
Theory for Deep Learning Regression Ensembles
with Application to Raman Spectroscopy Analysis

1st Wenjing Li
Mathematical Department

Worcester Polytechnic Institute
Worcester, United States

wli5@wpi.edu

2nd Randy C. Paffenroth
Mathematical Department

Worcester Polytechnic Institute
Worcester, United States

rcpaffenroth@wpi.edu

3rd Michael T. Timko
Chemical Engineering Department

Worcester Polytechnic Institute
Worcester, United States

mttimko@wpi.edu

4th Matthew P. Rando
Chemical Engineering Department

Worcester Polytechnic Institute
Worcester, United States

mprando@wpi.edu

5th Avery B. Brown
Chemical Engineering Department

Worcester Polytechnic Institute
Worcester, United States

abbrown@wpi.edu

6th N. Aaron Deskins
Chemical Engineering Department

Worcester Polytechnic Institute
Worcester, United States

nadeskins@wpi.edu

Abstract—Regression ensembles consisting of a collection of
base regression models are often used to improve the estima-
tion/prediction performance of a single regression model. It has
been shown that the individual accuracy of the base models
and the ensemble diversity are the two key factors affecting
the performance of an ensemble. In this paper, we derive a
theory for regression ensembles that illustrates the subtle trade-
off between individual accuracy and ensemble diversity from
the perspective of statistical correlations. Then, inspired by our
derived theory, we further propose a novel loss function and
a training algorithm for deep learning regression ensembles.
We then demonstrate the advantage of our training approach
over standard regression ensemble methods including random
forest and gradient boosting regressors with both benchmark
regression problems and chemical sensor problems involving
analysis of Raman spectroscopy. Our key contribution is that our
loss function and training algorithm is able to manage diversity
explicitly in an ensemble, rather than merely allowing diversity
to occur by happenstance.

Keywords—theory, application, accuracy, diversity, correlation,
algorithm, deep learning regression ensemble.

I. INTRODUCTION

Ensemble learning is a process by which a collection of
base learners are strategically generated and combined into
one composite learner [1]. The primary goal of ensemble algo-
rithms is to improve the performance (classification, prediction
etc.) of single models. Ensemble algorithms have been applied
to a variety of machine learning domains including text mining
[2], recommender systems [3], and many others. Regression
ensemble algorithms take the combined predictions from con-
stituent regression models as the ensemble prediction, and
a (simple/weighted) average is a popular combining strategy
[4]. Bagging [5], boosting [6] (including well-known Gradient
Boosting [7] and Adaboost [6]), and stacking [8] are classic
examples of ensemble algorithms.

One classic result that justifies the effectiveness of regres-
sion ensemble methods is the Ambiguity Decomposition [9],
in which the authors proved that at a single data point the
quadratic error of the ensemble estimator is guaranteed to
be less than or equal to the average quadratic error of the
component estimators. Therefore, Ambiguity Decomposition
encourages regression ensembles as it tells us that taking the
combination of several predictors would be better on average
than selecting one predictor at random.

It has been shown that the individual accuracy of component
learners and the diversity of the learners in the ensemble
are the two key contributing factors to their performance [1].
Herein, building upon work on classification ensembles in the
recent paper [10] [11], we develop a theory for understanding
the subtle trade-off between individual accuracy and ensemble
diversity in regression ensembles. Then, inspired by the theory
for regression ensembles, we propose an algorithm for training
regression neural network ensembles that can explicitly create
diversity in ensembles, and manage the balance between
individual accuracy and ensemble diversity.

Note that even though the theory we develop here for regres-
sion ensembles is an extension of the work on classification
ensembles proposed in [10] [11], our work in this paper has
application to a wide range of real-world problems. On one
hand, in addition to the effectiveness on standard machine
learning data sets (e.g. the UCI Parkinson’s Telemonitoring
data we analyze in Section IV), our proposed training algo-
rithm for regression ensembles is also capable of handling
difficult real-world chemical sensor problems as demonstrated
by the quantitative analysis on Raman spectroscopy data
detailed in Section V. On the other hand, in some sense
regression problems are more complicated than classification
problems, due to the variety of choices of training losses. In
this paper, we compare a wide range of loss functions used
when training regression ensembles. More importantly, we
show that our ensemble training idea is generally applicable
in that a classic loss function (e.g. L2 loss) can be combined
with our proposed novel loss to generate a new loss which
works well on regression ensembles.

In summary, we make the following novel contributions:

• We prove two theorems that bound the individual accu-
racy and diversity of regression ensembles in terms of
the statistical correlations among the ground truth and
the component learners.

• We propose a novel loss function and a training algorithm
for regression neural network ensembles, following the
inspirations of the theorems we develop.

