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ABSTRACT Federated learning engages a set of edge devices to collaboratively train a common model
without sharing their local data and has advantage in user privacy over traditional cloud-based learning
approaches. However, recent model inversion attacks and membership inference attacks have demonstrated
that shared model updates during the interactive training process could still leak sensitive user information.
Thus, it is desirable to provide rigorous differential privacy (DP) guarantee in federated learning. The main
challenge to providing DP is to maintain high utility of federated learning model with repeatedly introduced
randomness of DP mechanisms, especially when the server is not fully trusted. In this paper, we investigate
how to provide DP to the most widely adopted federated learning scheme, federated averaging. Our approach
combines local gradient perturbation, secure aggregation, and zero-concentrated differential privacy (zCDP)
for better utility and privacy protection without a trusted server. We jointly consider the performance impacts
of randomnesses introduced by the DP mechanism, client sampling and data subsampling in our approach,
and theoretically analyze the convergence rate and end-to-end DP guarantee with non-convex loss functions.
We also demonstrate that our proposed method has good utility-privacy trade-off through extensive numerical
experiments on the real-world dataset.

INDEX TERMS Federated learning, security and privacy, convergence analysis, zero-concentrated differen-

tial privacy.

I. INTRODUCTION

With the development of Internet-of-Things (IoT) technolo-
gies, smart devices with built-in sensors, Internet connectivity,
and programmable computation capability have proliferated
and generated huge volumes of data at the network edge over
the past few years. These data can be collected and analyzed
to build machine learning models that enable a wide range
of intelligent services, such as personal fitness tracking [1],
traffic monitoring [2], smart home security [3], and renewable
energy integration [4]. However, data are often sensitive in
many services and can leak a lot of personal information
about the users. Due to the privacy concern, users could be
reluctant to share their data, prohibiting the deployment of
these intelligent services.

Federated Learning is a novel machine learning paradigm
where a group of edge devices collaboratively learn a shared
model under the orchestration of a central server without
sharing their local data. It mitigates many of the privacy risks
resulting from the traditional, centralized machine learning
paradigm, and has received significant attention recently [5].
At each communication round of federated learning, edge de-
vices download the shared model from the server and compute
updates to it using their own datasets, and then these updates
will be gathered by the server to update the shared model.
Although only model updates are transmitted between edge
devices and the server instead of the raw data, such updates
could contain hundreds of millions of parameters in modern
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machine learning models such as deep neural networks, result-
ing in high bandwidth usage per round. Moreover, many learn-
ing tasks require a large number of communication rounds to
achieve a high model utility, and hence the communication
of the whole training process is expensive. Since most edge
devices are resource-constrained, the bandwidth between the
server and edge devices is rather limited, especially in up-
link transmissions. Therefore, in the state-of-the-art federated
learning algorithms, each edge device would perform multiple
local iterations in each round to obtain a more accurate model
update, so that the total number of communication rounds to
achieve a desired model utility will be reduced.

Besides communication overhead, federated learning faces
several additional challenges, among which privacy leakage
is a major one [5]. Although in federated learning edge de-
vices keep their data locally and only exchange ephemeral
model updates which contain less information than raw data,
this is not sufficient to guarantee data privacy. For example,
by observing the model updates from an edge device, it is
possible for the adversary to recover the private dataset in
that device using reconstruction attack [6] or infer whether
a sample is in the dataset of that device using membership in-
ference attack [7]. Especially, if the server is not fully trusted,
it can easily infer the private information of edge devices from
the received model updates during the training by employing
existing attack methods. Therefore, how to protect against
those advanced privacy attacks and provide rigorous privacy
guarantee for each device in federated learning without a fully
trusted server is challenging and needs to be addressed.

In order to motivate and retain edge devices in federated
learning, it is desirable to provide rigorous differential privacy
(DP) guarantee for devices. While there have been multiple
works focusing on the integration of DP and federated learn-
ing [8]-[17], most of the work demonstrate the performance
of proposed approaches by experiments, whose results heav-
ily rely on hyper-parameter tuning. The main focus of this
paper is to provide a differentially-private federated learning
approach with convergence performance bound. The closest
work to ours is [18], which also provide performance analysis
for federated learning with record-level DP. However, they
do not discuss client sampling in their analysis, which is a
core design factor of federated learning for communication-
efficiency and scalability [19]. In addition, their performance
analysis is based on convexity assumption of the loss func-
tion, which is not true for many federated learning tasks. Our
performance analysis is more general and fits both convex and
non-convex loss functions.

In this paper, we aim to bridge the gap by providing per-
formance analysis and DP guarantee for the state-of-the-art
federated averaging scheme with client sampling [19]. In or-
der to protect the shared model updates, we ask each device
to perturb its gradient in each local iteration so that the shared
model updates are differentially private before aggregation.
When combining with periodic averaging and client sampling
directly, gradient perturbation results in too much noise to the
model updates and leads to low model utility. Thus we also
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integrate a secure aggregation protocol with low communi-
cation overhead to reduce the added noise magnitude. Fur-
thermore, we utilize the zero-concentrated differential privacy
(zCDP) to tightly capture the end-to-end privacy loss, so that
less noise will be added under the same DP guarantee. Our
performance analysis works for both convex and non-convex
loss functions and thus is more general than prior work. The
proposed differentially private federated learning scheme only
assumes an “honest-but-curious” server, which is a more prac-
tical assumption than a fully trusted server.

In summary, the main contributions of this paper are as
follows.

e We propose a differentially-private federated learning
scheme with periodic averaging and device sampling
without a fully trusted server. Our approach can rigor-
ously protect the data privacy of each device with only
marginal degradation of the model utility by integrating
secure aggregation and gradient perturbation.

® We tightly compute the end-to-end privacy loss of our
approach using zCDP, taking into account the privacy
amplification effects of data subsampling, partial device
participation and secure aggregation. Compared with
using traditional (e, §)-DP and its simple composition
property to count the privacy loss, our approach enables
devices to add less noise and hence improves the model
utility under the same privacy guarantee.

e We rigorously analyze the convergence rate of state-of-
the-art federated averaging schemes with differentially-
private noises, client sampling and non-convex loss func-
tions. Our approach obtains the same asymptotic conver-
gence rate as the classic non-private federated learning
algorithm.

