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A B S T R A C T   

Hydrothermal liquefaction (HTL) has potential for converting abundant wet organic wastes into renewable fuels. 
Because HTL consists of a complex reaction network, deterministic, physics-based prediction of its biocrude yield 
is prohibitively difficult. Data-driven methods provide an alternative to the physics-based approach; however, 
rigorous testing must be performed to ensure the accuracy of predictions made by data-driven methods. To this 
end, a data set was assembled consisting of 570 data points appearing in the open literature. The data set was 
divided into training, validation, and test sub-sets and used for evaluating different machine learning regression 
approaches to predict biocrude yield. Among the tested algorithms, Random Forest and eXtreme Gradient 
Boosting (XGBoost) predicted biocrude yields in a test set that had not been used for training with the greatest 
accuracy, with root mean square errors (RMSE) of 8.34 and 8.57, respectively. Further refinement of the Random 
Forest model reduced its RMSE to 8.07. In comparison, predictions of a series of literature models resulted in 
RMSE ranging from 9.16 in the most accurate case to 27.6 in the least accurate; most literature models yielded 
RMSE values > 10. Using biocrude yield predictions from the most accurate Random Forest model and a 
probabilistic economic analysis found that the model accuracy is sufficient to prioritize allocation of resources 
based on projected minimum fuel selling price. The models and analysis presented here represent a major 
advance in the ability to use readily available data to predict biocrude yields on new feedstocks that have not 
previously been studied.   

1. Introduction 

An increasing number of nations have set aggressive goals to reach 
carbon neutrality within the next four decades in an effort to avert the 
most damaging impacts of global climate change [1]. Achieving the 
ambitious carbon neutrality goals requires abandoning nearly all fossil- 
based energy sources and substituting with carbon-free energy sources 
including biomass, nuclear, solar, wind, geothermal, and hydro energies 
[2–4]. Among these options, thermochemical conversion of nonedible 
biomass sources to produce liquid fuels has potential for decarbonizing 
the transportation sector due to biofuel compatibility with current 
infrastructure and the abundance of biomass [5,6]. 

Hydrothermal liquefaction (HTL) of algae, biomass, and wet organic 
waste streams has attracted attention in recent years as an efficient 

method for producing an energy-dense biocrude that can be upgraded 
into liquid transportation fuels [7,8]. In a near sub- or supercritical state, 
water acts as a reactant, catalyst, and reaction solvent to effectively 
decompose biomass components into smaller organic molecules that 
serve as precursors to form biocrude [9]. 

Maximizing biocrude yield and minimizing feedstock cost is one 
pathway to economically viable HTL-based production of liquid fuels 
[10,11]. Biocrude yield is mainly determined by feedstock properties 
[12,13], meaning that maximizing yield requires understanding of the 
relationship between feedstock properties and biocrude yield. Predictive 
methods that utilize readily available data are especially needed to help 
prioritize feeds for commercial development. 

A classical approach for maximizing reaction yield is to optimize 
reaction conditions using a system of chemical pathways, which can 
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either be elementary or phenomenological [14]. However, waste feeds 
consist of many dozens of chemically distinct components, and HTL it
self proceeds via a vast manifold of incompletely understood reactions 
consisting of hundreds or thousands of reactants, intermediates, and 
products [15]. Modeling this complex reaction system using physics- 
based models is clearly challenging. The common alternative used for 
making yield predictions is instead to measure yields for a handful of 
representative model compounds and use these as the basis for what can 
be termed multi-term or multi-component linear additivity models 
[16,17]. 

In multi-component linear additivity models, yields obtained for a 
family of model feeds are used to establish empirical values of co
efficients that are then applied to generalize for other feeds with 
different compositions. In principle, terms can be added for any 
component that is suitable for HTL and well defined feeds with multiple 
components can be used to assign empirical coefficients to cross terms, 
intended to capture component-component interactions [18–21]. 

The advantage of the multi-component linear additivity model 
approach is that it maximizes the use of a limited data set for prediction 
of a wider range of feedstocks. The limitation is potential over reliance 
on empirical data obtained from a handful of feedstocks and subsequent 
overfitting of the empirical parameters that detract from the accuracy of 
predictions made for feedstocks that were not included in model 
development. The result is models that cannot be generalized to new 
feedstocks with confidence [22]; these models may retain accuracy for 
feedstocks included in the model development stage, but without testing 
them their accuracy cannot be guaranteed for new feeds. 

Recent advances in machine learning can be harnessed for devel
opment of new types of data-driven models that relate feedstock prop
erties to yields obtained by HTL conversion of biomass [23–25]. Unlike 
multi-component linear additivity models, machine learned models 
must be trained on much larger data sets consisting of hundreds, thou
sands, or even millions of data points, validated for robustness to avoid 
over fitting, and tested for predictability of data not included in the 
original data set [26]. Assuming that sufficient data are available, the 
resulting models can avoid the problem of over fitting, thereby 
permitting them to be used in a truly predictive manner – in other words 
achieving accuracy for feedstocks not explicitly considered during 
model development. Here, a distinction is drawn between model accu
racy for data used in model regression (usually termed training data) 
and accuracy of predictions for conditions that were not explicitly 
included in the regression. A model that accurately fits data provided to 
it can be useful for many purposes; however, truly predictive models can 
be used for new situations that were not included in the regression and 
are therefore preferred in these cases. 

Unfortunately, most modern machine learned models require mil
lions of data points for training without overfitting [27,28]. Overfitting a 
machine learned, data-driven model detracts from the accuracy of its 
predictions, which defeats the purpose of the model [12,16]. Individual 
HTL experiments are labor intensive and generating a data set consisting 
of millions of biocrude yield data points is time and cost prohibitive. The 
need for machine learning methods that avoid overfitting and retain 
predictive accuracy without the requirement of millions of data points is 
a clear need for the chemical engineering community. Selecting an 
appropriate model type and then validating model performance to avoid 
overfitting becomes crucial in the low-data limit [29], yet the impor
tance of this step is often over looked. As a result, machine learned 
models developed for <1000 data points are routinely over fit, thereby 
detracting from the accuracy for their predictions outside the original 
training data. 