• We show the effectiveness of our ensemble training
approach with applications on standard machine learning
data sets and challenging chemical sensor problems, and
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demonstrate the advantage of our approach over standard
regression ensemble methods.

II. THEORY FOR REGRESSION ENSEMBLES

Authors of the recent paper [10] [11] have derived the
theory for classification ensembles regarding the accuracy-
diversity trade-off. In this paper, inspired by their work, we
will investigate the meaning of diversity in regression context
and develop theory that can help improve the performance of
regression ensembles.

A. Diversity for Regression Ensembles
1) The Ambiguity Measure: In literature, the key point of

diversity in classification ensembles has been introduced as
“avoiding coincident errors” [12]. For regression ensembles,
the idea is similar, that is, to make the errors made by
the component regressors diverse, so it is natural to take
quadratic error as a diversity measure. Following this idea,
Krogh and Vedelsby proposed a well-known diversity measure
for regression context called “ambiguity” [9]. In particular, the
ambiguity is first defined for a single regression learner, then
the ensemble ambiguity measure is obtained by averaging the
single measures for all ensemble members.

2) Ambiguity Decomposition: Along with the ambiguity
measure, Krogh and Vedelsby also proposed the well-known
“Ambiguity Decomposition” [9] showing that at a single data
point the quadratic error of the ensemble estimator is guaran-
teed to be less than or equal to the averaged quadratic errors
of the component estimators, which illustrates the importance
of having the right balance between diversity and individual
accuracy in ensembles. The equation for “Ambiguity Decom-
position” can be expressed as

(fens − d)2 =
∑
i

ωi(fi − d)2 −
∑
i

ωi(fi − fens)
2, (1)

where d is the true value, fi are the component estimators,
fens is the convex combination of the component estimators,
that is, fens =

∑
i

ωifi, and
∑
i

ωi = 1.

The Ambiguity Decomposition equation in (1) tells us that
the squared error of the ensemble estimator can be decom-
posed into the difference between two terms. The first term is
the weighted average squared error of the individual estimators∑
i

ωi(fi − d)2, and the second term is the “Ambiguity term”
∑
i

ωi(fi − fens)
2 which measures the amount of variability

among the ensemble members for a particular input instance
[13]. Therefore, the larger the Ambiguity term, the more
variability (diversity) among the individual estimators. Since
the Ambiguity term is always non-negative, the squared error
of the ensemble estimator is guaranteed to be less than or equal
to the weighted average squared error of the individuals, i.e.

(fens − d)2 �
∑
i

ωi(fi − d)2. (2)

The inequality in (2) indicates that taking the combination of
several estimators would be better on average, than randomly
selecting one of the estimators. In addition, the larger the
Ambiguity term, the larger the ensemble error reduction [13].

Based upon (1), we can see that in order to decrease the
squared error of the ensemble estimator, we will need to
decrease the weighted average squared error of the individuals,
and increase the ambiguity (diversity) among the individuals.

However, when the ambiguity term increases, the weighted
average squared error of the individuals will also increase.
Therefore, to lower the ensemble error, it is vital to have
the right balance between diversity (the Ambiguity term) and
individual accuracy (the weighted average squared error term).

B. Accuracy-Diversity Trade-off in Regression Ensembles
from the perspective of Statistical Correlations

Given that the Ambiguity Decomposition has revealed the
importance of having the right balance between individual
accuracy and diversity in regression ensembles, we will now
examine the mathematical relationship between them.

For regression ensembles of size N , we take the averaged

learner-learner correlations r
(ave)
LL as the measure for the

ensemble diversity, where r
(ave)
LL is defined as

r
(ave)
LL =

1

N(N − 1)/2

N∑
i=1

N∑
j>i

rLi,Lj , (3)

where rLi,Lj
is the pairwise Pearson correlation coefficient

[14] between the estimations of learners Li and Lj .
In particular, we take the averaged truth-learner correlations

r
(ave)
TL as the measure for the overall individual accuracy of the

regression ensemble, where r
(ave)
TL is defined as

r
(ave)
TL =

1

N

N∑
i=1

rT,Li , (4)

where rT,Li
is the Pearson correlation coefficient between the

values of ground truth T and the estimations of learner Li.

Note that the lower the r
(ave)
LL , the more diverse the regres-

sion ensemble, as the estimations from individual learners need
to be negatively correlated in order to form a diverse ensemble

[15]. And the higher the r
(ave)
TL , the higher the overall accuracy

of the individual learners in the regression ensemble, as the
estimations from individual learners need to be similar to the
ground truth in order to be accurate.

Then as an extension of the theorems for classification
ensembles derived in [10] [11], we prove the following
theorems (Theorem 1 & 2) to illustrate the mathematical
relationship between individual accuracy and diversity for
regression ensembles.