® We conduct extensive evaluations on a real-world dataset
and the experimental results show that our approach
has nice convergence property and good utility-privacy
trade-off.

The rest of the paper is organized as follows. Prelimi-
naries on privacy notations used in this paper are described
in Section II. Section III introduces the system setting and
problem formulation, and Section IV presents our private
federated learning scheme. The privacy guarantee and con-
vergence properties of our approach are rigorously analyzed
in Section V and Section VI, respectively. Section VII shows
the evaluation results based on the real-world dataset. Finally,
Section VIII describes the related works, and Section IX con-
cludes the paper.

II. PRELIMINARIES
In what follows, we briefly describe the basics of DP and their
properties. DP is a rigorous notion of privacy and has be-
come the de-facto standard for measuring privacy risk. (e, §)-
DP [20] is the classic DP notion with the following definition:
Definition 1 ((e,8)-DP): A randomized algorithm M is
(e, &)-differentially private if for any two adjacent datasets
D, D’ C D that have the same size but differ in at most one
data sample and any subset of outputs S C range(M), it
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satisfies that:
Pr[M(D) € 8] < e Pr[M(D') € S] + 6. (1)

The above definition reduces to €e-DP when § = 0. Here the
parameter € is also called the privacy budget. Given any func-
tion f that maps a dataset D € D into a scalar 0 € R, we can
achieve (e, §)-DP by adding Gaussian noise N (0, 62) to the
output scalar o, where the noise magnitude o is proportional
to the sensitivity of f, given as Ax(f) := || f(D) — f(D")|l>.

The notion p-zCDP [21] is a relaxed version of (e, §)-DP.
zCDP has a tight composition bound and is more suitable to
analyze the end-to-end privacy loss of iterative algorithms.
To define zCDP, we first define the privacy loss. Given any
subset of outputs S € range(M), the privacy loss Z of the
mechanism M is a random variable defined as:

Z :=log w ()
PrM(D') = S]
zCDP imposes a bound on the moment generating function
of the privacy loss Z. Formally, a randomized mechanism M
satisfies p-zCDP if for any two adjacent datasets D, D' C D,
it holds that for all @ € (1, 00),

]E[e(otfl)Z] S e((xfl)p. (3)

Here, (3) requires the privacy loss Z to be concentrated around
zero, and hence it is unlikely to distinguish D from D’ given
their outputs. zCDP has the following properties [21], [22]:

Lemma 1: Let f : D — R be any real-valued function with
sensitivity A, (f), then the Gaussian mechanism, which re-
turns f(D) + N(0, 02), satisfies As(f)?/(20%)-zCDP.

Lemma 2: Suppose two mechanisms satisfy p;-zCDP and
02-zCDP, then their composition satisfies p; + p2-zCDP.

Lemma 3: Suppose that a mechanism M consists of a
sequence of E adaptive mechanisms, My, ..., Mg, where
each M satisfies p;-zCDP (1 < j <FE). Let Dy,...,Dg
be the result of a randomized partitioning of the dataset D.
The mechanism M(D) = (M{(Dy), ..., Mg(Dg)) satisfies
max; p;-zCDP.

After we use zCDP to quantify the total privacy loss of the
iterative algorithms, we could easily convert the privacy loss
in zCDP back to DP with the following lemma [21]:

Lemma 4: 1If M is a mechanism that provides p-zCDP, then

Mis (p 4+ 2+/plog(1/8), §)-DP for any § > 0.

1Il. SYSTEM MODELING AND PROBLEM FORMULATION
A. FEDERATED LEARNING SYSTEM

Consider a federated learning setting that consists of a central
server and n devices which are able to communicate with
the server. Each device i € [n] has collected a local dataset
D; = {&l,... &} of m datapoints. The devices want to col-
laboratively learn a shared model # € R? under the orches-
tration of the central server. Due to the privacy concern and
high latency of uploading all local datapoints to the server,
federated learning allows devices to train the model while
keeping their data locally. Specifically, the shared model @ is
learned by minimizing the overall empirical risk on the union
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FIG. 1. System architecture of federated learning.

of all local datasets, that is,

. 1 & , 1
min f(8) := ~ ;ﬁ-(o) with fi(6) := — 3 10.8). ()

§ieD;

Here, f; represents the local objective function of device i,
1(0; &) is the loss of the model @ at a datapoint & sampled
from local dataset D;.

In federated learning, the central server is responsible for
coordinating the training process across all devices and main-
taining the shared model 6. The system architecture of fed-
erated learning is shown in Fig. 1. At the beginning of each
iteration, devices download the shared model 6 from the server
and compute local updates on @ using their local datasets.
Then, each device uploads its computed result to the server,
where the received local results are aggregated to update the
shared model 6. This procedure repeats until certain conver-
gence criteria are satisfied.

The classic approach to solve Problem (4) is the federated
averaging (FedAvg) algorithm [19]. In FedAvg, the server
first selects a subset of devices uniformly at random and then
lets the selected devices perform multiple iterations of SGD
to minimize the local objectives before sending their local
computation results to the server. Let T represent the local
iteration period and ¢ € [0, ..., T — 1] represent the index
of communication round. Specifically, at round ¢, a set of r
devices €2; are selected to download the current shared model
@ from the server and perform 7 local iterations on @' . Let 0?“
denote the local model of device i € €2; at s-th local iteration

of the 7-th round. At each local iteration s =0,...,7 — 1,
device i updates its model by
ts+1 _ gt t,s
0,’ = ol‘ - 778(0,- v)’ (5)

where n is the learning rate, g(0i."") =
(1/)/)2&6&_ Vl(0§’s,§,-) represents the stochastic gradient
computed based on a mini-batch X; of y datapoints
sampled from the local dataset D;. Note that when s = 0,
the local model 05’5 =@" for all devices in ;. After
local iterations, the selected devices upload their local
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models to the server where the shared model is updated by
ot =1 /> ey 0§’r. Therefore, each device is selected to
participate with probability r/n in each round and only needs
to periodically communicate for 7 /n rounds in expectation.