Encouragingly, some types of machine learning models have been 
proven to be retain predictive accuracy for regression of systems with 
hundreds of – rather than hundreds of thousands or more – data points 
[30,31]. That stated, machine learning in the low-data limit requires 
careful selection of the algorithm, as some are more prone to overfitting 
than others [32]; new strategies for selecting training data; 

generalizable methods for validating results [33]; and guidance for se
lection of independent variables that lead to accurate and reliable pre
dictions [34]. 

To date, appropriate protocol for the aforementioned steps does not 
appear in the literature, despite reports on the use of data-driven models 
for predictions of HTL biocrude yields [35]. A recent study on machine 
learning predictions of biocrude yields implemented a validation step to 
minimize over fitting, but did not set aside data for testing [36], which 
means the model accuracy for fitting the training and validation is 
quantified but the predictions for feeds that did not appear in the 
training data set is not. Without comparison with a data test set, the 
accuracy of true model predictions cannot be ascertained. 

The objective of this study was to evaluate the methodology for 
developing generalizable machine learning models to predict HTL bio
crude yield in the low data limit (i.e., <1,000 data points). The study 
consisted of training eight different regression models, validating their 
predictions to determine the extent to which accuracy is influenced by 
random selection of training data; and testing them on a new subset of 
the data to determine accuracy when the models are used predictively. 
The most accurate model was then refined to predict biocrude yield 
based on new data that was not included in the training data. The ac
curacy of this model was compared with the accuracy of other literature 
models, especially multi-component linear additivity models 
[16–19,37]. Finally, the relationship between the accuracy of biocrude 
yields and economic performance was evaluated using Monte Carlo 
simulations to propagate biocrude uncertainty into uncertainties of 
projected minimum fuel selling price (MFSP). 

2. Methodology 

2.1. Overview 

Fig. 1 is a schematic representation of the process that was followed 
for the study. Step 1 was assembly of a data set from studies present in 
the literature. Steps 2–4 are model development, which includes eval
uating the effects and accuracy of different regression methods, different 
data handling protocols, and different ways to ensure accuracy of pre
dictions made for conditions not included in initial model development. 
The end of Step 4 is down selection of the most promising models. Step 5 
is the use of the most promising model for biocrude yield prediction, 
which was then used to determine the relative importance of different 
independent variables on performance and tested with several different 
modifications to the independent variables to investigate if model per
formance could be improved. 

Following model development, the most accurate and generalizable 
model was then used to make biocrude yield predictions for a series of 
feeds that appear in the literature, but for which no HTL data are pub
lished. These yields were then used in an economic model [38] to 
evaluate the effect of yield prediction and uncertainty on projected 
economic performance. The final two steps, screening feedstocks and 
performing HTL experiments on them are recommendations of how the 
resulting regression models can be used. 

2.2. Data collection, preparation, and curation 

Development of a data-driven model requires careful selection and 
preparation of data so that it generates reliable results. By reviewing 190 
publications appearing in the open literature on HTL of various feeds, 
570 data points were selected for inclusion in the data set. Consistent 
criteria were applied for including a given data point in the data set: 1) 
adequate reporting of uncertainty and reproducibility, including 
reporting of at least two replicate runs as a measure of reproducibility; 
2) thorough reporting of experimental conditions, including at a mini
mum biochemical composition of the feed and reactor conditions; 3) 
appearance in a peer-reviewed journal. 

The impact of feedstock composition on model performance is the 
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emphasis of this study. Therefore, to avoid feedstock overrepresentation 
by inclusion of all of the data from studies reporting biocrude yield for a 
single feedstock at many different conditions (as shown in Tables S.1 
and S.2), only data reported at the “optimal” condition, i.e., conditions 
at which the maximum biocrude yield was observed, are included here 
from sources that report yields at many different reaction conditions. 

Fig. 2 is a mosaic plot representation of the resulting data set divided 
into different feed categories, where the number of data points in a 
particular category and the number of sources used to extract data 
points were provided for a given feed category. Algae, lignocellulosic 
biomass, and model compounds (including fatty acids, proteins/amino 
acids, cellulose, glucan, glucose, hemicellulose, xylan, xylose, extracted 
lignin, etc.) are the most highly represented feeds. The rest of the data 
set includes food waste, manure, sludge, bioethanol residue, municipal 
solid waste, and seed plants. 

Complete data tables are provided in the Supporting Information. 
Table 1 provides several representative entries. Here, the feedstock, 
sample type, and extractant are strings. All other independent and 
dependent variables are integers. 

No studies were intentionally excluded that met the three 

aforementioned criteria; however, as the appearance of new publica
tions on HTL is increasing rapidly the study makes no guarantee of 
including all published data. Instead, the methods used here guarantee a 
representative sampling of reliable data that can be extended as new 
data are published. 

2.3. Selection of independent and dependent variables 

Selecting independent and dependent variables is a key step in 
development of a data-driven model. Biocrude yield was selected as the 
dependent variable, as this is a key parameter determining economic 
viability of an HTL process [47]. Based on their importance in deter
mining biocrude yield and general availability in published data, the 
independent variables included in the study are feedstock type, 
biochemical composition, solids loading (3–30 wt%), reaction temper
ature (220–370 ◦C), reaction time (0–120 min), heating rate (3–990 ◦C/ 
min), organic biocrude extraction solvent, reactor type, reactor size 
(1.3–2000 mL), and yields of char, gas, and aqueous phase. Of these, the 
biochemical composition was described using seven composition cate
gories: lipid, lignin, cellulose, hemicellulose, carbohydrates (e.g., 

Fig. 1. Schematic diagram of the development and application of machine learning models in this study. HTL: hydrothermal liquefaction. RF: random forest. ANN: 
artificial neural network. SVM: support vector machine. DT: decision tree. The pure-color circle block means the work conducted in this study, and the white-dot- 
containing circle block means the work out of the scope of this study. 
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glucose or starch), protein, and ash. Tables S.1 and S.2 in the Supporting 
Information summarize these variables. 