Theorem 1. For a regression ensemble with N learners we
have that

− 1

N − 1
� r

(ave)
LL � 1, (5)

where r
(ave)
LL is the averaged learner-learner correlations as

defined in (3). (Proof in the Appendix.)

Theorem 2. For a regression ensemble with N learners we
have that

−
√

(N − 1) · r(ave)LL + 1

N
� r

(ave)
TL �

√
(N − 1) · r(ave)LL + 1

N
(6)

where r
(ave)
LL is the averaged learner-learner correlations

as defined in (3), and r
(ave)
TL is the averaged truth-learner

correlations as defined in (4). (Proof in the Appendix.)

By combining the above two theorems, we can visualize the

relationship between r
(ave)
LL and r

(ave)
TL in regression ensembles.
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Fig. 1 shows an example of this relationship for ensembles of
size 3, and regression ensembles of other different sizes share
a similar pattern. In particular, any given regression ensemble

with its computed pair (r
(ave)
LL , r

(ave)
TL ) will fall within the

parabola-shaped closed region formed by the red curve (the
upper bound provided by Theorem 1 & 2), the blue curve (the
lower bound provided by Theorem 1 & 2) and the vertical
black line x = 1 (the genuine upper bound for Pearson
correlation coefficient).

Fig. 1. A theoretical plot (averaged truth-learner correlations versus averaged
learner-learner correlations) for regression ensembles of size 3. Ensembles of
different sizes have similar patterns. Any regression ensemble will fall within
the closed region bounded by the red and blue curve.

The pattern from Fig. 1 suggests that there is always a
subtle trade-off between individual accuracies and diversity
for regression ensembles. In fact, having both superb diverse
and superb accurate individual estimators is impossible based
on Theorem 1 & 2, but one can try to balance the two terms
to optimize the performance of the ensemble estimator. Such
an idea has inspired us to develop a new training algorithm for
regression neural network ensembles, which will be detailed
in Section III.

III. LOSS FUNCTION AND TRAINING ALGORITHM FOR

REGRESSION NEURAL NETWORK ENSEMBLES

A. Loss Function
One advantage of neural network ensembles over other

traditional ensembles (e.g. random forests) is that we can
explicitly control the trade-off between base learner accuracy
and diversity in the loss function we use to train the networks
through the process of backpropagation [16]. Herein, inspired
by the recent paper [10], we propose a novel loss function
that can be used to train regression neural network ensembles,
which is a linear combination of the averaged truth-learner

correlations r
(ave)
TL and averaged learner-learner correlations

r
(ave)
LL as shown below

Loss = −r
(ave)
TL + λ · r(ave)LL , (7)

where r
(ave)
TL and r

(ave)
LL is taken as a measure for the overall

individual accuracy and diversity of regression neural network
ensembles, respectively, and λ is a cost parameter for introduc-
ing diversity into an ensemble, which typically takes a value
between 0 and 1.

One advantage of our novel loss function (7) proposed for
regression neural network ensembles is that we take both indi-
vidual accuracy and diversity in ensembles into consideration
from the perspective of statistical correlations, while standard
loss functions, like Cross Entropy [17], only aims to minimize
the errors made by the individual learners. More importantly,
the parameter λ can control the desired diversity level in the
ensemble. In particular, the larger the value of λ, the more

diverse the expected ensemble, as we emphasize more on the
diversity side with larger λ’s.

B. Algorithm
Building upon the novel loss function (7), we now propose

the following training algorithm for regression neural network
ensembles

Algorithm. Training for regression neural network ensembles.

Input: X ∈ Rn×q , Y ∈ Rn×1, where X is the feature matrix,
Y is the vector of true values, n is the number of instances,
and q is the number of features.

for epoch in range(num(epochs)):
optimizer.zero grad( )
O=[ [ ] for j in range (ensemble size) ]
for j in range(ensemble size):

O[j]=nets[j](X)
r̂TL = 0, r̂LL = 0
for j in range(ensemble size):

r̂TL+ = Corr(Y,O[j])
for i in range(ensemble size):

if i < j:
r̂LL+ = Corr(O[i], O[j])

r̂
(ave)
TL = r̂TL/ensemble size

r̂
(ave)
LL = r̂LL/(ensemble size*(ensemble size −1)/2)

loss = −r̂
(ave)
TL + λ · r̂(ave)LL

loss.backward( )
optimizer.step( )

In particular, the major steps of the above training algorithm
are as follows
Step 1. Obtain all the corresponding outputs O produced
from each of the regression neural networks in the ensemble
of size N , where each column of O represents the output
produced by the corresponding neural network.
Step 2. Compute all the pairwise Pearson correlations between
each column of the network outputs O and the ground truth
Y . Take the average of these pairwise correlations as a

measure of the averaged truth-learner correlations r̂
(ave)
TL in

the regression neural network ensemble.
Step 3. Similarly compute all the pairwise Pearson correlations
between the network outputs O. Take the average of these
pairwise correlations as a measure of the averaged learner-

learner correlations r̂
(ave)
LL in the regression neural network

ensemble.
Step 4. The regression neural network ensemble now can be
trained with the loss function