B. THREAT MODEL

The adversary considered here can be the ‘“honest-but-
curious” central server or devices in the system. The central
server and devices participating in federated learning will
honestly follow the designed training protocol, and will not
actively inject false messages into the training process. How-
ever, they are curious about a target device’s private data and
may infer it from the shared information during the training
process. The adversary can also be a passive outsider attacker
who eavesdrops all shared messages in the execution of the
training protocol. In federated learning, raw user data are
kept locally, which provides some level of privacy protection.
However, local model updates are shared in each iteration,
which are being trained over private user data. Access to
shared model updates allows adversaries to launch model in-
version attacks to reconstruct the raw training data [6], [23], or
use membership inference attacks [7] to infer if a data record
was in the raw training database. Thus, keeping data locally
and only sharing model updates do not provide enough protec-
tion for user privacy, and we need to provide rigorous privacy
guarantee to defend against the aforementioned attacks.

IV. OUR PRIVATE FEDERATED LEARNING SCHEME

In this section, we propose our method that enables multiple
devices to jointly learn an accurate model for a given machine
learning task in a private manner, without sacrificing much
accuracy of the trained model. We first discuss how to pre-
serve the data privacy of each device in the system with DP
techniques. Then, we improve the accuracy of our method
with secure aggregation and finally summarize the overall
algorithm.

A. PREVENTING PRIVACY LEAKAGE WITH DIFFERENTIAL
PRIVACY
The aforementioned FedAvg method is able to prevent the
direct information leakage of devices via keeping the raw
data locally, however, it could not prevent more advanced
attacks that infer private information of local training data by
observing the messages communicated between devices and
the server [6], [7]. According to our threat model described
in Section III-B, devices and the server in the system are
“honest-but-curious,” and attackers outside the system can
eavesdrop the transmitted messages. These attackers are able
to obtain the latest shared model 6" sent from the server to
devices and the local models {Oi’f}ieg, sent from devices
to the server, both of which contain the private information
of devices’ training data. Our goal is to prevent the privacy
leakage from these two types of messages with DP techniques.
Towards that goal, we leverage the gradient perturbation
with Gaussian noise [24] to achieve DP so that the attacker
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is not able to learn much about an individual sample in D;
from the shared massages. Specifically, at s-th local iteration
of t-th round, device i € €2; updates its local model by

6 = 6"~ (g(67) + b)) (6)

where bif‘Y is the Gaussian noise sampled from the distribution
N(0, o%1,). After  local iterations, the uploaded local model
OE’T will preserve a certain level of DP guarantee for device i,
which is proportional to the size of noise o. Due to the post-
processing property of DP [20], the sum of local models, i.e.,
the updated shared model 0’“, will also preserve the same
level of DP guarantee for device i.

B. IMPROVING MODEL UTILITY WITH SECURE
AGGREGATION

Although DP can be achieved using the above mechanism,
the accuracy of the learned model may be low due to the
large noise magnitude. At each round of the training, all up-
loaded local models are exposed to the attacker, leading to a
large amount of information leakage. However, we observe
that the server only needs to know the average values of the
local models. Intuitively, one can reduce the privacy loss of
devices by hiding the individual local models and restricting
the server to receive only the sum of local models without
disturbing the learning process. This can be achieved via a
secure aggregation protocol so that the server can only decrypt
the sum of the encrypted local models of selected devices
without knowing each device’s local model. In the following,
we provide a customized secure aggregation protocol similar
as [25], which is efficient in terms of the amortized computa-
tion and communication overhead across all communication
rounds. Note that one of the main contributions in this paper
is to analyze the benefits of secure aggregation in reducing
privacy loss as elaborated in Section V rather than optimizing
the design of the secure aggregation protocol.

In our setting, a secure aggregation protocol should be able
to 1) hide individual messages for devices, 2) recover the sum
of individual messages of a random set of devices at each
round, and 3) incur low communication cost for participating
devices. Denote by p/ the plaintext message of device i that
needs to be uploaded to the server. Note that the secure aggre-
gation protocol only works for integers, hence the local model
parameter 0§’T should be converted optimally to integers to
obtain the plaintext p’ [25]. Our proposed protocol consists of
the following two main steps:

® Encryption uploading: Devices in €2; upload their own

encrypted local models {c!};cq, to the server.

® Decryption: The server decrypts the sum of the messages

received from devices in £2;.

The basic idea of the protocol is to protect the message p’; of
device i by hiding it with a random number 7/ in the plaintext
space, i.e., ¢ = p! + rl. However, the challenge here is how
to remove the random number 7] from the received ciphertext
at the server part. To this end, we require that Ziegz ri =0,
which prevents the attacker from recovering each individual
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Server

Initialization { Generate seed;; for each device pair (i, )

at round t
Send upload notification _
Wait for enough devices (2,
X Broadcast the set of devices 2, and the |
Encryption current round number ¢ :
Uploading - <

Compute r{ and ¢} according to (7) and (8)

Upload cf to the server R

Wait for all devices in 2, to
respond, and compute Zimtcf
according to (9) and obtain ;e pf

Decryption

FIG. 2. Basic protocol for efficient secure aggregation in our approach.

message p; but enables the server to recover ) ;o p}. How-
ever, this requires the devices to communicate with each other
in order to generate such secrets {rl? }ieq,, which is inefficient
in terms of communication overhead.

To save the communication overhead, we introduce a pseu-
dorandom function (PRF) G here. The PRF G takes a ran-
dom seed seed; ; that both device i and j agree on during
initialization and the round number ¢, and outputs a different
pseudorandom number G(seed; j,t) at each round. Device i
could calculate the shared secret 7 ! without interacting with
device j at each round as long as they both use the same seed
and round number, and thus each device could calculate rl?
without interactions. This procedure greatly reduces the amor-
tized communication overhead of our protocol over multiple
rounds.

