180
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0185
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0185
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0195
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0195
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0195
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0200
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0200
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0200
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0205
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0205
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0205
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0205
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0210
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0210
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0210
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0215
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0215
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0215
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0220
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0220
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0220
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0225
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0225
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0225
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0230
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0230
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0235
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0235
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0235
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0235
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0245
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0245
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0250
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0250
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0255
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0255
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0260
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0265
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0265
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0270
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0270
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0275
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0275
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0275
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0285
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0285
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0285
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0290
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0290
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0290
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0290
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0295
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0295
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0295
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0300
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0300
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0300
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0305
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0305
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0305
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0305
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0310
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0310
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0310
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0315
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0315
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0315
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0320
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0325
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0325
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0325
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0330
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0330
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0335
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0335
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0335
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0340
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0340
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0340
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0345
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0345

F. Cheng et al.

[70]

[71]
[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

A. Vabalas, E. Gowen, E. Poliakoff, A.J. Casson, E. Hernandez-Lemus, Machine
learning algorithm validation with a limited sample size, PloS one 14 (11) (2019)
€0224365.

G.J. Bowden, H.R. Maier, G.C. Dandy, Optimal division of data for neural network
models in water resources applications, Water Resour. Res. 38 (2002) 2-1-2-11.
T. Shaikhina, N.A. Khovanova, Handling limited datasets with neural networks in
medical applications: a small-data approach, Artif. Intell. Med. 75 (2017) 51-63.
R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and
model selection, in: International Joint Conference on Artificial Intelligence,
Montreal, Canada, 1995, pp. 1137-1145.

J. Yang, L. Yang, A review on hydrothermal co-liquefaction of biomass, Appl.
Energy 250 (2019) 926-945.

M. Déniel, G. Haarlemmer, A. Roubaud, E. Weiss-Hortala, J. Fages, Modelling and
predictive study of hydrothermal liquefaction: application to food processing
residues, Waste Biomass Valorization 8 (6) (2017) 2087-2107.

Y. Li, S. Leow, A.C. Fedders, B.K. Sharma, J.S. Guest, T.J. Strathmann, Quantitative
multiphase model for hydrothermal liquefaction of algal biomass, Green Chem. 19
(2017) 1163-1174.

S. Leow, J.R. Witter, D.R. Vardon, B.K. Sharma, J.S. Guest, T.J. Strathmann,
Prediction of microalgae hydrothermal liquefaction products from feedstock
biochemical composition, Green Chem. 17 (2015) 3584-3599.

P. Biller, A. Ross, Potential yields and properties of oil from the hydrothermal
liquefaction of microalgae with different biochemical content, Bioresour. Technol.
102 (2011) 215-225.

G. Casalicchio, C. Molnar, B. Bischl, Visualizing the feature importance for black
box models, in: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, Springer, 2018, pp. 655-670.

J. Li, W. Zhang, T. Liu, L. Yang, H. Li, H. Peng, S. Jiang, X. Wang, L. Leng, Machine
learning aided bio-oil production with high energy recovery and low nitrogen
content from hydrothermal liquefaction of biomass with experiment verification,
Chem. Eng. J. 425 (2021), 130649.

13

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Chemical Engineering Journal 442 (2022) 136013

P.J. Garcia Nieto, E. Garcia-Gonzalo, J.P. Paredes-Sanchez, A. Bernardo Sanchez,
M. Menendez Fernandez, Predictive modelling of the higher heating value in
biomass torrefaction for the energy treatment process using machine-learning
techniques, Neural. Comput. Appl. 31 (2019) 8823-8836.

Y. Jiang, S.B. Jones, Y. Zhu, L. Snowden-Swan, A.J. Schmidt, J.M. Billing,

D. Anderson, Techno-economic uncertainty quantification of algal-derived
biocrude via hydrothermal liquefaction, Algal Res. 39 (2019), 101450.

Y. Zhu, M.J. Biddy, S.B. Jones, D.C. Elliott, A.J. Schmidt, Techno-economic
analysis of liquid fuel production from woody biomass via hydrothermal
liquefaction (HTL) and upgrading, Appl. Energy 129 (2014) 384-394.

M.J. Biddy, R. Davis, S.B. Jones, Y. Zhu, Whole algae hydrothermal liquefaction
technology pathway, in, Pacific Northwest National Lab.(PNNL), Richland, WA
(United States), 2013.

P. Ranganathan, S. Savithri, Techno-economic analysis of microalgae-based liquid
fuels production from wastewater via hydrothermal liquefaction and
hydroprocessing, Bioresour. Technol. 284 (2019) 256-265.

M. Kumar, A.O. Oyedun, A. Kumar, A comparative Technoeconomic analysis of
algal thermochemical conversion technologies for diluent production, Energy
Technol. 8 (2020) 1900828.

M.M. Wright, D.E. Daugaard, J.A. Satrio, R.C. Brown, Techno-economic analysis of
biomass fast pyrolysis to transportation fuels, Fuel 89 (2010) $2-S10.

L.Y. Batan, G.D. Graff, T.H. Bradley, Techno-economic and Monte Carlo
probabilistic analysis of microalgae biofuel production system, Bioresour. Technol.
219 (2016) 45-52.

J.R. Collett, J.M. Billing, P.A. Meyer, A.J. Schmidt, A.B. Remington, E.R. Hawley,
B.A. Hofstad, E.A. Panisko, Z. Dai, T.R. Hart, Renewable diesel via hydrothermal
liquefaction of oleaginous yeast and residual lignin from bioconversion of corn
stover, Appl. Energy 233 (2019) 840-853.

Y. Zhu, S.B. Jones, A.J. Schmidt, K.O. Albrecht, S.J. Edmundson, D.B. Anderson,
Techno-economic analysis of alternative aqueous phase treatment methods for
microalgae hydrothermal liquefaction and biocrude upgrading system, Algal Res.
39 (2019), 101467.


http://refhub.elsevier.com/S1385-8947(22)01511-X/h0350
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0350
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0350
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0355
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0355
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0360
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0360
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0370
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0370
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0375
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0375
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0375
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0380
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0380
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0380
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0385
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0385
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0385
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0390
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0390
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0390
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0395
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0395
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0395
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0400
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0400
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0400
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0400
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0405
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0405
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0405
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0405
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0410
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0410
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0410
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0415
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0415
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0415
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0425
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0425
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0425
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0430
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0430
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0430
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0435
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0435
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0440
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0440
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0440
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0445
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0445
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0445
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0445
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0450
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0450
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0450
http://refhub.elsevier.com/S1385-8947(22)01511-X/h0450

	Accuracy of predictions made by machine learned models for biocrude yields obtained from hydrothermal liquefaction of organ ...
	1 Introduction
	2 Methodology
	2.1 Overview
	2.2 Data collection, preparation, and curation
	2.3 Selection of independent and dependent variables
	2.4 Criteria for model evaluation
	2.5 Machine learning algorithms
	2.6 Model training, validation, and testing
	2.7 Techno-economic analysis

	3 Results and discussions
	3.1 Evaluation of Machine learning regression models
	3.2 Comparison of biocrude yield predictions with literature models
	3.3 Evaluating the limits of accuracy for economic projections

	4 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