Some publications do not report all values for all of the aforemen
tioned independent variables, resulting in data gaps. For example, not 
all studies report heating rate. Missing data complicates comparisons 
since model accuracy depends on both the independent variables and 
the number of data points used in the regression. When the data related 
to a certain independent variable was missing, the entire entry was 
removed from the data set for that analysis (i.e., that row of the data 
table was entirely removed). Table S.11 lists the number of data points 
corresponding to different missing independent variables. To provide 
even footing and because the statistical methods used here depend on 
the number of data points, the impact of every individual independent 
variable on model performance was evaluated by generation of two data 
sets with the same number of data points, of which one included values 
for the independent variable to be studied and one lacked it. The dif
ference in the predictions of these models was used to infer the impact of 
that variable. 

2.4. Criteria for model evaluation 

The criteria of model evaluation used in this study include mean 
absolute error (MAE), root mean square error (RMSE), coefficient of 
determination (r2), and mean relative error (MRE). The Supporting In
formation provides mathematical definitions of all four of these metrics. 
For all practical purposes, MAE, RMSE, MRE, and r2 all respond similarly 
to changes in the model and/or modelled data set. Of these various 
methods to quantify model accuracy, RMSE is most sensitive to a small 
number of highly inaccurate predictions. For practical applications, 
highly inaccurate predictions are especially troublesome and so this 
work adopts RMSE as its primary way to quantify accuracy. For the 
current data set, RMSE is always greater than or equal to MAE, making 
RMSE a more conservative estimate of model accuracy. 

2.5. Machine learning algorithms 

After generating the data set, eight machine learning regression 
methods were evaluated for their performance in predicting biocrude 
yields. Table 2 summarizes these models as: (1) multiple linear regres
sion, (2) Ridge regression, (3) Lasso regression, and (4) support vector 

machine regression (SVM); or nonlinear (5) decision tree regression, (6) 
multilayer perceptron (a form of “artificial neural network” or “ANN”), 
(7) random forest regression, and (8) eXtreme Gradient Boost (XGBoost) 
regression. 

All regression methods were programmed, implemented, and opti
mized using Python 3.6.9. The Supporting Information provides addi
tional descriptions of each of these models. Each of these types of models 
includes one or more parameters that can be optimized to improve 
model performance, e.g., the number of trees included in a Random 
Forest regression. Model parameters were carefully tuned to achieve 
optimal validation model performance based on their error metrics 
arising from regression of the complete data set (including RMSE, MAE, 
r2, and MRE). The resulting optimized values of model parameters were 
then used for all subsequent implementations of that regression method 
and optimized values are provided in the Supporting Information. 

2.6. Model training, validation, and testing 

For development of regression models for each of the eight selected 
methods, the data set was divided into test and training subsets with a 
test to training ratio of 1:9. The training data were further split into data 
used explicitly for training and data used for internal or cross validation. 
Optimization to the training data resulted in a regressed model, which 
was then used for predicting biocrude yields for the 10% of the data 
initially set aside for testing. All performance metrics shown here are 
based on this test data, unless otherwise noted. Fig. 3 is a schematic of 
this process, showing the split between testing and training and the 
further split for internal validation. 

Two approaches were used for splitting the data into testing and 
training/validation sets: 1) completely randomized sampling and 2) 
stratified sampling. Stratified sampling avoids the potential for random 
oversampling of a particular subset of the data, e.g., oversampling of 
high yield data during training, that results in a poor fit of the test data. 
Oversampling is especially problematic for small data sets, which are the 
subject of this study. On the other hand, data stratification can inad
vertently introduce artifacts into the regression, since all regression 
models are based on the concept that sampling is totally random. 

Analysis was performed first without stratification and then a second 
time using stratified data. The result of this comparison was the finding 
that data stratification is a beneficial technique for reducing RMSE, 

Fig. 2. Conceptual schematic diagram of the data set used in this study. a Municipal solid waste includes two data points from one literature source. b Plant seeds 
includes one data point from a single literature source. 
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without making the model susceptible to erroneous predictions of test 
data due to biasing. Accordingly, results presented here utilize stratified 
data splitting. 

The training data set was subjected to validation, a necessary step 
required to ensure that the model does not benefit from fortuitous se
lection of training data. The cross-validation scheme used here entails 
training the model multiple times on different sub-populations of the 
data set to obtain average values of the various error metrics and their 
corresponding standard deviations. 

Internal validation was performed using a machine learning litera
ture method termed the K-fold cross validation [56]. The K-fold method 
divides the data set into k equal sized sub-datasets, which are then 
assigned as training data or validation data (after test set has been split) 
in a training to validation ratio of 1:K-1. The K-fold validation process is 
then repeated k times, until all k subsamples have been used once as the 
validation set. Subsequently, the results of the k distinct regression are 
used to generate average values and standard deviations of RMSE that 
are reported here. 

Typically, the K-fold method utilizes 5 to 10 splits. For the small data 
set, using 10 splits was found to result in a large standard deviation of 
validation set RMSE, arising from over sampling within the small-size 
dataset. Accordingly, a new modified K-fold validation method was 
developed, where the K-fold splitting was repeated between 10 and 
1,000 times to determine average values of error metrics and their 
corresponding standard deviations. 

The modified K-fold method was applied to the most accurate 
models, with representative results shown in Fig. S.3. Fig. S.3 indicates 
that splitting the dataset with >100 cycles reduces the standard devia
tion of RMSE predictions to <1%, a value that provides confidence that 
model performance is not impacted by fortuitous splitting of the data set 
and that the corresponding model can be used in a predictive manner. 

Comparison of predictions with the test data provides a measure of 
model accuracy, and the dependence of model accuracy on how the data 
are split provides the truest measure of model predictability that can be 
obtained. A model lacking predictability can appear to be accurate by 
randomly fortuitous selection of the training data; however, the models 
which are less predictable offer no guarantee of performance for data 
not included in the training set. Overfitting is one of the main reasons for 
loss of predictability. 