The detailed protocol is depicted in Fig. 2. All devices need
to go through an initialization step upon enrollment which in-
volves pairwise communications with all other devices (which
can be facilitated by the server) to generate a random seed
seed; ;. After this initialization step, all enrolled devices could
upload their messages through the encryption uploading step.
At each round, only a subset of selected devices would upload
their messages. Devices send a notification signal to the server
once they are ready to upload their local models, and the
server waits until receiving notifications from enough devices.
The server then broadcasts the information £2; to all devices in
;. Device i € 2; would first compute its secret at the current
round as follows:

(7

JeQ\{i}

where rf = G(seed; j, t) is a secret known by both device i
and j. Device i could then generate the ciphertext for p, by
®)

t_ ot t
¢, =p;+r;.

In the decryption step, the server receives {c§ }ieq, from all
selected devices. The server could then recover the sum of
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Algorithm 1: Private Federated Learning Algorithm.

Input: number of rounds 7', local iteration period t, number
of selected devices per round r, learning rate n

I: fort=0to7T —1do

2 Server uniformly selects a set €2; of r devices

3 Server broadcasts @' to all devices in €,

4: for all devices in €2; in parallel do

5: 90 < ¢

6 fors=0tor —1do
7 Sample a mini-batch X; and compute
gradient g(0}*) < (1/y) Yy cx, VIO, &)

8: Sample DP noise b ~ N'(0, 0°1,)
9: 60— 00— n(g6) + ;)
10: end for
11: Generate encrypted local model ¢! using the
secure aggregation protocol and send it to the
server
12: end for
13: Server decrypts the average of the received local
models (1/7) };cq, ¢} to get the new global
model 6'*!
14:  end for

plaintext messages from devices in €2; as follows:

o= k) D th=ri

ey ey ey jey\li)

=> 7

i€y

€))

Note that in the above protocol, we assume all devices in €2,
have stable connections to the server. The entire process of
our approach, integrating gradient perturbation, secure aggre-
gation, and multiple steps of local SGD, is summarized in
Algorithm 1.

V. PRIVACY ANALYSIS

As mentioned before, our goal of using DP techniques is to
prevent the outside attacker or the “honest-but-curious” server
and devices from learning sensitive information about the lo-
cal data of a device. Using the secure aggregation protocol, the
local model is encrypted and the attacker can only obtain the
sum of local models. Thus, as long as the sum of local models
is differentially private, we can prevent the attacks launched
by the attacker.

Instead of using the traditional (e, §)-DP notion, we use
zCDP to tightly account the end-to-end privacy loss of our
approach across multiple iterations and then convert it to an
(e, 6)-DP guarantee. In the following, we first compute the
sensitivity of the gradient g(O?‘Y) (as given in Corollary 1)
based on Assumption 1 to show that each iteration of Algo-
rithm 1 achieves zCDP. Note that Assumption 1 is a common
assumption for differentially private learning algorithms and
can be achieved by gradient clipping techniques [24]. Then,
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we compute the sensitivity of the uploaded local model 0?’
(as given in Lemma 5) to further capture the zCDP guarantee
of each communication round. Finally, we show that Algo-
rithm 1 satisfies (¢;, §)-DP for device i after T communication
rounds in Theorem 1.

Assumption 1 (Bounded gradients): The Ly-norm of the
stochastic gradient VI(x, &) is bounded, i.e., for any x € R4
and & € ;g Dis V1%, )2 < G.

Corollary 1: The sensitivity of the stochastic gradient
g(OE"Y) of device i at each local iteration is bounded by 2G/y .

Proof: For device i, given any two neighboring datasets X;
and X! of size y that differ only in the j-th data sample, the
sensitivity of the stochastic gradient computed at each local
iteration in Algorithm 1 can be computed as

(6% X;) — g(6:°; X))l

1
= ;IIVI(G';’S; £j) — VIO &)

By Assumption 1, the sensitivity of g(0§.'s) can be estimated as
Ax(g(67)) < 2G/y. m

By Lemma 1 and Corollary 1, each iteration of Algorithm 1
achieves 2G?/y202-zCDP for every active device at this it-
eration. During the local computation, the local dataset will
be randomly shuffled and partitioned into m/y mini-batches,
each containing y datapoints. Assume t is divided evenly by
m/y, then the whole local dataset will be accessed for ty /m
times at each round. Therefore, at round #, the uploaded local
model 02’1 satisfies 2tG?/my o ?-zCDP by using Lemma 3
and Lemma 2.

Given the zCDP guarantee of 0§’r and its sensitivity given
in Lemma 5, we can observe that the variance of Gaussian
noise added to 6 is equivalent to mtn®c?/y. Therefore,
we can obtain that the variance of Gaussian noise added to
the sum of uploaded local models is rmtn*c?/y, due to the
independence of Gaussian noise. By Lemma 1, we can obtain
the zCDP guarantee of the sum of uploaded local models if
we can measure the sensitivity of ZieQ, OE’T. It is easy to
verify that, for device i € ;, the sensitivity of the sum of
uploaded local models } ;¢ 6" is equivalent to the sen-
sitivity of 6;". Finally, we obtain that ) ., 67" satisfies
21G?/rmyo?-zCDP, which means round ¢ of Algorithm 1
achieves 2tG?/rmy o2-zCDP for each device in €;. Finally,
we compute the overall privacy guarantee for a device after
T communication rounds and give the (e, §)-DP guarantee in
Theorem 1.

Lemma 5: The sensitivity of the uploaded local model 0?1
at round ¢ is bounded by 2ntG/y.

Proof: Without adding noise, the local model of device i €
2, after  local iterations at round ¢ can be written as

00 =00 — ng®:") — - —ng®" ).

According to the sensitivity of g(0§’s) given in Corollary 1, we
have that
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/
A2(0) = (6% X!0) — (0% X1+

_ _ _ 1/
+g(0§,‘[ I;Xit,r 1) _ g(og,r 1; Xit,r 1 )”
2ntG

< .
4

|
Theorem 1: In Algorithm 1, let the mini-batch X; be ran-
domly sampled without replacement from D; every m/y lo-
cal iterations and the Gaussian noise bg“v be sampled from
N(0, 021,). Assume T can be divided evenly by m/y, and let
C; represent the number of rounds device i gets selected for
out of 7 communication rounds, then Algorithm 1 achieves
(¢i, 6)-DP for device i in the system, where

_2GG?

€ =

26tG2 . 1
it log 5. (10)

rmyoc? rmyo?

