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K1 The cerebral cortex, a delay coupled oscillator net-
work: Computations in high dimensional dynamic space
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The supra-granular layers of the cerebral cortex can be
considered as a delay coupled recurrent network whose
nodes are feature selective and have a propensity to oscil-
late. Such networks exhibit high dimensional non-linear
dynamics that can be exploited for computations. Results
obtained with parallel recordings of neuronal responses
in cat and monkey visual cortex suggest that the cerebral
cortex exploits this high dimensional dynamic space for
the flexible encoding of relations among features (feature
binding), for the acquisition and storage of information
about statistical contingencies of features in the environ-
ment (priors), for the ultra-fast matching of priors with
sensory evidence (predictive coding) and the classifica-
tion of stimulus specific activity vectors by segregation in
high dimensional space. In addition, the network dynam-
ics allow for the generation of stimulus specific response
sequences (temporal codes) and the superposition of infor-
mation provided by sequentially presented stimuli. These
computations complement those realized in multilayer feed
forward architectures and allow for the coexistence of rate
and temporal codes. It is proposed that differences between
the performance of natural and artificial systems, e.g., the
deep learning networks, are mainly due to the fact that
recurrent processing permits exploitation of the temporal
dimension for computation. For review, see [1].
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We confront high dimensional data in thinking about the
inputs to our sensory systems, the activity of neural popula-
tions, and the behavioral outputs of organisms. It is tempting
to simplify be searching for lower dimensional structure, but
what are the alternatives?

As an example, the scale invariant structure of natural images
means that one can achieve a thousand-fold reduction of dimen-
sionality with only a two-fold loss of variance, but this would
miss important aspects of the natural image ensemble. Renor-
malization group ideas from statistical physics offer other paths
to simplification, reducing the dimensionality of models rather
than the data itself. We have tried this approach to analyzing the
collective activity of 1000+ neurons in the hippocampus, reveal-
ing scaling behaviors that are reproducible across animals, some-
times to the second decimal place. For animal behavior, we have
tried simplifying by compressing behavioral states while main-
taining information about future states, and the simplest models
that can capture the resulting correlations involved scale invariant
interactions over multiple time scales. We are just scratching the
surface, but these results suggest that high dimensional data on
brains and behavior can be organized in surprising ways.
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K3 Advances in computational psychiatry: Understand-
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The human brain is a complex organ characterized by het-
erogeneous patterns of interconnections. Non-invasive imag-
ing techniques now allow for these patterns to be carefully
and comprehensively mapped in individual humans, pav-
ing the way for a better understanding of how wiring sup-
ports cognitive processes. While a large body of work now
focuses on descriptive statistics to characterize these wiring
patterns, a critical open question lies in how the organiza-
tion of these networks constrains the potential repertoire of
brain dynamics. Here I describe an approach for understand-
ing how perturbations to brain dynamics propagate through
complex wiring patterns, driving the brain into new states
of activity. Drawing on a range of disciplinary tools — from
graph theory to network control theory and optimization — I
identify control points in brain networks and characterize
trajectories of brain activity states following perturbation
to those points. Finally, I describe how these computational
tools and approaches can be used to better understand the
brain's intrinsic control mechanisms and their alterations in
psychiatric conditions.
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The cell assembly hypothesis [1] postulates that neurons
coordinate their activity through the formation and repeti-
tive co-activation of groups. While the classical theory of
neural coding revolves around the concept that information
is encoded in firing rates, we assume that assembly activ-
ity is expressed by the occurrence of precisely timed spa-
tio-temporal patterns (STPs) of spikes emitted by neurons
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that are members of the assembly, e.g., a synfire chain. We
first report on a method that is capable to detect significant
STPs in massively parallel spike trains (SPADE [2—4]), and
then present pattern results from the analysis of Utah array
recording from pre-/motor cortex of monkey. SPADE first
identifies repeating STPs using Frequent Itemset Mining
[5], and then evaluates the detected patterns for signifi-
cance through comparison to patterns found in surrogate
data. Various surrogate techniques can be used to evaluate
significance, and their correct choice is crucial to ensure
that by-chance patterns are not classified as significant [6].
The final step of the method is the removal of false positive
patterns being a by-product of true patterns with background
activity. Here, we evaluate how different six types of surro-
gate techniques affect the results of SPADE, in terms of the
general statistics of the generated surrogates, and in terms of
the amount of false positives. We conclude that spike-train
shifting [7] is the preferable choice for our type of data,
which typically show a CV < 1 and have a dead time after
the spikes of 1.6/1.2ms induced by the spike sorter (Plexon).
Uniform dithering, in contrast, leads to a high false positive
rate. In a next step, we evaluate if cell assemblies are active
in relation to motor behavior [2]. Therefore, we analyze 20
experimental sessions, each of about 15min recording, con-
sisting of parallel spike data recorded by a 10x10 electrode
Utah array in the pre-/motor cortex of two macaque monkeys
performing a reach-to-grasp task [8,9]. The monkeys have
four possible behavioral conditions of grasping and pulling
an object consisting of combinations of two possible grip
types (precision or side grip) and two different amounts of
force required to pull the object (low or high). We segment
each session into 6 periods of 500ms duration and analyze
them independently for the occurrence of STPs. Each signifi-
cant STP is identified by its neuron composition, its number
and times of occurrences and the delays between spikes.
We find that significant STPs indeed occur in all phases of
the behavior. Their size ranges between 2 and 6 neurons,
and their maximal spatial extent is 60ms. The STPs are spe-
cific to the behavioral context, i.e., within the different trial
epochs and across conditions (different grip and force type
combinations). This suggests that different assemblies are
active in the context of different behavior. Within a record-
ing session, we typically find one neuron that is involved in
all STPs of a session. The neurons involved in STPs within a
session are not clustered on the cortex, but may be far apart
(up to 3.6mm). We further plan to investigate the spatial
arrangement of the patterns on the Utah array, to determine
whether there are preferred spatial directions of pattern spike
sequences, as found in [2] for synchronous patterns. Finally,
we plan to investigate whether the grip type can be better
decoded on the basis of the type of STPs or by using the fir-
ing rates of the neurons.
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Fig. 1 A Hierarchical model of visual processing. B With static
background noise, the network is either stuck in individual attractors
or produces blurry images. In contrast, cortical oscillations promote
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diverse and crisp images. C Multisensory ensemble tasked with
stimulus disambiguation under conflicting input. D Oscillatory back-
ground helps find consistent, valid interpretations
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Humans and animals are confronted with incomplete infor-
mation in a world marked by uncertainty. Their brains have
thus faced evolutionary pressure to develop representations
of this uncertainty that enable appropriate responses and
decisions. This requires considering different interpreta-
tions of available sensory input or multiple solutions to
an encountered problem. In a neural network, the different
coherent interpretations correspond to different attractor
states that usually lie far apart in the network's state space.
Switching between multiple attractors is thus very difficult,
and this mixing problem is particularly challenging for high-
dimensional, complex distributions.

We show that cortical oscillations, a ubiquitous phenomenon
in the brain [1], can help overcome this problem. We con-
sider biologically plausible, mechanistic models of neural
sampling in spiking networks [2,3]. These networks use the
cortical background as a means of attaining stochasticity,
with the background intensity determining the sensitivity
of neuronal transfer functions. Increasing background levels
decrease neuronal sensitivity, which renders the probability
landscape sampled by the network more uniform. Formally,
this creates a correspondence between background firing
rates and ensemble temperatures, allowing the interpretation
of oscillatory background as a form of simulated tempering
[4,5].

We exemplify the functional implications of cortical oscil-
lations using two different computational tasks that simul-
taneously highlight advantages of sampling-based infer-
ence. In a hierarchical model of visual processing, the
network is tasked with retrieving a diverse set of images
from memory (Fig. 1A). Such networks are faced with an
exploration—exploitation dilemma: they need to travel wide
distances between attractor states in order to sample from all
image categories, while still persisting in local attractors for
long enough to produce clean outputs. Cortical oscillations,
in contrast to static-intensity background, periodically flatten
the network's probability landscape, allowing the network to
escape attractors and produce a diverse set of crisp images
(Fig. 1B). We further consider a multisensory stimulus dis-
ambiguation task, where the different modalities receive
conflicting input (Fig. 1C). To solve this task, a network
needs to form consistent opinions across all modalities and
quickly visit all valid interpretations of the stimulus. Corti-
cal oscillations help structure network activity into sampling
episodes, during which valid interpretations are highly prob-
able and in between which switches become likely (Fig. 1D).
Our work thus provides a rigorous framework for the sug-
gested functional role of cortical oscillations as a temper-
ing mechanism. It shows that cortical background acts as an
ensemble temperature and rhythmic changes can modulate
exploration without compromising sampling quality. This
identifies a new computational role of cortical oscillations
and connects them to various phenomena in the brain, such

@ Springer

as sampling-based probabilistic inference, memory replay,
multisensory cue combination and place cell flickering.
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Cerebellar Purkinje cells (PCs) are some of the most impres-
sive neurons in the central nervous system due to their unique
dendritic morphology. The most remarkable feature of PC
dendrites is their extensive branching, which allows them to
integrate large amount of information. While PCs constitute
the unique output of the cerebellar cortex, they receive two
types of excitatory synaptic input: a single climbing fiber,
that forms hundreds of synapses with the PC, or more than
100,000 parallel fibers (PFs) that run orthogonally to the PC
dendritic tree [1]. In order to understand cerebellar function,
it is important to unveil the mechanisms through which PCs
encode the input information and transmit output signals for
the downstream neurons. Unlike the calcium spikes that are
trigged by climbing fibers, the dendritic spikes triggered by
the parallel fibers are quite unexplored. Recent literature [2]
has unveiled their essential role on cerebellar function. Via
in vivo two-photon imaging of cerebellar PFs, the authors
were able to determine that clustered parallel fiber input can
drive dendritic spikes, postsynaptic calcium signaling and
synaptic plasticity in the downstream Purkinje cells.
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We propose a model that is able to explore the bimodal com-
putation in a PC, i.e. tonic firing at low input range and
burst-pause dynamics at high input range, and the biophysi-
cal mechanism of dendritic spikes. As done in previous work
[3], we grouped PC spiny dendrites into 22 branches along
the main dendrite and we distributed a set number of PFs on
each of the branches. Previous research using a model with
uniform channel densities in the dendrite [4] has shown that
only 4 out of the 22 branches exhibit a bimodal linear step-
plateau response with increasing PF synapses number, while
the others were showing a linear response. Here, we show
that by altering particular ionic current densities in each of
the branches, we can covert the response from linear into
step-plateau for all of the branches. We determine the dif-
ferent PF thresholds for each of the branches and we discuss
how their values correlate to the surface area and volume of
each branch. In the case of each branch, we address dendritic
spike propagation to the neighboring branches.
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Objectively differentiating patient mental states based
on electrical activity, as opposed to overt behavior, is a

fundamental neuroscience problem with medical appli-
cations, such as identifying patients in locked-in state vs.
coma. Electroencephalography (EEG), which detects mil-
lisecond-level changes in brain activity across a range of
frequencies, allows for assessment of external stimulus pro-
cessing by the brain in a non-invasive manner. We applied
machine learning methods to 26-channel EEG data of 24 flu-
ent Deaf signers watching videos of sign language sentences
(comprehension condition), and the same videos reversed in
time (non-comprehension condition), to objectively separate
vision-based high-level cognition states. While spectrotem-
poral parameters of the stimuli were identical in comprehen-
sion vs. non-comprehension conditions, the neural responses
of participants varied based on their ability to linguistically
decode visual data. We aimed to determine which subset
of parameters (specific scalp regions or frequency ranges)
would be necessary and sufficient for high classification
accuracy of comprehension state.

Optical flow, characterizing distribution of velocities of
objects in an image, was calculated for each pixel of stimulus
videos using MATLAB Vision toolbox. Coherence between
optical flow in the stimulus and EEG neural response (per
video, per participant) was then computed using canonical
component analysis with NoiseTools toolbox. Peak correla-
tions were extracted for each frequency for each electrode,
participant, and video. A set of standard ML algorithms
were applied to the entire dataset (26 channels, frequencies
from .2 Hz to 12.4 Hz, binned in 1 Hz increments), with
consistent out-of-sample 100% accuracy for frequencies
in .2-1 Hz range for all regions, and above 80% accuracy
for frequencies <4 Hz. Sparse Optimal Scoring (SOS) was
then applied to the EEG data to reduce the dimensionality
of the features and improve model interpretability. SOS with
elastic-net penalty resulted in out-of-sample classification
accuracy of 98.89%. The sparsity pattern in the model indi-
cated that frequencies between 0.2—4 Hz were primarily used
in the classification, suggesting that underlying data may be
group sparse. Further, SOS with group lasso penalty was
applied to regional subsets of electrodes (anterior, posterior,
left, right). All trials achieved greater than 97% out-of-sam-
ple classification accuracy. The sparsity patterns from the
trials using 1 Hz bins over individual regions consistently
indicated frequencies between 0.2—1 Hz were primarily used
in the classification, with anterior and left regions perform-
ing the best with 98.89% and 99.17% classification accu-
racy, respectively. While the sparsity pattern may not be the
unique optimal model for a given trial, the high classification
accuracy indicates that these models have accurately identi-
fied common neural responses to visual linguistic stimuli.
Cortical tracking of spectro-temporal change in the visual
signal of sign language appears to rely on lower frequen-
cies proportional to the N400/P600 time-domain evoked
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response potentials, indicating that visual language compre-
hension is grounded in predictive processing mechanisms.
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A myriad of pathological changes associated with epilepsy,
ranging from the loss of specific cell types [1], improper
expression of individual ion channels [2], and synaptic
sprouting [3], can all be recast as decreases in cell and circuit
heterogeneity. We recently demonstrated that biophysical
diversity is a key characteristic of human cortical pyramidal
cells in non-epileptogenic tissue [4]. We thus hypothesize
that epileptogenesis can be recontextualized as a process
where reduction in cellular heterogeneity renders neural cir-
cuits less resilient to transitions into seizure [5].

By comparing whole-cell patch clamp recordings from
layer 5 (L5) human cortical pyramidal neurons from epilep-
togenic and non-epileptogenic tissue, we present the first
direct experimental evidence that a significant reduction in
neural heterogeneity accompanies epilepsy. We implement
these heterogeneity levels in excitatory-inhibitory (E-I)
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spiking network models motivated by previous modeling
of synchronous cortical activity [6]. Networks with patho-
logical, low levels of neural heterogeneity display unique
dynamics typified by a sudden transition into a hyper-active
and synchronous state paralleling ictogenesis (see Fig. 1,
panel B). Mean-field analysis reveals that these networks
also have a distinct mathematical structure distinguished by
multi-stability and a saddle-node bifurcation accompany-
ing the seizure-like transition. Furthermore, the mathemati-
cally characterized linearizing effect of heterogeneity on
input—output response functions [7] explains the counter-
intuitive experimentally observed reduction in single-cell
excitability of the population of neurons from epileptogenic
tissue.

This joint experimental, computational, and mathemati-
cal study showcases that decreased neuronal heterogeneity
exists in epileptogenic human cortical tissue, that this differ-
ence yields dynamical changes in neural networks parallel-
ing ictogenesis, and that there is a fundamental explanation
for these dynamics based in the mathematically character-
ized effects of heterogeneity. Viewed jointly, these interdisci-
plinary results provide convincing evidence that biophysical
diversity imbues neural circuits with resilience to seizure,
and potentially a new lens through which to view epilepsy
that could reveal new targets for clinical treatment of the
most common serious neurological disorder in the world.
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One of the goals of neuroscience is to understand the com-
putational principles that describe the formation of behav-
iorally relevant signals in the brain, as well as how these
computations are realized within the constraints of biologi-
cal networks. Currently, most functional models of neural
activity are based on firing rates, while the most relevant
signals for inter-neuron communication are spikes. Recently,
the framework of predictive coding [1] has suggested a the-
ory on how neural networks might compute behaviorally
relevant signals with spikes. So far, the network with predic-
tive coding has been derived from a single objective func-
tion, resulting in a network of one cell type. The model with
one cell type, however, does not comply with Dale’s law.
Moreover, unless spiking is artificially restricted to one spike
per time step [1], or the regularization terms in the objective
function are fine-tuned [2], or else Poissonian spike genera-
tion is imposed on the top of derived network equations [3],
the activity strongly synchronizes and evolves towards states
of runaway excitation [2,3].

Here, we extend the theory of predictive coding and develop
functional spiking E-I networks that incorporate several
important biophysical properties of cortical ensembles. We
impose the E-I architecture and derive a general solution
for E-I networks that obey Dale's law, accounts for slow
recurrent and local currents with realistic time scales, and
have plausible connectivity patterns that can be learned with
Hebbian learning. The network does not require fine-tuning
of parameters to avoid runaway excitation, shows asynchro-
nous irregular spiking (Fig. 1) and balances excitatory and
inhibitory currents by construction.

We show that the best network solutions occur in inhibition-
dominated regimes and in regimes with adaptation. Best solu-
tions are characterized by a moderate temporal E-I balance [4]
and by loose E-I balance [5]. Best solutions introduce a new
scaling with the network size. Such scaling does not require
changes of connectivity weights, but instead requires changes
in the top-down current. By changing the top-down current
globally, we model a continuum of dynamical regimes that
have been observed in the cortex. A local change of the top-
down current to a group of selected neurons instead repro-
duces dynamical effects of top-down attention, such as an
increase in firing rates and decrease in noise correlations in
neurons selective for the attended stimulus feature. Devel-
oping a biologically plausible theory of functional networks
is extremely important, since it allows to formulate testable
predictions of theoretical models, bridging the gap between
theoretical and experimental neuroscience.
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The relationship between neuronal activity and the external
world changes over time, even for habitual behaviors. This
phenomena, termed “representational drift”, seems to be at
odds with long-term stable neural representations. Previ-
ous studies have shown that gradual drift in neuronal tuning
(i.e., average firing rates conditioned on behavioral vari-
ables) could be tracked using weak error feedback. In this
work, we show how stable representations could be achieved
without external error feedback. We present a model for rep-
resentational drift that captures features of neural population
codes observed experimentally: tunings are typically stable,
but occasionally undergo larger reconfigurations. We then
discuss “self healing neural codes”, which combine error-
correction with plasticity. Self-healing codes can track drift
without outside error feedback. The learning rule required is
biologically plausible, and amounts to a form of homeostatic
Hebbian plasticity. When combined with network interac-
tions that allow neurons to share information, such homeo-
static plasticity could allow a population of stable cells to
maintain an accurate readout of an unstable population code

(Fig. ).
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of state-dependent computation in the hypothalamus

Samuel Mestern', Gabriel Benigno®, Aoi Ichiyama', Wataru
Tnoue’, Lyle Muller’

"Western University, Robarts Research Institute, London,
Canada

>Western University, Applied Mathematics, London, Canada
SWestern University, Department of Applied Mathematics,
London, Canada

Email: smestern@uwo.ca

How do single-neuron and network properties combine to
create biological function and computation? The interaction
between properties of individual neurons and their pattern
of connections can translate into a vast array of dynamics at
the network level. However, it remains difficult to probe pre-
cisely how individual neuron and network-level properties
contribute to dynamics and biological function. In this work,
we study the interaction of single-neuron and network-level
properties in the hypothalamic stress circuit to understand
how neuron properties result in stress-dependent switches
in hormonal output.

Despite extensive research, surprisingly, little is known
about how hypothalamic circuits encode the states of
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homeostasis and mount stress response upon threats [1]. The
Inoue Lab (Robarts Research Institute, Western University,
Canada) has recently established an in vivo single-unit extra-
cellular recording paradigm in a group of hypothalamic neu-
rons that regulate hormonal stress responses in mice. These
neurons show a stress-dependent spiking profile character-
ized by (1) brief (2-5 spikes) of high-frequency (> 100 Hz)
bursting followed by a long, predominantly silent period
(500 ms-1 s), constraining the overall firing rate at low lev-
els (~3 Hz) or (2) single and more continuous spiking with
variable spike frequency. Under stress, these neurons fire
exclusively in the single-spike mode and reach a relatively
high firing rate (20 Hz). However, when characterized in
slices ex vivo, these same neurons rarely show these brief
bursts and predominantly show single-spike patterns [2].
This difference between in vivo and ex vivo firing patterns
indicates that intact network activity underlies the firing pat-
terns responsible for homeostatic regulation in vivo.

Using data from whole-cell patch-clamp in intracellular
recordings in vitro, we first developed an adaptive expo-
nential integrate-and-fire (AdEx) model to capture the
subthreshold membrane potential and spiking dynamics
following standard current injection protocols. We next
implemented our single neuron models into a network of
excitatory and inhibitory populations. Using this model, we
replicated the stress-dependent firing patterns seen in vivo.
The computational model revealed a discrete combination
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of intrinsic and network factors that drive the transition
between the two firing modes. Finally, we returned to ex vivo
whole-cell patch-clamp and injected the synaptic inputs to
a model cell in the computational network model. Remark-
ably, this model-guided current injection reliably replicated
the two distinct firing modes found in vivo.

Our work presents a novel computational model of a hypo-
thalamic homeostasis circuit and new results in validating
network models in experiments. More generally, we dem-
onstrate the power of simplified single neuron models that
allow us to move back-and-forth between in silico and ex
vivo experiments and generate new predictions in tight col-
laboration between modelling and experiment in computa-
tional neuroscience.

References

1. Daviu N, Fiizesi T, Rosenegger DG, Rasiah NP, Sterley
TL, et al. Paraventricular nucleus CRH neurons encode
stress controllability and regulate defensive behavior selec-
tion. Nature neuroscience. 2020 Mar;23(3):398-410.

2. Yuan Y, Wu W, Chen M, Cai F, Fan C, et al. Reward
inhibits paraventricular CRH neurons to relieve stress. Cur-
rent Biology. 2019 Apr 1;29(7):1243-51.
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Cortical circuits generate patterned activities that reflect intrin-
sic brain dynamics that lay the foundation for any, including
stimuli-evoked, cognition and behavior. However, the spati-
otemporal organization properties and principles of this intrin-
sic activity have only been partially elucidated due to previ-
ous poor resolution of experimental data and limited analysis
methods. Here we investigated continuous wave patterns on
data from high spatiotemporal resolution optical voltage imag-
ing of the upper cortical layers in anesthetized mice. Waves of
population activities propagate in heterogeneous directions to

@ Springer

coordinate neuronal activities between different brain regions.
The complex wave patterns show characteristics of both ste-
reotypy and variety. The location and type of wave patterns
determine the dynamical evolution when different waves inter-
act with each other. Local wave patterns of source, sink or sad-
dle emerge at preferred spatial locations. Specifically, ‘source’
patterns are predominantly found in cortical regions with low
multimodal hierarchy such as the primary somatosensory cor-
tex. Our findings reveal principles that govern the spatiotem-
poral dynamics of spontaneous cortical activities and associate
them with the structural architecture across the cortex. More
details can be referred in our recent published paper [1].
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Dopamine is a critical neuromodulator involved in modulat-
ing the long-term synaptic plasticity of hippocampal Schaf-
fer collateral-CA1 pyramidal neuron (SC-CA1) synapses,
which modulates the plasticity of SC-CA1 synapses in a
dose-dependent manner. Over the last four decades, limited
experimental results from hippocampal slice experiments
have shown that the timing of the activation of dopamine
D1/D5 receptors relative to a high/low-frequency stimulation
(HFS/LES) in SC-CA1 synapses regulates the modulation of
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HFS/LFS-induced long-term potentiation/depression (LTP/
LTD) in these synapses. However, the existing literature
lacks a complete picture of how various concentrations of
D1/D5 agonists and the relative timing between the activa-
tion of D1/D5 receptors and LTP/LTD induction by HFS/
LFS, affect the spatiotemporal modulation of SC-CA1 syn-
aptic dynamics.

The exploration of the effect of various concentrations
of different dopamine agonists with different frequency-
dependent stimulation protocols, such as HFS or LFS to
induce LTP or LTD, respectively, is a combinatorically chal-
lenging problem. The number of experiments required to
fill in these gaps of knowledge are prohibitively expensive
and time-consuming. To address this challenge, we have
developed a computational modeling approach to integrate
the spatiotemporal impact of D1/D5 agonists on the HFS/
LFS-induced early and late LTP/LTD at the electrophysi-
ological level. Our modeling hypothesis is that the chain
of biochemical signaling initiated by HFS/LFS and D1/D5
receptors agonists compete for a limited available biochemi-
cal resources to induce and/or modulate late-LTP/LTD in the
hippocampal SC-CA1 synapses. Our model combines the
biochemical effects with the electrical effects at the electro-
physiological level. We have estimated the model parameters
from the published electrophysiological data, available from
diverse hippocampal CA1 slice experiments, in a Bayesian
framework.

Here, we demonstrate the capability of our model in mak-
ing quantitative predictions of the available data from in
vitro slice experiments on the temporal dose-dependent
modulation of the HFS/LFS induced LTP/LTD in SC-CAl
synapses by various D1/D5 agonists (see Fig. 1). Moreover,
we highlight the importance of the relative timing between
the release of the D1/DS5 agonists at various concentrations
and the HFS/LFS protocol in modulating LTP/LTD of the
SC-CAI synapse.
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processing

Alexandre Guet McCreight', Margaret Wishart', Homeira
Moradi Chameh?, Shreejoy J. Tripathy', Taufik Valiante’,

Etay Hay"

ICentre for Addiction and Mental Health, Krembil Centre
for Neuroinformatics, Toronto, Canada

2University Health Network, Krembil Research Institute,
Toronto, Canada

3Krembil Research Institute, Division of Clinical and Com-
putational Neuroscience, Toronto, Canada

“Centre for Addiction and Mental Health, University of
Toronto, Krembil Centre for Neuroinformatics, Psychiatry,
Physiology, Toronto, Canada

Email: agmccrei @gmail.com

Aging involves a variety of neurobiological changes,
although their effect on brain function remains poorly under-
stood due to limited experimental capabilities in humans.
The growing availability of human neuronal and circuit data
provides an opportunity to uncover age-dependent changes
at finer scales of brain networks and constrain detailed
computational models to study the related effects on brain
function. Here we analyzed sag voltage in human layer 5
pyramidal neurons and found a significant increase in old vs.
young. We then generated models of young and old pyrami-
dal neurons capturing the experimental changes and simu-
lated them in layer 5 microcircuits. We found that old micro-
circuits had lower baseline and response rates than young
microcircuits, but an overall enhanced signal-to-noise ratio
due to a larger effect on baseline firing rates. Accordingly,
the reduced noise in microcircuit output with age enabled
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a higher accuracy of stimulus discrimination. These age
effects were principally due to changes in dendritic conduct-
ance mechanisms underlying the measured changes in sag
properties. Our results report an age-dependent increase in
human pyramidal neuron sag current, which reduced cortical
firing noise and improved sensory processing in simulated
microcircuits, and thus could serve as a target for modulation
to ameliorate age-associated cognitive decline.
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Astrocytes have been shown to have important roles in sev-
eral phenomena in the brain, such as synapse development,
functionality, and plasticity [1], but the underlying biochem-
ical and biophysical mechanisms are not understood. The
mechanisms involved seem to depend, for example, on the
developmental stage of an animal and the brain area in ques-
tion. Recent experimental studies have also shown that fine
astrocyte processes are increasingly active and motile during

Fig. 1 Larger glutamate spillo-
ver produced stronger t-LTD. A
Excitatory postsynaptic poten-
tials (EPSPs) are shown before
(black) and after t-LTD induc-
tion (other colors than black)

of all spillover percentages for
both models, the original model
with the astrocyte and the model
without the astrocyte. B The
change of EPSPs seen in A is
shown as a function of spillover “
percentages for both models

synaptic activation, particularly during long-term plastic-
ity changes [2,3]. Such an activity and motility may occur
when a fine astrocyte process retracts from a synapse during
learning or in injury, making possible for the synaptically
released glutamate to spill over from the synaptic cleft to
the extrasynaptic space. In the present study, we used our
previously developed in silico layer 4 to layer 2/3 tripartite
synapse model in somatosensory cortex during postnatal
development [4] to explore and predict the amount of glu-
tamate spillover required to induce spike-timing-dependent
long-term depression (t-LTD), both with and without fine
astrocyte process activation. The model includes presynap-
tic, postsynaptic, and astrocytic mechanisms and links them
to the time window of t-LTD induction which is sensitive to
temporal difference between the postsynaptic and presyn-
aptic activity [5,6]. We showed that endocannabinoid-based
feedback signal from the postsynaptic to presynaptic neuron
via the fine astrocyte process is able to induce and maintain
long-lasting decrease in synaptic transmission during post-
natal development. Our results also showed that the strength
of t-LTD can be modulated by the amount of glutamate
spillover (Fig. 1). Developing sensory circuits are known
to undergo synapse elimination which is essential for the
formation of mature neuronal circuits. Astrocytic modula-
tion of synaptic depression, including the active and motile
fine astrocyte processes, may therefore be one important step
in preparing neuronal circuits for mature cortical sensory
processing.
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Intensive computational and theoretical work has led to the
development of mutliple mathematical models for burst-
ing in respiratory neurons in the pre-Botzinger Complex
(pre-BotC) of the mammalian brainstem. Nonetheless,
these previous models have not captured the preinspira-
tory ramping aspects of these neurons' activity patterns, in
which relatively slow tonic spiking gradually progresses to
faster spiking and a full-blown burst, with a corresponding
gradual development of an underlying plateau potential. In
this work, we show that the incorporation of the dynam-
ics of the extracellular potassium ion concentration into an
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existing model for pre-BotC neuron bursting, along with
some parameter updates, suffices to induce this ramping
behavior. Using fast-slow decomposition, we show that this
activity can be considered as a form of parabolic bursting,
but with burst termination at a homoclinic bifurcation rather
than as a SNIC bifurcation (Fig. 1). We also investigate the
parameter-dependence of these solutions and show that the
proposed model yields a greater dynamic range of burst fre-
quencies, durations, and duty cycles than those produced by
other models in the literature.
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The olfactory organs of insects are their antenna, on which
olfactory receptor neurons (ORNs) are housed in an evagi-
nated sensilla. Several ORNs are grouped together in the
same sensillum, between 2 and 4 in Drosophila, but up to
20 for instance in the sensilla of the honeybee. Unlike most
other neurons, in particular in vertebrates, the ORNSs in
the sensilla are not isolated from each other by myelin and
they are known to interact (inhibit) with each other non-
synaptically (see Fig. 1a). Moreover, the pairings of ORNs
expressing specific olfactory receptor types are stereotypical,
suggesting that interactions may be functional or selected for
rather than being accidental.