Some regression methods quantify the importance of the Ta
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Table 2 
The regression algorithms in this study.  

Regression Methods Method Description Sources 

Linear 
Regression 

Multiple 
Linear 

The most common-used and 
simplest linear regression method 

[48] 

Ridge The linear regression method 
modified by introducing a penalty 
term to inhibit overfitting. 

[49,50] 
Lasso 

Support Vector 
Machine 

A supervised learning method to fit 
data by finding hyperplane and 
defining acceptable error. 

[51] 

Non-Linear 
Regression 

Decision Tree A simple supervised learning 
method based on collecting data as 
roots and nodes, following nodes 
that meet required decision, and 
reaching leaf node as outcome. 

[52] 

Multilayer 
Perceptron 

An artificial neural network, 
consisting of an input layer, a non- 
linear hidden layer, and an output 
layer. 

[53] 

Random Forest An ensemble learning method that 
uses multiple decision tress and 
bootstrap aggregation to improve 
accuracy. 

[54] 

XGBoost A decision tree-based algorithm that 
has been reported to be most 
accurate for small to medium-sized 
structured data sets. 

[55]  
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independent variables appearing in their corresponding regression 
models. The metric is termed as feature importance, and it is a measure 
of how useful a given independent variable is for making a prediction. 
Values of feature importance were estimated using the built-in feature 
functions in Random Forest and XGBoost packages in Python. 

2.7. Techno-economic analysis 

A techno-economic model was built using the flowsheet published by 
Pacific Northwest National Lab (PNNL) for analysis of HTL conversion of 
sewage sludge to biocrude [38]. A discounted cash flow model, quan
tifying capital investment (equipment and initial costs), fixed operating 
costs (labor, insurance, and maintenance costs), and variable operating 
costs (raw material and utility costs) was built, with process parameters 
such as product yield and higher heating value (HHV) set as fixed pa
rameters (as shown in Table 3). More details for each of these cash 
streams can be found in Tables S.8-S.10. 

A set of eight feed streams was selected from the literature for eco
nomic modeling [57–62]. These feed streams were selected to represent 
a range of different sources, as summarized in Table S.6. The selected 
feed streams were characterized by distinct biochemical composition 
from one another, but they had never been treated using HTL and 
therefore represent feed streams that are completely unknown by the 
model. 

The Random Forest regression model was trained using totally 570 

data points obtained from Tables S.1 and S.2 and used to predict bio
crude yield for the feed streams, as shown in Table S.6, along with a root 
mean square error (RMSE) as a measurement of model yield uncertainty, 
estimated based on the earlier dataset (including 570 data points). To 
calculate distributions of biocrude selling prices, Monte Carlo simula
tions were run, using the biocrude yield as the uncertain variable [63]. 
All other factors were held constant in this analysis to isolate the effect of 
biocrude yield uncertainty on minimum fuel selling price (MFSP), a key 
metric of economic performance. 

Variable distributions were defined using the base-case yield for a 
given feedstock as the expected value, and the base-case yield +/- the 
RMSE as the upper and lower bounds of a triangular distribution, used to 
represent an “expert opinion” [64]. Monte Carlo simulations were run 
10,000 times, with each iteration resulting in an estimated value of the 
MFSP [65,66]. The mean of the MFSPs was used as the expected MFSP 
for a given feedstock [67]. The resulting upper and lower bounds of the 
simulation are used as uncertainty bounds for the MFSP. The result is an 
estimated biocrude yield and corresponding uncertainty from the 
regression model, and a projected MFSP with corresponding uncertainty 
estimated from the techno-economic analysis. 

3. Results and discussions 

The objective of this work is development and evaluation of 
regression models for prediction of biocrude yields obtained by HTL of 
different feed streams. A particular emphasis was placed on the accuracy 
of the machine learned models for test data, that is, data which had been 
withheld during training and validation, compared with that observed 
for the multi-component linear additivity models common in the liter
ature [16–19,37]. Accuracy for test data is the truest indication of model 
predictability, which is a frequent goal of engineering models – whether 
data driven or physics-based. 

The structure of the Results follows the steps shown previously in 
Fig. 1, beginning with selection and initial data evaluation and 
continuing with evaluation of the accuracy of eight distinct, represen
tative regression methods [68]. The most accurate method was then 
refined to improve its accuracy in the small data limit [69,70], and its 
accuracy for predicting test data not involved in any other step of model 
development was compared with the accuracy of several literature 

Fig. 3. Schematic diagram of the training, validation, and testing of the HTL data set. Training, validation, and testing all produce values of RMSE. Training and 
validation produce families of values, corresponding to an average value and standard deviation. The value of RMSE arising from the test data is the truest measure of 
model predictability. Here, RMSE values presented have been generated from the test data, unless otherwise noted. 

Table 3 
Techno-economic analysis key parameters.  

Variable Value* 

Fixed Capital Investment ($) 34,118,811 
Variable Operating Costs ($/yr) 1,545,000 
Fixed Operating Costs ($/yr) 2,725,000 
Internal Rate of Return 10% 
Income Tax Rate 21% 
Biocrude HHV (MJ/kg) 36.1 
Plant Scale (DTPD) 110 
Feedstock Cost ($/Dry Ton) 0 

* Key economic parameters mirror the values used by Snowden-Swan 
et al. 2017 [38]. 
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models. Finally, biocrude yields predicted by this same model were used 
to project economic performance for a series of feeds that had not pre
viously been evaluated for HTL. 

3.1. Evaluation of Machine learning regression models 

Tables S.1 and S.2 in the Supporting Information provide the bio
crude yield, reactor condition, and biochemical composition data used 
in this study. Figs. S.1. and S.2 present Pearson correlation coefficients 
determined for the data set, showing that the single strongest correlation 
exists between lipid content and biocrude yield (0.79). While this cor
relation is not predictive, it does foreshadow a prominent role for lipid 
content in any accurate predictive model of biocrude yield. 