̂Loss = −r̂
(ave)
TL + λ · r̂(ave)LL , (8)

where r̂
(ave)
TL (calculated in Step 2) is a measure for the overall

individual accuracy, and r̂
(ave)
LL (calculated in Step 3) is a

measure for the diversity.
We will demonstrate the effectiveness and advantages of our

proposed training algorithm compared to standard regression
ensemble methods (e.g. gradient boosting and random forest
regressor), by applying our algorithm to both benchmark and
real-world regression problems (which will be detailed in
Section IV and Section V, respectively).

IV. PREDICTIONS ON PARKINSON’S TELEMONITORING

DATA

Herein we will present our regression analysis on a bench-
mark UCI data set, Parkinson’s Telemonitoring data used in
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paper [18], and the goal is to predict the clinician’s Parkin-
son’s disease symptom score on the UPDRS scale (i.e. “mo-
tor UPDRS” and “total UPDRS”) from other 16 biomedical
voice measures.

1) Train-Validation-Test Split: The entire data set is first
randomly split into a train and a test (with proportion 5 to 1)
set. Then the train set is randomly split again into 5 equally
sized folds to perform 5-fold cross validation. Regression
ensemble models are trained and validated first, and then
applied to the test set.

2) Regression Ensemble Models: Herein we apply four
regression ensemble models for comparison purposes, and the
details of the models are tabulated in Table I, where gradient
boosting regressor and random forest regressor are standard
regression ensemble models, while the theoretical neural net-
work ensemble and practical neural network ensemble are
ensemble models trained based upon our earlier proposed
algorithm. Note that we used L2 loss criterion when training
all the base regressors in the four ensemble models, where the
L2 loss criterion is defined as

LossL2 =
∑
i

(yi − ŷi)
2. (9)

TABLE I
REGRESSION ENSEMBLE MODELS APPLIED ON PARKINSON’S

TELEMONITORING DATA.

Model Description

Gradient Boosting Gradient boosting regressor with 100 es-
timators (i.e. boosting stages) to perform,
and L2 loss criterion to measure the quality
of a split.

Random Forest Random forest regressor with 100 estima-
tors (i.e. decision trees) in the forest, and
L2 loss criterion to measure the quality of
a split.

Our Theoretical
Neural Network
Ensemble

An ensemble of five fully connected neural
networks (pre-trained using L2 loss cri-
terion with 9 hidden layers) trained us-
ing our proposed loss function Loss =

−r
(ave)
TL + λ · r(ave)LL .

Our Practical
Neural Network
Ensemble

An ensemble of five fully connected neural
networks (pre-trained using L2 loss crite-
rion with 9 hidden layers) trained using the

loss function Loss = LossL2
+λ·r(ave)LL .

3) Evaluation Metrics: We take two error measures as
the metrics for evaluating the performance (at both cross-
validation and testing stage) of the four regression ensemble
models: root mean squared error (RMSE) and mean absolute
error (MAE), where RMSE is defined as

RMSE =

√√√√ 1

n

n∑
i

(yi − ŷi)2, (10)

and MAE is defined as

MAE =
1

n

n∑
i

|yi − ŷi|. (11)

4) Results for Predicting “total UPDRS”: The testing er-
rors (RMSE and MAE) of predicting “total UPDRS” using the
four regression models are tabulated in Table II. Note that at
both cross-validation and testing stage, our theoretical neural
network ensemble and practical neural network ensemble
(both trained following the idea of our proposed algorithm)
achieve the lower RMSE and MAE compared to standard

gradient boosting and random forest regressor. In particular,
for RMSE, our practical neural network ensemble gives a
testing error of 8.260, which is 1% lower than the error
of random forest (8.337) and 10% lower than the error of
gradient boosting (9.136). While for MAE, our theoretical
neural network ensemble gives a testing error of 6.298, which
is 2% lower than the error of random forest (6.394) and 15%
lower than the error of gradient boosting (7.381).

5) Results for Predicting “motor UPDRS”: The testing
errors (RMSE and MAE) of predicting “motor UPDRS” using
the four regression models are tabulated in Table III. Note
that our theoretical neural network ensemble and practical
neural network ensemble achieve the lower RMSE and MAE
compared to standard gradient boosting and random forest
regressor, at both the cross-validation and the testing stage. In
particular, for RMSE, our theoretical neural network ensemble
gives a testing error of 6.399, which is 1% lower than the
error of random forest (6.475) and 9% lower than the error
of gradient boosting (7.012). While for MAE, our practical
neural network ensemble gives a testing error of 4.850, which
is 5% lower than the error of random forest (5.092) and 16%
lower than the error of gradient boosting (5.799).