In this work we present the results of an in-depth model-
ling study that elucidates possible functions of non-synaptic
interactions (NSI) of ORNs in sensilla. A number of hypoth-
eses for the potential roles of NSI have been suggested in
the literature [1,2]. To investigate the viability of these ideas
we have built a computational model of the first two stages
of information processing in the Drosophila olfactory sys-
tem—the ORNs on the antennae and the glomeruli in the
antennal lobe, in which projection neurons (PNs) and local
neurons (LNs) interact to form the olfactory code transmit-
ted to higher brains centres. Our model is the first to con-
sider NSIs between ORNSs in the context of the downstream
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processing in the AL. We constrained our model by repro-
ducing the responses of ORNs to typical odor stimuli as
reported in the literature [3,4]. With the data-driven model
we the tested the following hypotheses: 1) NSIs could
improve the concentration ratio identification of a mixture
of odorants by increasing the dynamic range over which it
can be perceived (see Fig. 1b). 2) NSIs could help insects
to distinguish mixtures of odorants emanating from a single
source against those emanating from two separate sources,
by improving the capacity to encode the correlation between
olfactory stimuli (see Fig. 1c¢). 3) NSIs could increase the
dynamic range of the receptor neurons, by partially remov-
ing the ceiling effect that occurs for high concentrations (see
Fig. 1b).

In order to assess the benefits of NSIs for mixture process-
ing (hypotheses 1 and 2) we tested the model network with
NSIs in place against a control network where there was no
interaction between “odour channels” of different receptor
types and against a network without NSIs but with lateral
inhibition in the AL, a mechanism proposed to provide the
same benefits with respect to hypotheses 1 and 2 as NSIs.
We found that NSIs improve mixture ratio detection and
plume structure sensing as hypothesised and they do so more
efficiently than the traditionally considered lateral inhibition
mechanism in the antennal lobe. However, we also found
that the dynamic range of ORNS is not improved by NSIs
over the model with non-interacting ORNSs, casting a new
light on earlier results obtained in a mathematical model for
steady state activation of ORNS [5].
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Perceptual, cognitive, and motor functions are mediated by
neural circuits (i.e., the coordinated activity of neural popula-
tions), and not solely by the activity of individual neurons.
However, despite their fundamental importance, we know
relatively little about how neural circuits contribute to audi-
tory processing — particularly, in primate models of hearing
— and whether and how this circuitry changes between ear-
lier and deeper cortical regions. Using established and novel
techniques, we analyzed the functional connectivity structure
of neural populations from the core and belt regions of the
auditory cortex (AC) in non-human primates. We recorded
neural activity in different regions of the AC in two rhesus
monkeys while they listened passively to two successive rep-
etitions of a dynamic moving ripple (DMR) stimulus.

Our first analysis describes the activity in terms of maxi-
mum entropy models with pairwise neuron-to-neuron
interactions. These models are constrained to reproduce
the observed firing rates and pairwise correlations, while
making no assumptions about their mechanistic origin. Such
models have already been successful at modeling population
activity in the retina and prefrontal cortex. Our approach
used an additional information theoretic criterion that pre-
vents overfitting by selecting the model with the minimal
number of interactions that still reasonably fits the data. We
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found consistency in the set of selected pairwise interactions
between repetitions of the stimulus (see Fig. 1a). Comparing
AC areas, we found that the density of interactions needed
to capture the neuronal activity is significantly larger in the
belt than in the core. This means that belt areas display more
prominent correlation patterns than core areas.

Our second analysis focused on detection of groups of neu-
rons with coordinated activity. We compared a known sta-
tistical approach, using dimensionality reduction to detect
neuronal assemblies, with a newly developed method based
on maximum entropy models with community-like struc-
ture. Crucially, the second approach accounts for high-order
neural activity patterns (i.e. multi-neuronal activity motifs)
in the detection of communities of correlated neurons. The
model selection is based on information theoretic crite-
ria balancing goodness-of-fit and model complexity. We
observed that assemblies and communities identified by the
two methods are detected in similar numbers and present
similar features (see Fig. 1b-c). Comparing AC areas, we
found that assembly structures are sparser in belt than in
core areas, meaning that assembly activity is driven by fewer
neurons in the belt.

Together, our analyses indicates that in the belt, as opposed
to the core, information is encoded by the collective activity
of larger communities, but is driven by a smaller number of
highly influential neurons. These findings suggest that func-
tional connectivity becomes broader and more structured
between core and belt regions of the AC, perhaps relating
to functional differences between these regions. Finally, our
work uses two new approaches: 1) an information theoretic
method for estimating "extractable information" in noisy
activity, and 2) a method for building community models
of coordinated neural activity that incorporate intrinsically
higher order correlations.
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In the basal ganglia (BG) hypothesis for reward-based learn-
ing, action selection is gated in the striatum by context-
dependent dopamine-mediated synaptic plasticity. BG learning
is dependent on dopamine (DA) release from the substantia
nigra, and different compartments of the striatum receive
partition-specific nigro-striatal projections. Nigro-striatal DA
release encodes different information in different striatal com-
partments, and thus supports different modes of learning. In
the dorso-medial striatum (DMS), nigro-striatal DA release
encodes reward prediction error (RPE); and in the dorso-lateral
striatum (DLS), these projections encode salience.

In the present study, we developed a computational model
of action selection and learning in the BG that implements
two different modes of learning in the striatum. Our model
accomplished distinct and concurrent learning modalities
by distinguishing DAergic input to the DMS and DLS. Both
compartments shared the same rules for cortico-striatal plas-
ticity, and both compartments possess a direct and indirect
pathway for each selection option. However, DA encoded
different information in each compartment. In the DMS,
cortico-striatal synaptic weights were updated based on RPE
to perform goal-directed learning. In the DLS, plasticity
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in cortico-striatal synaptic weights implemented stimu-
lus—response associations.

The model was challenged with a series of two-alternative
forced choice behavioral tasks. We manipulated reward feed-
back to record action selection in the face of reward rever-
sal, reward devaluation, and punishment. In early trials of
the reward devaluation task, cortico-striatal weights in the
DMS quickly reflected the negative contrast in reward value.
Persistence of the stimulus-response association in the DLS
maintained the agent’s behavioral response despite the poten-
tiation of the corresponding indirect pathway in the DMS.
In punishment learning, the valence of the reward feedback
was negative. Similar to the devaluation task, goal-directed
learning in the DMS quickly activated the corresponding
indirect pathway of the DMS. Persistence of the previous
stimulus—response association in the DLS drove persevera-
tive errors in agent performance to select the punished action
in early trials. Behavior driven by stimulus—response associa-
tions in the DLS resisted goal-directed learning in the face of
devaluation or punishment, and we interpreted model perfor-
mance in these scenarios as the expression of habit.

To investigate the mechanisms that support habit in this working
model of the basal ganglia, we implemented the loss of executive
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control. In this model, outcomes were represented by populations
of prefrontal cortex (PFC) neurons. Decreased executive con-
trol was implemented in the model by decreasing the specificity
of PFC activity to action selection. This was accomplished by
introducing weak cross-channel projections; for example the PFC
population associated with outcome #1 made additional weak
projections to the direct and indirect pathway of the DMS associ-
ated with outcome #2 (and vice versa). Model performance was
quantified using change point analysis. In simulations with handi-
capped PFC, agents learned new reward-feedback rules slowly
compared to control simulations. We interpreted these results to
demonstrate how the loss of executive control reduced the ability
of goal-directed learning to overcome stimulus—response driven
behavior such as the expression of habit.
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The motor system simplifies the control of movement by
flexibly combining fixed spatial and temporal motor modules
that are invariant across actions [1,2]. The identification of
these modules is critical to shed light on the computational
principles of biological motor control. However, popular
matrix decomposition methods used to extract these motor
modules — such as Non-negative Matrix Factorization and
Principal Component Analysis — can only identify either
spatial [1] or temporal [2] motor modules, but not both. This
leads to overparameterized models that rather than provid-
ing a plausible account of the mechanism the brain uses to
simplify the control of movement, merely shift the compu-
tational burden from the spatial to the temporal domain or
vice-versa. For example, models based on spatial modules
[1], simplify the control problem in the spatial domain at the
cost of complicating it in the temporal domain, where they
assume the existence of time-varying coefficients that are
specific to each action (Fig. 1A).

To meet the challenge of simultaneous identification of spa-
tial and temporal modules, we propose a decomposition of
muscle signals based on the Canonical Polyadic Decomposi-
tion (CPD) model [3] — a higher-order tensor decomposition
method. The model factorizes muscle activity during reach-
ing movements into fixed spatial and temporal modules that
are flexibly recruited depending on the reaching direction
(Fig. 1D). The recruitment is specified by action coefficients
that, unlike in previous models, are both space- and time-
invariant. We show that, compared with classical decomposi-
tion models [1,2], CPD identifies qualitatively similar spatial
and temporal modules (Fig. 1A-D), explains a comparable
amount of data variance, and requires a lower number of
parameters. Furthermore, we show that the geometrical organ-
ization of the action coefficients is not random but describes a
smooth manifold that allows the zero-shot generation of mus-
cle patterns for untrained reaching directions. Taken together,
our results suggest that the identified decomposition defines a
biologically plausible hierarchical organization of the control
of movement [4] that the brain could leverage to effectively
control the body while saving computational resources.
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Traumatic brain injury remains one of the most common
factors leading to acquired epilepsy. Post-traumatic epilepsy
(PTE) continues to be a difficult disorder to treat as there can
be a prolonged period of time during which epileptogen-
esis can arise following the initial brain insult. Indeed, it
has been reported that epilepsy can develop up to 15 years
after the occurrence of the brain trauma. Additionally, the
likelihood of developing epilepsy increases with age at the
time of the trauma. Recent in vivo studies have shown that
older animals were more susceptible to the development of
epilepsy following cortical undercut as compared to younger
animals. The mechanism that gives rise to PTE remains
to be fully understood but may involve mis-regulation of
synaptic weights through homeostatic synaptic scaling. In
healthy brains, homeostatic synaptic scaling works as a slow
negative feedback bidirectional mechanism which aims to
maintain network stability through the activity-dependent
regulation of post-synaptic AMPA receptor densities. In
response to brain trauma, there is a reduction of network
activity within and near the traumatized brain area. This
reduction of activity triggers homeostatic up-regulation of
synaptic and intrinsic excitability in an attempt to recover
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normal levels of network activity. If trauma is severe, home-
ostatic scaling may overcompensate and increase synaptic
weights such that the network is primed for transitions to
hypersynchronized seizure states. In this new study, we
tested the hypothesis that preventing homeostatic up-scaling
of synaptic weights following cortical deafferentation could
prevent post-traumatic epileptogenesis. Using a detailed bio-
physical model of the neocortex, we found that a sustained
depolarization of the traumatized network was capable of
preventing up-scaling of synaptic weights to a pathologi-
cal state and thereby preventing occurrence of spontaneous
recurrent seizures. In contrast, a sustained hyperpolarization
of the traumatized network resulted in increased homeostatic

Fig. 1 Sustained network activ-

up-scaling, triggering a severe pathological state character-
ized by the occurrence of frequent spontaneous recurrent
seizures. Furthermore, our analysis demonstrates that path-
ological increases in synaptic strength drives seizure gen-
eration by perturbing extracellular potassium concentration
dynamics and initiating a positive feedback loop between
extracellular potassium concentration and neuron firing
rates. This feedback loop drives increased excitability and
hypersynchrony eventually leading to spontaneous seizure
onset. These findings from the computational model are
in agreement with our in vivo experiments in mice where
cortical undercut was followed by activation of DREADDs
(hM3DGq or hM4DG:i) to alter baseline network activity
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around the undercut area. Together, these results provide
evidence for the role of homeostatic synaptic scaling in the
development of post-traumatic epilepsy and may provide
new insights into novel treatments or preventative measures
for trauma-induced epilepsy (Fig. 1).
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Parkinson's disease is a neurological disorder that leads to
progressive dopamine depletion in the basal ganglia. Experi-
mental evidence suggests that basal ganglia dopamine deple-
tion causes the onset of synchronized oscillations of neural
activity. The main spectral features of these oscillations are
an enhanced power in the beta frequency band (12-30 Hz)
and an enhanced phase-amplitude coupling (PAC) between
the phase of a beta signal and the amplitude of a high-fre-
quency gamma signal (50-250 Hz). Many computational
models and experimental studies have suggested that the
external pallidum (GPe) is involved in the generation of par-
kinsonian beta oscillations via its recurrent coupling with the
subthalamic nucleus (STN). However, a recent study in mice
found that optogenetic inhibition of the GPe, but not of the
STN, led to strong attenuation of parkinsonian beta power
[1]. Contrary to initial beliefs, the GPe is not a homogene-
ous nucleus. It contains two distinct cell types with different
electrophysiological properties and projection targets: Pro-
totypical and arkypallidal cells [2]. Under dopamine deple-
tion, the synaptic coupling strengths between GPe cells are
increased [3]. Therefore, we asked whether the GPe could
generate parkinsonian oscillations autonomously or contrib-
ute to increased beta-gamma PAC.

Here, we investigated these hypotheses in a spiking neu-
ral network model of recurrently coupled prototypical and
arkypallidal cells. Our model accounts for characteristic
macroscopic properties of the GPe, such as the firing rate
distributions of both cell types under normal and stimula-
tion conditions [4]. We examined the effects of increased

@ Springer

synaptic coupling between prototypical and arkypallidal
cells via bifurcation analysis based on an exact mean-field
model of the spiking neural network. We found that an
increased self-inhibition of prototypical neurons can lead to
the emergence of synchronized oscillations in the gamma
frequency range. Furthermore, we found that increased inhi-
bition of prototypical neurons via arkypallidal projections
gives rise to a bi-stable regime where both neuron types
compete over a high-activity state. Both findings cannot
explain the emergence of parkinsonian beta oscillations,
however. Instead, we show that oscillatory input to the GPe
in the beta frequency range can lead to beta-gamma PAC
in the macroscopic GPe dynamics. Based on these find-
ings, we propose that the GPe cannot generate parkinsonian
beta oscillations autonomously but can contribute to the
emergence of increased beta-gamma PAC in the dopamine
depleted basal ganglia.
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Popular methods for fMRI data analysis do not utilise the
full potential of fMRI datasets in understanding individual
differences in brain connectivity and function. In [1] it was
shown that spatially variable "network variants" appear to
exist for all individuals. Network variants are brain regions
belonging to a specific functional network identified using
group-averaged data analyses, e.g., by [2], but in locations
that differed from observations obtained from those analy-
ses. Many areas, particularly in association cortices, partake
in multiple brain networks. Individual differences in network
connectivity may reflect brain plasticity arising from differ-
ences in life experience, as well as disease. The cognitive
difficulties associated with schizophrenia are thought to be
caused by the abnormalities in the structural, functional, and
effective connectivity of the brain [3,4].

To test the above ideas, we applied methods of topologi-
cal data analysis (TDA) [5,6] to the COBRE dataset [7,
8], consisting of structural MRI (T1w and DTI) scans of
healthy controls (HC) (N=44) and schizophrenia patients
(SP) (N=44).We applied the weight rank clique filtration
(WRCEF) [9] to connectivity matrices obtained from using a
probabilistic fibre-tracking algorithm [10] for each individ-
ual. Although the biological interpretation of nodes (brain
regions) participating in persistent cycles is not straightfor-
ward [5], we observe that the barcodes obtained for the per-
sistent homology classes show consistency in birth and life-
times for spatially analogous cycles (Fig. 1). Additionally,
we observe the appearance of many ‘variant’ cycles in clus-
ters with slight variations between individuals but with con-
siderable overlap as seen in [11]. The most popular cycles
had stronger connections as evidenced by earlier birth times
(p<0.001), and activated fewer brain networks than those
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stemming from later-born clusters of cycles (p <0.001). We
see that many cycles, particularly those with weaker connec-
tions, have more individual variability.

Figure 1C shows that 1-dimensional cycles are shared evenly
between the two groups. On the other hand, the average
persistent landscapes for the two groups show more sub-
stantial differences for two-dimensional cycles, with the
average persistence landscape for schizophrenia patients
exhibiting two peaks instead of one (Fig. 1F). This suggests
that whilst schizophrenia patients may share many similari-
ties to controls in terms of their more strongly connected
brain regions as revealed by lower-dimensional persistent
cycles, their large-scale brain organization, as revealed by
higher-dimensional cycles which tend to connect more brain
regions, is different and more diverse.
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In electric signals such as field-potentials measured across
regions of the human brain, parietal signals have a tendency
to phase-lead signals in temporal and frontal cortex, while
waves of activity propagates along parieto-temporal path-
ways. In order to better understand the functional properties
of such large-scale pattern of signal flow, we asked: (i) are
inter-regional delays stable or variable over time? (ii) do
the patterns of signal propagation co-vary with endogenous
cortical rhythms? (iii) do the patterns of signal flow vary
with external stimulus properties?

We recorded electrocorticographic signals from the lateral
cortical surface of 10 human participants as they listened
to a 7-min auditory narrative. In sliding 2-s windows, we
identified inter-regional delays by computing the cross-cor-
relation of voltage signals between nearby electrode pairs.
For each time window, and for electrodes and electrode-
pairs, we identified the time delay of maximal inter-elec-
trode correlation from raw voltage signals, the power for
different bands, and the mean broadband high-frequency
power. We designed a computational model for the inter-
regional flows using a Stuart-Landau coupled oscillator
model, with structural topology based on human cortical
anatomy. Consistent with prior reports [1,2], we found that
the auditory pathway exhibited a gradient of delays, with
posterior temporal regions leading anterior temporal regions
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on average. However, the latencies between stages of audi-
tory processing were not stable, but fluctuated over time.
Two distinct electrophysiological states were evident from
data: one with longer inter-channel latencies (“propagat-
ing state”), and the other shorter latencies (“synchronized
state”). Latencies were longer during bursts of alpha power
(propagating state) and were shorter during bursts of broad-
band power (synchronized state), consistent with models in
which alpha oscillations regulate corticocortical interactions
[3]. The inter-regional delays were mostly endogenous, as
the correlation between responses under repeated stimulus
was weak. Altogether, the changes in inter-regional laten-
cies are not a random process, and reliably track features of
the endogenous dynamics. The transitions between synchro-
nized and propagating states generalizes beyond the auditory
pathway to the parietal, temporal and sensorimotor cortex.
We observed that global latency patterns change between
the synchronized state and the propagating state (Fig. 1).
When auditory drive was strong the latencies between many
areas were reduced, and when auditory drive was absent the
latencies increased. Finally, we were able to reproduce the
inter-regional correlation and delay pattern, by varying the
coupling-strength between oscillators in the Stuart-Landau
oscillator model, indicating that the large-scale dynamic
shifts may be regulated by overall shifts in the efficacy of
inter-regional influence.

Altogether, the data and models suggest that human cor-
tical dynamics reliably transition between synchronized

80 100 120 140

time windows (2s)

160

states (associated with increases of broadband power) and
propagating states (associated with increases of alpha-band
power).
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Stimulation of the human peripheral nervous system can
be a powerful treatment for a variety of medical conditions
from epilepsy to rheumatism, and can also provide insight
into nervous system processes. Each peripheral nerve bundle
consists of one or multiple fascicles; each fascicle consists
of a group of nerve fibers embedded in a matrix of endoneu-
rium and wrapped by a fatty layer of perineurium. To stimu-
late these fibers a variety of bioelectric interfaces have been
developed. Among these interfaces, the longitudinal intrafas-
cicular electrode (LIFE) is designed to target small groups of
fibers inside the fascicle using low-amplitude pulses. Their
small size, flexibility, and longitudinal placement minimize
their mechanical effects on nearby neural tissues, making
them well-suited for chronic use. To achieve higher function-
ality with fewer side effects, greater specificity of the stimu-
lation would be beneficial. This study is part of a US-French
collaboration that aims to improve selectivity of intrafas-
cicular stimulation for bioelectric therapies by coordinating
computational studies, stimulation hardware development,
and in vivo animal studies. This simulation study investigates
the effects of anatomical and stimulation parameters on fiber
recruitment and selectivity.

Peripheral nerve stimulation with LIFEs consists of short
electrical pulses delivered to an electrode or electrodes
placed within the fascicle. Each current pulse generates a
spatiotemporal electrical field that affects the membrane
potential of the fibers in the vicinity in a manner that might
trigger production of an action potential. In this study, to
simulate the response of the nerve fibers to electrical stimu-
lation, a hybrid workflow has been developed to simulate:
1) the production/propagation of the electric field, and 2)
the effect of the electric field on fiber activation (recruit-
ment). The first part uses anatomical and histological data
to produce a finite-element model implemented in the MAT-
LAB-COMSOL environment that simulates the electric field
induced in a nerve bundle through stimulation via one or

Fig. 1 The INCF Training Suite
consists of TrainingSpace, Neu-
rostars and KnowledgeSpace

more LIFEs. The second part uses a detailed biophysical
model of multi-segmented axons implemented in a Python-
NEURON environment that simulates the response of the
nerve fibers to the electric field.

Using this hybrid workflow, the effects of various factors
like fascicular anatomy (tissue conductivity, spatial distri-
bution of fibers, fiber size, etc.), electrode parameters (size,
location, configuration), and stimulation pulse shape (pulse
width, pulse amplitude, pulse type, etc.) on recruitment and
selectivity have been characterized, and the sensitivity of
the recruitment patterns to these parameters has been ana-
lyzed. In on-going work, we are using this computational
modeling framework to investigate and develop better strat-
egies to enhance selectivity and increase specificity of the
peripheral nerve stimulation.
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The INCF TrainingSuite (Fig. 1) is a collection of open access
platforms that aims to facilitate self-guided study in the sub-
specialisms of neuroscience (with an emphasis on neuroinfor-
matics). These platforms, presented below, collectively work
as a framework for integrating training materials and making
them FAIR (Findable, Accessible, Interoperable, Reusable).

The INCF Training Suite

A collection of open access platforms that aims to facilitate self-guided study in the

sub-specialisms of neuroscience with emphasis on neuroinformatics

A framework for integrating and making training materials FAIR

Training

‘ncf | Space

Open access hub
of multimedia
training resources

https:/itraining.incf.org

Knowledge

'jncf NeuroStars Space

Question and
Answer forum

Data discoverability portal
& neuroscience
encyclopedia

https://neurostars.org https://knowledge-space.or

g

Developed by the INCF network in partnership with: IBRO, FENS, SfN, HBF, IEEE Brain, OHBM, INeuro, CONRTCC, NIF
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INCF TrainingSpace (training.incf.org) is an online hub
that aims to make neuroscience educational materials more
accessible to the global neuroscience community, developed
by the INCF Training and Education Committee composed
of members from the INCF network, HBP, SfN, FENS,
IBRO, IEEE, BD2K, CONP, TCC and iNeuro Initiative. So
far, TrainingSpace has more than 23,000 users with 113,000
pageviews. As a hub, TrainingSpace provides users with
access to:

Multimedia educational content from courses, conference
lectures, and lab exercises from some of the world’s leading
neuroscience institutes and societies

Study tracks to facilitate self-guided study

Tutorials on tools and open science resources for neurosci-
ence research

The Q&A forum NeuroStars (neurostars.org)

All courses and conference lectures in TrainingSpace include
a general description, topics covered, links to prerequisite
courses if applicable, and links to software described in or
required for the course. In addition to providing resources
for students and researchers, TrainingSpace also provides
resources for instructors, such as laboratory exercises, open
science services, and access to publicly available datasets
and models. TrainingSpace currently has four study tracks to
facilitate self-guided study: brain medicine, computational
neuroscience, neuroscience, and neuroinformatics. The 2020
Neuromatch Academy materials are available as a Train-
ingSpace special collection at https://training.incf.org/colle
ction/neuromatch-academy-2020.

Neurostars (neurostars.org; RRID:SCR_003805) is a Ques-
tion & Answer (Q&A) forum that serves the INCF network
and the global neuroscience community as a platform for
knowledge exchange between neuroscience researchers at
all levels of expertise, software developers, and infrastruc-
ture providers. Neurostars has been adopted by several
other large neuroscience initiatives including Neuromatch
Academy, Neuro Hackademy, and the Organization for
Computational Neuroscience (OCNS). Several commu-
nity tools—among them Nipype, SPM, fMRIprep, Nilearn
and Freesurfer—use Neurostars for providing user support.
In April 2021, Neurostars had 17,400 users in 25,200 ses-
sions; in total the forum has seen more than 132,700 users
and 328,700 sessions.

INCF KnowledgeSpace (https://knowledge-space.org;
RRID:SCR_014539) is a community-based encyclopedia
for neuroscience that links brain research concepts to the
data, models, and literature that supports them, demonstrat-
ing how SBPs can facilitate linking brain research concepts
with data, models and literature from around the world. It
provides user with access to over 1 M publicly available
datasets as well as links to literature references and scientific
abstracts.

KnowledgeSpace is an open project and welcomes participa-
tion and contributions from members of the global research
community. KS is the result of recommendations from a
community workshop held by the INCF Program on Ontolo-
gies of Neural Structures in 2012, and was developed by
HBP, INCF and NIF.
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Dendrites of pyramidal neurons demonstrate a wide range
of linear and non-linear active integrative properties. Exten-
sive work has been done to elucidate underlying biophysical
mechanisms, but our understanding of the computational
contributions of active dendrites remains limited. As such
the vast majority of artificial neural networks (ANNs) ignore
the structural complexity of biological neurons and use sim-
plified point neurons. In this paper we propose that active
dendrites can help ANNs learn continuously, a property
prevalent in biological systems but absent in artificial sys-
tems (most ANNSs today suffer from catastrophic forgetting,
i.e., they are unable to learn new information without erasing
what they previously learned). Our model is inspired by two
key properties: 1) the biophysics of sustained depolarization
following dendritic NMDA spikes, and 2) highly sparse rep-
resentations. In our model, active dendrites act as a gating
mechanism where dendritic segments detect task-specific
contextual patterns and modulate the firing probability of
postsynaptic cells. A winner-take-all circuit at each level
gives preference to up-modulated neurons, and activates a
highly sparse subset of neurons. These task-specific sub-
networks have minimal overlap with each other, and this in
turn minimizes the interference in error signals. As a result,
the network does not forget previous tasks as easily as in
standard networks without active dendrites.