The data in Tables S.1 and S.2 were divided into training and testing 
subsets, as shown in Fig. 3, and used for development of a series of 
regression models. Unfortunately, no theorem exists for selection of the 
most appropriate regression method for a given data set. For example, 
methods based on neural networks can be highly accurate, yet they are 
prone to instability for small data sets and are easily misled by inclusion 
of superfluous independent variables [71,72]. Accordingly, a careful 
study must consider multiple options. 

Many different types of regression methods are available for 
modeling engineering data [68]. Based on these considerations, eight 
popular and well-developed machine learning regression methods were 
selected for modeling HTL biocrude yields. Of these, four of the 
regression models were linear and four were non-linear (as shown pre
viously in Table 2). Each of these models was trained, cross validated 
using the K-fold method (with k = 10),[73] and then used to predict test 
data, following the schematic shown in Fig. 3 in the Methods. 

Physically, the various biochemical components can reasonably be 
expected to interact with one another [18], and polynomial terms have 
been proposed to capture these interactions [17,18,37]. Accordingly, 
polynomial terms were included in the regression analysis to determine 
the impact of interaction on biocrude yield predictions. Because new 
variables can be added to decision tree based machine learning models 
(a family that includes Random Forest and XGBoost) without risking 
over fitting, both binary (21) and ternary (35) interaction terms were 
included as polynomial terms. This contrasts with the situation 

encountered when regressing multi-component linear additivity models, 
which can include interaction terms but at the risk of over fitting. 
Accordingly, including both binary and ternary terms in the current 
study is a conservative and comprehensive approach for capturing in
teractions between feedstock constituents that goes beyond what has 
already been evaluated in the literature. Table S.4. in the methods were 
provided in the Supporting Information is a list of all the interaction 
terms. 

Fig. 4 summarizes the results of the initial implementation of the 
eight regression methods. RMSE values are shown for training, valida
tion, and test data and for models both with and without polynomial 
interaction terms. Each of these sets of RMSE values is valuable and each 
will be considered separately. 

RMSE values obtained from training and validation provide an 
indication of how well each model fits data input to it. Taken collec
tively, the RMSE values obtained from training range from 9.7% for the 
multi-linear regression (ML) to 2.9% for the XGBoost model with poly
nomial interaction terms. Accordingly, XGBoost clearly is most able to 
capture data that is supplied to it. In all cases, addition of interaction 
terms decreases the value of the RMSE obtained from model training, 
meaning that polynomial terms improve the fit of data fed to the model. 

RMSE values obtained from validation provide a sense of how much 
fortuitous data splitting impacts model accuracy. As expected, RMSE 
values obtained from validation are always greater than or equal to 
those observed for training. The reason why the validation RMSE is 
greater than the training RMSE is that the model is not fit directly to this 
data, and the effect of validation is to de-tune the model to minimize 
over fitting. Validation set RMSE values vary from 9.7 (again for multi- 
linear regression) to 8.3 (again for the XGBoost method with polynomial 
terms). As with the training data, addition of polynomial terms reduces 
validation set RMSE values. 

Standard deviations of the RMSE values obtained from validation 
range from 1 to 4%, with the largest value observed for the support 
vector machine (SVM) method with polynomial terms. These values give 
a sense of how important fortuitous splitting is to model performance. 
Here, SVM is very sensitive to how the data are split and the large 
standard deviation of its validation RMSE value recommends against 
using this method. In comparison, the standard deviations of RMSE 

Fig. 4. The root-mean-square error (RMSE) of eight linear and non-linear regression models with/without the introduction of polynomial biochemical component 
terms. The model parameters for all optimal regression methods were provided in the Supporting Information. 
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values obtained for XGBoost and especially the Random Forest model 
are less than those observed for other methods, without sacrificing 
accuracy. 

Interestingly, inclusion of polynomial terms always increases the 
standard deviations of the RMSE obtained during validation, an indi
cation of overfitting and sensitivity to fortuitous data selection that 
detracts from predictability. Accordingly, while naïve reliance on 
training set RMSE values recommends inclusion of polynomial terms, 
the performance of polynomial-based models is sensitive to fortuitous 
splitting, recommending that they not be used in predictive models. For 
this reason, models with polynomial terms should be used with caution. 

Finally, Fig. 4 provides values of the test set RMSE. Testing is done 
only one time, so the test set RMSE has no standard deviation – unlike 
the training and validation RMSE values, which are calculated for each 
K-split. As expected, based on the methodology used in this study, test 
set RMSE values obtained for each method always fall within the range 
determined by the corresponding mean value and standard deviation of 
the RMSE value obtained from validation. This observation indicates 
that the validation method properly captures sensitivity to data splitting. 
Test set RMSE values range from 10.82 (SVM with polynomial terms) to 
7.45 (Random Forest with polynomial terms). 

Fig. 4 contains all of the information required to select the model that 
is expected to be the most accurate for making predictions on feeds that 
have not been included in training. That decision comes down to a 
combination of test-set RMSE and the standard deviation of the vali
dation set RMSE. Based solely on test set RMSE, the Random Forest, 
XGBoost, and artificial neural network (ANN) models have clear ad
vantages over the other models considered here. Of these, the test set 
RMSE values obtained for Random Forest and XGBoost are less than 
those observed for the ANN model; the standard deviations of the vali
dation set RMSE are also less for Random Forest and XGBoost than ANN. 
Accordingly, Random Forest and XGBoost are the preferred methods for 
predictability of new data. 

Having provided guidance on the type of model to select (Random 
Forest or XGBoost), the next question was whether to include poly
nomial terms in the regression. On the one hand, inclusion of polynomial 
interactions further decreases test set RMSE for both Random Forest and 
XGBoost. On the other hand, including polynomial terms increases the 
standard deviation of the validation set RMSE, detracting from the 
confidence of using the polynomial methods in a predictive manner. No 
formal theory exists for balancing the merits of test set RMSE and 
standard deviation of the validation set RMSE and selecting either 
Random Forest or XGBoost with or without polynomial terms can be 
justified. In fact, statistical analysis (summarized in the Supporting In
formation, especially Table S.4) indicates that the only interaction terms 
with significant correlation with biocrude yield were lipid × lignin and 
protein × ash. Due to an abundance of caution for this small data set and 
to be conservative to guard against over fitting and fortuitous selection 
of test data, the Random Forest model without polynomial terms was 
selected for further refinement. 