6) Remarks: Based upon the results obtained for predicting
“total UPDRS” and “motor UPDRS” displayed in Table II
and III, we can conclude that our theoretical neural network
ensemble and practical neural network ensemble (both trained
following the idea of our proposed algorithm) provide better
performance (at both the cross-validation and the testing stage)
than standard random forest and gradient boosting regressor
when analyzing the Parkinson’s Telemonitoring data.

V. REGRESSION ANALYSIS ON NOISY RAMAN

SPECTROSCOPY DATA

To further demonstrate the effectiveness of our proposed
algorithm on regression neural network ensembles, we will
present our analysis on Raman spectra [19] simulated for 72
molecules. Raman spectroscopy is useful for many chemical
sensor applications. The challenge is to connect spectral fea-
tures, which are present as vibrational bands in the spectra,
to molecular structure. Herein our goal is to predict important
chemical features (for example, the numbers of double bonds
(DB), double bond equivalents (DBE) and hydrogen atoms,
etc.) of these molecules merely based on information gathered
from their Raman spectra. Moreover, different levels of noise,
such as Gaussian noise and other feature broadening, are added
to the original spectroscopy data to evaluate the accuracy of
a variety of regression ensemble models (including our neural
network ensembles) in the presence of different levels of noise.

A. Feature Engineering
The Raman spectroscopy data of each molecule we have

consists of two variables: frequency and peak. Fig. 2 shows
two examples of Raman spectra for molecules “Anthracene”
and “Tetradecahydroanthracene”. In particular, for each of
the two molecules, the peak variable is plotted against the
frequency variable to visualize the Raman spectrum.

As the frequencies of the vibrational bands of the 72 Raman
spectra are not consistent from one spectrum to the next (as
shown by the two examples in Fig. 2), to configure the data in a
feature matrix amenable to machine learning models, we need
to conduct a process of feature engineering in the following
steps:
Step 1. Obtain the global minimal frequency and global
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TABLE II
RMSE (& MAE) FOR PREDICTING TOTAL UPDRS OF PARKINSON’S TELEMONITORING DATA.

Gradient Boosting Random Forest Our Theoretical Neural Net-
work Ensemble

Our Practical Neural Net-
work Ensemble

1st Fold Validation 9.248 (7.474) 8.681 (6.698) 8.684 (6.644) 8.644 (6.694)

2nd Fold Validation 9.064 (7.292) 8.462 (6.556) 7.565 (5.849) 7.751 (6.023)

3rd Fold Validation 9.075 (7.308) 8.324 (6.402) 7.886 (6.025) 7.983 (6.174)

4th Fold Validation 9.157 (7.307) 8.444 (6.560) 7.862 (6.081) 7.975 (6.168)

5th Fold Validation 9.220 (7.335) 8.540 (6.524) 7.889 (5.969) 7.958 (6.035)

Validation Average 9.153 (7.343) 8.490 (6.548) 7.977 (6.114) 8.062 (6.219)

Testing 9.136 (7.381) 8.337 (6.394) 8.279 (6.298) 8.260 (6.308)

TABLE III
RMSE (& MAE) FOR PREDICTING MOTOR UPDRS OF PARKINSON’S TELEMONITORING DATA.

Gradient Boosting Random Forest Our Theoretical Neural Net-
work Ensemble

Our Practical Neural Net-
work Ensemble

1st Fold Validation 7.101 (5.868) 6.638 (5.305) 5.926 (4.592) 5.978 (4.691)

2nd Fold Validation 6.911 (5.731) 6.396 (5.073) 6.488 (5.142) 6.397 (5.083)

3rd Fold Validation 7.066 (5.806) 6.426 (5.061) 5.891 (4.547) 5.947 (4.651)

4th Fold Validation 6.945 (5.675) 6.556 (5.208) 5.919 (4.670) 5.968 (4.727)

5th Fold Validation 6.995 (5.698) 6.492 (5.112) 5.849 (4.634) 5.924 (4.701)

Validation Average 7.004 (5.756) 6.502 (5.152) 6.015 (4.717) 6.043 (4.771)

Testing 7.012 (5.799) 6.475 (5.092) 6.399 (4.949) 6.400 (4.850)

maximal frequency for all applicable spectra, and divide the
global frequency interval into a set of sub-intervals with equal
width w (e.g. w = 5).
Step 2. For each spectrum, compute the averaged peak values
within each of the sub-intervals obtained in Step 1, so that a
new spectrum is produced.

Fig. 2. Examples of Raman spectroscopy data. The upper and lower diagram
shows the Raman spectra of molecules “Anthracene” and “Tetradecahydroan-
thracene”, respectively.