We compare our model to two others. Dendritic gated net-
works (DGNs) [1] compute a linear transformation per
dendrite followed by gating. DGNs do not learn dendritic
weights and model complexity grows with the number of
classes. Context-dependent gating (XdG) [2] turns individ-
ual units on/off based on task ID. XdG largely avoids cata-
strophic forgetting but the task ID and hardcoded network
subsets are always required. We tested our model in a stand-
ard continual learning scenario, permutedMNIST (Fig. 1).
Instead of hardcoding task ID, we employ a prototype

@ Springer


https://training.incf.org/collection/neuromatch-academy-2020
https://training.incf.org/collection/neuromatch-academy-2020
https://knowledge-space.org

528

Journal of Computational Neuroscience (2021) 49 (Suppl 1):53-5204

Fig.1 a Network and neuron Network structure

Neuron model

d

model. b Dendrites modulate

b

Per-task unit activity shows emergence

units and lead to the selection O“}pm ERditiTSub-Rerwanes

of independent sub-networks ~ P— S 0 T W] §

for each task. ¢ Accuracy on A —e g % I| 0 I|

10 tasks as a function of the » (8000 00000 SN ~ 43‘ '. '

number of dendrites per neuron 4 t 8 g i 11
(left), and sparsity level (right). > (00000800 Eaedforwardinput/ z . 1 e
High sparsity is strongly cor- 4 T — 911 'my ¥y _§y Wi |
related with overall continual EN N 1 | contains dendrites that use context 0 10 20 30 4 50 60
learning accuracy. d Mean Context j Input j to medulate the feed-forward input hidden unit

accuracy on all tasks after learn-
ing each sequentially

o

Accuracy vs number of
dendritic segments

accuracy

3

2 5 7 10 14 20
Number of dendritic s

egments

method to infer task-specific context signals. Results show
that dendritic segments learn to recognize different context
signals and that this in turn leads to the emergence of inde-
pendent sub-networks per task. In tests our dendritic net-
works achieve 94.4% accuracy when learning 10 consecutive
permutedMNIST tasks, and 83.9% accuracy for 50 consecu-
tive tasks. This compares favorably with DGNs and XdG,
but without their previously mentioned limitations. (Note
that standard ANN’s fail at this task and only achieve chance
accuracy.) In addition training is simple and requires only
standard backpropagation. Further analysis shows that the
sparsity of representations and number of dendrites correlate
positively with overall accuracy. Our technique is comple-
mentary to other continual learning strategies, such as EWC/
Synaptic Intelligence and experience replay, and thus can be
combined with them. Our results suggest that incorporat-
ing the structural properties of active dendrites and sparse
representations can help improve the accuracy of ANNs in
a continual learning scenario.
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The brain processes sensory input from the environment in
order to produce appropriate behavior. This perceptual deci-
sion-making process has been an object of interest in com-
putational neuroscience. Evidence Accumulation Models are
particularly widespread, and all assume that the brain gath-
ers information and reaches a decision when enough infor-
mation is collected. Among these, the Diffusion Decision
Model (DDM) [1], which assumes a noisy linear integration
of evidence, is by far the most widely accepted thanks to its
intuitive interpretation, its accurate fit to both behavioral
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[1] and neurophysiological data [2], and its applicability to
multiple paradigms [3].

Current DDM parameters provide a global description of
the decision strategies of participants allowing consequently
for little insight on single-trial dynamics, and in particular
on the influence of history of previous stimuli and decisions
on the variability of the model parameters. Although the
DDM brought great insight on how the brain handles deci-
sion-making, in particular in the lateral intraparietal cortex
[2], recent recordings in the same area have questioned the
adequacy of this model [4]. Indeed, while the firing rate of
initially investigated neurons increases seemingly linearly,
in more recent data the increase is step-like. To our knowl-
edge, while some models address the firing diversity [5],
single-trial dynamics remain untapped. Our work addresses
both of these issues by introducing a drift term described
by a non-linear differential equation (Fig. 1A, C). This new
model of decision-making offers a description of behavioral
and neurophysiological recordings equivalent to previous
models as well as a flexibility for single-trial simulations
and interpretation. For initial investigation, we assumed a
uniform distribution of initial conditions. It translates the
assumption that trials are independent and that participants
have unbiased expectations regarding the next decision to
make. After mathematical investigation, we fit our model to

4 6 Time (<)
Time (s) fmets

newly acquired data, using PyDDM [6]. Finally, in order to
assess quantitatively the quality of the fit, we compared our
results to DDM fitting.

We show that our model accurately fits behavioral data on a
wide range of paradigms, providing as good a fit as the DDM
(Fig. 1B, D), while giving insight into single trial dynam-
ics. In addition to that, we show that our model describes
qualitatively better some neurophysiological observations
made in the past. This model is further usable in simula-
tions, for example to test hypotheses on the distribution of
initial conditions and on how they are selected at each trial
depending on the history of the task.
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Precise external induction of cortical activity is becoming
a key tool for neuroscience research with a particular clini-
cal application in cortical prosthetic systems. Major effort
is being invested into developing methods for controlling
cortical activity in primary visual cortex (V1) to encode
visual information [1,2]. However, existing computational
work is restricted to stimulation in functionally unspecific
network models [3] and hence is of limited use for designing
encoding protocols which engage cortical representations in
a functionally specific manner.

Building on top of a biologically realistic spiking model
of cat V1, we implemented a model of an optogenetically
driven visual prosthesis [4]. The model captures layers 2/3
and 4. Visual input can be delivered via a LGN model con-
sisting of spatio-temporal center-surround receptive field fil-
ters. Next, we have implemented a virtual model of a LED
array covering the modeled cortex. We calculate the external
current into the neurons with a channelrhodopsin (ChR) con-
ductance model based on their individual illumination level.
The resulting framework allows to test arbitrary stimula-
tion protocols in the context of this optogenetic ‘write-in’
interface.

We used this model to compare the orientation-dependent
contrast-invariant cortical response to visual grating stimuli
and the response to optical stimulation via the LED array.
Although a single LED illuminates a large neural population
(> 100 pm diameter), modulation of the illumination across
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the LED array according to neural orientation preference is
sufficient for the induction of contrast-invariant orientation-
tuning curves in the stimulated layer 2/3 neurons. Simu-
lated optogenetically evoked cortical dynamics sharpened
the driving illumination pattern due to network effects, thus
improving encoding of the orientation specific information
in V1. Currently, we incorporate morphological effects into
the stimulation model as ChR-transfected dendritic arbors
may constrain the spatial resolution. This will allow us to
estimate the limits of spatial resolution for optogenetic stim-
ulation considering uniform as well as compartment-specific
ChR-distributions.
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Computational models of auditory processing were essential
in shaping our modern-day theory of neural sound encod-
ing and have accelerated the development of personalized
treatments for the hearing impaired. Classically, analyti-
cal models of auditory neurons and synapses are derived
from experimental transfer functions derived from neuronal
recordings. This has resulted in a variety of models, typically
formulated using multi-branch Hodgkin-Huxley or coupled
ODE systems comprising a number of nonlinearities. The
more accurate the models are in capturing the nonlinear and
adaptation properties of the biophysical system, the more
computationally expensive they become. While detailed and
realistic analytical models are essential to relate biophysical
properties and parameters directly to their functional impact
on neuronal processing, their computational load has limited
their uptake in large scale brain simulation systems (e.g.,
for sound perception) or in methods for augmented hear-
ing. The latter applications typically resort to faster — but
biophysically less accurate — model units or adopt machine
learning to map sound to output features. It is clear that
both fast (machine-learning) and slow (analytical, biophys-
ical) approaches have their benefits, but for neuroscience
purposes it is essential that experimental neuroscientific
advances can easily be cast into incrementally improved
encoding models that generalize beyond a single experiment.
Here, we present a hybrid, computational neuroscience
and machine-learning approach to develop biophysically
realistic convolutional neural network (CNN) descriptions
of auditory neurons and synapses that predict their classi-
cal neuroscientific properties (nonlinearities, adaptation
time-constants, frequency characteristics). To this end, we
adopted state-of-the-art analytical model descriptions of
auditory neurons/synapses to generate a training data set of
neuronal responses to a speech corpus. Those simulations
were used to train a CNN (L1-loss), which performance was
benchmarked on predicting outcomes of six classical audi-
tory neuroscience experiments (using unseen, non-speech
stimuli). We used the benchmarking to optimize the hyper-
parameters of the initial CNN architecture (layer numbers,
filter length, activation type, context) in a principled way.
This yielded CNN model predictions conform the experi-
mental observations. Because we successfully applied our
method to a range of analytical neuron/synapse models with
various degrees of complexity, we could derive a method to
select an appropriate initial CNN architecture based on its
receptive field and estimated adaptation time-constant of the
to-be-modelled neuron/synapse. We required 3 to 14 encoder
layers to sufficiently capture the neuroscientific properties
of the giant axon, cochlea, inner-hair-cell or auditory-nerve-
fiber synapse. Based on these minimally required model
sizes, we conclude that machine-hearing systems that aim
to maintain a relation to the underlying biophysical process

need to be modular and have considerable sizes. Nonethe-
less, our CNN model units have clear advantages over their
analytical counterparts, in that they are differentiable for
back-propagation purposes (e.g., for hearing-aid algorithm
design) and can be parallelized for GPU computing of large-
scale neuronal population models (e.g., behavior, evoked
responses) to accelerate neuroscience discoveries.
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Dealing with stress is part of our daily lives. The continu-
ous effect of stress can modify our behavior and promote
long-term changes in synapses and neuronal structure. The
hypothalamus is the brain area responsible for maintaining
the body’s homeostasis. In a stress situation, the Paraven-
tricular Nucleus of the Hypothalamus (PVN) is activated.
The response works in a cycle where threats stimulate the
activity of corticotropin-releasing hormone neurons (CRH)
of the PVN. CRH neurons release corticotropin that goes
directly to the pituitary glands, stimulating the production
of adrenocorticotropic hormone (ACTH) that will further
trigger the adrenal glands to liberate cortisol into the blood-
stream [1].

In this work, we try to better understand how CRH neu-
rons and synapses change in response to long-term gluco-
corticoid (CORT) exposure. The experiment consists of
administrating CORT via the drinking water for 7 days. This
procedure elevates circulating CORT without introducing
the confounds associated with stressing the animals. After
this period, they were sacrificed and current clamp record-
ings from CRH neurons were performed in vitro (Fig. 1A).
Additionally, miniature excitatory postsynaptic currents
(mEPSCs) were recorded to evaluate synaptic changes
induced by stress. Control recordings were collected from
animals that did not receive CORT. The experiments showed
that neurons under CORT treatment presented a decrease
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in their activity rate, but unexpectedly they presented an
increase in their synaptic input currents (Fig. 1B).

Based on these preliminary results of decreased firing rate
and increased synaptic amplitude, we hypothesized that the
network undergoes homeostasis. To address this question,
we built computational network of model neurons with
intrinsic and synaptic characteristics modeled after CRH
neurons and tested the conditions for homeostasis by com-
paring the firing rate ratio between CORT and Control net-
works. To do so, we first proposed a modified integrate-and-
fire neuron model [2] and used an optimization algorithm
[3] to fit the neuronal current-clamp experiments (Fig. 1A).
The algorithm searches in the parameter space for the set of
model parameters that best reproduce the real neuron volt-
age traces from CORT and Control groups. Also, from the
mEPSCs recordings, the synaptic currents were fitted by a
double exponential function [4], extracting some pulse fea-
tures such as amplitudes, rise, and decay times. The fitted

voltage trace (black) recorded
from a current clamp experi-

Fig.1 A (left) an example A
ment (schematic illustrated on -

fitting (blue) of a real neuron \ ) ‘

neurons networks simulations showed that homeostasis can
be achieved as the EPSCs frequency increases (Fig. 1C)
for different simulation conditions. Therefore, despite the
decreased firing rate presented by isolated CORT neurons,
at the network level, the CORT synaptic currents counterbal-
ance it, keeping the network firing rate at the same level as
the Control network. Our results show that precise adjust-
ments in CRH neurons can exactly counterbalance the syn-
aptic plasticity induced by stress to maintain homeostasis.
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Slow oscillations (SO) of neural activity emerge spontane-
ously in the neocortex during anatomically (e.g. cortical
slices or cortical lesions) or functionally (e.g. anaesthesia,
slow-wave sleep) disconnected states. The SO consist of
the alternation (ca. 1 Hz) of high- (Up) and low-responsive
(Down) periods that propagate spatio-temporally as a trav-
elling wave, thereby revealing properties of the underlying
cortical network [1]. Even if the SO are a stable attractor,
the network can be driven into richer dynamical states by
neuromodulation, inducing e.g., the transition from sleep to
wakefulness. How such a globally synchronized state gives
rise to largely decorrelated awake states is yet to be eluci-
dated, and in particular, how the emergence of asynchrony
is spatially orchestrated by the local network.

Here we investigated this near-asychronous regime by devel-
oping time-series analyses applied to extracellular, multie-
lectrode-array recordings on acute slices. The slices exhib-
ited robust SO and were then subjected to neurochemical
modulations aimed at eliciting a desynchronized or awake-
like state (AS) [2].

We devised a new statistical procedure for decomposing the
AS regime into synchronous and asynchronous periods. Our
results show that asynchronous states of uneven durations
are interspersed among abrupt surges of 1-2 Hz oscillations
[3]. These consist of Up- and Down-like states in a sort of
excited SO state sharing much of its hallmark features, albeit
more locally coordinated.

Population firing rates of local neuronal ensembles were cap-
tured by an energy-preserving estimation of the multi-unit

activity (MUA). Thus, locally sampled probability densities
of MUA reflect the state of the network at different scales. A
statistical-distance—based clustering of the MUA densities
displays the emergence, at the most excited states, of par-
ticular spatial patterns that follow the laminar structure of
the slice. In stark contrast, normalised power spectra of AS
MUA proved most similar when lying on the same cortical
column, independently of the layer.

Although the synchronous/asynchronous balance varies
from one column to the other, the inter-channel co-occur-
rence of asynchronous states is spatially correlated, suggest-
ing that the switch from synchrony to asynchrony acts as a
propagating wavefront.

Overall, our novel methodology reveals how, on the brink of
wakefulness, an excited SO-like activity cohabits with peri-
ods of asynchrony. Their spatio-temporal interplay depends
on the cortical network structure: the firing rate intensity is
dictated by the layer [4], the column sustains the oscillation,
whereas the alternation between synchrony and asynchrony
propagates across the whole slice.

Acknowledgments

Funded by EU H2020 Research and Innovation Programme,
Grant No. 945539 (HBP SGA3).

References

1. Sanchez-Vives MV, Massimini M, Mattia M. Shaping the
default activity pattern of the cortical network. Neuron. 2017
Jun 7;94(5):993-1001.

2. Barbero-Castillo A, Mateos-Aparicio P, Dalla Porta L,
Camassa A, Perez-Mendez L, et al. Impact of GABAA and
GABARB inhibition on cortical dynamics and perturbational
complexity during synchronous and desynchronized states.
Journal of Neuroscience. 2021 Jun 9;41(23):5029-44.

3. Tort-Colet N, Capone C, Sanchez-Vives MV, Mattia
M. Attractor competition enriches cortical dynamics dur-
ing awakening from anesthesia. Cell Reports. 2021 Jun
22;35(12):109,270.

4. Senzai Y, Fernandez-Ruiz A, Buzsiki G. Layer-specific
physiological features and interlaminar interactions in the
primary visual cortex of the mouse. Neuron. 2019 Feb
6;101(3):500-13.

P9 Influence of the connectivity on the synchronization
of two coupled neuronal networks

Paulo R. Protachevicz!, Matheus Hanser?, Kelly Iarosz’, Iberé Caldas’,

Antonio Batista®

"University of Sdo Paulo, Institute of Physics, Sdo Paulo,
Brazil

@ Springer



S34

Journal of Computational Neuroscience (2021) 49 (Suppl 1):53-5204

2Federal University of Sdo Paulo, Computer Science Depart-
ment, Sdo José dos Campos, Brazil

SFaculdade de Telémaco Borba, Engineering Department,
Telémaco Borba, Brazil

“State University of Ponta Grossa, Department of Mathemat-
ics and Statistics, Ponta Grossa, Brazil

Email: protachevicz@gmail.com

Understanding how the brain synchronizes is a fundamental
question in neuroscience. The main types of synchronization
found between the brain regions are phase, anti-phase, and
shift-phase. In phase synchronization, neurons of two regions
fire at the same time. This type of synchronization has been
observed, for instance, during memory, cognition, and motor
coordination. In anti-phase synchronization, the neurons are
synchronized in each region, but they interpolate symmetrically
their phases on time. For shift-phase synchronization, the phase
relations are not symmetric. These types of synchronization
have been identified in mammalian brains. Since connectivity
can be related to neuronal firing patterns, we investigate how
chemical connections between two networks can be associated
with the appearance of these different types of synchronization.
Our results suggest that excitatory and inhibitory connectivities
arriving at excitatory and inhibitory neurons play specific roles
in the occurrence of synchronized firing patterns.
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The basal ganglia (BG) are a set of nuclei that process move-
ment information: they refine and adjust simple movement
actions. The BG has two major pathways: the striatum (STR)-
indirect neuron pathway and the subthalamic (STN)-hyper-
direct nucleus pathway. The GPe is the connecting nucleus
between the two pathways. The STR inhibits the GPe and
the STN excites the GPe which is divided into two types of
neurons [1,2], the prototypical (GPeP) and the arkypallidal
(GPeA). This discovery allows for a better understanding of
the functioning of this neural network. We model the STN-
GPeA-GPeP-STR (D2) network and study the influence of
the nucleus on each other like in [3] (see Fig. 1A). The neu-
rons have been modeled as point neurons using the Hodgkin-
Huxley formalism and the synapses as exponential functions.
From extensive simulations performed with the SiReNe soft-
ware (Neural network simulator, in french: Simulateur deRé-
seaux deNeurones [4]), we show that our network is in good
agreement with the physiological results of [3]. This simulator
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is based on a hybrid method combining time-step and event-
driven computations with a Runge—Kutta 2 numerical method
at inner level. GPe is mainly inhibited by GABAergic inputs
of the STR and we study the impact of STR connectivity on
GPe. We observe that the GPeP and GPeA react in opposite
ways when the STR is activated, i.e., GPeP is entirely inhib-
ited whereas the GPeA and STN are completely excited, as
observed in [3] (see Fig. 1B, C). This work aims at better
understanding the synaptic connectivity scheme. This model
will allow us to test hypotheses regarding the pathological
rhythmogenesis in Parkinson disease, both at the cellular and
connectivity levels.
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A honeybee in search of food locates nectar producing flow-

ers using floral aromas composed of many volatile com-
pounds. However, nectar-producing and non-producing
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floral odors contain many of the same compounds. Hence,
the honeybee faces a challenging task in determining the
map between chemical sensing and reward prediction. This
is further complicated by the fact that nectar production may
change from season to season and environment to environ-
ment. This requires the olfactory system to be able to learn
and relearn the association of reward with variable blends
of volatile compounds. In this new study, we examine the
mechanisms underlying the creation and modification of
neural representations of natural odor blends in the early
olfactory system — antennal lobe (AL) — using a combination
of computational modeling and Ca2 +imaging of the honey-
bee AL in vivo. Based on previous immunological labeling
that showed octopamine receptors (modulating reward) co-
localized with GABA receptors [1], we modeled plasticity in
the inhibitory AL network. Following our previous modeling
work [2], rewarded odors caused GABA facilitation based
on presynaptic firing rates, and non-rewarded odors caused
GABA facilitation based on post-synaptic firing. We found
that this inhibitory plasticity was sufficient to create many of
the changes seen in vivo. This includes the shifting of odor
mixtures due to reward, the adaptation to many unrewarded
odor presentations, and changes in the representations of
complex blends. Importantly, our model learned to discrim-
inate between complex odor blends by expanding coding
space in the dimensions that were maximally discriminatory
(Fig. 1A), which have been observed in vivo. Our model
further predicted that the cells representing chemical com-
pounds common to both rewarded and non-rewarded odors
face increased inhibition from both associative and non-
associative plasticity. This combined action diminished the
superfluous components, while increasing the discriminatory
components of the neural code (Fig. 1C). This prediction
was then verified in vivo by examining Ca2 +imaging data
(Fig. 1B, D). We found that glomeruli that were common to
many odor blends were suppressed by training and those that
were unique to a single odor blend were enhanced. Analy-
sis of a black-box graphical convolutional neural network
revealed a similar pattern of relationships between odor per-
cepts to that learned in the biophysical model. Our model
demonstrates a learning paradigm where the inhibitory net-
work reshapes coding space to suit the current task and envi-
ronment. These findings suggest an efficient computational
strategy for perceptual learning in complex natural odors
through modification of the inhibitory network.
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Relational memory, the ability to make and remember asso-
ciations between objects, remains an essential component
of mammalian reasoning. In relational memory tasks, it has
been shown that periods of offline processing, such as sleep,
are critical to improving one’s ability to make indirect asso-
ciations or transitive inferences. For example, one may learn
to associate two items (A and B) and later learn to associate
B with a new element (item C) during the wake state. After
briefly learning these associations, a subject can recall item
B (also called “linking” item) when presented with item A
or C, but is less adept at recalling item C when presented
with item A. Behavioral research has shown that the duration
of slow-wave sleep (SWS) following such is significantly
correlated with the subject’s ability to recall item C when
presented with item A, highlighting the importance of SWS
in developing relational memory. Despite the behavioral evi-
dence, we know little about the mechanisms of sleep that
give rise to improved relational memory as well as the brain
network changes that occur during sleep to support relational
memory.

Based on the empirical evidence that sleep improves rela-
tional memory, in this new study, we built a Hodgkin-Hux-
ley-based model of the thalamo-cortical network to under-
stand how SWS can lead to improvements in an unordered
relational memory task. The cortical part of the network
was composed of two layers, both including and excita-
tory and inhibitory neurons; the first layer represented the
perception of an individual object (e.g. visual cortex) and
the second layer represented higher-order processing (e.g.
associative cortex). Feedforward connections from the first
layer to the second layer and recurrent connections within
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the second layer were plastic and modified through spike-
timing dependent plasticity (STDP) rules during training and
sleep. Other connections, e.g. thalamocortical and cortical
feedback connections, were fixed in alignment with bio-
physical data.

The model was first trained on a paired associate inference
task, where four pairs of items (e.g., A+B, B+C, X+,
Y +Z) were presented to the network. After this associative
training phase, the model was able to recall direct associa-
tions (e.g., A->B, B->C) learned during the waking state.
However, the indirect relational association (e.g., A->C)
was not learned or was unreliable. After a period of SWS,
the model’s ability to recall these indirect associations was
significantly improved, highlighting the importance of SWS
in relational memory. In agreement with empirical data, we
found that the duration of SWS significant correlates with
the improvement in relational memory after sleep. Impor-
tantly, we found that replay during sleep increases synaptic
connections between neurons representing the linking (com-
mon) item (B) and neurons representing the unlinked associa-
tions (A, or C). This change in synaptic connectivity led to a
greater ability to recall the unlinked items (e.g., C) when its
indirect pair (item A) was presented. Our study predicts that
sleep can reactivate pathways to and from the linking item to
the unlinked objects in order to form indirect associations. In
addition, we predict that inactivating the neurons that repre-
sent the linking item (B) through optogenetics may destroy
the subject’s ability to perform indirect associative recall.
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Magneto- and electro-encephalography (M/EEG) are comple-
mentary, non-invasive imaging techniques which are used to
measure macroscopic brain activity. However, how the micro-
scopic activity of ion channels gives rise to these electromag-
netic signals is yet to be fully understood. To address this
question, we developed a multi-scale thalamocortical network
model that exhibits the characteristic activity states of NREM
sleep: sleep spindles and slow oscillations. We incorporated
the main organizational principles of cortical connectivity in
our network model. First, the connection probability between
a pair of cortical cells decayed exponentially with respect to
the diffusion-MRI derived white matter tract distance between
the pair. Second, a hierarchical index was assigned to each
functional region that is inversely proportional to region’s
average myelination. Third, inter-areal hierarchically feed-
forward and feed-back connections were pruned into distinct
laminarly-separated counter-streams, distinct from local con-
nectivity. The synaptic delays and synaptic strengths were
derived from dMRI distances and laminar patterns. We exam-
ined the role of synaptic delays on the propagation of spindles
and slow oscillations, and found that characteristic traveling
wave structure is preserved even for relatively high delays
consistent with human brain long-range connectivity delays.
We compared the spatiotemporal patterns of mesoscale cor-
tical correlativity structure in simulated and empirical data.
By embedding the simulated cortical currents in a volume
conduction model of the head we produced simulated M/
EEG, enabling investigations of how multi-scale dynamics
and detailed connectivity give rise to these complex signals.
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Human and animal brains must continuously encode and
assimilate new memories to appropriately guide behavior
in a constantly changing environment. Although advances
in computational neuroscience and machine learning have
made significant steps towards a mechanistic understand-
ing of biological learning, the existing models fall short by
suffering from severe retroactive or catastrophic interfer-
ence—an overwriting of older, competing memories—when
presented with novel information to encode. One possible
explanation for this is that most existing models only attempt
to model the learning processes which occur during awake
behavior, and ignore the complexities of the consolidation
processes which occur during sleep. Systems Consolidation
Theory posits that the hippocampus rapidly encodes new
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Fig.1 A Schematic of basic circuitry of thalamocortical network
model. PY/IN neurons are excitatory and inhibitory cortical neurons
(respectively). TC/RE neurons are excitatory thalamocortical neurons
and inhibitory reticular neurons. HP indicates simulated hippocampal
input to PY neurons. Excitatory connections are demarcated by lines
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slow-waves and spindles in the model. C Heatmap showing activ-
ity during a typical simulation. Y-axis indicates PY neuron index
and X-axis is time; color indicates membrane voltage. Labels on top:
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information during awake behavior. This hippocampal trace
is subsequently assimilated into the cortex and further con-
solidated during sleep. Specifically, coupling of slow oscil-
lations (SOs) in the cortex and sharp-wave/ripples (SWRs)
in the hippocampus is thought to allow the hippocampus to
replay recent memories and to index corresponding cortical
memory traces to be replayed and learned for long-term stor-
age. To understand the details of this coupling, we developed
a biophysically-realistic thalamocortical network model
(Fig. 1A) implementing SWR input and SOs (Fig. 1B). We
found that when two competing memories were trained
sequentially during awake, the model suffered from retro-
active interference, forgetting the old memory trace. How-
ever, interference could be avoided when the competing new
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memory was embedded to the cortical network by SWRs
during sleep (Fig. 1C-E). More surprisingly, we observed
that hippocampal indexing qualitatively changes the dynam-
ics of consolidation during sleep by (1) the emergence of
autonomous learning rate decay, and (2) altering the stabil-
ity landscape of synaptic weight space (Fig. 1F). The for-
mer allows the network to consolidate the new memory in
a self-stabilizing manner, while the latter prevents retroac-
tive interference by restricting consolidation dynamics to a
subspace of synaptic weight space—the solution manifold
of the older memory.
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The number of patients with neurodegenerative disorders is
expected to quadruple in the next 50 years, bringing the cost
associated with patient care to approximately $2 trillion in
2030 [1]. The development of disease modifying therapies
is hindered by the high costs of the drug development pro-
cess, which is in part due to the long duration of the clinical
trials. Total costs for the development of an Alzheimer’s
Disease drug are estimated at $5.6 billion over 13 years [2],
with phase 2/3 clinical trials taking up approximately half
of that time [3]. One reason for the need for long clinical
trials to test neurodegenerative disorder therapies is the
large inter-subject variability due to heterogeneity in the
diseases’ pathobiology and progression [4]. Recruiting indi-
viduals who share common pathophysiological signatures
during the trial enrollment stage will reduce the variability
in the response to the treatment leading to shorter trials [5].
Grouping subjects based on multimodal biomedical data is
complicated by the diverse data types due to the variety of
spatiotemporal scales at which data is collected. To this end,