Various approaches to improving the accuracy of the Random Forest 
model were considered, including: extension of the K-fold method to >
10 cycles; inclusion of additional independent variables, such as reactor 
temperature, reaction time, and reactor volume; and consideration of 
co-product yields such as char, gas, and aqueous phases as independent 
variables Complete details are provided in the Supporting Information, 
especially Figs. S.3-S.13 and Table S.5. 

Some of the aforementioned refinements resulted in modest im
provements in model performance. Modifying the K-fold validation step 
to >100 cycles (instead of the customary 10) yet still keeping the 
training-validation ratio fixed at 8:2, reduced the standard deviation of 
the validation set RMSE from 0.4 to 0.05 and – because the resulting 
model is more robust – reduced the corresponding test set RMSE from 
8.43 to 8.07. Full details are provided in the Supporting Information, 
especially Fig. S.4. Future work on machine learning regression of small 
data sets should adopt the modified K-fold method proposed in this 

work, in which the dataset was split with ≥100 cycles. 
Treating char yield as an independent variable reduced test set RMSE 

from 8.43 to 7.43. On the other hand, including gas or aqueous phase 
yields did not reduce RMSE, indicating that these are not statistically 
related to biocrude yield. To be conservative, the RMSE calculated 
without using char as a regression variable is used for all comparisons 
reported later in this study. 

Aside from the modified K-fold method and treating char yield as an 
independent variable, none of the other refinements evaluated here 
resulted in model improvement, either in terms of test set RMSE or the 
standard deviation of the validation set RMSE. More details are provided 
in the Supporting Information. The lack of improvement observed for 
inclusion of reaction temperature is likely due to the fact that biocrude 
yield is only weakly sensitive to reaction temperature near the optimal 
value (approximately 300 ◦C) and the published data are biased to 
reporting in this range. For this reason, when a study reported yields as a 
function of temperature, only data at or near the optimum were included 
in the data collection (Table S.1). Naturally, performing HTL at tem
peratures much less than or greater than the optimum will negatively 
impact yield. 

The optimized version of the Random Forest model achieves test set 
RMSE of 8.07, which should be regarded as approaching the practical 
limit of predictive accuracy. Typical values of reported experimental 
uncertainty are on the order of 5% [74]. The value of RMSE reported 
here (8.07) is only slightly greater than this average value of experi
mental uncertainty, and the accuracy of model predictions is not ex
pected to be greater than the reported uncertainty of the data being 
modeled. Accordingly, a test set RMSE of approximately 5% is a realistic 
lower limit on the accuracy of a data-driven biocrude yield model. Any 
reported value less than this should be treated with skepticism. 

3.2. Comparison of biocrude yield predictions with literature models 

The premise of this study was to understand predictability of bio
crude regression models. A Random Forest model achieved an RMSE of 
8.07, a value which includes use of an improved K-fold method. As 
mentioned in the introduction, numerous other biocrude yield predic
tion models appear in the literature [16,17]. The predictive capabilities 
of these models is difficult to ascertain, as they are nearly uniformly 
developed based on yields observed for a handful of model feeds and 
then tested over a small sub-set of real feeds. Models of this type can be 
termed “multi-component linear additivity models”. The other type of 
model is a non-linear regression, which uses a training set usually con
sisting of a few dozen data points to regress a family of parameters to fit 
the training data. Again, the predictive power of a non-linear regression 
cannot be determined solely from its ability to fit a limited training set. 

The current study provides an opportunity to assess the predictive 
capability of the multi-component linear additivity models and 
nonlinear regression models, using the same test set as was used to select 
the Random Forest model as the most accurate available method. 
Accordingly, the various literature models were used to predict the 
biocrude yields in the test set, with subsequent calculation of the RMSE. 
Tables 4 and S.7 summarizes the results of this exercise. 

Interestingly, values of the test set RMSE calculated for the various 
literature models were always greater than found for the Random Forest 
model. This comparison is completely fair since none of the literature 
models nor the Random Forest model were developed for the test data. 
Interestingly, the nonlinear regression models (27.6 and 12.01 RMSE) 
are two of the least accurate models, despite their reported values of r2 

> 0.98. In all likelihood, the poor predictive performance of the 
nonlinear regressions is a result of overfitting to their respective training 
data. The RMSE values corresponding to the two nonlinear regression 
shows that r2 calculated for a training set is not a good indicator of 
predictive capability. Models of this type can instead be used for other 
purposes as they are highly accurate for capturing data provided for 
training. 
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Values of test set RMSE found for the multi-component linear addi
tivity models vary over a wide range, from 9.16 (Li et al. [76]) to 17.1 
(Deniel et al. [75]). This finding indicates that the basic form of the 
multi-component linear additivity model can be nearly as accurate as 
the Random Forest. In fact, using a published multi-component linear 
additivity model is simpler and more convenient than using a published 
Random Forest model, so for preliminary estimates the model of Li et al. 
[76] will often be suitable. That stated, even the most accurate multi- 
component linear additivity model results in errors greater than 10% 
15 out of 53 times (i.e., 74% of the time the error was less than 10%). By 
comparison, predictions made by the Random Forest model are more 
accurate than 10% for 81% of the test set data points. Accordingly, the 
Random Forest model appears to be more effective than the multi- 
component linear additivity model at avoiding errors greater than 10%. 

The analysis to this point indicates that Random Forest is the most 
predictive available model type of those considered. Some versions of 
the multi-component linear additivity model nearly duplicate the pre
dictive capability of the Random Forest model. On the other hand, some 
of the multi-component linear additivity models are much less accurate 
than the Random Forest model. Moreover, no correlation exists between 
the number of fitting parameters and the predictive capability of the 
multi-component linear additivity models, implying that any benefit in 
representing the training data is offset by over fitting and further 
obscuring selection of an accurate model not guided by the analysis 
provided here. As a consequence, only a rigorous study on test data that 
the model had not used for training and as presented here can be used to 
identify predictive forms of the multi-component linear additivity model 
type. 