Step 3. Add up the peak values of all the new spectra
obtained in Step 2, and detect the frequency locations where
peaks/spikes occur on the summed spectrum.
Step 4. Obtain new frequency sub-intervals based upon where
peaks/spikes occur as suggested by Step 3. Note that these
new sub-intervals would be of different widths to capture the
variation of the spectra at different frequencies.
Step 5. For each spectrum, compute the averaged peak values
within each of the new frequency sub-intervals obtained in
Step 4, and take those as the features to be used for machine
learning modeling.

Performing the feature engineering process requires care in
that the final frequency sub-intervals should be obtained based

on the training molecules only, rather than on all (training and
testing) molecules, otherwise the information in the testing
molecules would leak into the training stage, which would
cause “data snooping”.

B. Adding Noise to Original Raman Spectroscopy Data
The simulated Raman spectra are “noise-free”, that is they

contain only information pertaining to the Raman-permitted
vibrations in the molecule under consideration. In practice,
Raman spectra contain noise, arising from several well known
sources. Noise complicates interpretation of Raman spectra,
since attributing features to noise or to the underlying molec-
ular structure can be ambiguous. Obtaining accurate chemical
information using rapid measurements or low-cost equipment
(both of which increase noise compared with what would
be possible in a time-average analysis using an expensive
instrument) is an important challenge for many industrial
applications.

To compare the robustness of a variety of regression en-
semble models (including our neural network ensembles) to
noisy data, herein we add four different levels of random
Gaussian noise ξ to the original spectroscopy data, where
ξ ∼ Gaussian(μ = 0, σ ∈ [25, 50, 75, 100]). Fig. 3 shows
an example for the molecule “1,2,8,8a-tetrahydronaphthalene”,
where the starting subplot is the original Raman spectrum, and
then the four levels of noise (σ ∈ [25, 50, 75, 100]) are added
to the original one, respectively. We can see that the spectra
become more and more noisy as we increase the value of σ,
and it is almost formed by pure noise when σ = 100.

Note that the feature engineering steps (introduced in Sec-
tion V-A) for noisy spectra are performed after Gaussian noise
is added to the original spectra.

C. Regression Analysis
1) Dependent Variables: The five feature matrices obtained

after feature engineering corresponding to the original and
noisy Raman spectra (σ ∈ [25, 50, 75, 100]) all have 7200 rows
each. In particular, random Gaussian noise (say, σ = 25) is
added repeatedly for 100 times to each of the 72 molecules,
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Fig. 3. Examples of Raman spectroscopy data with different levels of
Gaussian noise added. The starting subplot is the original spectrum, and then
four different levels of noise (σ ∈ [25, 50, 75, 100]) are added to the original
one, respectively.

forming the noisy feature matrix with 7200 rows. While each
of the 72 original spectra is replicated 100 times to form the
original feature matrix with 7200 rows. These five feature
matrices will be used as the dependent data to get inference
for the independent variables.

2) Independent Variables: There are three indepen-
dent/target variables of interest here: the number of double
bonds (DB), double bond equivalents (DBE) and hydrogen
atoms, which are all important chemical characteristics for
molecules.

3) Train-Validation-Test Split: For both the original data
and noisy data, the entire data set is first randomly split into
a train and a test (5:1) set. Then the train set is randomly
split again into a sub-train and a validation (4:1) set (note
that such random split is performed 5 times to ensure robust
results). Regression ensemble models are trained on the sub-
train set (the training stage), validated on the validation set
(the cross-validation stage), and then applied to the test set
(the generalization stage).

4) Regression Ensemble Models: Herein we apply four
regression ensemble models for comparison purposes, and the
details of the models are tabulated in Table IV, where gradient
boosting regressor and random forest regressor are standard
regression ensemble models, while the theoretical neural net-
work ensemble and practical neural network ensemble are
ensemble models trained based upon our earlier proposed
algorithm. Note that we used both L1 and L2 loss criterion for
comparison purposes when training the base regressors in the
four ensemble models, where the L1 loss criterion is defined
as

LossL1
=

∑
i

|yi − ŷi|,

and the L2 loss criterion is defined in (9).
5) Evaluation Metrics: Herein we take two error measures

as the metrics for evaluating the performance (at both the
cross-validation and the testing stage) of the four regression
ensemble models: root mean squared error (RMSE), as defined
in (10), and mean absolute error (MAE), as defined in (11).

6) Results for the Number of Double Bonds (DB): Fig.
4 visualizes the trend of errors made by the four ensemble
models (introduced in Table IV) for predicting DB over
increasing noise levels, where the upper two subplots show
RMSE and MAE when base learners are trained using L2
loss, and the lower two subplots show RMSE and MAE when
base learners are trained using L1 loss. For all four subplots,
the dashed curves correspond to the averaged validation errors

TABLE IV
REGRESSION ENSEMBLE MODELS APPLIED ON ORIGINAL AND NOISY

RAMAN SPECTROSCOPY DATA.