scales g @B B

O  Graph Explorer

represented as edges between the nodes. Nodes and Pathways can be
affected by Events (Function, Disease etc.) according to a mathemati-
cal model
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we present the Medicine Graph (MG), a web-based neuro-
informatics software application designed for integration of
multimodal data and cutting-edge 2D/3D visualizations in a
neuroanatomy-based reference system (Fig. 1). MG is built
on an integrated graph database platform which allows its
users to ingest, organize, and correlate data from clinical
trials, public databases, and proprietary multi-omics data.
A graph representation of the multimodal data enables the
users to explore structure—function relationships across dif-
ferent scales (from molecular to behavioral), and to model
the response of the system to pharmacologic manipulations.
Currently, MG allows users to visualize human anatomical
knowledge from various sources (SNOMED, UBERON,
and the Allen Institute) and references their content in MNI
space. It also incorporates gene expression data obtained
from brain samples of a representative subject and simulated
pharmacokinetic data in the cerebrospinal fluid. MG pro-
vides the framework for curation, visualization, and annota-
tion of graph-based data, enabling the analysis of relation-
ships between different types of biomedical data to derive
novel hypotheses to accelerate drug development. Further-
more, integration of results from clinical assessments and
digital/fluid biomarkers will enable users to identify patient
groups with common biological signatures for testing of per-
sonalized treatments.
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Tractography is a widely used technique for studying the rela-
tionship between brain structure and function. However, its
accuracy is limited by false positive and false negative con-
nections [1]. Consensus thresholding, often used to produce
representative group connectomes, seeks to reduce these errors
by retaining only the links present in a given percentage of the
subjects. In the absence of ground truth, guidelines to choose
the threshold often rely on structural considerations as well
as specific assumptions [2]. Here, we propose an alternative
approach, whereby, given a model of neuronal dynamics, the
threshold is chosen based on whether the dynamical behav-
iour of the group connectome is most representative of the
behaviour of the individuals. We use the Kuramoto model of
synchronization and characterise the individual and group net-
works in terms of their metastability, which has been shown
to be clinically and behaviourally relevant [3]. Using a data-
set of forty structural connectivity matrices constructed by
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probabilistic tractography (healthy adult cohort), we found
that the threshold for which the metastability profile was most
representative of that of the individual networks was 42.5%.
As thresholds moved away from this minimum, they no longer
fitted the average individual metastability profile (Fig. 1, left),
despite still falling in the range proposed by [2]. We compared
our approach to two other methods: one preserving the con-
nection length distribution [4], the other retaining the most
consistent edges across the cohort [5]. Both connectomes
significantly deviated from the best fit (Fig. 1, left). A graph
theoretical analysis using common network metrics suggested
that similarity in network structure did not predict similarity
in dynamical behaviour. For example, the distance-dependent
network which showed most similarity in terms of global graph
metrics (Fig. 1, right), and close proximity in terms of local
graph metrics (Fig. 1, middle) was furthest way in terms of
dynamical behaviour. This suggests that relying purely on
structure for choosing the threshold may overlook network
features of importance to neuronal dynamics. Further work
is needed to establish whether these results generalise to dif-
ferent classes of neuronal dynamics. Importantly, however,
the proposed method is agnostic to whether deterministic or
probabilistic tractography is used.
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Cerebellum-like structures are found in many brains and
share a basic fan-out-fan-in network architecture. How the
specific structural features of these networks affect their
ability to learn remains largely unknown. Previous theoreti-
cal studies have suggested that purely random connections
between input neurons and encoding neurons are optimal
for associative learning. However, recent experimental stud-
ies of the Drosophila melanogaster mushroom body have
identified two principal connectivity patterns that devi-
ate from purely random connections. To investigate this
structure—function relationship, we developed a four-layer
network model of the early Drosophila melanogaster olfac-
tory system with particular attention paid to the structure
of the feedforward excitatory connections from the projec-
tion neurons of the antennal lobe to the Kenyon cells of the
mushroom body (Fig. 1A). The first connectivity pattern,
biases, deviates from the purely random case (Fig. 1Bi)
by allowing the likelihoods at which individual projection
neurons connect to Kenyon cells to substantially deviate
from uniformly random (Fig. 1Bii). The second connectiv-
ity pattern, groups, allows projection neurons to connect
preferentially to the same Kenyon cells (Fig. 1Biii). Finally,
we consider a network class that exhibit both biases and
grouping (Fig. 1Biv).We compared the representations of
olfactory stimuli generated by the KC layer qualitatively
and quantitatively; we also assess the ability of a network
to perform associative learning via a novel, biologically
inspired learning rule (Fig. 1C). We find that biases allow
the mushroom body to prioritize the learning of particular,
ethologically meaningful odors while incurring a minimal
loss in overall associative learning ability relative to the
optimal, purely random case (Fig. 1D). Second, we find that
groups facilitate the mushroom body generalizing learned
associations across similar odorswhile maintaining the abil-
ity to discriminate across most odors (Fig. 1E). Altogether,
our results demonstrate how different connectivity patterns
shape the representation space of a cerebellum-like network
and impact its learning outcomes.
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Astrocytes are glial cells that make up 50% of brain volume,
with each one wrapping around thousands of synapses. How-
ever, the exact role astrocytes have in governing the dynamics
of the synapse and neuronal networks is still being debated. Pre-
vious computational modeling work has helped tease out pos-
sible mechanisms driving this interaction at the synapse level,
with micro-scale models of calcium dynamics [1,2] and neu-
rotransmitter diffusion [3]. Little computational work has been
done to understand how astrocytes may be influencing spiking
patterns and synchronization of large networks, partly because
it is computationally infeasible to include the intricate details
found in this previous work in such a network-scale model.

We overcome this issue by first developing an “effective”
astrocyte that can be easily implemented to already estab-
lished network frameworks. We do this by showing that the
astrocyte proximity to a synapse makes synaptic transmis-
sion faster, weaker, and less reliable. Thus, our “effective”
astrocytes can be incorporated by considering heterogeneous
synaptic time constants, which are parametrized only by the
degree of astrocyte proximity at that synapse. This para-
metrization makes sense in light of experimental evidence
showing that the degree of astrocyte ensheathment varies
by brain region and that it is a crucial component in certain
disease states such as some forms of epilepsy [4]. We then
apply our framework to a network of 20,000 exponential
integrate-and-fire neurons, similar to the one presented by
Rosenbaum et al. [5]. Depending on key parameters, such
as the number of synapses ensheathed, and the strength of
this ensheathment, we show that astrocytes have the ability
to push the network to a synchronous state and to enhance
and sharpen patterns of spatial correlation exhibited by the
network.
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Emotions are central to human experience and therefore, the
use of machine learning to accurately classify human emo-
tions has been an area of popular research in recent times.
Most of the available research is based on data collected
while the subject is kept stationary and exposed to an exter-
nal stimulus, such as listening to an audio or watching an
audio-visual clip. In this paper, we extend work done by [1],
which focuses on studying the emotions when the subject
is involved in doing a more complex physiological activ-
ity, such as playing computer games. We aim to establish
a relationship between emotions and lobes of the brain by
examining the EEG signals from those lobes. Additionally,
we wish to examine, if deep-learning-based architecture
like long-short term memory (LSTM) and its variants can
offer better results for emotion classification on GAMEEMO
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dataset. LSTM is believed to perform better on temporal data
having long-term dependencies. The GAMEEMO dataset
contains EEG data collected from 28 subjects who played 4
different games, known to elicit a particular kind of emotion.
To analyze the dataset, we have used a 4-layered network
including LSTM, Bidirectional LSTM and Gated Recurrent
Unit (GRU) models. The input data from GAMEEMO data-
set is fed to the network and it learns to associate EEG data
with the emotion class label. In addition, we also learn to
associate the emotion class label with the lobe of the brain
by segregating the EEG electrodes as per their position.

We have achieved an average accuracy of greater than
80% for all the channels with each of the 3 models, which
is significantly better than the earlier work (Fig. 1). The
spatial analysis of results also suggests that there exists
a strong relationship between Occipital lobe and HANV
(High arousal Negative Valence) emotion class and Parietal
lobe and LAPV (Low Arousal Positive Valence) emotion
class. We observed that Bidirectional LSTM outperforms
the other two models when it comes to overall average
classification accuracy. Out of the three models, classes
HANYV and LAPV show much better classification results
as compared to HAPV (High Arousal Positive Valence) and
LANYV (Low Arousal Negative Valence). HANV class emo-
tions such as anger, nervousness, horror, etc., and electrical
activity in the Occipital lobe seem to have a strong rela-
tionship, as this lobe produced the best results for HANV
class. HANYV is associated with emotions such as horror
(as tagged in Game G3 in our dataset). One reason for this
could be that the stimulation of the occipital lobe is associ-
ated with heightened emotions.
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Brian 2 [1] is a neural simulator for biological spiking neural
networks. It is based on a code-generation approach, which
means that it transforms arbitrarily user-specified model
equations into efficient compiled code. This approach makes
it an ideal tool to develop and explore new, detailed mod-
els of neural activity. Most parameters of such models do
not correspond to physical quantities that can be measured
directly and are therefore not exactly known beforehand.
Consequently, a common task for modellers is to adapt the
model parameters so that they reproduce a certain set of
experimental data as accurately as possible. Adapting the
parameters has often been an ad-hoc procedure, where the
researcher tweaked the parameters until the fit to the exper-
imental data looked “good enough”. Such a procedure is
obviously time-consuming, and will most often lead to a
sub-optimal solution. At the same time, a large number of
automatic optimization algorithms exists, and several soft-
ware packages provide efficient implementations for them.
However, using these approaches together with simulators
like Brian 2 is not yet common in the community. One rea-
son for this is that their efficient use is not always straight-
forward and requires considerable effort by the researcher.
Switching between approaches and the packages that imple-
ment them also requires adapting the code to a new interface.
Here, we present how the Brian 2 simulator, together with the
brian2simulator package, enables researchers to overcome
these difficulties. It provides a unified interface to several
state-of-the-art optimization algorithms so that researchers
can determine the best-fitting parameters of their models.
The supported approaches include global optimization meth-
ods (provided by the Nevergrad [2] library), as well as local
gradient-based methods (provided by the scipy [3] package).
The gradient-based methods can be accelerated by making
use of Brian 2's facilities to symbolically analyse the model
equations. This makes it possible to provide an exact calcula-
tion of the gradient, instead of relying on an approximation.
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Finally, we demonstrate how to go beyond parameter opti-
mization with a more recent approach, simulation-based
inference [4,5]. This approach provides the researcher with
a more complete view of the fit of a model to experimen-
tal data, by estimating the full posterior distribution of the
model parameters given the data.
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There is evidence that the brain can compute quickly and
reliably with single spikes in certain instances. This points
to an operating regime very different from rate coding:
neuronal noise is suppressed and the binary, all-or-nothing
nature of spikes plays an important role. What compo-
nents might allow neurons to achieve this? In this work, we
explore how neural oscillations can orchestrate rapid and
robust binary computation with the aid of dendrites.


https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad

Journal of Computational Neuroscience (2021) 49 (Suppl 1):53-5204

545

Two ideas are central: saturation and synchrony. Saturation
allows neurons and their components (e.g.\ dendritic com-
partments, ion channels) that are strongly driven to act effec-
tively as if they are binary units. Coupled with synchrony,
which facilitates the quick integration of related inputs, these
binary units can perform rapid spike-based computations
reliably. In our simulations, synchrony comes from popula-
tion oscillations mediated by inhibitory interneurons, which
define periodic integration and firing windows for the neu-
rons. However, synchronization comes at a price: the effect
of incoming spikes depends heavily on their timing relative
to the oscillations. We find a trade-off in performance: wider
integration windows give more robust input summations, but
lead to proportionally more jitter in the timing of the output
spikes. Narrower integration windows make for more precise
spike timings, but require the input spikes to arrive nearly
simultaneously. This trade-off is hard to avoid without fine-
tuning synaptic delays, which is unphysiological.

We show that this issue can be redressed with the use of
active dendrites. Specifically, we develop a simple model of
an active, saturating dendrite which decouples the integra-
tion of inputs from the firing time of the soma, thereby fixing
the problem. We show that a network equipped with these
dendrites can robustly display oscillations which coexist with
ongoing computations based on single spikes. That is, the
generation of synchrony and the performance of computations
can both independently be achieved by the same network
Taken together, these ideas provide a hypothesis on how
some biological circuits in the brain could perform a binary
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computation efficiently (with a small number of neurons),
quickly (with one spike volley per layer), and robustly (in
the presence of noise).
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Gap junctions are known to connect neurons, glia, reti-
nal cells, as well as cardiac cells. Of these, action poten-
tials (APs) can actively propagate between neurons and
cardiac cells. Previous experiments in cardiac cells show
that increasing the gap junction conductance can initially
enhance propagation, while higher gap junction conduct-
ances re-introduce propagation block [1,2]. Similarly, neu-
ronal models show that there is an ideal gap junction con-
ductance for AP propagation [3,4].

We investigate AP propagation through a chain of cells,
modifying the gap junction conductance (g) and the number
of downstream neighbors (k). Using the Fitzhugh-Nagumo
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Fig. 1 A Each each cell connects one upstream cell (v,) and k down-
stream cells (vg=0). B F(v) is the fast dynamics of the cell’s currents,
G(v,v,) is the gap junction current. If there is a saddle-node bifurca-

tion as v, increases, the cell can fire. C A saddle-node bifurcation
occurs when F(v) and G(v,v,) are tangent. The resulting bifurcation
curve predicts a peak in k for AP propagation
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model, we are able to predict propagation through a chain of
cells by reducing the model to 1-dimension which focuses on
the fast dynamics. By analyzing the fixed points in this reduced
1-dimensional model (Fig. 1), we can predict when APs will
propagate through the entire chain of cells, partially propagate
through the chain, or not propagate at all. Furthermore, we can
predict the spike heights of the propagated APs, as well as a
region in the (g,k)-plane where cells no longer fire indepen-
dently, but their voltage is tied to the leading cell in the chain.
We are also able to use a similar 1-dimensional reduction to
predict propagation in Hodgkin-Huxley and cardiac cells.
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Neuronal noise is a characteristic of brain computations that
can play a central role in visual phenomena such as binocu-
lar rivalry. In addition, the statistics of neuronal noise may
be important in neurological conditions where noise abnor-
mally affects perception, such as schizophrenia, autism spec-
trum disorder and developmental dyslexia. However, there
is no systematic approach to include noise in computational
models of neuronal circuits involved in vision.

Binocular rivalry is a visual phenomenon where two images
presented simultaneously and independently to the two eyes
alternate in perception irregularly. Computational models
of this phenomenon rely on neuronal networks of the visual
cortex with competition between populations responsive to
different patterns, and the switch in perception is proposed
to result from random perturbations in neuronal activity.
Here, we compare three biologically plausible stochas-
tic processes by studying how they affect the simulated
dynamics of binocular rivalry. We include white Gaussian
noise, usually regarded as the null hypothesis for noise, Orn-
stein—Uhlenbeck noise, a model of noise filtered by syn-
apses, and pink noise, a statistical process found in natural
phenomena from earthquakes to heartbeats, and in measures
of brain activity such as magnetoencephalography and local
field potentials. We simulate a network with three layers of
neurons: a monocular layer, a binocular layer, and a layer of
ocular opponency neurons, which detect interocular conflict.
By simulating the model for a wide range of parameter val-
ues, varying image input contrast, noise intensity, and noise
correlation time, we find that temporally uncorrelated white
noise does not produce strong rivalry (Fig. 1). We also esti-
mate the minimum correlation time constant (t~200 ms)
for Ornstein—Uhlenbeck noise to be consistent with experi-
mental values of percept durations, which have been meas-
ured to be between 1 and 10 s. Although pink noise and

White Gaussian Noise
100

N

50

Dominance Time (%)

025 0,005 Noise Intensity, o 0.25

white contour line corresponds to mean percept duration equal to 1
s, defining the less transparent region of the heatmap as the one that
satisfies 1 <D < 10's
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Ornstein—Uhlenbeck noise have similar phase diagrams when
looking at rivalry strength (Fig. 1), calculation of the coeffi-
cient of variation of percept durations reveals that pink noise
(CVpink=0.59+0.08) is better than Ornstein—Uhlenbeck
noise (CVOU=1.0+0.1) at reproducing experimental values,
between 0.4 and 0.6. Our model also predicts that the strength
of rivalry is lower at extreme input contrasts, close to 0 and 1.
This comparison of commonly used, but rarely character-
ized, models of synaptic noise may guide future computa-
tional works on binocular rivalry and other perceptual phe-
nomena where noise has a relevant contribution.
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P24 Oscillatory network model to understand theta-
sequences in one-dimensional motion
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The hippocampal cells, broadly categorized as spatial cells,
have a key role in the storage of experience, which is essen-
tial for learning, navigation and formation of memory. The
processes behind this storage are not well known. We devise
a computational model for understanding theta-sequences
during linear motion. Theta sequences are “clear, ordered
sequences” observed in the theta wave, with segments
reflecting the position, time during motion in an animal
brain [1]. Neurophysiological findings suggest that the hip-
pocampal theta sequences are found ahead or behind the
position in the path trajectory when there is altered veloc-
ity [2], and these sequences have a phase relationship with
the background theta rhythm [1]. While studies have shown
that the theta sequences have a phase precession, some find-
ings note the dependence of the theta sequences on velocity,
directionality and activity to depict Spatio-temporal signals
and spatial representations of present and future [3-6].
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We present a network model (Fig. 1) centrally built with
oscillatory neurons as input and has multiple layers. The
first layer is the Path integration (PI) layer that encodes the
displacement in the preferred direction (forward or back-
ward) by encoding a scaling factor of p and the speed. The
base frequency of the oscillators is modulated using speed
and beta as modulating factors. The output is fed to layers of
stacked auto-encoder that extract the principal components.
Finally, we have a hidden layer that acts as the regressor to
predict the velocity.

The neuron output from this layer is analyzed by a) thresh-
olding the firing, b) filtering the neurons based on sequen-
tial firing and c) rearranging the neurons based on posi-
tion; we thus identify the wave firing pattern coherent to
the theta rhythm in order of the motion. We can replicate
the firing pattern observed in the case of theta sequences in
one-dimensional motion [1]. Thus, the output (Fig. 1) helps
observe theta sequences based on the underlying Spatio-tem-
poral cells in the model that extends the applicability of the
current oscillator-based modelling framework to understand
navigation and learning.
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Working memory system in the brain combines the tempo-
rary storage and manipulation of information in the service
of reasoning and the guidance of decision-making tasks
[1,2]. To maintain this, our brain scans the entire image
piecewise by attending to only a small region of the entire
big picture and part by part aggregates the entire information
given in the image, with fading memory of the information
represented by the parts focused at very early on and best
recollection of the most recently focused regions. Similar to
this, we propose a dual channel multilayered convolutional
recurrent neural network architecture to solve the image
reconstruction problem. We model the recurrent connec-
tions according to the architecture (Fig. 1), consisting of
a network with both Elman and Jordan layers as recurrent
connections. The Elman connections form the self recurrent
connections for each of the convolutional layers present in
the architecture [3] while the Jordan connection forms the
recurrent connection from the penultimate layer to the pre-
vious layers [4]. We try to reconstruct two kinds of images,
one with brightness diminishing by a constant factor across
the image regions encountered in the past time steps and
the other with constant brightness across all the time steps.
The inputs across time steps are the heatmaps signifying
the location in the image where the current attention is
focused at for the first channel and a zoomed in version of
the attention window for the second channel. The output at
each timestep is the aggregated image from the initial up
to the current timestep with diminishing brightness across
the regions encountered in the past, precisely how our brain
memory works, in the first case and with constant bright-
ness in the second. We test the performance of our proposed
architectures on the MNIST dataset and the Fashion MNIST
dataset. Using the Elman Jordan recurrent connections we
obtain reconstruction test Mean Squared Error losses of
0.0022 on the MNIST dataset and 0.0032 on the Fashion
MNIST dataset after training for 100 epochs for images
with diminishing brightness in the output over the previ-
ous timesteps. The reconstruction test Mean Squared Error
losses are 0.0049 on the MNIST dataset and 0.0084 on the
Fashion MNIST Dataset for images with constant brightness
after training for 100 epochs. Thus, we are able to achieve
good image reconstruction results with a network architec-
ture with lightweight recurrent connections by extending the
Elman Jordan equations to a convolutional form and utiliz-
ing a dual channel architecture.
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Legged animal locomotion such as walking and running
is based on periodic limb movements. The neural circuits
underlying various rhythmic motor behaviors can be traced
to the central pattern generator (CPG). Hence, bio-inspired
robotics aims to employ CPGs to control limb movement for
synchronized locomotion [1]. A CPG can produce coordi-
nated rhythmic output signals without any feedback mecha-
nism while receiving simple input signals from the higher
regions in the brain, ideal to be implemented by a system
of coupled limit-cycle oscillators. Recently, the surge in
the development of solid-state nanoelectronic devices has
enabled the implementation and experimental realization
of neuromorphic structures designed to reproduce various
computational features observed in the neural system.

A single relaxation oscillator (Fig. 1a) can be realized by
placing a two—terminal memristive device composed of
Vanadium Dioxide (VO2) in series with a MOSFET and a
capacitor [2]. We consider a network of four such oscilla-
tors connected in a ring topology with capacitive nearest-
neighbor bidirectional coupling (Fig. 1a). The coupling
capacitance CC controls the coupling strength, wherein a
high (low) CC corresponds to an inhibitory (excitatory) con-
nection. A previous work demonstrated a three-gait CPG
using a similar network wherein the difference in intrinsic
frequencies between the oscillators was used to obtain phase
shifts in the frequency-locked regime [3]. In this simulation-
based study, we demonstrate a six-gait neuromorphic CPG
by exploring the dynamics of a ring network by modulat-
ing the coupling strengths between oscillators. A range of
phase-tunable spatiotemporal patterns emerge in the network
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Fig. 1 a Schematic of the
capacitively coupled oscillatory
network. Limbs: LF =Left front,
RF=Right front, LH=Left
hind, RH=Right hind. b Vari-
ous gait patterns observed in
quadruped animals [4]. ¢ The
generated steady-state phase
patterns; i Lateral Sequence
Walk. ii Diagonal Sequence
Walk. iii Trot. iv Pace. v Canter.
vi Transverse Gallop
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while modulating the coupling elements under different cou-
pling schemes. We propose three such schemes; when tuned
accordingly, the network can produce steady-state phase pat-
terns that are suitable to closely generate all the primary
walking gait patterns observed in quadruped animals accord-
ing to Alexander’s classification [4] (Fig. 1b). The generated
patterns along with the corresponding coupling parameters
are depicted in Fig. 1c.

In conclusion, our results illustrate that coupled nano-oscil-
lators offer a compact and low-power hardware [3] platform
to model a CPG. Additionally, inserting transistors in series
with the coupling capacitors makes the network real-time
programmable, where the locomotion speed and gait pat-
terns can be modulated by just adjusting a small set of bias
voltages, paving the way for feedback-driven adaptive gait
generation. Ultimately, such a platform for locomotion con-
trol would provide an excellent opportunity to realize bio-
inspired neuromorphic hardware for autonomous robots and
other applications.
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To produce timely responses, animals must conquer delays
from visual processing pathway by predicting motion. Pre-
vious studies [1] revealed that predictive information of
motion is encoded in spiking activities of retinal ganglion
cells (RGCs) early in the visual pathway. In order to study
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the predictive properties of a retina in a more systematic
manner, stimuli in the form of a stochastic moving bar are
used in experiments with retinas from bull frogs in a multi-
electrode system. Trajectories of the bar are produced by
Ornstein—Uhlenbeck (OU) processes with different time
correlations (memories) induced by a butter-worth low-pass
filter with various cut-off frequencies.

We then investigated the predictive properties of single
RGC by calculating the time shifted (5t) mutual informa-
tion (MI(x,r;8t)) between spiking output (r(t)) from a sin-
gle RGC and the bar trajectories (x(t)). Intuitively, the peak
position of MI(8t) is typically negative when considering
the processing delay of the retina. Our measured peak posi-
tions of MI(5t) for some RGCs were characterized by both
positive and negative peak position under low-pass OU
(LPOU) stimulus. This finding indicates that some RGCs
(P-RGCs) are predictive while the others are non-predictive
(NP-RGCs). For LPOU with various cut-off frequencies, the
MI peaks from the P-RGCs are positively correlated with the
correlation times of the stimuli while those from the NP-
RGCs are always around a fixed negative number (-50 ms).
In order to further understand the mechanism of prediction,
we develop a negative group delay model which is based on
Voss’s [2] paper to generate anticipative responses. We extend
our model to spatial version and use the same stimulation
condition as we use in experiments. The model indicates that
delayed negative feedback is crucial for producing MI(x,r;dt)
similar to those observed in experiments. Besides, we also
show feedforward inhibition can also generate similar predic-
tion dynamics. Thus, we presume horizontal cells’ feedback
and feedforward inhibition may participate in this prediction
phenomenon. Besides, our feedback and feedforward model
can also predict constant velocity moving bar [3]. After add-
ing LPOU noises into constant velocity moving bar, our
model even predicts better than gain control model [3]. To
sum up, our feedforward and feedback model can anticipate
both stochastic and constant velocity moving bar.
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Many studies have suggested that episodic memory is a gen-
erative process, but most computational models neverthe-
less adopt a storage view according to which the contents
of the memory more or less faithfully reflect the content of
the experience. As a result, the investigation of generative
episodic memory uses conceptual descriptions and remains
rather vague. We, therefore, propose a computational
model for generative episodic memory based on one cen-
tral hypothesis: episodic memory traces store and retrieve
selected aspects of an episode in a compressed format, which
are necessarily incomplete. The missing information is filled
in during retrieval based on general semantic information.
The computational model consists of two parts: the visual
processing network and the semantic network. First, the
images are passed through an autoencoder (AE) structure.
The encoder part models the processing of episodic experi-
ences into more abstract gist representations. These latent
representations can be used by the decoder to reconstruct
the missing details. This structure represents the visual path-
way in the neocortex and is implemented using the Vector
Quantized Variational Autoencoder (VQ-VAE). Attention
is modeled by selecting parts of the latent neural represen-
tation and storing them as a memory trace. This process is
hypothesized to occur in the hippocampus. To reconstruct
the full latent representation from this partial memory trace,
we use a semantic network based on the Pixel-CNN archi-
tecture. This network is trained on the full latent neural rep-
resentations and learns their structure and statistics. It can
then generate new valid neural representations or complete
the missing parts of partial memory trace according to the
learned statistics.

Both the VQ-VAE and the Pixel-CNN are state-of-the-art
machine learning generative algorithms, which allows us to
use more realistic sensory inputs in contrast to the major-
ity of hippocampal memory models that process abstract
and simple patterns. Experiments have shown that objects
that are experienced in a semantically congruent context are
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recalled better than objects in an incongruent context, as
there is no conflict between episodic and semantic mem-
ory. Also, interactions with objects (i.e., paying attention)
increases memory accuracy. Moreover, it has been shown
that, in incongruent cases, objects that are not remembered
episodically correctly are more often remembered semanti-
cally correctly than completely wrong. Our computational
model accounts for the aforementioned experimental results.
This shows that the model is successful in capturing the
complex statistics from the input. When only parts of the
latent neural representation are attended and stored, and then
later recalled, the results are not necessarily faithful. Still,
they are valid and likely reconstructions consistent with the
original data. Our modeling results support our hypothesis
on generative episodic memory. The stored gist has far less
information content than the input images; nonetheless, the
inputs can be reconstructed from the gist with the help of a
semantic network. The model is also capable of dreaming,
i.e., generating unseen but valid episodes. In conclusion, our
model suggests how generative episodic memory could be
implemented and provides the basis for further investiga-
tions and comparisons to neural processes.
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Loss of olfaction is a common early symptom of several
neurodegenerative diseases, including Alzheimer’s disease
and Parkinson’s disease [1]. Pathological markers of these
diseases are found in the olfactory bulb at early stages of
disease progression [2,3], and studies replicating disease-
like pathology in animal models have observed perturba-
tions in oscillatory activity in the olfactory bulb [4,5]. We
implement a simple computational model of olfactory bulb
oscillatory activity and explore the effects of damage to the
network. Because synaptic dysfunction is known to play a
role in both Alzheimer’s and Parkinson’s disease [6, 7], and
as it fits the scope of the model used here, we limit our
focus to this aspect of the pathology and model network
damage primarily by weakening synaptic weights. Damage
is propagated throughout the network in several schemes:
localized, spreading, and globalized. Moderate levels of glo-
balized and spreading damage result in increased oscillatory
power. Damage reduces inhibition and increases the average
activity level of the mitral cell model units, leading to an
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increase in network oscillations that critically depends on
the nonlinearity of the activation function. Greater damage
results in loss of oscillations, which can be predicted by a
linearized analysis of the model activity. Thus, we explore
one potential mechanism behind the increased gamma oscil-
lations found in some animal models of Alzheimer’s disease
[4,5] and highlight the potential for olfactory bulb behavior
to play a role in early diagnosis of disease.
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Sleep's fundamental role for the processing of memory and
its consolidation has now received substantial experimental
support. Nevertheless sleep can be hardly considered as an
homogeneous state: it consists of multiple stages that can
be broadly classified in the two main categories of REM
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and non-REM (nREM) sleep. These two sleep states show
widely different physiological characteristics both at the
level of local activity and in terms of global brain dynamics.
Importantly, their relative contribution to memory function
is largely unknown and questions about their interaction dur-
ing off-line processing of newly acquired information have
remained mostly untapped.