Proof: 1t is proved that each round of Algorithm 1 achieves
21G?/rmyo?-zCDP for the device in ;. Due to the device
selection, not all devices will upload their models to the server
at round ¢. If their models are not sent out, they do not lose
their privacy at that round. Let C; represent the number of
communication rounds device i participated during the whole
training process. By Lemma 2, the overall zCDP guarantee
of device i in the system after 7' rounds of communication is
2tC;G?/rmyc?. Theorem 1 then follows by Lemma 4. Note
that, each device in the system participates the communication
with probability r/n at each round, hence C; is equivalent to
Tr/n in expectation. |

VI. CONVERGENCE ANALYSIS
In this section, we present the main theoretical results on the
convergence properties of our approach. Before stating our
results, we give some assumptions and summarize the update
rule of our approach as follows. Assumption 2 implies that the
objective function f are L-smooth. Assumption 3 ensures that
the divergence between local stochastic gradients is bounded.
These two assumptions are standard in literature [26]-[28].

Assumption 2 (Smoothness): The local objective function
fi is L-smooth, i.e., for any x,y € R4 and i € [n], we have
fi¥) < fix) + (V£i(x), ¥y = x) + (L/2)]ly — xII*.

Assumption 3 (Bounded divergence): Let & be randomly
sampled from the local dataset D;. The stochastic gradient of
each device is unbiased and will not diverge a lot from the
exact gradient, i.e., forany x € R and i € [n], E[VIX, &)] =
Vfi(x) and E[|VI(x, &) — Vi(x)||* < B2

To prove the convergence of our approach, we first repre-
sent the update rule of our approach in a general manner. In
Algorithm 1, the total number of iterations is K, i.e., K = T't.
At iteration k where k = tt + s, each device i evaluates the
stochastic gradient g(Of? ) based on its local dataset and updates
current model 05‘. Thus, n devices have different versions
0", e, Hfl of the model. After t local iterations, devices up-
load their encrypted local models to the server to generate the
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new shared model, i.e., (1/r) Ziegk 05»‘ with (k mod v = 0),
where Q; = Q;,Vk e [tt,tt+1,...,tt+ 17— 1].

Now, we can present a virtual update rule that captures
Algorithm 1. Define matrices @k, G, B e RY*" for k =
0, ..., K — 1 that concatenate all local models, gradients and

noises:
k
0]

G* = [5(0h). 2(6). ... 506)].
k pk k
_ [b b ,...,bn].
If device i is not selected to upload its model at iteration
k, 05 = g(6) = bX = 0,. Besides, define matrix J% ¢ R"*"
with element J* = 1/r if i € @ and J*
Unless otherwise stated, 1¥ € R” is a column vector of size

n with element lf =1if i e Q and lf? = 0 otherwise. To
capture periodic averaging, we define J* as

ok .— [0", ok, ...

= 0 otherwise.

oo J% kmodt =0
" |1, otherwise.

where I, is a n x n identity matrix. Then a general update rule
of our approach can be expressed as follows:

®k+l — <®k (11)

Note that the secure aggregation does not change the sum of
local models. Multiplying 1%/ on both sides of (11), we have

®k+l lk @k lk Gk lk Bk lk
= - +—).

r r r

— (G + B")) J-.

12)
Then define the averaged model at iteration k as

. @klk 1
0 = _-Zok

i€y

After rewriting (12), one yields

~k+1 ~k 1 k k
0 =0 — - 0; b;
| Zg( i)+ b

ieQy

13)

Since devices are selected at random to perform updating
in each round, and g(0{-‘) is the stochastic gradient computed
on a subset of data samples X; € D;, the randomness in our
federated learning system comes from the device selection,
stochastic gradient, and Gaussian noise. In the following, we
bound the expectation of several intermediate random vari-
ables, which we denote by E 2 X,~,b{?|ie[n]}[']' To simplify the
notation, we use [E[-] instead of E{Qk,x,-,bfhe[n]}['] in the rest
of the paper, unless otherwise stated.

As given in Lemma 6 and Lemma 7, we first analyze the
expectation of the perturbed stochastic gradients and the net-
work error that captures the divergence between local models
and the averaged model at each local iteration. Based on these,
we derive the convergence results of the expected gradient

282

norm of the objective function after 7 communication rounds,
as given in Theorem 2.

Lemma 6: The expectation and variance of the averaged
perturbed stochastic gradients at iteration k are

B3 (s +0f) | =22 vAdh, a4
| e i=1
and
2
E||- Z (g(o") +b"> - = ZVﬁ(Gk
IESZk
do? B 4n—r) 2
- T+7+T§Hmwm s

Proof: To simplify the notation, we set GF:=
(1/r) Ziegk (g(ﬂf»‘) + bi-‘). Given Assumption 1, we have

E[¢] = Y pe=o) (L Y E[s0h+b!]
g|252€|[2]r r ey

_ 11 =l - .k_ln gk
‘r(';)(r_1>gvf’(0f)‘ngvf’(””'

Here, E[b*] = 0, since b¥ ~ N'(0, o%1y). let Gk := E[G],
we have

5||ot -]
2 2
—E |2 - vieh| + | bt
e e
2
+E ZVf,(Ok)——ZVf,(Gk

lEQk

do?
ST-I‘ Z P () =

o) e e = v |

Qeln],
Q="
+2 ) P =) (— - —) Z v ‘
Qelnl],
1Ql=r
+2 ) P = Q)iz(n -y HVﬁ(é’f) ‘2
e b

< di + ’11 Xn:]E [Hg(ok) — Vf,(0k)H ]
=1

20 () -2 St
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‘ 2

2n—rP 1 n—1)\ — '
*T@<r_1)§(lvﬁ<0f>

2 oo
AL B IS |vset)
i=1

)

r 14

where we use the independence of Gaussian noise and As-
sumption 3. Note that based on Assumption 3, we have

2
2 1
E g6 - vhoh| =5 | 2 vk - vreh
14
§ieX;
NE
=5 3 Va6 - vieh|
£eX;
2
S ﬁ_7
14
due to the independence of random variable &;. |

Lemma 7: Assume k = tt + s, the expected network error
1
T

at iteration k is bounded as follows:
2 2
N i)
lGQk y

g XTI ;22 s f: Z Hvﬁ(e?*”)H2 .

h=0 i=1

E

r

(16)

Proof: Since k =tt + s and all devices in € start from
the same model received from the server 6'° to update, i.e.,
At . . .