Model Description

Gradient Boosting Gradient boosting regressor with 100 es-
timators (i.e. boosting stages) to perform,
and L1 (or L2) loss criterion to measure
the quality of a split.

Random Forest Random forest regressor with 100 estima-
tors (i.e. decision trees) in the forest, and
L1 (or L2) loss criterion to measure the
quality of a split.

Our Theoretical
Neural Network
Ensemble

An ensemble of three fully connected neu-
ral networks (pre-trained using L1 (or L2)
loss criterion with 5 hidden layers) trained
using our proposed loss function Loss =

−r
(ave)
TL + λ · r(ave)LL .

Our Practical
Neural Network
Ensemble

An ensemble of three fully connected
neural networks (pre-trained using L1 (or
L2) loss criterion with 5 hidden layers)
trained using the loss function Loss =

LossL1
(or LossL2

) + λ · r(ave)LL .

obtained from 5 random runs of cross-validation, while the
solid curves correspond to the testing errors.

Fig. 4. A visualization for the errors (RMSE and MAE) made by the four
ensemble models introduced in Table IV for predicting DB over increasing
noise levels (original and σ ∈ [25, 50, 75, 100]) in the data, when the base
learners in all ensembles are trained with L2 and L1 loss criterion, respectively.
The dashed curves correspond to averaged validation errors over 5 random
runs of cross-validation, while the solid curves correspond to testing errors.
The green, blue, red and cyan curves represent results for gradient boosting,
random forest, our theoretical neural network ensemble and our practical
neural network ensemble, respectively.

A general trend we can see from the four subplots is that
both RMSE and MAE increase for all ensemble models as
the data become more and more noisy, which is reasonable
because the true pattern in the data is more difficult to be
detected under a higher level of noise. However, compared
to gradient boosting and random forest, our theoretical and
practical neural network ensembles trained following the idea
of our algorithm show a rather robust pattern when handling
noisy data, especially for the testing errors in the upper two
subplots. On closer examination of each subplot in Fig. 4, our
theoretical and practical neural network ensemble turns out
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to generalize better to the testing data than gradient boosting
and random forest by showing a much lower testing RMSE
and MAE whenever a L1 or L2 loss criterion is applied.
In particular, when σ = 75 (the second highest level of
noise considered here), refer to the lower left subplot, the
testing RMSE of our theoretical and practical neural network
ensemble are both around 1.17, which cuts the error of random
forest (which is around 1.86) by 37%.

7) Results for the Number of Double Bond Equivalents
(DBE): Fig. 5 visualizes the trend of errors made by the four
ensemble models for predicting DBE over increasing noise
levels. As we can see from the four subplots, our theoretical
and practical neural network ensemble turns out to generalize
better to the testing data than gradient boosting and random
forest by showing a much lower testing RMSE and MAE
whenever a L1 or L2 loss criterion is applied. In particular,
when σ = 75 (the second highest level of noise considered
here), refer to the lower left subplot, the testing RMSE of
our theoretical and practical neural network ensemble are both
around 1.83, which cuts the error of random forest (which is
around 3.13) by 42%.

Fig. 5. A visualization for the errors (RMSE and MAE) made by the four
ensemble models introduced in Table IV for predicting DBE over increasing
noise levels (original and σ ∈ [25, 50, 75, 100]) in the data, when the base
learners in all ensembles are trained with L2 and L1 loss criterion, respectively.
The dashed curves correspond to averaged validation errors over 5 random
runs of cross-validation, while the solid curves correspond to testing errors.
The colors of the curves are the same as those in Fig. 4.

8) Results for the Number of Hydrogen Atoms: Fig. 6
visualizes the trend of errors made by the four ensemble
models for predicting hydrogen atoms over increasing noise
levels. As we can see from the four subplots, our theoretical
and practical neural network ensemble turns out to generalize
better to the testing data than gradient boosting and random
forest by showing a much lower testing RMSE and MAE
whenever a L1 or L2 loss criterion is applied. In particular,
when σ = 50, refer to the lower left subplot, the testing RMSE
of our theoretical and practical neural network ensemble are
both around 2.13, which cuts the error of gradient boosting
(which is around 2.94) by 28%.

9) Remarks: Based upon the regression analysis on the
original and noisy Raman spectroscopy data for predicting the
number of DB, DBE and hydrogen atoms, we can conclude

that compared to the standard regression ensemble models
gradient boosting and random forest, our theoretical and
practical neural network ensemble trained following the idea
of our proposed algorithm are rather robust to noise, and can
also generalize better even when noisy data is presented.