In this study, we address these issues by combining a goal-
directed learning task with long-term wireless electrophysi-
ological recordings in the Hippocampus of rats. After the
acquisition of a novel episodic-like memory, place cell
activity was continuously tracked for an extended period
of time (> 10 h) while animals rested. We then combined
multiple decoding approaches to obtain a time-resolved
characterization of the evolution of a memory representa-
tion during sleep following its initial encoding. Over the
course of several hours, we could track a continuous drift
in the reactivated activity patterns, as they progressively
accumulate distance from the representation expressed at
the end of learning. Intriguingly, the direction of drift is not
constant: a closer inspection in fact reveals opposing effects
for REM and nREM phases. While nREM sleep 'pushes’ the
reactivated activity away from the old representation, REM
sleep coincides with periods of reversal, partially resetting
the ongoing reconfiguration. REM and nREM reactivations
present otherwise only minor differences: while the reactiva-
tion content is largely overlapping in the two phases, activity
patterns expressed during REM present a higher similarity
to the awake ones, possibly due to REM slower temporal
dynamics.

Further analysis identified the main source of memory rep-
resentation drift in the differential modulation of firing rates
over the course of sleep, resulting in a significant sparsifica-
tion of the assemblies responsible for the encoding of goal
locations.

Together these results present a first-time detailed account of
the effects of off-line reactivations on the evolution of hip-
pocampal memory representations. We show how the effect
of REM and nREM stages integrate over the course of sleep
in reshaping memory related neural activity, a phenomenon
relevant not only in understanding the nature of neural cod-
ing but also in establishing a link between memory transfor-
mation and homeostatic processes.
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Neuronal assemblies are thought to underlie brain-wide
cognitive and mnemonic functions, and were first hypoth-
esized to exist more than 70 years ago by Donald Hebb. He
envisioned them as being densely interconnected subsets
of neurons which act in a loosely synchronized manner by
consistently activating when the subject thinks of a particu-
lar concept or idea. Neuroscientists have sought assemblies
and tried to characterize them ever since. In the last decade,
numerous computational techniques have been developed
to extract patterns of co-activation from multiple neurons
recorded simultaneously. This co-activation based approach
can be, however, conceptually different from Hebb’s original
view. Especially in brain areas where neurons show clear
firing preferences for one or more environmental variables,
strong pairwise correlations do not necessarily reflect an
underlying physical or even functional connectivity; in fact,
awake neural correlations are mostly explained by their co-
selectivity for stimuli.

Here, we introduce a method for detecting neural ensem-
bles that is not influenced by common stimulus selectiv-
ity or global synchrony. We do this by employing proper
null models of neural activity, which we utilize to simu-
late firing and determine the amount of neural activity
that exceeds expectations. From those traces we then
extract stimulus-independent co-activation patterns. This
procedure enables us to detect densely functionally or
physically interconnected subsets of excitatory neurons,
together with their above-chance co-activation patterns
over time.

We validated our method on synthetic data, where
we found that the underlying true assemblies were
detected more reliably than existing co-activation based
approaches. We then applied the analysis on several data-
sets of simultaneously recorded single cells in different
brain regions. These included the hippocampus, prefrontal
cortex and entorhinal cortex of rats performing foraging,
spatial learning and rule switching tasks. Crucially, these
data allow us to investigate the presence of structured
interactions between neural assemblies belonging to dif-
ferent brain regions. We find that cross-area interactions
are time-modulated, emerging in correspondence with
periods of higher cognitive load, such as rule switching
or contingency update.

Our evidence for the key role in the acquisition and trans-
fer of information played by distributed neural ensembles,
points to the necessity of effective detection methods. Our
approach enables us to disentangle the different levels of
interaction in complex networks, unveiling the relevant neu-
ral structures responsible for information processing and
bringing us closer to the original Hebb intuition.
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The afferent connectivity of a neuron depends heavily on the
size and structure of its dendritic tree; under general assump-
tions the number of potential excitatory synapses a neuron is
expected to receive is proportional to the total length of its
dendrites [1,2]. Conversely, the expected local input resist-
ance of a dendritic tree is approximately inversely propor-
tional to its length, as synaptic currents can more easily dis-
sipate both across the larger cell membrane and along the
dendrites themselves [3,4]. Taken together, these two factors
imply that the influence of a single synaptic contact on the
excitability of a neuron is likely to be inversely proportional
to the number of connections that that neuron receives across
its entire dendritic tree (Fig. 1A). Thus, dendrites intrinsi-
cally provide an LO-normalisation on synaptic inputs.
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Fig. 1 A Schematic of the relationship between dendritic length and
connectivity; larger dendrites imply increased afferent connectivity.
B Schematic of a sparsely-connected artificial neural network with
one hidden layer. C Improved learning performance of networks with
dendritic normalisation (orange) against control networks (blue).
The top row shows training set cross-entropy loss and the bottom
row shows test set accuracy. From left to right the networks have
one hidden layer with 100 units and 20% connectivity on MNIST
digit data, the same network on MNIST fashion data, and a convo-
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Here we study the computational implications of this
effect using sparsely-connected artificial neural networks
(Fig. 1B). These networks adapt their connectivity to solve
defined computational tasks such as classifying inputs and
have a number of advantages in terms of efficiency over
the more common dense networks [5,6]. We apply the nor-
malisation implied by dendritic structure to such networks:
artificial neurons receiving more contacts require larger den-
drites and so each individual contact will both have propor-
tionately less influence and learn more slowly in response to
a given error signal. We analyse various sparsely-connected,
feedforward network architectures and find that the learn-
ing performance is significantly increased (Fig. 1C). This
phenomenon also applies in self-organised recurrent net-
works with spatially extended units (Fig. 1D, E) and pro-
vides an improvement over other widely used normalisations
in sparse networks (Fig. 1F). Our result is both a practical
advance in machine learning and a previously unappreci-
ated way in which the structural properties of neurons may
contribute to their computational function.
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Fig.1 a, b Neurons in assem-
blies 83 and 122 are in yellow.
Betti curves induced by the cor-
relation matrices of two assem-
blies cl, el are those of a rank 1
matrix and are clearly different
from the Betti curves induced
by the correlation matrices of

assembly 83

With the aid of optogenetics, two-photon light sheet micros-
copy allows us to capture the activity of thousands of neu-
rons in the zebrafish larva. In our study, we focus on the
spontaneous activity in the zebrafish optic tectum, whose
neurons can be organized into functional neural assemblies
— groups of highly correlated, co-firing neurons. Previous
studies [1-3] have shown that these assemblies display
attractor-like dynamics including reverberation, sparse to
full activation, and winner-take-all dynamics.

To study the mechanism underlying the observed dynamics,
we use techniques from topological data analysis introduced
in [4] to analyze the intra-assembly correlation matrices.
Given a correlation matrix induced by the neuronal firings
of a given assembly, one may construct a filtration of clique
complexes and compute Betti curves which reveal structure
that is invariant under applying a monotone nonlinearity to
the entries. To briefly describe the construction, we can view
a symmetric matrix as the weighted adjacency matrix of a
complete graph. By adding edges in (reverse) order relative
to their weights, we produce a sequence of graphs, and by
filling in cliques, construct a filtration of clique complexes.
To each clique complex, we compute the k-th Betti number,
which indicates the number of k-dimensional “holes” of a
clique complex, and by recording the k-th Betti numbers as
edges are added, we produce the k-th Betti curve, pk.

In Fig. 1, the k-th Betti curves (fork > 1) of identified assem-
blies (c1,el) are found to be identically zero, which is indica-
tive of a low rank structure [5]. These low or identically zero
Betti curves are visible across all assemblies. To check that
this is not an artifact of the way the correlation matrix was
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computed, we compare the Betti curves to those induced by
the correlation matrix of a random subset of neurons of the
same size (d1,f1). We see that the Betti curves of the real
assemblies are clearly different from those of the random
assemblies. In contrast, we see that the singular values of
all four matrices (c2-f2) are both qualitatively similar and
indicative of full rank. Hence, the techniques in [4] allow
us to see structure in the correlation matrix which is not
readily visible using spectral techniques from linear alge-
bra. In addition to analyzing the correlations of the entire
recording, we analyze the correlations restricted to when the
assemblies are “on” (a large proportion of neurons are firing
intra-assembly) or “off,” and find that when the assembly is
on, the low Betti curve signature is preserved across assem-
blies. We propose that this low rank structure is a signature
of the attractor-like dynamics observed in the zebrafish optic
tectum.
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Reliable sensation of cold temperature and its change is
necessary for stimulus-relevant behavioral responses. We
combined computational and electrophysiological meth-
ods to investigate the neural dynamics of Drosophila larva
cold-sensing CIII primary afferents. These neurons express
a suite of thermoTRP channels implicated in noxious cold
sensation [1].

We show that due to variability of responses across individual
CIII neurons, as a population, they can encode both the mag-
nitude of cold temperature and the rate of temperature change.
Cold-evoked responses of CIII neurons included phasic and
tonic components: the peak of firing rate that occurred within
10-20 s of stimulation was followed by frequency adapta-
tion reaching steady-state spiking activity. The steady-state
frequency of CIII neurons was temperature-dependent.The
estimated temperatures of the half-maximal activation of indi-
vidual neurons weredistributed over a wide temperature range.
The magnitude of the firing rate peak significantly correlated
with the maximal rate of temperature change.

Based on transcriptomic data from CIII neurons [1] and
patch-clamp data on gating characteristics of Drosophila
Na+ and K + channels [2,3], we developed a computational
model that includes a TRP current with temperature-depend-
ent activation and Ca2 +—dependent inactivation. Modeling
suggests that the kinetics of TRP current is responsible for
the tonic-phasic response and sensitivity to the rate of tem-
perature change. A rapid inactivation (~3-20 s) of TRP cur-
rents could explain the initial peak of spiking rate at rapid
temperature fall and subsequent frequency adaptation when
the temperature reaches a steady level. We identified two
basic cold-evoked patterns of CIII neurons: bursting and
spiking. Bursts were more frequently seen within the peak of
spiking rate in response to a fast temperature drop, followed
by tonic spiking with frequency adaptation. On the other
hand, when the temperature was decreased slowly, fewer
neurons showed bursts of activity, and the bursting activity
did not form a peak of activity.

Using computational model, we described the mechanisms
of two basic CIII cold-evoked activities: spiking and burst-
ing, and phasic and tonic components of their responses,
which were defined by dynamics of TRP channels together
and their interaction with the voltage-gated Ca2 + current
and Ca2 +-—activated K+ currents. By applying an evolution-
ary algorithm, we obtained parameter sets of the time con-
stant of TRP inactivation, the temperature of half-maximal
activation, the steepnesses of TRP current activation, and
inactivation representing key features of the CIII spiking
responses recorded in experimental data. The present results
bring new insights into the potential molecular and biophysi-
cal mechanisms underlying neural processing of noxious and
innocuous cold stimuli.
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Life-supporting rhythmic motor functions like heart beat-
ing in invertebrates and breathing in vertebrates require
indefatigable generation of a robust rhythm by specialized
oscillatory circuits, Central Pattern Generators (CPGs). Yet,
CPGs should be sufficiently flexible to adjust to changes
of the environment and behavioral goals. Neuromodulation
modifies the CPG’s rhythm by co-regulating multiple ionic
currents, including the Na*/K* pump current, Lymp- In the
leech heartbeat CPG, endogenous neuropeptide myomodu-
lin downregulates I, and upregulates I, to speed up the
CPG’s rhythm [1]. The interaction of these currents dramati-
cally speeds up the rhythm of the leech heartbeat CPG when
L,ump is activated by increased internal Na* concentration,
[Na*];, produced by application of monensin [2]. Comodula-
tion of I, and I supports the CPG’s functional activity
in a wider range of the pattern’s cycle period and avoids
dysfunctional regimes [3].

We anticipate that the interaction of L, and persistent Na*
current, I, produces a mechanism supporting functional
bursting. L, is an outward current activated by [N a*]; and
is a major source of Na™ efflux. I is a low-voltage activated

inward current and is a major source of Na™ influx. Both cur-
rents are active between and during bursts. We apply a com-
bination of electrophysiology, computational modeling, and
dynamic clamp to investigate the role of I, and Ip in the
leech heartbeat CPG interneurons (HNs). Applying dynamic
clamp, introducing additional L, and I into the dynamics
of a living synaptically isolated HN neuron in real-time [4],
we show that their joint upregulation produces transition
into a new bursting regime characterized by higher spik-
ing frequency and more depolarized base potential during
the burst. Further upregulation of L, speeds up the HN
rhythm by shortening burst duration and interburst interval.
In summary, the dynamic interaction of Na*/K* pump
current with persistent Nat current offers a mechanism of
generation and regulation of robust and flexible pattern of
bursting activity.
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Growing evidence suggests that specialized oscillatory neu-
ronal circuits controlling locomotion, called locomotor cen-
tral pattern generators, are capable of producing a variety
of rhythmic patterns in response to changes in neuromodu-
lator tone [1,2]. Besides the continuous bursting rhythm
(period ~1 s), isolated neonatal rodent spinal cord prepara-
tions exhibit a complex pattern evoked by dopamine: a very
slow episodic bursting rhythm (period ~50 s) in which epi-
sodes of fast bursting rhythm are separated by long pauses
[1]. Neuromodulation can cause transitions between these
rhythms by altering key properties of intrinsic ionic currents.
Here, we describe how a basic half-center oscillator (HCO)
model of a CPG, modified from [3] and assembled of two
mutually inhibitory neurons, could produce both types of
patterns. In the model HCO, each model neuron represents
a population of interneurons in the spinal cord. Each neuron
is constructed as a single compartment model with ionic
currents introduced using Hodgkin-Huxley formalism as
well as a dynamical intracellular Na* concentration, [Na*],
and a Na*/K* pump current, Ip,,,,. The HCO model suc-
cessfully simulated many important characteristics of the
experimentally recorded episodic pattern and alterations
caused by pharmaceutical agents. The model’s mechanism
underlying episodic activity depends mainly on two intrinsic
currents: Ip,,,, and h-current, I;,. Consistent with the effects
of ouabain bath application in experiments, the decrease of
maximal pump activity caused a transition from episodic to
continuous bursting. When we increased the [Naﬁ“]i influx,
indirectly increasing lp,,,, episode duration (ED) and epi-
sode cycle period (EP) increased while interepisode interval
(IEI) did not change significantly, which is consistent with
the bath application of monensin. Increase of the maximal
conductance of Thincreased ED without a significant effect
on IEI and at a certain critical value caused a transition into
continuous bursting, which is consistent with experiments
using ZD-7288 bath application. We found that a single
model neuron is capable of generating episodic activity and
activation and deactivation oflhgovern the episodic pattern.
By applying slow—fast decomposition of the single neuron
model, we elucidated the mechanisms underlying episodic
bursting generation. These mechanisms involving the bal-
ance of I and Ip,,,, may be applicable to other biological
systems that engage in episodic activity.
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It has been experimentally verified that synchronization and
partial synchronization of brain activity play an important
role in the pathogenesis of several neurological diseases,
such as Parkinson’s disease, Alzheimer’s disease and
essential tremor [1,2] (among others), as well as in normal
functioning brain circuits [3-6] (e.g., during memory con-
solidation). However, the fundamental principles and con-
straints that govern the intricate timing and specificity of
the time-evolving patterns of partial synchrony are not well
understood.

Here we aim to relate the mathematical concept of the chi-
mera state [7,8], where synchrony and asynchrony coexist,
to partial synchronization in the brain. So far, chimera states
have been investigated through bottom-up approaches using
simple mathematical models [9, 10]. However, these simple
models are not directly applicable to real biological systems
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(e.g., brain regions), which are extraordinarily complex net-
works of coupled dynamical systems. Yet, there has been
some initial work relating chimera states to brain-related
disorders such as epileptic seizures, Parkinson’s and schizo-
phrenia [11-14], as well as in the normal operating regime
of circuits like the hippocampus [6].

Here we initiate a novel approach by training the synaptic
connections of an artificial recurrent neural network with
techniques in machine learning to display a chimera state.
We establish that chimera states can in principle emerge at
the mesoscopic and macroscopic level in brain circuits, and
do not require precisely specified connectivity or network
topologies (e.g. rings). These network embedded Chimera
states are quite generic with the connectivity matrices being
primarily random, with small perturbations off of random-
ness. Our results imply that the emergence of chimeras is
quite generic at the meso and macroscale suggesting their
general relevance in neuroscience in both pathological and
healthy circuits.
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At Alzheimer’s disease (AD) onset, accumulation of
amyloid-p (Ap) correlates with excitotoxicity and alteration
of glutamate uptake. Experiments show that oligomeric
Ap in mouse cultures modifies the expression of astrocytic
GLT1 transporters, which remove most of the extracellular
glutamate, preventing excitotoxicity. In this regard, we con-
sider how extracellular AP modifies GLT1 expression and
how it impacts glutamate time course in the peri-synaptic
space. Accordingly, we develop a mathematical model for
glutamate diffusion and uptake by astrocytic transporters.
Since extracellular glutamate and AP both modulate and
depend on calcium homeostasis and firing properties of the
tissue, we include these in our model to estimate the condi-
tions for excitotoxicity. Therefore, we upscale our descrip-
tion to a tissue level, and we consider the dynamics of the
average firing rate, glutamate, A, and intracellular calcium
concentration. Our model predicts that when AP lowers
GLT1 concentration below a threshold, the accumulation
of extracellular glutamate increases. This promotes a posi-
tive feedback loop that induces further synaptic glutamate
release and thereby excitotoxicity. When including calcium
and firing dynamics, changes in astrocytic glutamate uptake
and basal firing activity result in a third and intermediate
state: the asymptomatic stage of the disease that could
degenerate into pathology, or reverse into a healthy brain.
These results provide theoretical support to the pivotal role
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of AP in triggering excitotoxicity by perturbing neuronal
activity, glutamate, and calcium homeostasis. Furthermore,
we can foresee the idea of Alzheimer’s as a multistage dis-
ease, where transitions are driven by Ap.
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Neuromorphic hardware is based on emulating the natural
biological structure of the brain. Since their computational
model is by design similar to standard neural models, we
would like to use it as a computational acceleration for both
research projects, and biomedical applications. However, in
order to exploit this new generation of computer chips, rig-
orous simulation and consequent validation of brain-based
experimental data is imperative. In this work, we investigate
the potential of Intel's fifth generation neuromorphic chip
‘Loihi’ [1], which is based on the idea of Spiking Neural
Networks (SNNs) emulating the neurons in the brain. The
work is implemented in context of simulating the Leaky
Integrate and Fire (LIF) models [2] based on the mouse pri-
mary visual cortex matched to a rich data set of anatomical,
physiological and behavioral constraints. We address neu-
romorphic hardware challenges viz., fixed-point arithmetic,
bit-size constraints and a distinct algorithmic time. Simula-
tions on the classical hardware [3] serve as the validation
platform for the neuromorphic implementation. In spite of
the hardware implementation constraints, we find that Loihi
is highly efficient producing high-quality replication of the
classical simulations. In addition, it scales extremely well in
terms of both time and energy performance as the network
size gets larger.
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Dendrites are the sub-compartment of neurons which are
important for receiving signals from other neurons and pro-
cessing into the neuronal cell body [1-3]. Studying the full
electro-diffusion ion dynamics [4-7] will allow us to under-
stand neuronal structures and function that are still mys-
terious under the approximate classical electric membrane
model.

The electro-diffusion of ions could only have impact on rela-
tively small volumes, where the ions with charge fluxes into
this space accumulate extremely quickly and that concentra-
tion spike should allow the electric potential gradients to
come into play [2, 4, 7].

In this presentation, we have investigated the electro-diffusion
impact on one of the typical small sub-compartment dendrite.
The Nernst-Planck equation has been used for the dynamics of
ions, together with voltage-gated ion channel dynamics, and
the voltage equation for dendritic membrane [3,4].

Our model shows that, for a single pulse of injection of alpha
current, the one-dimensional dendritic model shows only
0.13 mV difference due to electro-diffusion. However, for
multiple spike stimulations, the membrane potential of den-
drite accumulated the small discrepancy by electro-diffusion
and eventually approached a significant magnitude, depend-
ing on the frequency of stimulation. Importantly, the impact
can also spread to neighboring region from 10 pm at 20 Hz
to more than 20 pm at 100 Hz stimulation. In addition, the
electro-diffusion effect is dependent on the diameter of the
dendrites, as indicated by the Nernst-Planck Equation.

We have also investigated the synaptic cooperation and com-
petition by injecting two currents within certain distances;
according to the above analysis, the membrane potential
by electro-diffusion may only interact and play a signifi-
cant function within 10-15 pm. For injection distance more
than 20 pm the impact would not superpose on each other,
according to our simulation.
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Neuromorphic hardware simulating Spiking Neural Net-
works (SNN) is becoming more broadly commercially
available. There are still relatively few neural-based algo-
rithms that can effectively operate in this unfamiliar devel-
opment environment. We conjecture that algorithms based
on specific sensory modalities can be used more broadly
for general sensory signal processing. In this research
project, we have applied one of these neuromorphicalgo-
rithms, based on the structure of the mammalian olfac-
tory bulb [1], to speech keyword recognition. Using the
implemented SNN resulted in efficient and accurate sound
recognitions. In order to adapt the aforementioned neural
algorithm to audio analysis, we performed several sounds-
specific preprocessing steps. First, a gammatone filter was
applied to reduce the noise of the short audio sample and
convert temporal sound signal to positional frequency sig-
nal. The single odor test algorithm was altered to be used
for audio processing on extracted columns from a gamma-
tone filter spectrogram made from a sound file. The results
showed that over sequential “olfactory” gamma cycles, the
algorithm successfully achieved one-shot online learning
(Fig. 1). The graphs showing the frequency measured by
each sensor were noticeably distinguishable. Currently,
we are experimenting with multiple audio samples to test
the potential identification of speakers. Implementation on
the Loihi neuromorphic hardware chip would lead to an
increase in the magnitude of speed and energy efficiency
as compared to general-purpose computers. Thus, one-shot
learning has been achieved and the modified neuromorphic
algorithm demonstrates the validity of our cross-modality
hypothesis.

Gamma Cycle
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Synchronization in the brain underlies information process-
ing across multiple areas. Notably one can observe spatially
structured coherence states where multiple and tunable syn-
chronous brain subnetworks coexist. From the point of view
of nonlinear dynamics, these correspond to clustered syn-
chronization or chimera states (coexistence of synchronous
and asynchronous activity [1]). For example, recent experi-
ments have shown that chimera states are observed in the
brain during epileptic seizures and unihemispheric sleep [2].
Despite the recent interest in chimera states, the ability to
robustly and automatically identify such complex spatio-tem-
poral dynamics of neuronal networks correctly remains a key
challenge. Arguably previously proposed measure measures
for chimera state identification (the Kuramoto order parameter
[1], strength of incoherence [3], and the Xz—parameter [4]), have
significant drawbacks: inability to identify cluster synchroniza-
tion, instability for the travelling wave regime, need for hand-
tuned parameter selection, empirical selection of the regime
boundaries.

We propose a new approach for large-scale studies of chi-
mera states [5] — adaptive coherence measure (ACM). ACM
is based on the modification of Xz-parameter. We suggest to
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solve the optimization problem: R*=max,, x* ({V(t— At,)}
N, where At=(At,, At,, ..., Aty) is a vector of time lags.
Couple (R?, L) unequivocally determines a dynamical regime
(see Table 1), where L is the number of unique time lags. For
a chimera state, we can determine large synchronous groups
of neurons L, and a large population of asynchronous neu-
rons in the network (see, for example, Fig. 1).

Our approach allows automatic disambiguation of synchro-
nized clusters, travelling waves, chimera states, and asyn-
chronous regimes. In addition, our method can determine
the number of clusters in the case of cluster synchronization.

Acknowledgements

This study has been carried out using HSE unique equipment
(Reg. num 354,937) and supported by the RF Government
grant ag. Ne 075-15-2021-673. The research was also partially
supported by the computational resources of HPC facilities.

References

1. Abrams DM, Strogatz SH. Chimera states for cou-
pled oscillators. Physical review letters. 2004 Oct
22;93(17):174,102.

2. Lainscsek C, Rungratsameetaweemana N, Cash SS,
Sejnowski TJ. Cortical chimera states predict epileptic sei-
zures. Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence. 2019 Dec 30;29(12):121,106.

3. Gopal R, Chandrasekar VK, Venkatesan A, Lakshmanan
M. Observation and characterization of chimera states in
coupled dynamical systems with nonlocal coupling. Physical
review E. 2014 May 27;89(5):052,914.

4. Golomb DD, Hansel D, Mato G. Mechanisms of syn-
chrony of neural activity in large networks. InHandbook
of biological physics 2001 Jan 1 (Vol. 4, pp. 887-968).
North-Holland.

5. Dogonasheva O, Kasatkin D, Gutkin B, Zakharov D.
Robust universal approach to identify travelling chimeras
and synchronized clusters in spiking networks. arXiv pre-
print arXiv: 2103. 09304. 2021 Mar 16.

100 200 300
# neuron

400 500



Journal of Computational Neuroscience (2021) 49 (Suppl 1):53-5204

S63

Table 1 Classification of network dynamical regimes on the basis of
the adaptive coherence measure (ACM) and the number of unique
time lags L

Regime ACM dimension number of
of At clusters

Asynchronous state R*=0 - -

Global synchronization ~ R*>=1 L=1 L

Cluster synchronization ~ R*=1 I<L<<N L

Travelling waves R=1 L=N -

Chimera state 0<R*<1 - Ly
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AnalySim is a website that is being developed to help cre-
ate and share projects that analyze various types of datasets.
AnalySim aims to help with data sharing, data hosting for
publications, interactive visualization, collaborative research,
and crowdsourced analysis. It aims to provide special support
for datasets with many changing parameters and recorded
measurements, such as those produced by large-scale neu-
ronal simulation studies. However, Analysim is not limited to
this type of data and allows running custom code. Currently,
we demonstrate a proof-of-concept analysis by embedding
JavaScript notebooks provided from ObservableHQ.com. We
plan to include Python Jupyter notebooks in the future.

Offering these features on an interactive web platform improves
visibility of one’s research and helps the paper review process
by allowing to reproduce others’ analyses. In addition, it fos-
ters collaborative research by providing access to others' pub-
lic datasets and analysis, creating opportunities to ask novel
questions, guide one's research, and start new collaborations or
join existing teams. Analysim can be said to provide a “social
scientific environment”, which include features such as forking
or cloning existing projects to customize them and tagging or
following researchers and projects. In addition, one can filter
datasets, duplicate analyses and improve them, and publish
findings via interactive visualizations. In summary, Analysim
is a Github-like tool specialized for scientific problems—espe-
cially when they are large and complex as in parameter search.
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To navigate in a dynamic and noisy environment, the brain
must create reliable and meaningful representations from
sensory inputs that are often ambiguous, incomplete or
corrupt. From these noisy inputs, cortical circuits extract
the relevant features to forge a ground truth against which
internally generated signals from inferential processes can
be evaluated. Since information that fails to permeate the
cortical hierarchy can not influence sensory perception
and decision-making, it is critical that external stimuli are
encoded and propagated through different processing stages
in a manner that minimizes signal degradation.

In this study, we hypothesize that stimulus-specific pathways
akin to cortical topographic maps may provide the struc-
tural scaffold for such signal routing. A pervasive structural
feature of the mammalian neocortex, topographic projec-
tions can imprint spatiotemporal features of (noisy) sensory
inputs onto the cortex by preserving the relative organization
of cells between distinct populations. Here, we investigate
whether the feature-specific pathways within such maps can
guide and route stimulus information throughout the system
while retaining representational fidelity.

We demonstrate that, in a large modular circuit of spiking
neurons comprising multiple sub-networks, topographic pro-
jections can help the system reduce sensory and intrinsic noise
to enable an accurate propagation of stimulus representations.
Moreover, by regulating the effective connectivity and local
E/I balance, modular topographic precision can instantiate a
de-facto denoising auto-encoder, whereby the system's inter-
nal representation is gradually improved and signal-to-noise
ratio increased as the input signal is transmitted through the
network. Such a denoising function arises beyond a critical
transition point in the sharpness of the feed-forward projec-
tions, and is characterized by the emergence of inhibition-
dominated regimes where population responses along stimu-
lated maps are amplified and others are weakened.