0" = 0" = 0'7, Vi € Q. For device i € €, we have

S
— 051’ _ nzg(oif-Fh) +b§r+h.

(17
h=0
Given that 8* = =(1/r) Zzer ,one yields Vj € €y,

Ak 1 s—1 2
S| IEE A I IO Ea i
i€y h=0

s—1 2
+ 2772 Zg(oterrh) + szt+h
h=0
s—1 1 2
< 25772 Z - Z g(0§r+h) + b§t+h
=0 || " icey

El

s—1
2
+ 25 Z ng;wh) n bterrh‘
h=0

where we use the inequality || Y7 a;ll> <nd ", lla;]|>.
By Lemma 6 and the fact that E[(X — E[X])?] = E[X?] —
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E[X]?, we have that

2
1 § h h
H ; g(oir‘k )+ b?t+

iGQk

< A

,8 4(n — r)? + n?
- r y —Z‘

S0
which is not related to the index of device j. In addition,

2 2
s@ ) | < do® + % +|vse@

thus, the expected network error at iteration k is

1 . 2 2 1) 2sp?
E| - 0k—0]]‘-H §2s772 (sdo (r+ )-l- s
r r 14
JEQ
s—1 n
4(n—r)2+2nzzZH _—
v [) .
h=0 i=1

Lemma 7 is finally obtained by relaxing the constant of the
second term. |

Theorem 2 (Convergence Result of Our Approach): For
Algorithm 1, suppose the total number of iterations K = Tt
where T is the number of communication rounds and 7 is the
local iteration period. Under Assumptions 2-3, if the learning
rate satisfies 57L + 3t%n%L? < 1, and all devices are initial-
ized at the same point 0° ¢ RY , then after K iterations the
expected gradient norm is bounded as follows

2(£(6°) — "

[ Z V@ )||2] K

2020262 pPL2dot(r+1)
+
3y 3r

L2 Ldo?
nLB 7
2y 2r

+(t — Q2T — 1)(
(18)

Here, o2 is the variance of Gaussian noise, ﬂ2 is the upper
bound of the variance of local stochastic gradients, L is the
Lipschitz constant of the gradient, n is the total number of
devices, and r is the number of selected devices at each round.

Proof: According to Assumption 2, the global loss function
f is L-smooth. Let GX := (1/r) Zregk (g(Of) + bf), we have
the expectation of the objective gap between two iterations,
ie.,

E[r@" - r@")]

La|o] e

- te[|o[] -

IA

1 K
;i;Qka(o ). E 265 + b))

1 N
= Y (V@Y. VA

iEQk
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) n
<TlE [Hgkﬂ — VSO - - ; IV A

LY vsdh - vaeh| |, (19)
lE k
where we use the inequality —2(a, b) = [la — b||> — ||a]?> —

[b||? for any two vectors a, b. After minor rearranging, it is
easy to show

B [1vr@"R] < 2216 - r@h] + Lo [Hgk HZ}

1 n
=~ D IVAGDI? + L7E (20)
i=1

ey

By Lemma 6 and Lemma 7, we have that the last three terms
of (20) is bounded by By, which is
2
|

L SPLQ—rP +n) i Z HV £ (07”1)”2

3
" h=0 i=1

2 2
+2n2L2s2(d02 <1+ >+%>+nL< ’?/)

Then, taking the total expectation and averaging of (20) over
all iterations, we have

B> L= r)i;: (oL — Z H V(6

1 X N 2 f(oo) %)
E|— CE By,
[Kgn 1 M + = Z ¢
1)

where we use the fact that f (0K ) > f*. Next, our goal is to
find the upper bound of (1/K) le:;ol By.. Note that

4nL(n — r)2 _|_(nL— n? ZZ HVf(Gk

k=0 i=1

+T%fLﬂz+QOr—02§f§iHVﬁw5H
k=0 i=1

272 2
+”L(r—1)(2r—1)(d02<1+ ) 2f>

3

L d2 2
+H_(L+ﬂ_),

2 r %

+n?=nn+ 1DH2n+1)/6.

(22)

based on the fact that 12+ - --
Since we have
r2n2L2n2 +2(n—r)? N 4nL(n — r)* + (nL — 1)n?
Kn3 Kn3
- (3t2n%L? + 5nL — 1)n?
- Kn3
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then if the learning rate 7 satisfies that SyL + 372n°L* < 1,
we can finally obtain a constant bound for (1/K) Zf: 1 Bx,
i.e.,

KZ r;Ldo (217L(r +1)
3

(t — )27 — 1)+1)

nLB?
2y

(—(r— DT — 1)+1)

Substituting the expression of (1/K) Zfz_ol By back to (21),
we finally obtain Theorem 2. |
By setting the learning rate n = O(y/n/K), Algorithm 1
achieves the asymptotic convergence rate of O(1/v/nK)+
O(t%0?/K), when K is sufficiently large. If we further as-
sume that the objective function is strongly convex, i.e., the
following Assumption 4 holds, Algorithm 1 achieves the non-
asymptotic convergence result stated in Corollary 2.

Assumption 4: The objective function f is A-strongly con-
vex if for any X, y € R? we have | Vf(x) — Vf(y)|| = Alx —
y|| for some constant A > O.

Corollary 2 (Convergence Result for Convex Loss): For
Algorithm 1, suppose the total number of iterations K = T't
where T is the number of communication rounds and 7 is the
local iteration period. Under Assumptions 2-4, if the learning
rate satisfies 5nL + 3t%n%L? < 1, and all devices are initial-
ized at the same point 8° € R?. Then after K iterations, the
expected optimality gap is bounded as follows

2
[Zﬂ")— } a nm(f(oo 7o) 4 1L

4y
nLdo® 5 , ﬂ2 do*(r+1)
— 49’L DR2r—1 — 7).
a7 (r=D2e-1) + 6rA
(23)

Proof: According to Assumption 4, the inequality (19) can
be written as

E[f@ ] = mis+a —nnr@ + ”%LE [Hgk Hz}

L2 |1
n]E_

r
i

(24)

1y 0k 12
n;nvmonn.