Fig. 6. A visualization for the errors (RMSE and MAE) made by the four
ensemble models introduced in Table IV for predicting hydrogen atoms over
increasing noise levels (original and σ ∈ [25, 50, 75, 100]) in the data, when
the base learners in all ensembles are trained with L2 and L1 loss criterion,
respectively. The dashed curves correspond to averaged validation errors over
5 random runs of cross-validation, while the solid curves correspond to testing
errors. The colors of the curves are the same as those in Fig. 4 and Fig. 5.

VI. CONCLUSIONS

In this paper, we have derived two theorems that offer a
rigorous understanding of the trade-off between individual
accuracy of component learners and ensemble diversity in
regression ensembles. Inspired by our derived theorems, we
then proposed a new training algorithm for deep regression
neural network ensembles that can explicitly encourage ensem-
ble diversity. This algorithm is demonstrated to be generally
effective, compared to benchmark ensemble models such as
random forest and gradient boosting, by analysis on both
standard machine learning data sets and real-world chemical
applications including Raman spectroscopy analysis.
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APPENDIX

Proof of theorem 1. — First, we will prove the lower bound.
Consider the outputs of the N learners in the regression
ensemble, standardize the outputs so that each output can
be considered as a random variable Li with unit variance,
i.e. V ar(Li) = 1, i = 1, 2, · · · , N . Based on one statistical
property of variance, we have

V ar
( N∑

i=1

Li

)
=

N∑
i=1

V ar(Li) +

N∑
i=1

N∑
j �=i

Cov(Li, Lj) (12)
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Since V ar(Li) = 1, i = 1, 2, · · · , N , the covariance
between two random variables equals the correlation, i.e.
Cov(Li, Lj) = Corr(Li, Lj) = rLi,Lj

. We also have
rLi,Lj

= rLj ,Li
, therefore we can rewrite (12) as

V ar
( N∑

i=1

Li

)
= N +

N∑
i=1

N∑
j �=i

rLi,Lj

= N + 2

N∑
i=1

N∑
j>i

rLi,Lj

= N + 2 · N(N − 1)

2
r
(ave)
LL (13)

Since V ar
(∑N

i=1 Li

)
� 0, we can get from (13) that

r
(ave)
LL � − 1

N − 1
. (14)

As for the upper bound, since −1 � rLi,Lj
� 1, we have

r
(ave)
LL =

1

N(N − 1)/2

N∑
i=1

N∑
j>i

rLi,Lj

� 1

N(N − 1)/2

N∑
i=1

N∑
j>i

1

=
1

N(N − 1)/2
· N(N − 1)

2
= 1. (15)

In conclusion, for regression ensembles of size N , the av-

eraged learner-learner correlations r
(ave)
LL satisfies − 1

N−1 �
r
(ave)
LL � 1. �

Proof of theorem 2. — Consider the prediction outputs of the
N learners in a regression ensemble, standardize the outputs
so that each output can be considered as a random variable
Li with unit variance, i.e. V ar(Li) = 1, i = 1, 2, · · · , N .
Similarly standardize the values of the ground truth T such
that V ar(T ) = 1.
Define the sum of the outputs of the N learners as: S =∑N

i=1 Li, then we have

Cov(S, T ) = Cov
( N∑

i=1

Li, T
)
=

N∑
i=1

Cov(Li, T )

=
N∑
i=1

Corr(Li, T ) = N · r(ave)TL ,

(16)

where Cov(.) is the covariance, Corr(.) is the correlation.
Note that Cov(Li, T ) = Corr(Li, T ) in (16) because Li’s
and T are all unit vectors.
Based on one statistical property of variance, we have

V ar
( N∑

i=1

Li

)
=

N∑
i=1

V ar(Li) +

N∑
i=1

N∑
j �=i

Cov(Li, Lj). (17)

Since V ar(Li) = 1, i = 1, 2, · · · , N , the covariance
between two random variables equals the correlation, i.e.
Cov(Li, Lj) = Corr(Li, Lj) = rLi,Lj . We also have
rLi,Lj = rLj ,Li , therefore we can rewrite (17) as

V ar
( N∑

i=1

Li

)
= N +

N∑
i=1

N∑
j �=i

rLi,Lj

= N + 2
N∑
i=1

N∑
j>i

rLi,Lj

= N + 2 · N(N − 1)

2
r
(ave)
LL

(18)

Finally based on the Cauchy-Schwarz inequality, we get:

(Cov(S, T ))2 � V ar(S) · V ar(T )

= V ar(S) · 1

= V ar
( N∑

i=1

Li

)

= N +N(N − 1)r
(ave)
LL

(19)

Combining (16) and (19),

(N · r(ave)TL )2 � N +N(N − 1) · r(ave)LL . (20)

Therefore, after simplification, we get

−
√

(N − 1) · r(ave)LL + 1

N
� r

(ave)
TL �

√
(N − 1) · r(ave)LL + 1

N
(21)

�
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