In addition, we demonstrate that this is a generalizable and
robust structural effect, largely independent of the underly-
ing architectural specificities. Using mean-field approxima-
tions, we gain deeper insight into the mechanisms responsi-
ble for the qualitative changes in the system's behavior and
show that these depend only on the modular topographic
connectivity and stimulus intensity. The general dynamical
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principle revealed by the theoretical predictions suggest that
such a denoising property may be a universal, system-agnos-
tic feature of topographic maps. Finally, our results indicate
that structured projection patterns can enable a wide range of
behaviorally relevant regimes observed under various exper-
imental conditions: maintaining stable representations of
multiple stimuli across cortical circuits; amplifying certain
features while suppressing others, resembling winner-take-
all circuits; and endow circuits with metastable dynamics
(winnerless competition), assumed to be fundamental in a
variety of tasks.
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A great advance in the digital reconstruction of brain micro-

circuits came with the model of the primary somatosensory
cortex (S1) of rats developed by the Blue Brain Project in

Fig.1 A An example of voltage

2015. In this microcircuit, each column had around 31,000
neurons, 55 layer-specific morphological population, and
207 morpho-electrical neuron sub-types. The complex net-
work of S1 included around 8 million connections with 37
million synapses. Here, we implemented a version of the S1
model using NetPyNE, a high-level Python interface to the
NEURON simulator (Fig. 1). First, we downloaded all data
available in The Neocortical Microcircuit Collaboration Por-
tal (https://bbp.epfl.ch/nmc-portal). Secondly, we imported
the 1035 reconstructed cells to NetPyNE and tested the
somatic membrane potential under different current clamp
amplitudes. Later, using the connectoma of 7 neocortical
columns, we obtained the connection probability rules of the
1941 m-type pathways. The connection probability between
two neurons depends on the distance between them, but we
note that, in most cases, two different fits are required to
describe these probability rules. The long-range connections
are well fitted by an exponential decay, but for short range
(<100 um) the connections are well represented by using a
linear fit rule. We reconstructed the S1 in NetPyNE distrib-
uting the 31,346 cells within a cylindrical volume with 2082
um height and radius of 210 um, where each sub-type was
randomly distributed in its specific layer (L1, L2/3, L4, L5,
or L6). Then, we created the network with synaptic transmis-
sion parameters for each pathway and added spontaneous
synaptic release as a Poisson stimulus. Finally, we simulated
the model and explored the spontaneous rates for excitatory
and inhibitory synapses in order to find biologically con-
strained values for neuronal firing rates.
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Pyramidal tract projecting (PT) neurons are involved in the
forwarding of motor commands to the lower motor neurons
and sit strategically in the layer 5B of the cortex, a known
output route from the cortical circuit [1,2]. These neurons
share the location with another class of pyramidal cells, the
intratelencephalic projecting (IT) neurons, which project
mainly to basal ganglia structures and are involved with
error correction and motor planning [3]. Besides its projec-
tion targets, another key feature that distinguishes the PT
neurons from its other neighboring cells in the layer 5B is
the presence of a hyperpolarization-activated cyclic nucle-
otide-gated cation (HCN) channel. This channel is thought
to play a key role is in the switching from motor planning to
execution under norepinephrine modulation [3].

The activity of the HCN channels is quantified in terms of
its ih-current, a hyperpolarization-induced cationic cur-
rent [4,5]. The ih-current is active during rest, inducing a
depolarizing effect in the cell [5] and a decrease in neu-
ronal input resistance [6, 7]. HCN channels can be blocked
by administration of the drug ZD7288 [8], allowing for a
mechanism to test its contribution to the overall cell behavior
[3]. Over the years, authors proposed different mechanisms
to explain the dynamics of the HCN channel [3,7,9,10],
with ih-current being coined as the "funny current" [11],
for being an inward current whose conductance increases as
the transmembrane potential approaches the hyperpolarized
state [5], for its responsiveness to both voltage and cAMP
[5], and for its leak property, being permissive to K+ and
Na+at a 4:1 ratio [5, 12, 13]. Another peculiarity of the
ih-current is that, despite its presence having a depolarizing

effect in the cell, it shows a reversal in the peak amplitude
during stimulation with increasing weights, as demonstrated
by George et al. [4].

In this work, we incorporated an implementation of the HCN
channel used in a CA1 neuron [10] into a model of PT cor-
ticospinal neurons with 706 compartments (Fig. 1C) [14].
This HCN channel adds a shunting current that is propor-
tional in amplitude to the ih-current, thought to be mediated
by TASK-like channels [10].

Our results show that the presence of the ih-current in
the model resulted in reduction of temporal summation
(Fig. 1A), reversal in peak amplitude (Fig. 1B), reduction of
corticospinal output (decrease in action potentials) (Fig. 1D)
and change in the profile of input integration (Fig. 1F). The
F-I curve is preserved compared with the original cell model
(Fig. 1E). Therefore, our model reconciles the experimental
findings from an electrophysiological characterization of
these neurons under the administration of an HCN channel
blocker [3] and the reversal in peak amplitude [4]. This uni-
fied model more closely matches the physiological behav-
ior of PT neurons under norepinephrine modulation, and
can provide insights into its underlying biophysical mecha-
nisms and their role in the gating between motor planning
and execution.
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Adaptation is a critical feature of sensory response, and is
virtually universal in neural systems, including in individual
neurons. In single neurons, adaptation of the amplification,
or gain, can occur over time by some (typically slower) pro-
cess mediating desensitization, such as an influx of calcium
currents. Such gain control is inherently dynamical, since it
involves changes in internal state over time. Past studies have
illustrated that gain control can in some contexts can also be
enacted intrinsically, without changes in parameters [1]. The
requisite features are a high-dimensional signal (such as a
time trace) and nonlinear response. In this case, gain control
is immediate and effectively parameter-less.

Here, we propose a biophysical mechanism for intrinsic
gain control that builds on this idea. Our framework is moti-
vated by experimental observations of Drosophila olfactory
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receptor neurons (ORNs) to Gaussian fluctuating stimuli
with nonzero mean [2]. An ORN’s firing response to these
fluctuations does not modulate smoothly over a range of fre-
quencies; instead it switches more discontinuously between
low and high ~40 Hz firing rates. In the language of dynami-
cal systems, the neuron persistently crosses a bifurcation
between spiking and quiescence. For small fluctuations, this
system could only encode 1 bit of information — spiking or
resting. However, we show that the conversion from spike
events to a rate code can effectively utilize past information
— from the signal history — to encode substantially more than
1 bit of information. This system is gain invariant: the dose
response curves between signal and firing response over-
lap perfectly when the stimulus is scaled by the amplitude
of the signal fluctuation. Thus, bifurcation crossing effec-
tively amplifies small fluctuations, permitting rate codes that
would otherwise be imperceptible. We call this mechanism
bifurcation-induced gain control, and illustrate that it is
obeyed inherently by many classes of spiking neurons with
different topologies at their bifurcating point.

Perfect gain control erases information about context: sys-
tem responses are identical across different stimulus statis-
tics (or contexts), so the context itself becomes ambiguous.
Contextual information can be relayed at longer timescales,
as in H1 neurons in fly vision [3]. We show that bifurcation-
induced gain control encodes context via fast response asym-
metries not reliant on timescale separation. Finally, we use
experimental observations in ORNS [2] to propose a simple
extension of bifurcation-induced gain control that simulta-
neously adapts to both the mean and variance of the signal.
Our results show that the natural machinery of neuron spik-
ing permits robust adaptation with high coding efficacy in
changing environments.
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Recent work is yielding large amounts of connectivity data
in a diversity of neural systems and spatial scales. However,
it is largely an open problem how local connectivity fea-
tures shape global activity dynamics and influence network
changes during learning. In this work, we relate partial sym-
metry and antisymmetry in connectivity to the dynamics
and trainability of recurrent neural networks (RNNs). Partial
symmetry and antisymmetry correspond respectively to cor-
related and anticorrelated connection strengths between pairs
of units. We calculate the full Lyapunov spectrum, which
describes how dynamics transform the set of points around
a network state over time. From the Lyapunov spectrum, we
obtain the maximum Lyapunov exponent, which quantifies
chaos, i.e., the exponential separation rate of nearby initial
states due to recurrent dynamics. We also obtain an estimate
of the attractor dimensionality known as the Kaplan-Yorke
dimension, and also calculate the entropy rate, which quan-
tifies the increase in uncertainty due to chaotic separation
of nearby initial states. For weak coupling networks, partial
symmetry increases the attractor dimension and entropy rate,
explained by increasing magnitudes of the real parts of the
Jacobian’s eigenvalues. For strong coupling networks, attrac-
tor dimension and entropy rate decrease with symmetry and
increase with antisymmetry. This arises from the effect of
partial symmetry on the variance of unit activities. As sym-
metry increases, most units are in saturation and the average
gain of the transfer function is small. This leads to a sparse
Jacobian of the dynamics, meaning that small differences in
the network state grow in fewer directions of phase space.
We additionally compare results of Kaplan-Yorke dimen-
sion to more conventional estimates of the dimensionality
determined by principal components analysis (PCA). The
PCA dimensionality trend is similar to that of the Kaplan-
Yorke dimension. To study functional implications of par-
tial symmetry, we investigate how initial symmetry affects
a network’s trainability on the task of generating oscilla-
tory readout without any input. We find that more antisym-
metric networks trained with backpropagation through time
have higher success rates and shorter training convergence
times. Our work on RNN motifs may provide insights on
how features of local connectivity among constituent units
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shape global features of dynamics and learning in biologi-
cal networks.
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Although modern artificial agents are extremely accurate
in operating on single instances after a long exposure of
stationary learning trials, they fail to work in the context
of non-deterministic environments as in a human real-case
scenario. Such sources of uncertainty and variability (e.g.,
unpredictable cues, unexpected constraints, and new objects
in a task) may affect dramatically the performance of an
artificial agent.

Meta-learning applied to reinforcement learning may thrive
the design of control algorithms where an outer learning
system progressively adjust the operation of an inner learn-
ing system, yielding the behavior of the artificial agent more
flexible and efficient. The internal adjustment of the hidden
learning system leads to practical benefits such as the reducing
of the explicit hand-tuning of the parameters and the generali-
zation error. Starting from the neural architecture developed
by Khamassi and colleagues for agent-environment interac-
tion such as action selection, we developed a brain-inspired
meta-learning framework for inhibition cognitive control that
includes distributed learning systems in the human brain,
e.g., cortical areas such as prefrontal cortex and subcortical
regions such as basal ganglia. We embedded in the model
meta-learning mechanisms based on the neuromodulation
theory proposed by Doya. This theory posits a central role
for dynamics of the four major neurotransmitters (e.g., ace-
tylcholine, serotonin, dopamine, and noradrenaline) and their
mutual interdependence in shaping the behavior of the hyper-
parameters that underlies meta-learning processes. We explic-
itly included meta-control in the artificial agent, formalizing
hyperparameters optimization rules: (i) dopamine receptors
D1, modulating the noradrenergic system (i.e., exploration/
exploitation rate) with an inverse linear function that relates
dopamine to the entropy of the probability distribution of the
actions, (ii) dopamine receptors D2, tuning the striatum neu-
ron’s excitability, and (iii) serotonin, regulating the overall
dopamine release and the reward temporal scale.
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The artificial agent was tested in two different conflictual
tasks (No-Go and Stop-Signal Paradigms) that involve dif-
ferent types of action inhibition. In No-Go Paradigm we
tested the ability to withdraw a not-yet-initiated action from
responding (i.e., action restraint) using a hold signal before
the initiation of the movement. In Stop-Signal Paradigm we
investigated the ability to cancel an initiated response (i.e.,
action cancellation) triggering an unpredictable hold signal
after a range of delays from the action onset. After a short
learning phase, the artificial agent adjusted successfully its
hyperparameters (e.g., driving the system towards exploi-
tation regimes) in response to the appearance of the hold
signal in both tasks, i.e., proper use of the action inhibition
command. The qualitative increase of performance was cor-
roborated by a significance increase of the right inhibition,
global accuracy, and a reduction of the stop-signal reaction
time, i.e., the latency of the cancellation process,moving
from the training to the test phase.We propose that the use
of brain-inspired mechanisms to implement meta-learning
processes may be a feasible approach for robotic applica-
tions, leading to an improvement of the performance even
in unpredictable human real-case scenario.
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Dendritic spines are the morphological basis of excitatory
synapses in the cortex and their size and shape correlates
with functional synaptic properties. Recent experiments
show that spines exhibit large shape fluctuations that are
not related to activity-dependent plasticity but nonetheless
might influence memory storage at their synapses. Thus, it
is important to investigate the determinants and functional
use of these spontaneous shape fluctuations.

In a recent series of studies [1,2], we propose a mathemati-
cal model for the dynamics of the spine shape based on the
scaffolding protein actin — a protein that polymerizes into
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dynamic filaments which undergo continuous treadmilling.
Experiments show that synapses usually have a few foci,
where actin polymerization activity and, thus, also treadmill-
ing speed is large. Hence, we model the spine shape to be
governed by a local imbalance between the expansive force
from the actin treadmilling at these foci and the membrane
tension. The actin treadmilling, as well as filament branching
and capping are described by Monte-Carlo models for each
focus that interact via the membrane. Hereby, the polymeri-
zation activity in each focus has a limited lifetime similar
as observed in experiments. As a consequence, the model
shows asymmetric spine shape fluctuations because the
momentarily existing set of polymerization foci pushes the
membrane along certain directions until they are replaced
and other directions are affected.

We analyze in detail how the shape and the temporal char-
acteristics of our model-spines depend on the different bio-
physical parameters involved in actin polymerization. For
this, we also introduce descriptors for asymmetric spine
shapes and use them to demonstrate that shape fluctuations
in our model are comparable to experimental data. Thus,
our model provides a platform to study the relation between
molecular and morphological properties of the spine with a
high degree of biophysical detail and realism.

We therefore used the model to extrapolate into longer tem-
poral intervals and discovered the presence of 1/f noise. As a
reason for this, we find that actin dynamics underlying shape
fluctuations self-organizes into a critical state. This critical
state facilitates spine enlargement, for example after LTP, as
compared to a non-critical model. Thus, ongoing spine shape
fluctuations may be a consequence of a self-organization that
enables a spine to quickly reconfigure itself when necessary.
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Memories are known to reactivate during sleep. A recent
modelling study [1] could reproduce this phenomenon
based on self-reactivations of heavily inter-connected cell
assemblies and showcased its beneficial consequences for
memories. However, to be maintained, the memories needed
frequent reactivations such that the weights between the cells
representing the memory remain at a high level. Otherwise,
the memories were forgotten.

In this work, we extend the model such that memories are
maintained independently of reactivations. Furthermore,
we suggest that long-term memories are mainly represented
by their connectivity, i.e. the number of structural connec-
tions between neurons, and are less dependent on the actual
weight of these connections.

We test this with simulations and (mean-field) analyses in
recurrent networks, in which connections are subject to (1)
structural plasticity, which creates and removes connections
via stochastic processes, (2) synaptic plasticity adapting the
synaptic weights according to neural activity and (3) a biolog-
ically inspired spontaneous dynamics of the synaptic weight.
We find that when a memory has not been reactivated for an
extended period, the spontaneous weight dynamic comes into
effect and decreases the internal synaptic weights of the mem-
ory. In this case, the memory can have three different states
depending on its structural connectivity: At relatively high
degrees of connectivity, the memory can reactivate itself. At
slightly lower degrees of connectivity, the memory can only be
reactivated by external stimuli but may self-reactivate in a short
time span afterwards. But at even lower degrees of connectiv-
ity, the memory cannot be reactivated by external stimuli at all.
However, even if a memory cannot be reactivated by external
stimuli anymore, the structural connections of the memory still
exist for extended periods. These connections can then be used
to relearn the pre-existing memory very fast, which provides a
possible explanation for Ebbinghaus’ savings effect.

In contrast, when a memory has just been learned, the inter-
nal synaptic weights are strong, and the memory only needs
intermediate connectivity to self-reactivate. However, these
self-reactivations are heavily dependent on the high strength
of the synaptic weights. In comparison, older memories have
increased their connectivity after multiple self-reactiva-
tions and are less dependent on the strength of the synaptic
weights. Thus, interference with these reactivations (i.e.,
sleep deprivation), existing synapses, or synaptogenesis will
impact new memories more severely than older ones, which
may explain the gradedness of retrograde amnesia.
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The ability to flexibly learn the structure of one’s surround-
ings (structure learning) is crucial for adaptive behaviour. Use
of an inaccurate model of the environment can lead to incor-
rect inferences, and thus maladaptive actions. Despite this,
relatively little is understood about how structure learning
occurs in human cognition. As a first step towards addressing
this, we built on existing approaches to create an online clus-
tering algorithm, and used it to simulate behaviour on a novel
structure learning task, where optimal performance required
estimating the number and properties of discrete clusters of
continuously variable stimuli. More specifically, the stimuli
we used were mushrooms, the look of which varied only on
one dimension (size). The task required the agent to deter-
mine whether each mushroom was edible (good) or poison-
ous (bad) based on that one stimulus feature. Crucially, there
were different species of good and bad mushrooms (clusters),
which the agent was left in the dark about. Each mushroom’s
size was sampled from a species-specific Gaussian distribu-
tion, and the overall distribution (a mixture of Gaussians) of
good and bad mushrooms was designed so that a unimodal
Gaussian approximation of the two categories would result
in very high overlapping and thus bad performance.

In this simulation-based work we compare a set of different
models and show how an agent that learns online the sta-
tistical structure of the stimuli (i.e., the number of clusters)
outperforms one that just approximates the two categories as
single Gaussian clusters, grouping all good mushrooms into
one single species and all bad mushrooms into another. We
also introduce a model that incorporates a working memory
component, and show how retrospective inference (i.e.,
updating one’s beliefs about past stimuli as opposed to only
updating beliefs about the current one) benefits structure
learning. We finally discuss trial-by trial measures that can
be derived from our model, which provide testable predic-
tions for future empirical studies.
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Temperature fluctuations can affect neurological processes
at a variety of levels, with the overall output that higher
temperatures generally increase neuronal activity. Here we
utilize computer simulations of a mathematical model for
a C. elegans sensory neuron to investigate the dynamical
properties of temperature sensation in the worm. Thermore-
ception is known to originate in the bilateral symmetric pair
of amphid neurons with finger-like ciliated endings (AFD)
of C. elegans, to which we target our modeling efforts. We
build upon a previously developed deterministic model
for salt-sensing in the chemosensitive ASER neuron of C.
elegans by implementing temperature-dependent Arhen-
nius factors. Multiple experimental results involving time
series data of intracellular AFD calcium ion concentration
in response to ambient temperature changes are reproduced
using this model. Among other things, we find that our
model neuron requires synchronous temperature and chemi-
cal stimuli to exhibit dynamics qualitatively similar to those
of a real AFD neuron.
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Degeneracy refers to a structure—function mapping in which
a system can recruit from multiple structures to achieve func-
tional plasticity. Systematic differentiation of these struc-
tures might provide insights into how cognitive or motor
functions recover following neurological damage. Since
each structure is sufficient, but not necessary, for a particu-
lar function; profound functional deficit is manifest when all
degenerate structures are damaged. In contrast, redundancy
— the inefficient use of a structure’s degrees of freedom to
perform a particular function — should be regarded as a dis-
tinct but related concept. Here, we provide a computational
account of degeneracy and redundancy, in terms of vari-
ational Bayes, for understanding potential recovery pathways
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following damage. We use a (generic) generative model and
approximate inference based on variational free energy. We
introduce a formal and intuitive trade-off between degen-
eracy and redundancy by associating degeneracy with the
entropy of beliefs about the causes of sensations and redun-
dancy with the complexity cost incurred by belief updating.
We validate this formulation through the successful applica-
tion of our approach — using structural learning and in-silico
lesions — in the context of a word repetition paradigm: a
canonical task in the neuropsychology of language. This is
a relevant paradigm, since a computational assessment of
degeneracy, could explain which combinations of structural
damage are necessary to disrupt functional outcomes; i.e.
ability to repeat words. Our simulations highlight: i) redun-
dant structures — via structural duplications — have higher
complexity cost but do not adversely impact function, ii)
increasingly degenerate mappings between causes and out-
comes — via in-silico lesions — have higher entropy, and iii)
profound functional deficits are exhibited only when all pos-
sible sub-systems are damaged. Our formalism provides a
framework to evaluate levels of degeneracy (and potential
recovery pathways), following neurological damage.
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Fig. 1 MAB results and estimated posteriors

Under the Bayesian brain hypothesis, behavioural varia-
tions can be attributed to altered priors over the genera-
tive model (hyper-)parameters. This provides a particular
explanation as to why individuals may exhibit inconsistent
behavioural preferences when faced with similar observa-
tions. For example, greedy preferences are a consequence
of confident (or precise) beliefs over particular outcomes.
Conversely, individuals with uniform (or imprecise) priors
exhibit increased variability in their choices, and (poten-
tially) impulsive behaviour. Here, we offer an alternative
account for explaining these behavioural variations using
Rényi divergences, and their associated Rényi variational
bounds. The Rényi bounds are analogous to the variational
free energy (or evidence lower bound) and can be derived
using the same assumptions. Importantly, these bounds
provide a formal way to establish behavioural differences
through the alpha parameter, given particular priors. This
is accomplished by alpha changes that alter the bound (on
a continuous scale), induce different posterior estimates,
and consequent variations in behaviour. Thus, it looks as if
individuals have different priors, and have reached different
conclusions. Explicitly, alpha tending towards 0 optimisa-
tion would lead to mass-covering variational estimates that
induce increased variability in choice behaviour. Further-
more, alpha tending towards infinity optimisation would
lead to mass-seeking variational posteriors, and greedy
preferences. We exemplify this formulation through simu-
lations of the multi-armed bandit task (Fig. 1). We note
that these alpha parameterisations are relevant, i.e., shape
preferences, when the true posterior is not in the same fam-
ily of distributions as the assumed (simpler) approximate
density — common for complex real-world scenarios. Con-
sequently, this departure from vanilla variational inference
provides a useful explanation for differences in behavioural
preferences of biological (or artificial) agents — under the
assumption that the brain performs variational Bayesian
inference.
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Electrical and molecular activity play important roles in
adapting the spatial environment and responses of neurons,
glia, and neuronal circuits over short and long-time scales.
Numerous studies have shown how neurons and the net-
works function, interact and adapt their responses from both
electrical and molecular perspectives [1-3]. The emerging
view is that the molecular environment in the space between
neurons and glia actively influences brain activity on mul-
tiple scales. Experiments are elaborating how this environ-
ment’s plexus of macromolecules, known as the extracellular
matrix (ECM) that includes a specialization called the Peri-
Neuronal Nets (PNN) and its strategic occupation of regions
in and around synapses [4,5], impacts neuronal activity and
function. Mounting evidence shows that the expression of
certain ECM/PNN molecules play important roles in learn-
ing and memory, synaptic remodelling and significantly, in
the recall of fear memory [6, 7]. Currently, there have been
very few investigations of neural-ECM interactions from a
computational perspective. Those studies have focused on
understanding the role of how the ECM influences neural
signalling [7, 8], however computational/theoretical inves-
tigations on how neural-ECM interactions impact network
activity, behaviour and information processing has yet to be
fully explored.

We developed a biologically inspired framework and an
accompanying mathematical model that captures the bidi-
rectional nature of the neuronal-ECM signalling of various
ECM/PNN molecules. Our model can be applied to study
the neuronal-ECM signalling in brain tissue and their collec-
tive influence on both single neuron responses and network
activity. We present some simple examples to illustrate how
neuronal-ECM interactions impact the behaviour of basic
spiking neural circuits.
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Dynamic facial expression recognition is an essential skill
of primate communication. While the neural mechanisms
to recognize static facial expressions has been extensively
investigated, they remain largely unclear for dynamic facial
expressions. We studied physiologically plausible neural
encoding mechanisms, exploiting highly controlled and
realistic stimulus sets generated by computer graphics,
which are also used in electrophysiological experiments.
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Fig. 1 Model architectures. A A
Convolutional Neural Network

(CNN) mid-level feature extrac-
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The generation of these stimuli combined high-quality
human and monkey head models with motion capture in
humans and monkey [1]. Combining physiologically plau-
sible neural models for the recognition of dynamic bodies
[2], static faces [3] and architecture from computer vision
[4], we devised two models (Fig. 1) for the recognition of
dynamic facial expressions. The first model exploits an
example-based approach. It encodes dynamic expressions
as temporal sequences of snapshots, exploiting a sequence-
selective recurrent neural network. The second model
exploits norm-referenced encoding. Expressions are encoded
as points in a continuous face-space by face neurons that are
tuned to direction and size of the difference vectors between
the actual stimulus frame and a neutral expression in face
space. The output of these face neurons then is processed
by differentiating neurons, resulting in selective responses
to dynamic faces.

Both models were tested with movies of human and mon-
key avatars that showed human and monkey expression, and
morphs between them. This ensured a highly accurate con-
trol of the form and dynamic style features of the stimuli [1].
Both models recognize reliably the tested dynamic facial
expressions of humans and monkeys, but make different pre-
dictions when tested with stimuli generated by morphing.
The norm-referenced model shows a highly gradual, almost
linear dependence of the neuron activity with the expres-
sivity of the stimuli. Contrasting with this result, the exam-
ple-based model does not generalize well to stimuli with
modified expressions strength. Also, the responses of the
neurons at the output level of the norm-based model show

Expression
Neurons

"""""""" N Threat
o Expression-
3 3 Fear
g Selective
2 Neurons Lip Smacking
STS PFC

~——> Excitatory
-------- @ Inhibitory
Input Reference Face Differentiator ~ Expression

Feature Neurons Neurons Neurons Neurons

Vector

Norm-Based

striking similarities with the responses of neurons recently
recorded in the Superior temporal Sulcus of macaque mon-
keys. Very simple physiologically plausible mechanism can
account for the recognition of dynamic face. Norm-based
and example-based encoding make quite different predic-
tions of the behavior at the single-cell level, especially for
stimuli generated by expression morphing.
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Modern neuroscience relies on a combination of experi-
mental and theoretical approaches to understand the brain.
Sharing the outputs of research, both in terms of experi-
mental datasets and software to analyse and model them,
is now a crucial part of good scientific practice. Standard-
ised formats for exchange of these outputs have emerged,
which significantly aid reuse and reproducibility, both for
data (NeuroData Without Borders, NWB, https://www.nwb.
org) and computational models (NeuroML [1]). However,
data and model sharing have traditionally happened inde-
pendently via different repositories/databases. This makes
“closing the loop”—using experimental data for data-driven
modelling and/or theoretical analysis, and applying insights
from modelling/theoretical investigations to dictate/design
new experiments—a non-trivial undertaking. There is a grow-
ing need to develop tools and resources that allow working
with both experimental data and theoretical models in one
convenient, integrated environment.

The Open Source Brain platform (OSB, https://www.opens
ourcebrain.org) was developed as an online resource for
sharing, viewing, analyzing, and simulating neuroscience
models, using NeuroML as the underlying language for
expressing the models in a standardised format [2]. With
more than 1200 registered users, and over 50 participating
labs from around the world, OSB serves as an important
community resource for computational neuroscientists.
Here, we present the next version of the OSB platform
(OSBV2, https://www.v2.opensourcebrain.org), a browser
based, integrated research environment for both experimen-
tal data analysis and theoretical/modelling research. OSBv?2
uses NWB as the recommended data sharing format, and we
have developed the NWB Explorer application where users
can visualise and analyse experimental data using a powerful
graphical interface. This represents a critical extension to
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the scope of OSB as a portal for data exploration and analy-
sis. OSBv2 also integrates the newly developed graphical
frontend to the NetPyNE package (http://www.netpyne.org),
greatly facilitating the simulation and analysis of network
models using NEURON. These OSBv2 applications are
tightly coupled with Python Jupyter notebook technologies.
Users can save and share “workspaces” generated from these
applications, and open them in a JupyterLab environment,
giving access to a range of other common neuroscience
simulators and analysis tools that form the greater Python
neuroscientific ecosystem.