€30k

Let the last three terms in (24) be bounded by B, which is
equivalent to nBy /2. Taking the total expectation and averag-
ing over K iterations of both sides of (24), one can obtain

B[ LY 0 - ] = = ety - )
Kk:O - Kni

(25)
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Next, our goal is to find the upper bound of (1/K) ZK ! B;.
Using the inequality (22), we have

|:4r/2L(n —r)? +n(nL — DHn?

||P1>§

2Kn3
2,312 +2(”_V)2 (SES k
F P |5 v
’73L2 5 5
+ (t—1DQr—D(do"(1+1/r)+2B7/y)

2
+ %(daz/r + ,32/)/).

If the learning rate n satisfies that SnL + 3t2n°L? < 1, we
obtain

Mk

2Lda (217L(r +1)

T (T-Dhar - 1)+1)

2 2
n"Lp <4”L( —1)(21—1)+1).
4y

Theorem 2 follows by substituting the expression of
(1/K) 3-F= B back to (25). [}

VII. EXPERIMENTS

In this section, we evaluate the performance of our proposed
scheme. We first describe our experimental setup and then
show the convergence properties of our approach. Next, we
demonstrate the effectiveness of our approach by comparing
it with a baseline approach. Finally, we show the trade-off
between privacy and model utility in our approach and how
our secure aggregation protocol improves the accuracy of the
learned model.

A. EXPERIMENTAL SETUP

Datasets and Learning Tasks. We explore the benchmark
dataset Adult [29] using both logistic regression and neu-
ral network models in our experiments. The Adult dataset
contains 48 842 samples with 14 numerical and categorical
features, with each sample corresponding to a person. The
task is to predict if the person’s income exceeds $50000
based on the 14 attributes, namely, age, workclass, fnlwgt,
education, education-num, marital-status, occupation, rela-
tionship, race, sex, capital-gain, capital-loss, hours-per-week,
and native-country. To simulate a distributed setting based on
the Adult dataset, we evenly assign the original Adult data to
16 devices such that each device contains 3052 data samples.
We train a logistic regression classifier and a 3-layer neural
network classifier (with ReLLU activation function) and use the
softmax cross-entropy as the loss function.

VOLUME 2, 2021

Baseline. We use a distributed version of the state-of-the-art
differentially private learning scheme in [24] as a baseline
to evaluate the efficiency of our proposed scheme, called
DP-DSGD (Differentially Private Distributed SGD). In DP-
DSGD, only one step of SGD is performed to update the local
model on a device during each communication period, and
Gaussian noise is added to each model update before sending
it out.

Hyperparameters. We take 80% of the data on each de-
vice for training, 10% for testing and 10% for validation.
We tune the hyperparameters on the validation set and report
the average accuracy on the testing sets of all devices. The
gradient norm G is enforced by clipping, which is widely
used in differentially private learning. For all experiments, we
set the privacy failure probability § = 10~ and the number
of selected devices per round » = 10. Note that due to the
randomized nature of differentially private mechanisms, we
repeat all the experiments for 5 times and report the average
results.

B. CONVERGENCE PROPERTIES OF OUR APPROACH

In this subsection, we show the algorithmic convergence prop-
erties of our approach under several settings of noise mag-
nitude o and local iteration period t. Specifically, for the
logistic regression, we show the testing accuracy and the ex-
pected training loss with respect to the number of commu-
nication rounds 7 when o € {1075, 107%,5 x 107*, 1073}
and 7 € {1, 5, 10, 40}. The results for the logistic regression
are depicted in Fig. 3. Similarly, for the neural network, we
show the testing accuracy and expected gradient norm with
respect to the number of communication rounds 7 when o €
{1074,1073,5 x 1073,1072} and 7 € {1, 5, 10, 20}. The re-
sults for the neural network are finally shown in Fig. 4.

For the logistic regression, the testing accuracy and ex-
pected loss generally decrease sharply and then slowly af-
terwards. As the noise magnitude o increases, the expected
training loss of the logistic regression converges to a higher
bound and the testing accuracy decreases, which is consis-
tent with the convergence properties of our approach where
a larger o implies a larger convergence error. For all settings
of noise, with a larger local iteration period, the expected loss
drops more sharply at the beginning and arrives at a higher sta-
tionary point, which is consistent with our approach’s conver-
gence properties where a larger T implies a larger convergence
error. When o = 1073 and 7 = 40, we can see that after the
expected loss decreases to 7 using about 40 rounds of com-
munication, it increases as more computations and communi-
cations are involved. The reason is that after the loss arrived
at a stationary point, keeping training brings additional noise
into the well-trained model and hence the model performance
drops. Similar trends have been observed for the neural net-
work classifier. When o = 1072, the testing accuracy drops
from the initialized value quickly as the noise is added into
the system, and then it increases as more computations and
communications are involved.
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FIG. 4. Convergence of the expected gradient norm (neural network). Here, we show the convergence of our approach in the first 100 communication

rounds.

C. MODEL UTILITY OF OUR APPROACH

In this subsection, we show the model utility of our ap-
proach compared with DP-DSGD. Specifically, for the logis-
tic regression, we set the number of communication rounds
T = 20 for both approaches and v = 10 for our approach.
Both approaches preserve (10, 10~#)-DP after 20 rounds of
communication. For our approach, we compute the noise
magnitude o by Theorem 1. Note that we randomly sample
the active devices for each round and make sure each de-
vice participates the same number of communication rounds
beforehand, and then we use the sampling result for both
approaches. For DP-DSGD, it achieves (2C;G*/ny’c? +
2/210g(1/8)CiG2 /ny202, §)-DP for device i, which can be
used to compute the noise magnitude o given € and §. The
testing accuracy and expected loss with respect to the number
of communicate rounds are shown in Fig. 5. For the neural
network, we set the number of communication rounds 7" =
50, the overall privacy budget € = 10 for both approaches, and
T =5 for our approach. The testing accuracy and expected
gradient norm with respect to the number of communication
rounds are shown in Fig. 6.
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FIG. 5. Testing accuracy and expected training loss of our approach in
comparison with DP-DSGD (logistic regression). Here, we set T = 20 and
€ = 10 for both approaches, and set r = 10 for our approach.