Interestingly, the RMSE values of many of the multi-component 

linear additivity models cluster between 11 and 13. The reason for 
this clustering arises from the fact that lipid content is the single most 
important factor determining biocrude yield. Fig. 5 is a plot of “feature 
importance”, as determined for the Random Forest, XGBoost, and De
cision Tree algorithms. Feature importance plays a role similar to a 
correlation constant in a linear regression, with its value increasing as 
predictions become more sensitive to the values of a particular inde
pendent variable, or feature [79]. 

In all three cases shown in Fig. 5, lipid content is the most important 
feature for predicting biocrude yield. For the Decision Tree algorithm, 
the simplest and least accurate of the three models shown in Fig. 5, lipid 
content accounts for 89% of the variability observed in biocrude, a 
remarkable agreement with the observation that many of the RMSE 
values of multi-component linear additivity models cluster around 
11–13. 

The multi-component linear additivity models do not have a feature 
importance metric. However, the magnitude of the coefficients in the 
model plays a similar role as feature importance. Not surprisingly, the 
lipid coefficient in the multi-component linear additivity models is al
ways the greatest, regardless of the number of terms present in the 
model. Similarly, a simple linear regression of the current data set to 
lipid content as the sole independent variable (training), followed by 
evaluating predictive accuracy using the test data, resulted in an RMSE 
of 11.7. Any model that accurately captures the effect of lipid content on 
biocrude yield can be expected to have an RMSE in the range from 11 to 
13, which coincides exactly with the most frequent accuracy observed 
here for multi-component linear additivity models. 

Fig. 5 also shows that the feature importance of the lipid terms in the 
more sophisticated algorithms, i.e., Random Forest and XGBoost, is 

Fig. 5. Feature importance of Random Forest (RF), XGBoost, and decision tree (DT).  
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much less than observed for Decision Tree. Accordingly, Fig. 5 indicates 
that more accurate capturing of secondary factors, including especially 
protein and cellulose, reduces RMSE from 11 to 13 to roughly 8. Simi
larly, the more accurate predictions afforded by some of the multi- 
component linear additivity models [19] can be attributed to more ac
curate capturing of similar effects. The upshot is that, as a rule, simpler 
models with fewer parameters and that emphasize lipid content are 
preferred for predictive purposes, and that refinements should then 
focus on cautious addition of secondary factors to improve accuracy 
without overfitting. 

In addition to the multi-component linear additivity models shown 
in Table 4, Random Forest models of biocrude yields appear in the 
literature [35]. Table 4 does not include predictions from previously 
reported Random Forest regression models [25,31,35,80]. This is 
because unlike the multi-component linear additivity models, a Random 
Forest model is not a closed form equation, which means direct inter
comparison is difficult as variance of model outcomes among different 
studies depends on the natures of original data set (e.g., data size and 
types of independent variables), the way to pre-process data set (e.g., 
stratification, as used here), as well as the way to split data set (e.g., if 
the databased include a test set that never used for training model). 

While a direct comparison of the current Random Forest model 
without considering the prerequisite may not be entirely appropriate, a 
qualitative comparison is nonetheless instructive. One of the Random 
Forest models previously appearing in the literature reports an RMSE of 
6.42 [35], an apparent improvement over the value of 8.07 reported 
here for a similar model. That stated, the previously reported model did 
not include a testing step [35], where the true accuracy of predictions 
for data was not included in model regression was ascertained. As a 
result, comparing the two RMSE values to one another is not appro
priate. In fact, few bioenergy studies report machine learning perfor
mance using accuracy of test set predictions [23,30,81]. The benefit of 
the current study is to establish the predictive accuracy of the Random 
Forest method as corresponding to an RMSE value of approximately 8 
(8.07, to be precise, as reported here). 

3.3. Evaluating the limits of accuracy for economic projections 

Regression analysis and model refinement results in predictions with 
accuracy of 8.07 (RMSE) (as shown in Table 4). In other words, for an 
actual biocrude yield of 50%, the most accurate models developed here 
would predict a value between 42% and 58%. The question becomes: is 
this level of accuracy sufficient for practical applications? Of course, the 
answer to this question depends on the application. A common situation, 
prediction of minimum fuel selling price (MFSP) using model predicted 

values of biocrude yields, was used as a case study. MFSP is highly 
dependent on biocrude yield [38,63,82,83], making the projection of 
MFSP and especially its corresponding uncertainty based on predicted 
biocrude yields and their corresponding uncertainties a practical and 
discerning test. Naturally, economic projections are sensitive to many 
factors, particularly scale, and feedstock costs [84–86]. Accordingly, all 
other factors were held constant during this analysis, so that the impact 
of the uncertainty of biocrude yield predictions could be isolated from 
other factors of obvious importance in a full economic analysis. 

For a blind test, data for several viable HTL feeds were obtained from 
the literature and used as the starting point for economic analysis 
[57–62]. These feeds had never been used for HTL, meaning that the 
model was used in a predictive fashion. These feeds are shown in 
Table S.6 in the Supporting Information. As shown in Table S.6, bio
crude yield was then predicted using the RF model, after its refinement 
using the modified K-fold method to reduce its RMSE to 8.07. 

This economic analysis serves to demonstrate how uncertainty in 
modeled biocrude yields propagates in practical usage of the model – in 
this case, through calculation of MFSP. Biocrude yield predictions with 
sufficient accuracy will permit discernment between feedstock options, 
assuming that all other factors are held constant. In a full analysis, these 
other factors will not be constant, and so the outcomes presented here 
are limited to understanding the relationship between the accuracy of 
yield predictions and estimated MFSP. Further analysis, which takes into 
account other key factors [87,88], can then be applied for final alloca
tion of finite resources. 