OSBV2 represents the next generation of collaborative, inte-
grated research platforms for neuroscience that leverage
modern web based infrastructure and software technologies
to make both tools and scientific resources easily accessible
to the whole neuroscience community. Providing this single,
integrated environment for data analysis and modelling will
help close the gap between experimental observations and
insights obtained through computational modelling.
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Artificial neural networks overwrite previously learned tasks
when trained sequentially, a phenomenon known as cata-
strophic forgetting. In contrast, the brain learns continuously,
and typically learns best when new learning is interleaved
with periods of sleep for memory consolidation. In this
study, we used spiking network to study mechanisms behind
catastrophic forgetting and the role of sleep in preventing
it. The network could be trained to learn a complex forag-
ing task but exhibited catastrophic forgetting when trained
sequentially on multiple tasks. New task training moved the
synaptic weight configuration away from the manifold repre-
senting old tasks leading to forgetting. Interleaving new task
training with periods of off-line reactivation, mimicking bio-
logical sleep, mitigated catastrophic forgetting by pushing
the synaptic weight configuration towards the intersection
of the solution manifolds representing multiple tasks. The
study reveals a possible strategy of synaptic weights dynam-
ics the brain applies during sleep to prevent forgetting and
optimize learning.
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Functional magnetic resonance imaging (fMRI) research,
in addition to improving our scientific understanding of the
normative and pathological brain dynamics, seeks to develop
clinical applications where diagnosis, treatment, and/or inter-
ventions are subject-specific. To that end, Functional Con-
nectomes (FCs), estimated by cross correlating the regional
BOLD activity across brain regions as measured by fMRI,
have emerged as a suitable phenotype. FCs are usually sum-
marized in the form of a symmetric correlation matrix and
represent the whole-brain functional connectivity profile of
an individual performing a specific fMRI condition (e.g.,

resting-state or working-memory). FCs have been shown to
possess a recurrent and reproducible individual [1]. Amount
of such fingerprints in an FC dataset can be used to estimate
the reliability of the FC-phenotype. Traditional methods of
estimating these fingerprints (e.g., Pearson’s correlation coef-
ficient between the vectorized FCs) have had limited suc-
cess in terms of phenotypic reliability [1]. This was improved
upon by Venkatesh et al. by using Geodesic distance to com-
pare FCs more accurately by utilizing the generally over-
looked fact that FCs are non-Euclidean objects and the dis-
tances between them are better measured along a geodesic of
the Symmetric Positive Definite (SPD) manifold [2]. We have
recently improved on this by combining Geodesic distance
with an optimal amount of main-diagonal regularization that
is added to the FCs [3]. This approach, though provides accu-
rate distance estimates between FCs, does not allow edgewise
analyses of the FCs. This limitation can be addressed by pro-
jecting FCs from the SPD manifold onto an optimal tangent
space of symmetric matrices, which is Euclidean and hence
allows the use of Euclidean algebra and calculus (Fig. 1).
Tangent space projections of FCs (tangent-FCs) require a
reference point on the manifold which is qualitatively good
representative of the dataset. Many different types of refer-
ences have been proposed in the literature (e.g., Euclidean,
Harmonic, log-Euclidean, Riemannian, Kullback). In this
work, we found that when FCs are regularized by an opti-
mal amount that maximizes phenotypic reliability of FCs
using Geodesic distance [3], then (1) tangent-FCs have sig-
nificantly higher phenotypic reliability than the original-FCs,
(2) all reference matrices perform similarly with Riemann-
ian performing slightly better, (3) reliability increases with
increasing granularity of the parcellation, and (4) tangent-
FCs can achieve higher reliability with a fraction of the total
scanning length than the reliability of original-FCs with the
maximum scanning length. These results hold for each of the
eight fMRI conditions included in the HCP dataset. In con-
trast, if a fixed amount of regularization (e.g., t=1) is used,
tangent space projections of FCs can lead to extremely low
phenotypic reliability. In addition, the reliability of result-
ant tangent FCs become highly dependent on the choice of
the reference matrix. In summary, these results indicate that
a combination of optimal main diagonal regularization and
tangent space projection of FCs leads to significant improve-
ment in phenotypic reliability of FCs.
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Cellular automata (CA) are an effective approach to model-
ling spiking neurons that provide a computationally simpler
“state machine” description of the neurons’ operation than
differential equation-based models, such as integrate-and-
fire neurons. Adapting the CA neural model of Claverol et al.
[1], we are developing neural network models of oscillations
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Tangent Space Projection of FCs and its effect on FC fingerprints

with phasic learning and memory function based on mam-
malian hippocampus.

The first stage of this work is to reproduce, in a CA network,
the theta oscillation behaviour of the septal pacemaker cir-
cuit modelled, using a continuous neural population activity
approach, by Denham and Borisyuk [2]. The septal pace-
maker circuit considers 4 major populations to ascertain the
propagation of theta frequency oscillations from the medial
septum to the hippocampal CA1 region namely, the excita-
tory CA1 pyramidal cells (E), and inhibitory CB-containing
hippocampo-septal cells (IP), other interneurons in CA1 (I),
and inhibitory medial septal cells (S). The E cells excite the IP
cells which then inhibit the S cells. The S cells inhibit the IP
cells, which in turn inhibit the E cells. The model has 2 major
external excitatory inputs namely, from the hippocampal CA3
to CA1 E cells and I cells, and from the posterior hypothala-
mus and supramammillary nucleus (PS) to the S cells.

We have about 100 neurons in each of the populations with
the number of efferents between populations being 2—10
synapses. The time constants of the continuous model trans-
late into explicit delays in our cellular model. Refractory
periods are between 10 to 30 ms. The synaptic delay and
active synaptic duration, the weights of each projection, and
the thresholds for generating an action potential are varied to
reproduce the theta functionality of the continuous model.
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External driving inputs are random spike trains of constant
mean frequency.

We obtained oscillations in frequencies between 4-7 Hz
range by setting the synaptic delay of E cells and the syn-
aptic duration of the I cells, both of which lie in the range
10-20 ms. As soon as the E cells fire, with a small delay the
IP cells fire, which inhibit the active S cells, which in turn
inhibit the active I cells, finally inhibiting the active E cells.
Determined by the duration of inhibition of E cells, the cycle

Fig. 1 Comparison of activity

continues periodically thus producing oscillatory behaviour.
Populations that are in-sync with each other are the E and IP
populations, and the I and S populations, in both the models.
Too much or too little external input results in a fixed steady
state in the continuous model. In the CA model, this steady
state is characterised by random, non-oscillatory firing of
the Populations.
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the CA, with more cell populations that regulate theta and
theta-coupled gamma frequency oscillations. We will then
model the integrated circuit of the CA1 and CA3 regions
with the feedforward and feedback synaptic pathways
between them. We will compare the CA model with the
continuous population activity model of these circuits that
we have already developed [3] (Fig. 1). The ultimate goal
of the CA model is to simulate learning and recall in an
oscillatory model.
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Recurrent cortical networks provide reservoirs of states
that are thought to play a crucial role in sequential informa-
tion processing in the brain. However, classical reservoir
computing requires manual adjustments of global network
parameters, particularly of the spectral radius of the recur-
rent synaptic weight matrix. It is hence not clear if the spec-
tral radius is accessible to biological neural networks. Using
random matrix theory, we show that the spectral radius is
related to local properties of the neuronal dynamics when-
ever the overall dynamical state is only weakly correlated.
This result allows us to introduce a local homeostatic syn-
aptic scaling mechanism, termed flow control, that implic-
itly drives the spectral radius toward the desired value. The
spectral radius is autonomously adapted while the network
receives and processes inputs under working conditions. We
demonstrate the effectiveness of this mechanism under dif-
ferent external input protocols. Moreover, we evaluate the
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network performance after adaptation by training the net-
work to perform a time-delayed XOR operation on binary
sequences. As our main result, we found that flow control
reliably regulates the spectral radius for different types of
input statistics. Precise tuning is however negatively affected
when interneural correlations are substantial. Furthermore,
we found a consistent task performance over a wide range
of input strengths/variances. Given the effectiveness and
remarkably simple mathematical form of flow control, we
conclude that self-consistent local control of the spectral
radius via an implicit adaptation scheme is an interesting
and biologically plausible alternative to conventional meth-
ods using set point homeostatic feedback controls of neural
firing.
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In order to detect significant spatio-temporal spike patterns
(STPs) at ms-precision, we developed the SPADE method
[1-3]. SPADE enables the detection and evaluation of
spatio-temporal patterns (STPs), i.e., spike patterns across
neurons and with temporal delays. For the significance
assessment of STPs, surrogates are generated to implement
the null hypothesis. Here we demonstrate the requirements
for appropriate surrogates.

SPADE first discretizes the spike trains into bins of a few ms
width. The discretization also includes clipping, i.e., if a bin
is occupied by 1 or more spikes, its content is set to 1. The
binarized spike trains are then mined for STPs with Frequent
Itemset Mining, counting identical patterns. For the assess-
ment of these patterns' significance, surrogate spike trains
are used. The surrogate data are mined as the original data
resulting in a p-value spectrum for the significance evalu-
ation [3].

Surrogate data are modifications of the original data where
potential time-correlations are destroyed and thus imple-
ment the null hypothesis of independence. For that purpose,
the surrogate data need to keep the statistical features of
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the original data as similar as possible to avoid false posi-
tives. A classical choice for a surrogate is uniform dithering
(UD), which independently displaces each individual spike
according to a uniform distribution. We show that UD makes
the spike trains more Poisson-like and does not preserve
a potential dead time after the spikes. As a consequence,
more spikes are clipped away as compared to the original
data. Thus, UD surrogate data reduce the expectation for
the patterns.

To overcome this problem, we evaluate different surrogate
techniques. The first is a modification of UD that preserves
the dead time. Further, we employ (joint-) ISI dithering,
preserving the (joint-) ISI distribution [4]. Another surrogate
is based on shuffling bins of already discretized spike data
within a small window. Lastly, we evaluate trial shifting that
shifts the whole spike trains against the others, trial by trial,
according to a uniform distribution.

To evaluate the effect of the different surrogate methods on
significance assessment, we first analyze the surrogate modi-
fications on different types of stochastic spike models, such
as Poisson spike trains, Gamma spike trains but also Poisson
spike trains with dead time [5]. We find that all surrogates
but UD are robust to clipping. Trial shifting is the technique
that preserves best the statistical features of the spike trains.
Further, we analyze artificial data sets for the occurrence of
false-positive patterns. These data sets were generated with
non-stationary firing rates and interval statistics taken from
an experimental data set but are otherwise independent. We
find many false positives for UD but all other surrogates
show a consistently low number of false-positive patterns.
Based on these results, we conclude with a recommendation
on which surrogate method to use.
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The Hebbian hypothesis [1] states that neurons organize
in assemblies of co-active neurons acting as information
processing units. We hypothesize that assembly activity is
expressed by the occurrence of precise spatio-temporal pat-
terns (STPs) of spikes—with precise temporal delays between
the spikes—emitted by neurons that presumably are members
of an assembly.

We developed a method, called SPADE [2-4], that detects
significant STPs in massively parallel spike trains. SPADE
involves three steps: it first identifies repeating STPs using
Frequent Itemset Mining [5]; second, it evaluates the
detected patterns for significance through surrogates (trial-
shifting); third, it removes the false positive patterns that are
a by-product of true patterns and the background activity.
Here, we aim to evaluate if cell assemblies are active in
relation to motor behavior [2]. Therefore, we analyzed
N=20 experimental sessions consisting of about 100 paral-
lel spike trains recorded by a 100-electrode Utah array in
the pre-/motor cortex of two macaque monkeys performing
a reach-to-grasp task [6, 7]. In this task, the monkey, after
an instructed preparatory period, had to pull and hold an
object by using either a side or a precision grip, and using
either high or low force (four behavioral conditions). We
segmented trials into 500 ms periods and concatenated them
to analyze separately for the occurrence of STPs. Each sig-
nificant STP is identified by its neuron composition, its num-
ber and times of occurrences and the delays between spikes
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of the pattern. The temporal resolution of the detected pat-
terns is fixed to 5 ms.

We find that STPs occur in all phases of the behavior. In
particular, we find about 6 patterns per session, where only
3 to 13 individual neurons are involved in STPs. Pattern
can repeat from 280 to 10 times, depending on the size,
which varies from 2 to 6 neurons. Within a session, patterns
strongly depend on the behavioral context, and we do not
find identical patterns in the different epochs. Thus, patterns
are specific to a behavioral condition, suggesting that differ-
ent assemblies are activated for each specific behavioral con-
text. Patterns that occur in a single session typically overlap
in the participating neurons, and a few individual neurons
appear as hubs, i.e., are involved in several patterns. We
also find that pattern neurons are not located within a small
region, but distributed across the entire cortical surface cov-
ered by the Utah array.

Our results are consistent with the model of the synfire chain
(SFC) [8]. A theoretical study showed that patterns emerging
from SFC activity can be found in parallel spike train data
recorded with a 100-electrode Utah array, i.e., despite the
strong subsampling.
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The International Continence Society has defined urinary
incontinence (UI) as a condition in which involuntary loss of
urine is objectively demonstrable and is a social or hygiene
problem [1]. Among different types of UlI, stress urinary
incontinence (SUI) is one, which is a common syndrome in
women that is typically associated with advanced age, obe-
sity, diabetes mellitus, and fertility [1].The smooth muscles
from the urinary bladder and urethra display spontaneous
contractility patterns, which are associated with UI and SUL
The urethral smooth muscle (USM) cell contributes to SUI
by generating spontaneous electrical activities in the terms
of membrane depolarization and action potentials (sAP).
Therefore, a complete understanding of the USM cell’s SAP
biophysics will help in identifying novel pharmacological
targets for the SUI. This study presents the first biophysically
based model of USM AP which integrates all the key ionic
currents underlying the electrogenic processes in the urethra.
The classical Hodgkin-Huxley (HH) approach is imple-
mented to build all ion channels after borrowing data from
various published electrophysiological studies. There is an
array of ion channels discovered in USM cell electrophysi-
ology to regulate the cell’s excitability. The ion channels in
the USM cell model are Ca2 + activated Cl-channel, voltage-
gated Ca2 + channel, voltage-gated K + channel, Ca2 + acti-
vated K 4+ channel, ATP-dependent K 4+ channel, and leakage
currents. The sAPs were induced in the whole-cell model by
applying an external stimulus current as brief rectangular
pulses or synaptic input.The USM cell model simulation is
performed in “NEURON”software environment [2].

The USM cell model successively responded to both current
and synaptic input stimuli by showing all-or-none AP firing
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Fig. 1 The simulated AP in the
USM model

Membrane potential (20 mV)

properties. A current input is a step input pulse with different
amplitudes and durations. A synaptic input is also mimicked
by the alpha function to evoke AP in our model. The volt-
age threshold for triggering an AP is ~ —35 mV. Figure 1
presents the simulated AP after inducing a synaptic input to
mimic the experimental AP in [3]. The resting membrane
potential, AP peak, after hyperpolarization and duration
are —40 mV, 47 mV, —53 mV, and 38 ms respectively.

In the present state, this model is at an elementary stage.
Integration of other active channels, Na+—Ca2 + exchanger,
Ca2 4+ ATPase pump and sarcoplasmic reticulum
Ca2 +releasing mechanism will improve this model towards
a more comprehensive stage. In addition, the expansion of
this single-cell model to syncytium or network level will
help to establish a better physiologically realistic computa-
tional model for investigating the SUI.
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tex mechanisms of theta generation
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Hippocampal theta oscillations are a prominent 4-10 Hz
rhythm in the hippocampal field potential of all mammals
studied to date. They have been linked to spatial and episodic
memory formation. After decades of research, the origins of
the hippocampal theta rhythm remain elusive. In particular,
it is not clear what is the role of each of the regions essential
for in vivo hippocampal theta generation — the septum, hip-
pocampus and entorhinal cortex (EC).

Recent experimental studies performed by Gu and Yakel
indicate that the EC may be the generator of theta rhythm in
the hippocampal formation—not only is the EC leading the
theta rhythm, but all hippocampal sub-regions are synchro-
nized, suggesting that they respond to a common rhythmic
extrinsic input coming from the EC with theta-range activ-
ity. However, it is important to note that the EC does not
function as an independent rhythm generator and it requires
hippocampal inputs in the theta range to maintain the theta
rhythm [1].

In this work, we propose a circuit model of the EC to study
the intrinsic properties of the EC that allow for external
excitatory inputs to drive the system into an oscillatory
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regime.We use Izhikevich’s two-dimensional QIF neuron
model [2] to describe the three major classes of neurons
observed in the EC: stellate cells (S), pyramidal cells (E),
and fast-spiking interneurons (I). We then take advantage
of a thermodynamic approach combined with a reduction
method to get a simplified, exact description of the three
neural populations. In order to study the contributions of
the neural populations in the generation of theta, we use
a machine learning approach [3] to infer the space of con-
nectivity parameters that give rise to theta rhythmic activity
in the EC network model. We found that theta generation is
strongly constrained by the connections between the S and
E-cells. In fact, a subnetwork of S and E-cells is capable of
robustly generate synchronized theta oscillations. While the
E-cells provide the excitatory drive, the S-cells play a key
role in keeping the oscillations in the theta range.

The entorhinal cortex (EC) has a unique role as it is posi-
tioned as a gateway between neocortical areas and the hip-
pocampal system. A clearer understanding of the intrinsic
circuit properties of the EC and its temporal dynamics will
clarify the information communication processes between
the hippocampus and other neocortical areas as well as the
role of theta oscillations
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Electrical synapses couple inhibitory neurons across the
brain, serving a variety of functions within neural circuits
that are modifiable by activity. Much focus has been on
synchrony and oscillatory activities that are promoted by
electrical synapses between cells. Recently, several specific
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mechanisms of plasticity have been demonstrated at electri-
cal synapses.In feedforward and feedback inhibitory circuits,
these synapses can play complex roles towards information
processing. Despite recent advances, many basic aspects
of electrical synapse signaling, including asymmetry or
effects on spike times, remain underappreciated. Using
multi-compartmental models of neurons coupled through
dendritic electrical synapses, we investigated how intrinsic
factors contribute to observed synaptic asymmetry and how
those result in modulation of spike times in coupled cells.
We show that electrical synapse location along a dendrite,
input resistance, internal dendritic resistance, or directional
conduction of the electrical synapse itself each alter the
asymmetry, as measured by coupling between cell somas.
Strikingly, apparent asymmetry resulted from symmetrically
conducting electrical synapses that coupled different subcel-
lular locations of the two cells. Asymmetry resulting from
synapse location difference was amplified by differences in
synapse strength, input resistance or dendritic resistance.
Additionally, we show that several combinations of factors
that contribute to asymmetry can also produce identical
coupling ratio measurements, indicating that observations
of asymmetry may mask truly asymmetrical coupling. Fur-
thermore, we show that asymmetry alters spike times and
latency in coupled cells, depending on direction of conduc-
tion or dendritic location of the electrical synapse. Together,
these simulations illustrate that causes of asymmetry are
multifactorial, may not be apparent in measurements of
electrical coupling, and produce a variety of outcomes of
spike times in coupled cells. Our findings highlight aspects
of electrical synapses that should be considered in experi-
mental investigations of coupling, and when constructing
networks containing electrical synapses.
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People with photosensitive epilepsy (PSE) are prone to epi-
leptic seizures evoked by visual stimuli, typically flickering
lights. PSE is particularly relevant as a model to understand
epilepsy. For example, it is used within clinical trials to test
the efficacy of anti-seizure medication [1]. Thus, a better
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understanding of the pathophysiology of PSE may have an
impact not only on people with PSE but more generally on
the diagnosis and treatments of epilepsy.

Several studies have found evidence for both occipital and
more widespread cortical hyperexcitability in people with
PSE [2]. In this study, we aimed to find whether we could
identify a widespread increased ictogenic propensity and/
or occipital increased ictogenic propensity from interictal
EEG in people with PSE relative to individuals with epi-
lepsy but without PSE. To evaluate network-wide and local
ictogenic propensity, we used the concepts of brain network
ictogenicity (BNI) and node ictogenicity (NI), respectively.
BNI is a measure of how likely a functional brain network
is of generating seizures in computer simulations [3]. These
simulations consist of placing a mathematical model of epi-
lepsy into the functional network and compute the resulting
brain dynamics. Brain networks that have a higher likeli-
hood of supporting seizures are expected to produce more
seizure-like activity in the simulations [3]. NI is assessed
by removing regions from the functional network and eval-
uating the resulting altered BNI [3]. Brain regions whose
removal produce a higher reduction of BNI are considered
more ictogenic.

We considered two groups of individuals with idiopathic gen-
eralised epilepsy, 26 individuals that had a photoparoxysmal
response (PPR) during intermittent photic stimulation (IPS)
(the PPR group), and 24 individuals that did not have PPR
(the non-PPR group). We tested two hypotheses: (i) the PPR
group has a higher BNI than the non-PPR group; and (ii) the
PPR group has a higher occipital NI than the non-PPR group.
By applying our computational framework, we observed that
the BNI is not significantly different between the two groups.
This result suggests that our cohort with PSE did not have a
higher widespread ictogenic propensity than other individuals
with epilepsy but without PSE. In contrast, we found that the
PPR group had a statistically significantly higher occipital NI
than the non-PPR group. This result suggests that the occipi-
tal region is particularly prone to induce seizure activity in
people with PSE, and that this susceptibility can be probed
from resting interictal EEG. More generally, our results show
that computational analysis of interictal EEG may be used to
diagnose PSE without the need of photic stimulation.
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In modeling neurons, it is generally assumed that the dif-
fusion current in the cable model is too small to be worth
taking into account. A cable model and a modified cable
model having a diffusion current has been solved by using
a finite volume method to test the layer 5 neuron of a rat in
different amplitudes of a stimulus current. The effect of the
diffusion current was shown to have a significant impact on
the potential results in some values of the stimulus current
and showed differences in generating a spike of action poten-
tial between including the diffusion current and excluding
it. Also, the results showed that the sodium concentration
predicted by the two modified cable models had different
response during a spike of action potential. The present work
reveals that the diffusion term in the modified cable equation
may critically determine the action potential generation in
the dynamic equation of membrane potential. This is a new
concept in research to show the importance of the Nernst-
Planck equation being stated, where electro-migration and
diffusion fluxes are combined together.
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Glial cells called astrocytes play many important roles in
the brain. In many brain areas, astrocytes can partially wrap
around synapses to form “tripartite synapses” (presynap-
tic neuron—astrocyte—postsynaptic neuron). This wrap-
ping allows the astrocyte to modulate the synaptic signal
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Fig. 1 Extended tripartite syn-
apse. Boxed in red are the com-
ponents of the Handy-Taheri
IP3-Calcium model [1,2]. New
components in extended model
are Na+/Ca2 + exchanger
(NCX), Na+/K +pump (NKA),
inward-rectifying potassium
channels (Kir4.1), glutamate
transporter (GLT), sodium-leak

S P ————

L-N

current (L-N), and neuronal-
released glutamate (Glut)

between nearby neurons in a number of ways. In this work,
we explore one such pathway of astrocyte-neuron interac-
tion. Namely, we study how the astrocyte’s calcium activ-
ity can affect the excitability of the postsynaptic neuron by
altering the extracellular concentrations of different ion
species. We present a model of the astrocyte (see Fig. 1)
that includes biologically-constrained key transmembrane
potassium, calcium, sodium and glutamate fluxes: Na+/
Ca2 +exchanger (NCX), Na+/K+pump (NKA), inward-
rectifying potassium channels (Kir4.1), and glutamate trans-
porter (GLT). Each component is carefully adapted from
the literature to match the available data. All components
are then combined and interfaced with existing astrocyte
calcium response models [1,2] to study the influence of this
astrocyte-neuron interaction pathway on the excitability of
nearby neurons. We find that by regulating the volume of
and the ion concentrations in the extracellular space around
the synapse, astrocytes can effectively weaken the signal
transfer between neurons but also prevent run-away excita-
tion in some pathological conditions.
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Major depressive disorder (depression) involves different
mechanisms and brain scales. Altered cortical inhibition is
associated with treatment-resistant depression, and recent
studies indicate that reduced dendritic inhibition by soma-
tostatin-expressing (SST) interneurons are a key component
of the pathology. Modeling studies suggest that changes in
SST-mediated inhibition increase cortical baseline activ-
ity and noise, and may thus account for deficits in cortical
processing in depression. Electroencephalography (EEG)
offers an important source of biomarkers for depression
to improve diagnosis and inform personalized treatments.
However, whether the effects of reduced SST inhibition
on microcircuit activity have signatures detectible in EEG
remains unknown. We used detailed models of human cor-
tical layer 2/3 microcircuits with normal or reduced SST
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inhibition to simulate resting-state activity together with the
associated EEG signals in health and depression. We show
that the healthy microcircuit models had emergent properties
that reproduced key features of resting-state EEG, includ-
ing a theta-alpha band peak (4 — 12 Hz) and 1/f decompo-
sition of the power spectral density (PSD). We compared
the simulated EEG in healthy and depression microcircuits
and found an increase in theta band power (4 — 8 Hz) along
with a broadband increase. We then characterized the spike
preference of EEG phase for the different neuron types in
the microcircuit and found a distinct preference to the peak
of the theta-alpha oscillations. In addition, we characterized
the spatial decay of the EEG signatures across the brain sur-
face by integrating the microcircuit signal in a realistic head
model. Our study thus used detailed computational models
to identify EEG biomarkers of reduced SST inhibition in
cortical microcircuits in depression, which may serve to
improve the diagnosis and stratification of depression sub-
types, and in monitoring the effects of pharmacology that
modulates SST inhibition for treating depression.
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Episodic memory (EM) is the recollection of past experi-
ences that occurred at particular times and places. Semantic
memory (SM) refers to general knowledge about words and
items, lacking spatiotemporal source information, possibly
resulting from the accumulation of EMs. In fact, EM traces
are susceptible to transformation and loss of information [1],
which can be partially attributed to semantization (decontex-
tualization process). Extensions to the classical Remember/
Know behavioral paradigm attribute the loss of episodicity
to repeated exposures of items in different contexts lead-
ing to decontextualization [2]. Despite recent advancements
explaining semantization at a behavioral level [2], the under-
lying neural mechanisms and, particularly, the role of syn-
aptic plasticity in the associative pathways remain poorly
understood.

Here we propose and evaluate a Bayesian-Hebbian hypoth-
esis about synaptic and network mechanisms underlying
EM semantization. We build a model consisting of two

cortical spiking neural networks associatively coupled
using a Bayesian-Hebbian learning rule (BCPNN) [3,4]
(Fig. 1a), and show how it captures key phenomenological
aspects of the semantization. In particular, we simulate an
EM task designed to follow a seminal experimental study [2]
(Fig. 1b), and qualitatively compare the modelling results
with the corresponding behavioral data. We demonstrate
that encoding items across multiple contexts leads to item-
context decoupling akin to semantization (Fig. lc, f: items
or contexts serve as retrieval cues, respectively). The emerg-
ing loss of episodicity progresses with further exposures of
a stimulus in different contexts, resulting in weaker item-
context memory binding (Fig. 1d, g). This gradual trace
modification relies on the nature of Bayesian learning, which
normalizes and updates weights over estimated presynaptic
(Bayesian-prior) as well as postsynaptic (Bayesian-posterior)
spiking activity, while also modulating intrinsic excitability
of pyramidal cells in the model (Fig. le, h). Importantly,
the more commonly used spike-timing dependent plasticity
(STDP) rule does not lead to item-context decoupling in the
same EM task.

On the whole, there are few computational models of
EM-SM interplay, and those that exist typically neglect
the underlying neural mechanisms in favor of predicting
behavioral outcomes. Our model bridges these perspec-
tives, and reproduces important EM phenomena on behav-
ioral time scales (under constrained network connectivity
with plausible postsynaptic potentials, firing rates, etc.),
while it also explains semantization based on synaptic plas-
ticity. To further this understanding, our hypothesis of the
EM-SM interplay at a neural level, needs to be substantiated
experimentally.
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Fig.1 Semantization of EMs

in a a two-network model.
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Currently available treatments of Parkinson’s disease are of
limited efficacy. There are symptoms such as freezing of gait
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which causes falls and is a significant source of morbidity
in patients suffering from Parkinson’s disease. One possible
approach to treat these patients is deep brain stimulation.
However, often there is a remaining freezing of gait during
the standard subthalamic nucleus deep brain stimulation. At
the same time, there is experimental evidence of freezing
improvement during simultaneous stimulation of the subtha-
lamic nucleus and substantia nigra pars reticulata. This effect
could be due to the connections of the substantia nigra pars
reticulata to the midbrain regions responsible for posture sta-
bility and gait initiation such as pedunculopontine nucleus. A
computational model explaining the observed improvement,
which also accounts for the behavioral data could help to
unravel the mechanisms behind the symptoms of Parkinson’s
disease and potentially lead to more individualized treatment.
For this reason, we study the cortico-subcortical networks
responsible for gait and the effects exerted on these net-
works via perturbations such as deep brain stimulation.
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To assess the differences between the two aforementioned
stimulation modes, we compare the network dynamics dur-
ing the healthy, the Parkinsonian and the deep brain stimu-
lated states. Also, we compare the modelling outputs with
pupillometry data, which is an indirect measure of locus
coeruleus activity. This is of importance as abnormalities in
afferent pathways of locus coeruleus — one of the outputs of
the model, are associated with gait deterioration. Previous
computational models do not account for the effects of inter-
est as they are either lack biological detail or do not include
midbrain regions.