For logistic regression, we observe that our approach ex-
hibits faster convergence than DP-DSGD at the beginning,
and finally achieves a higher accuracy and a lower expected
loss than DP-DSGD within 20 rounds of communication. For
neural network, we observe the similar trend. Our approach
converges faster than DP-DSGD and achieves a higher ac-
curacy and a lower expected gradient norm than DP-DSGD.
Therefore, our approach achieves higher model utilities than
DP-DSGD under the same privacy guarantee.
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D. TRADE-OFF BETWEEN PRIVACY AND UTILITY

To observe the privacy-utility tradeoff, we evaluate the effects
of different values of privacy budgets € on the testing accuracy
of trained classifiers. In addition, we compare our approach
with the approach without secure aggregation (i.e., same as
our approach but without secure aggregation) to show how
secure aggregation improves the accuracy. For logistic regres-
sion, we set the local iteration period t =2 and the num-
ber of communication rounds 7 = 20. For neural network,
we set the local iteration period T =5 and the number of
communication rounds 7 = 50. We show the testing accuracy
with respect to different values of privacy budget € of logistic
regression and neural network in Fig. 7 and Fig. 8, respec-
tively. As expected, a larger value of € results in a higher
accuracy while providing a lower DP guarantee. Moreover,
our approach with secure aggregation always outperforms the
approach without secure aggregation because less noise is
added in each iteration.

VIIl. RELATED WORK

Privacy issue has received significant attention recently in
distributed learning scenarios handling user-generated data.
Among distributed learning schemes that preserve privacy,
many of them rely on secure multi-party computation or ho-
momorphic encryption, which involve both high computa-
tion and communication overhead and are only applicable to
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FIG. 8. Trade-off between privacy and accuracy (neural network). Here, we
setT =50and r =5.

simple learning tasks such as linear regression [30] and lo-
gistic regression [31]. Furthermore, these privacy-preserving
solutions could not prevent the information leakage from
the final learned model. Model inversion attacks and mem-
bership inference attacks have already shown that sensitive
information about the training data could be extracted even
when the adversaries only have access to the final learned
model [6], [7], [23]. DP provides rigorous protections against
such attacks and has become the de-facto standard for pri-
vacy, and it is being increasingly adopted in private data
analysis [20].

A wide range of differentially private distributed learning
algorithms (see [24], [32]-[37] and references therein) have
been proposed based on different optimization methods (e.g.,
alternating direction method of multipliers, gradient descent,
and distributed consensus) and noise addition mechanisms
(e.g., output perturbation, objective perturbation, and gradient
perturbation). These schemes share a common goal to pre-
serve utility of learned model with the presence of DP noises.
Among them, multiple works focus on the integration of DP
and federated learning. However, most of them (e.g., [8]-[17])
demonstrate the performance of proposed approaches merely
by experiments, with no theoretical analysis on the conver-
gence. However, experimental observations are not always
reliable since the performance of machine learning algorithms
heavily rely on hyper-parameter tuning, and an algorithm that
is observed to perform better than other algorithms may just
be the algorithm that is better tuned. Moreover, algorithms
without rigorous convergence may have low accuracies under
special cases that are not observed in experiments. Hence it is
meaningful to have performance analysis that could be used
to guide the algorithm design and hyper-parameter tuning. In
this paper, we provide the rigorous performance analysis and
tight end-to-end DP bound for our scheme.

The works closest to ours are [9], [18], [35]-[38], which
also provide performance analysis for federated learning.
These work, however, focus on some special cases of fed-
erated learning schemes or have different privacy assump-
tions. Specifically, the work in [36], [37] focus on FedSGD,
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where only one step of stochastic gradient descent is per-
formed in each communication round. Multi-step local up-
date in each round is considered in [18], [38], however, they
do not consider client sampling, which could greatly impact
the performance of the algorithms and corresponding privacy
analysis. It is worth noting that performing multiple steps
of local updates in each communication round as well as
adopting client sampling are two core design factors that
make federated learning communication-efficient and prac-
tical in large scale [19]. We consider both factors when de-
signing our differentially private federated learning scheme
in this paper, where the previous two settings could be con-
sidered as special cases of our approach. The threat model
considered in [35], [38] also differs from our work. In addi-
tion, a lot of federated learning tasks have non-convex loss
functions, but the performance analysis in prior works [18],
[35]-[38] rely on a common convexity assumption of the
loss functions. We remove this assumption in our paper
and thus our analysis is much more general than previous
approaches.

There are also some related work that are orthogonal to
our approach [25], [39], [40]. Agarwal et al. [39] proposed
a modified distributed SGD scheme based on gradient quan-
tization and binomial mechanism to make the scheme both
private and communication-efficient. Li et al. [40] developed a
method that compresses the transmitted messages via sketches
to simultaneously achieve communication efficiency and DP
in distributed learning. Our work is orthogonal to theirs by
focusing on reducing the number of communication rounds
via more local computation per round instead of the size of
messages transmitted per round. Besides, [25] proposed a se-
cure aggregation method to protect model updates during the
training of federated learning, but its focus is to present suit-
able cryptographic techniques that ensure secure aggregation
in federated learning under unreliable mobile environments,
without a detailed study of the integration of DP, secure ag-
gregation, and learning algorithms. It is also worth noting that
many prior works assume a trusted central server [9], which
is a stronger assumption than our “honest-but-curious” threat
model.

IX. CONCLUSION

In this paper, we have proposed a differentially private fed-
erated learning approach based on the state-of-the-art and
mostly adopted federated learning scheme, federated averag-
ing with client sampling. We have provided a rigorous con-
vergence analysis of our proposed approach, which is valid
for both convex and non-convex loss functions. We have also
tightly accounted the privacy loss over the interactive learning
process using zCDP and provided an end-to-end analysis on
its DP guarantee. We have conducted extensive experiments
on the real-world dataset, and the experimental results have
validated the effectiveness of the proposed scheme with both
good model utility and strong privacy protection.
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