To place the analysis on a common basis, a previously published 
economic analysis was used for estimating all costs [47]. Detailed cash 
flows are provided in Tables S.8-S.10, in the literature [38]. Similarly, 
the scale was held constant at 110 dry tons per day (DTPD) of feedstock 
processed. Uncertainty in the biocrude yield, as estimated by model 
RMSE, was then propagated through the economic analysis using a 
Monte Carlo simulation method, consisting of a triangular distribution 
around the predicted yield value with bounds +/- the RF RMSE. 
Maximum and minimum values of the MFSP estimated using this Monte 
Carlo method are used as the limiting values expected for a given feed. 

The results of the accuracy analysis are summarized in Fig. 6 as a plot 
of estimated MFSP in $ per gallon of gasoline equivalent (GGE) as a 
function of predicted biocrude yield. As expected, MFSP decreases 
monotonically with increased biocrude yield [89]. The effect is dra
matic, with the “worst” feed (in this case a sewage sludge) resulting in a 
MFSP more than twice that of the “best” feed (here, a type of pig 
manure). The horizontal error bars in Fig. 6 represent the RMSE value 
determined by regression analysis (±8.07) in terms of biocrude yield. 
The vertical error bars represent the corresponding uncertainty in MFSP 

Table 4 
Comparisons of the accuracy of biocrude yield predicted by the Random Forest regression model developed in the present study with some literature models.  

Ref. Model Type Reported 
Error 

# 
Parameters 

RMSE on Current Test 
Set 

% of Test Set predicted with <10% 
accuracy 

Aierzhati et al. 2019 [12] Nonlinear Regression R2 = 0.983 9 27.6 37 
Deniel et al. 2017 [75] Multi-Component Component Additivity 

Model 
R2 = 0.998 10 17.12 42 

Sheng et al. 2018 [16] Nonlinear Regression R2 = 0.981 6 12.01 62 
Li et al. 2017 [76] Linear Component Additivity Model R2 = 0.884 3 9.16 72 
Leow et al. 2015 [77] Linear Component Additivity Model R2 = 0.463 3 9.38 74 
Biller et al. 2011 [78] Linear Component Additivity Model MAE = 1.7% 3 16.1 40 
Yang et al. 2018 [17] Multi-Component Linear Additivity 

Model 
R2 = 0.9562 7 13.03 51 

Lu et al. 2018 [18] Multi-Component Linear Additivity 
Model 

SSE = 471 15 11.7 57 

Subramanya and Savage. 2021  
[19]a 

Multi-Component Linear Additivity 
Model 

MAE = 7.84% 10 11.7 58 

Teri et al. 2014 [37] Multi-Component Linear Additivity 
Model 

Not Reported 6 11.95 60 

Teri et al. 2014 [37] Linear Component Additivity Model MAE = 3.2% 3 12 60 
This study Random Forest N/A 7 8.07 81  

a For the 326–400 Celsius degree model. 

F. Cheng et al.                                                                                                                                                                                                                                   



Chemical Engineering Journal 442 (2022) 136013

11

determined via the Monte Carlo analysis. 
For biocrude yields less than 35%, the uncertainty in MFSP is too 

great to differentiate feeds from one another. In other words, for bio
crude yield less than 35%, more accurate predictions are required than 
afforded by the Random Forest model presented here to differentiate one 
feed from another based on projected MFSP. On the other hand, as 
predicted biocrude yield increases to values greater than 35%, the range 
of projected MFSPs becomes increasingly compressed, a consequence of 
the natural sensitivity of MSFP on biocrude yield [90]. Similar feeds – e. 
g., meat/fish/cheese and food waste from an anaerobic digester (AD) – 
cannot be differentiated solely based on predicted biocrude yields; 
however, the current level of accuracy is sufficient to provide a rough 
prediction of which feeds will be most promising for HTL. As a result, 
resources can be properly allocated to generate further information for 
only the most promising feeds, which signals the usefulness of the cur
rent model. 

To provide a common basis of comparison, the economic predictions 
shown in Fig. 6 are based only on differences in biocrude yield. In actual 
situations, factors such as feedstock abundance, and hence scale, feed
stock cost, tipping fees, and other techno-economic factors such as 
presence of impurities or foreign objects that detract from processibility, 
should be included in a comprehensive analysis. The models presented 
here allow for rudimentary understanding of yield impacts on techno- 
economic outcomes without performing expensive experiments, 
thereby allowing resources to be allocated optimally. Future work can 
refine the model approach by inclusion of new data and by testing it 
against data not used in the training, validation, or testing of the models 
presented here. 

4. Conclusions 

A data set of HTL biocrude yields consisting of 570 data points was 
assembled from the literature. The data set was divided into training 
data – used to optimize regression models – and test data – used to 

determine model accuracy. Then, eight different regression algorithms 
were evaluated for the accuracy of their biocrude yield predictions. The 
Random Forest and XGBoost models provided the most accurate pre
dictions of test set data, with values of root mean square error of 8.34 
and 8.67, respectively. Further refinement of the Random Forest model 
reduced its RMSE to 8.07, an improvement that was achieved by 
development of a K-fold validation method that minimized overfitting. 
In comparison, literature models for predicting biocrude yield were 
generally over fit, with corresponding values of RMSE ranging from 9.16 
to 27.6. Further model analysis revealed that lipid content is the most 
important predictor of biocrude yield and that further improvements in 
accuracy are gained when secondary factors such as cellulose and pro
tein content are accurately captured. 

The absolute accuracy of the Random Forest model was evaluated by 
using it for making predictions of biocrude yield for a set of feeds that 
have never been used for HTL. These predictions were then used in a 
probabilistic economic model that projected minimum fuel selling price 
for the different feeds. All other factors were held constant in this 
analysis to isolate the dependence of the uncertainty of economic out
comes on the accuracy of biocrude yield predictions obtained from the 
Random Forest model. The accuracy of the Random Forest model was 
sufficient to prioritize resource allocation to development of HTL pro
cesses for different feeds based on predicted yields, with the greatest 
predictive capability found for the most economically viable feeds. 
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