As a first approach, we developed a firing rate network
model comprising interconnected populations of Hodg-
kin-Huxley neurons representing basal ganglia nuclei and
midbrain regions. The switch to the Parkinsonian state is
achieved via the change in striatal conductances represent-
ing dopamine depletion — a hallmark of Parkinson’s disease.
Deep brain stimulation is modeled as a current applied to
the efferent axons of the neurons in the target regions. The
resulting firing profile in the locus coeruleus is then com-
pared to the pupillometry data.

We present simulations from the proposed computational
model that qualitatively account for the firing rate data and
their dynamics in the healthy, Parkinsonian and stimulated
states. Moreover, the firing dynamics during the subthalamic
nucleus deep brain stimulation is markedly different from the
simultaneous stimulation of subthalamic nucleus and sub-
stantia nigra pars reticulata. Limitations of that firing rate
modelling approach are discussed. Thus, the model accounts
for the first time for the difference between two stimulation
modes and suggests a possible mechanism of action behind
the deep brain stimulation.
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“No causation without manipulation”. With this motto in
mind, lesion inference approaches characterize the causal
contributions of neural elements to brain functions. His-
torically, lesion inference has helped to localize special-
ized units in the brain and it has gained new prominence
through the arrival of optogenetic perturbation techniques
that allow probing the causal role of neural elements at an
unprecedented level of detail. While lesion or perturba-
tion inferences are conceptually powerful tools, they face

methodological difficulties due to the brain’s complexity.
Particularly, they are often challenged to disentangle the
causal role of individual neural elements, since many func-
tions emerge from coalitions of different elements. There-
fore, studies of real-world data, as in clinical lesion stud-
ies, are not suitable for establishing the reliability of lesion
approaches, due to unknown, multivariate, and potentially
complex interactions among brain regions. Instead, ground
truth studies of well-characterized artificial systems are
required to validate established lesion inference approaches
and reveal computational motifs employed by the brain.
Here, we trained an Artificial Neural Network (ANN) play-
ing a classic arcade game to explore how well different
perturbation strategies canreveal the neural substrate of a
behavior. To this goal, we first lesioned every node and con-
nection using a single-site lesioning scheme, which is the
traditional approach in neuroscience and second employed a
multi-site lesioning scheme in order to perturb thousands of
unique combinations of units. We quantified the causal con-
tribution of all elements using a rigorous game-theoretical
metric based on the Shapley value and then calculated the
synergistic and redundant interactions of pairs of causal
units.

We found that not every perturbation approach necessar-
ily reveals causation, as lesioning elements one at a time
produced biased results. By contrast, multi-site lesion
analysis captured essential information that was missed
by single-site lesions. In particular, we identified a motif
of functional interaction that manifests as a paradoxical
lesion effect, i.e., disruptions in performance caused by
a first lesion that reverts towards normal after a second
lesion. Finally, we compared the network’s behavior with
the behavior of the network in which the most critical ele-
ment was lesioned, to understand the functional role of
the element.

We conclude that even small and seemingly simple ANNs
show surprising complexity that needs to be appreciated in
order to derive a causal picture of the system. In the context
of rapidly evolving multi-site perturbation approaches and
multivariate brain-mapping and inference methods, we advo-
cate using in silico experiments and ground-truth models to
verify fundamental assumptions about the validity of these
approaches.
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Visual information processing plays an important role in
human perception and cognition. Measuring the information
flow is an even more challenging task than purely detecting
local activations. The selection of parsimoneous set of rel-
evant regions of interest (ROIs) is key for successful analy-
sis. A common choice is using blind source separation (ICA,
PCA, NNMF). However, due to nonstationarity of the stimu-
lus driven data and multiple local maxima of the temporal
components, interpretable description of spreading of the
initial stimulus is complicated. We thus propose a method
that enforces better temporal localization of the activity
within the studied ROIs, and demonstrate an application to
source-reconstructed high-density EEG data. Effective con-
nectivity analysis was used to demonstrate the difference
in the detected feedforward and feedback activity (Fig. 1).

Local activity time courses are divided into components via
spatiotemporal dynamics. Activation times are defined as
a time of a maximum of absolute values, and were used
to sort signals in time and divide them into equal groups
(N'=15). In every group, outliers are removed according to
the sources' spatial positions and remaining locations were
spatially clustered using k-means and considered as ROI
for further processing. The method was tested on example
EEG data of a healthy subject (male, age 33). A set of pic-
tures was presented on a computer monitor with 600 tri-
als, each including 200 ms of baseline, 300-ms stimulus,
and 600-ms of reaction time [1]. The EEG was recorded
by a high-density 256-channel system with Net Amps 400
series amplifier at 1000 Hz sampling and preprocessed by
an automated pipeline: bad channel detection and interpola-
tion, bad segment rejection, bandpass filtering (0.5-300 Hz),
ICA-based artifact detection and rejection by a set of fea-
tures from SASICA, FASTER, and ADJUST packages in

Fig.1 A Data-driven ROI
taking part in visual process-

. 19
ing; color corresponds to the e “

activation time. B Feedforward
and feedback average connectiv-
ity (of selected ROI) in time,
estimated by Granger causality
in sliding window
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the EEGLAB toolbox [2], and finally average referenced and
bandpass filtered to 1-80 Hz.

The EEG dipole moment time courses were estimated by the
eLORETA inverse algorithm [3] on a regular grid in grey
matter. The forward model was generated by the Fieldtrip-
Simbio pipeline [4] including a 5-layer hexahedral head
model using individual T1-w MRI image. The electrode
positions were based on fiducial points coregistration with
individual head model. Several ROI laying along ventral/
dorsal pathways were selected for preliminary connectiv-
ity analysis. A significant difference between feedforward
and feedback connectivity was detected [200:400] ms after
stimulus. In future we aim to update the ROI definition so
sources could have no/more than one activation, include
more subjects and continue with connectivity analysis.
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Auditory responses are strongly modulated by the recent his-
tory of sound. Across the auditory pathway neural responses
are significantly attenuated if the same stimulus was pre-
sented less than a few seconds ago. The time constant at
which firing rates in primary auditory cortex (PAC) recover
back to baseline is on the order of one second. Time con-
stants for auditory evoked EEG responses, which reflect
synchronized post-synaptic potentials from all auditory
responsive brain regions, can be even longer. This response
attenuation has often been linked to short-term synaptic
depression. However, synaptic time constants are typically
in the range of a few hundred milliseconds. It is thus unclear
if and how the synaptic time-constants could give rise to the
much longer time-constants of firing rates and EEG.

To address this question, we investigated under which cir-
cumstances the recovery time-constant of a neural network
can differ from the recovery time-constant of the underlying
synapse. Further, we tested if the long-lasting attenuation
of click-evoked neural responses observed in monkey PAC
and EEG, can be accounted for by much shorter synaptic
time-constants. We measured the multi-unit activity (MUA)
from the PAC and EEG signal in rhesus monkeys. The sound
stimuli were auditory clicks with random inter-click inter-
vals (ICI, 0.25 to 12 s) and different intensities (65 to 85 dB
SPL). To develop a forward model to simulate EEG activity,
we used magnetic resonance image (MRI) to obtain head
models of the monkeys. We used a firing rate model with
short-term synaptic depression at both the feedforward and
recurrent excitatory synapses. We fitted the rate model to the
MUA data recorded in PAC and obtained distributions of
network connectivity and synaptic parameters. To simulate
the EEG data, we built a forward model to link single region
activity to EEG signals, which incorporates detailed monkey
head models and the geometry of the monkey cortex. With

a brain atlas database of non-human primates, we extracted
the accurate locations of different auditory regions, and com-
puted the contributions of each region to the EEG signals
recorded on different sensors. We found that networks with
recurrent depression typically generated longer rate recovery
time constants compared to their synaptic time constants.
Networks with feedforward depression can also generate
longer rate recovery time constant if their stimulus response
function is supralinear.

These results suggest that the rate recovery time constant
is an emergent property of the network and can increase
across the cortical hierarchy. Interestingly, we found that
the evoked potentials of EEG signal lasted much longer than
the neural responses in PAC, suggesting contributions from
other auditory regions. Moreover, different EEG components
showed different recovery time constants, suggesting that the
recovery time constants change along the auditory pathway.
To capture these differences, we extended the recurrent net-
work to model multiple auditory regions, including core, belt
and parabelt regions in auditory cortex. We found that belt
and parabelt regions had longer response latencies, which
would contribute more to the later components of the EEG
responses.
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Biological organisms and artificial intelligence need to predict
the dynamics of newly encountered input signals (test data)
based only on the knowledge learned from a limited number
of past experiences (training data). However, previous meth-
ods either suffer from a large test prediction error or fall into
suboptimal solutions. To address this issue, we developed an
unsupervised learning scheme that extracts the most informa-
tive components for predicting future inputs, which is called
the predictive principal component analysis (PredPCA) [1]. It
has a simple architecture comprising two parts — one responsi-
ble for prediction and one for dimensionality reduction — and
can identify their optimal synaptic weight matrices that mini-
mise the test prediction error through a convex optimisation.
The solution that minimises the test prediction error coincides
with the most plausible estimator of the generative process
that generates sensory data, meaning that the outcomes of
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PredPCA offer a reliable system identification with guaran-
teed accuracy. Owing to the asymptotic linearisation theorem
[2], while PredPCA employs a linear neural network, it can
reliably identify the true parameters of canonical nonlinear
generative processes when the hidden state dimensionality is
high and the input dimensionality is sufficiently higher than
the hidden state dimensionality. Thus, the reliable prediction
generalisation and unique system identification guaranteed by
the convex optimisation are the virtues of PredPCA. We dem-
onstrate that PredPCA can extract hidden features important
for predicting subsequent images of previously unseen videos.
This scheme is potentially useful for automated driving and
medical diagnosis.

PredPCA potentially contributes to neuroscience in several
ways. First, PredPCA is useful for analysing neural data. Fea-
ture extraction using PredPCA offers data prediction with high
generalisability, reliability, and explainability. Second, the
brain may use the PredPCA-like learning rule to extract fea-
tures. According to the complete class theorem, any neural net-
work that minimises its cost function can be cast as performing
variational Bayesian inference [3,4]. Because PredPCA mini-
mises its cost function, it can be cast as Bayesian inference at
least under a pair of Bayesian cost function and prior beliefs.
This sort of representation learning can be cast as the dynam-
ics of neural activity and plasticity. Thus, PredPCA can be a
model of perceptual learning in the brain. We describe how
such a machine learning scheme is closely related to neural and
synaptic dynamics of canonical neural networks. We discuss
the possible neuronal and synaptic mechanisms underlying the
PredPCA-like computation in the brain.
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Characterizing the dynamics of recurrent neural networks
trained to perform tasks similar to those performed by ani-
mals and humans in laboratory experiments is crucial to
understanding which connectivity models best predict the
behavior of different areas of the brain, such as the cortex,
and more specifically the prefrontal cortex [1]. In the last
decades, simple models of recurrent neural networks have
been successfully used to explaining different mechanisms
such as decision-making, motor control, or working memory
[2]. One of the aspects that are omitted generally in those
models is that neurons present differences between excita-
tory and inhibitory units (Dale's Law). Building recurrent
networks that present this characteristic presents several
challenges [3]. In present work, the different dynamical
behaviors obtained when training networks with different
proportions of excitatory and inhibitory units were analyzed
considering decision-making tasks. The dynamical behavior,
the performance of training and different constraints were
studied. The emergent properties of the system were studied
by comparing them with the results obtained with models
that do not distinguish between excitatory and inhibitory
units. We considered the case where the amount of excita-
tory and inhibitory units is balanced, and also what happens
when this balance is broken.
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Based on human and animal studies, neuronal hyperexcit-
ability has been identified as one of the hallmarks of Alz-
heimer’s disease (AD). Accordingly, previous studies in
transgenic mice [1] and rats [2] have revealed increased
excitability of hippocampal CA1 pyramidal cells (PCs).
However, the cause of this hyperexcitability has not yet
been fully elucidated. It may be a result of dendritic atro-
phy (and its electrotonic consequences) or impaired balance
between excitation and inhibition or pathological changes in
ion channel expression, or a combination of these mecha-
nisms. Nevertheless, the contribution of these three mecha-
nisms and their interplay with synaptic loss, which is another
hallmark of AD, has remained unclear. Therefore, here we
used anatomically and biophysically realistic computational
models of CA1 PCs driven by distributed synaptic inputs, to
test whether dendritic atrophy can account for AD-related
hyperexcitability. We have performed computational com-
parative analysis of passive and active properties using
3D-reconstructed CA1 PC morphologies from wild type
(WT) and aged APP/PS1 mice. In agreement with previ-
ous computational results [1], we have discovered that, in
APP/PS1 mouse morphologies, reduced dendritic length
and branching decreases input resistance of modelled CA1
PCs rendering them electrotonically more compact and more
excitable upon somatic current injections. However, due to
synapse loss, the CA1 PCs did not display any hyperexcit-
ability in simulations with more natural stimulation in the
form of distributed synaptic activation. This is in agreement
with our previous findings that dendritic atrophy can con-
tribute to neuronal firing rate homeostasis by compensating
for the loss of synaptic inputs [3]. We conclude that dendritic
degeneration cannot account for the observed hyperexcitabil-
ity in AD. Our modeling suggests that other changes such as
excitation-inhibition imbalance or/and altered ion channels
are needed to induce synaptically-driven hyperactivity of
CA1 PCs.
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Biophysically and anatomically realistic modeling of long-
term synaptic plasticity requires computationally demanding
simulations. Using a complex model with a complete den-
dritic tree morphology can be computationally expensive.
Therefore, we focused on the development of a simplified
model for CA1 pyramidal cells that are involved in learn-
ing and memory-related processes. We used a strategy that
combines reduced morphology from one model and complex
biophysics from another model. Using this approach, we
created a new hybrid model with reduced morphology [1].
The dendritic tree of the model retains the minimal ana-
tomical properties of the CA1 pyramidal cell including basal
dendrites, apical trunk, oblique dendrites, and apical tuft
(Fig. 1). We subjected the model to systematic testing of
somatic and dendritic features using HippoUnit, a recently
established standardized test for CA1 pyramidal cell mod-
els [2]. Our model reproduces typical somatic electrophysi-
ological features, depolarization block, attenuation of excita-
tory postsynaptic potentials, as well as back-propagation of
action potentials. The model dendrites are able to generate
dendritic spikes in response to synchronous synaptic stimu-
lation. To test the capability of the model to simulate syn-
aptic plasticity, we used a voltage-based implementation of
the STDP (spike-timing dependent plasticity) rule endowed
with a fast BCM-like metaplasticity [3,4]. The model stabi-
lized synaptic weights during ongoing spontaneous activity
as well as displayed long-term synaptic plasticity using typi-
cal stimulation protocols. Furthermore, we observed heter-
osynaptic plasticity at unstimulated synapses, the magnitude
of which depended on the level of spontaneous activity, the
stimulation protocol used, and the dendritic compartment
where it was observed. We conclude that the model is bio-
logically accurate and is suitable for taking into account the
complex experimentally observed patterns of homosynaptic
and heterosynaptic plasticity induced by different stimula-
tion protocols.
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Fig. 1 The morphology of the model (A), representative responses of the model to the positive (B) and negative (C) somatic current injections
and the normalized model Z-scores obtained from HippoUnit tests (D). The red vertical line represents SD =2
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Investigating the functionality of human neurons remains a
challenge due to the scarcity and incompleteness of their 3D
anatomical reconstructions. Additionally, accurate human
and nonhuman neuronal morphologies are urgently needed
for a better understanding of species differences in brain cir-
cuits as well as for realistic compartmental modeling. There-
fore, here we used a morphological modelling approach
based on optimal wiring [1] to repair any parts of a dendritic
morphology that were lost during the reconstruction process.
Interestingly, our minimum spanning tree-based algorithm
regenerated dendritic branches of Drosophila neurons in a
manner similar to experimental observations using branch
ablation techniques [2]. To validate the repair algorithm for
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Fig. 1 Example repair of mouse CAl pyramidal neuron with refer-
ence neuron on the left and repaired neuron on the right. Artificially
sectioned and repaired dendrites are marked in red with the blue
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mammalian neurons, we artificially sectioned reconstructed
dendrites from mouse and human hippocampal pyramidal
cell morphologies [3], and showed that the regrown den-
drites were morphologically similar to the original ones
(Fig. 1). Moreover, we could recover their electrophysi-
ological functionality as shown by restoration of their fir-
ing behavior. Importantly, we show that such repairs can be
generalized to other neuron types including hippocampal
granule cells and cerebellar Purkinje cells. Such internal
validation of the repair algorithm based on sectioning and
regrowing of available reconstructions allowed us to extrap-
olate the repair to incomplete morphologies. We showed this
specifically for cases of data from humans where the ana-
tomical delimitations of the particular brain areas innervated
by the neurons in question were known. To make the repair
tool available to the neuroscientific community, we have

developed an intuitive and easy-to-use graphical user inter-
face (GUI [PJ1]) available in the TREES Toolbox (www.
treestoolbox.org).
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During focal seizures in epileptic patients, abnormal elec-
trical activity appears in and can spread through the brain
network. A possible remedy is the surgical resection of the
suspected epileptogenic zone localized using the intracranial
EEG (iEEG). Rigorous, computational approaches based on
the fusion of the individual structural connectomes with the
iEEG recordings hold promise for improving the localization
of the epileptogenic zone and therefore the surgery outcome.
Integration of the functional with structural data can be per-
formed in a model-based framework. However, this model
inversion poses multiple challenges, both technical and con-
ceptual. In this contribution we provide an overview of our
recent efforts [1,2] in this domain and discuss the challenges
and possible approaches.

In particular, we consider the choice of the model and com-
pare the complexity, expressivity, and ease of inversion of
the models based on the Epileptor neural mass [1] with a
simplified threshold model [2]. The model of source activity
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is linked to the observed iEEG activity via the forward pro-
jection model, which can affect the identifiability of the
parameters, and has to be coupled to data preprocessing
methods. We continue with the formulation of the problem
in Bayesian framework, and we discuss the choice of the
inversion technique, such as the Markov chain Monte Carlo
sampling, or the maximum a posteriori estimation. We high-
light the importance of the parameterization of the model
for the efficiency of the inversion. Finally, we discuss the
possibilities of validation of a chosen approach, which too
is not straightforward considering the clinical origin of the
data and the limitations associated.
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Epilepsy is one of the most common severe neurological
disorder characterized by likelihood for the brain to enter
seizure states. Prompt and efficient treatment often requires
a prior knowledge or predictability, when and where sei-
zures are likely to occur. Developing prediction strategies
is extremely challenging due to the patient-specific causes
of seizures, and the difficulty in obtaining data from longi-
tudinal study.

The interictal discharges are often observed transient
changes translating as spikes captured through the stereo-
tactic EEG (sEEG) implants before the onset of seizure.
The spikes are usually distinguishable as prominent sharp
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amplitude feature occuring for a short duration of time. The
cause of source level activation pattern and the associated
physiological changes is often not known. In this work we
attempt to understand the underlying physiological phenom-
enon using an extended epileptor model connecting the epi-
leptic state with the resting state. The aim is to capture the
bursting phenomenon at the source level throught the model
and translating up to the sensor level i.e. at the SEEG level.
A relative comparison gives an insight and understanding of
the coactivation pattern of the brain regions recruited during
an occurrance of seizure in an epileptic brain.

The simulations were done using the neuroinformatic plat-
form TVB. Structural connectome constructed using an
in house pipeline for automatic processing of multimodal
neuroimaging data based on publicly available neuroimag-
ing tools, customized for TVB having the Virtual Epileptic
Patient (VEP) as the parcellation scheme. Once the con-
nectome is obtained the bursting phenomenon at the source
level is being simulated using the RS-epileptor model. To
capture this bursting phenomenon a robust spike estimator
is developed for automatic detection of fiducial points viz.
occurance of the spikes. A modified Tear-kaiser operator or
non-negative frequency weighted operator is used to capture
the transient spike pattern and occurrances both at the source
and sEEG sensor level. This is a feasible way of assessing
the instantaneous energy of the signal incorporating both
amplitude and frequency feature. Once these features are
identified, the next steps of the detection algorithm is fol-
lowed by a linear Support Vector Machine (SVM) based two
stage spike sorting system which first detects the spikes and
then differentiates it from noise. The IS are characterized
by a brief initial phase having a sharp and strong amplitude
occurring as transitional events appearing either isolated or
in bursts. To capture the dynamics of this bursting mecha-
nism the following scheme is being devised: (i) Detecting
and characterizing IS on each simulated SEEG channel and
the simulated regions, (ii) Determining the temporal rela-
tions between the various channels and corresponding simu-
lated regions.

Interictal spikes are waveform arising due to the synchro-
nous firing of excitable population of neurons and are con-
sidered abnormal electrical phenomenon when observed at
the sEEG level. Interictal discharges have been predomi-
nantly observed in between Hence they become a comple-
mentary source of information in the diagnosis and localiza-
tion of early onset of the seizure or mathematically speaking,
acts as a prior to the VEP estimation paradigm.
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We are interested in the biophysics of forward and backward
propagation of action potentials (APs), as they are both impor-
tant for learning. The axon initial segment (AIS) initiates APs
in a variety of neurons. Pyramidal cells contain two types of
voltage-gated sodium channel: Nay,1.2 (high threshold) and
Nay 1.6 (low threshold). These channels are nonuniformly
distributed in the AIS. The density of Nay 1.2 is greatest near
the soma, and Nay, 1.6 density peaks further down the AIS,
away from the soma [1]. While this distribution is observed,
its purpose remains unclear [2]. Counterintuitively, published
simulations suggest that concentration of high threshold chan-
nels near the soma lowers the threshold for backpropagation
[1]. We find that this is true when stimulating at the axon.
However our results suggest that the observed distribution
increases the backpropagation threshold for somatic stimula-
tion. We discuss the effect of altering AIS length, AIS dis-
tance, and specific leak currents.
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Epilepsy is a neurological disorder characterized by recur-
rent seizures that are transient symptoms of synchronous
neuronal activity in the brain. Epilepsy affects more than
50 million people worldwide [1]. Seizure forecasting allows
patients and caregivers to deliver early interventions and
prevent serious injuries. Electroencephalography (EEG) has
been used to forecast seizure onset, with varying success
between participants [2,3]. There is an increasing interest
to use electrocardiogram (ECG) to help with seizures fore-
casting. The neural and cardiovascular systems may exhibit
critical slowing, which is measured by an increase in vari-
ance and autocorrelation of the system, when change from
a normal state to an ictal state [4]. The aim of this study is
to use variance and autocorrelation of long-term continuous
EEG and ECG data to forecast seizures.

EEG and ECG data from 16 patients was used for analysis.
The average period of recording was 161.9 h, with an average
9 electrographic seizures in an individual patient. The variance
and autocorrelation of EEG and ECG signals of one electrode
were calculated in 15 s window for each time point. The instan-
taneous phases of variance and autocorrelation signals were
calculated at each time point using Hilbert transform. The rela-
tionship between seizure onset times and phase of variance and
autocorrelation signals were investigated in long (6 h) cycles.
The probability distribution for seizure occurrence in each sig-
nal was determined. Seasonal autoregressive integrated mov-
ing average (SARIMA) model was used to forecast variance
and autocorrelation signals. Bayesian approach was used to
combine probability distributions of seizure occurrences for
each time point. The results of forecasting models using criti-
cal slowing features, seizure circadian features, and combined
critical slowing and circadian features were compared using
the receiver-operating characteristic curve.

The results demonstrated that the best forecaster was patient-
specific and the average area under the curve (AUC) of the
best forecaster across patients was 0.68. In 50% of patients,
circadian forecasters had the best performance. Criti-
cal slowing forecaster performed best in 19% of patients.
Combined forecaster achieved the best performance in
31% of patients. The mean forecasting time was 44.2 min.
Results indicate that critical slowing features could be used
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to forecast seizures. The results of this study may advance
the field of seizure forecasting and ultimately lead to the
improved quality of life of people who suffer from epilepsy.
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Fig.1 Overview of the method
used to infer the trans columnar
connectivity of a multi cortical
column model. Our modified
FORCE-learning approach
receives input from a mean-field
model and adjusts connectivity
between columns to replicate a

Advances in brain imaging techniques have enabled us
to acquire detailed datasets of neural activity. But while
activity is easy to measure, connectivity is still hard to
observe directly and often has to be inferred from activ-
ity data. To do so, large amounts of neural recordings are
necessary to reconstruct the connectome which makes this
process costly and time-consuming. Here, we present a new
method for inferring connectivity from sparse activity by
using synthetic data to pretrain a model for inferring con-
nection strengths. We demonstrate our approach on record-
ings from the rodent barrel cortex, which processes tactile
information and consists of many interconnected anatomi-
cally confined cortical columns. The connectome inside a
single cortical column has been studied for decades and
their microcircuits and connectivity are well-known. How-
ever, the connectivity between multiple columns, which
give rise to the observed detailed dynamics, is not well
understood. We use a mean-field cortical column model
that reduces individual neurons to a network of neuron
populations [1] for producing barrel-cortex activity-like
data. This approximation leads to a model which quali-
tatively reproduces the activity observed in experimen-
tal measurements while being numerically inexpensive.
To initialize our model and validate our results, we use
experimental data of anaesthetized adult rats, obtained
from in-vivo experiments [2]. We then used two different
methods and compared them in their ability to infer con-
nectivity—one of which is a modified version of FORCE
learning [3] acting on recursive neural networks. An
overview of this approach can be seen in Fig. 1. As in the

set of target functions supplied
by experimental data. The
magnification box (taken from
[1]) shows the structure of a
cortical column in the mean-
field approach
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original FORCE approach, learning is performed through
changes in connection strength inside the network, how-
ever, connections to read-out units are constant. To pro-
vide the recurrent chaotic dynamic needed by the FORCE
approach, a higher number of units is used in the FORCE
network than in the mean-field model. Additionally, the
network was further divided into sub-networks with a cor-
responding target function generated using the mean-field
model. We adjusted the learning rule to improve the repre-
sentation of the biological setting. Our modified FORCE
respects Dale's law and the output is restricted to positive
values. A technique in this context is successful if experi-
mental datasets can be reproduced and predicted using the
generated connectome. We find that FORCE learning with
the additional constraints can accurately replicate neuron
population activity typically encountered in the mean-field
model. Also, we observed convergence in the generated
connection matrix over multiple learning procedures with
randomly generated starting conditions. In ongoing work,
we compare these results with connection matrices inferred
using a deep learning approach to assess the stability and
reproducibility of our modified FORCE learning model.
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Hippocampal ripple oscillations have long been impli-
cated in important cognitive functions such as memory

consolidation [1]. Several generating mechanisms have been
proposed, some relying on excitation, some on inhibition as
the main pacemaker of ripples. The inhibitory models can be
further subdivided into perturbation-based [2] and bifurca-
tion-based models [3,4]. While all the above model classes
can produce oscillations in the ripple-band (140-220 Hz),
only the bifurcation-based inhibitory model has been shown
to also reproduce the experimentally observed intra-ripple
frequency accommodation (IFA) — an asymmetry in the
instantaneous network frequency in response to transient,
sharp wave-like stimulation [4,5; Fig. 1].

Here we provide a mechanistic explanation for the occurence
of IFA in bifurcation-based inhibitory ripple models, using
a theoretical mean-field approach. We start with a simplified
spiking network of leaky-integrate-and-fire units, which are
fully connected via delayed inhibitory pulse-coupling. All
units receive independent white noise and the same excita-
tory drive, which is thought to mimic the input to CA1 com-
ing from the CA3 Schaffer collaterals. It has been shown that
for high-enough drive this network undergoes a bifurcation
from a stationary to an oscillatory regime [6]. To address
IFA we need to a) approximate the highly non-linear oscilla-
tion dynamics for constant drive beyond the bifurcation and
b) understand how the response to transient, sharp wave-like
drive relates to those cyclo-stationary dynamics.
Assuming large enough constant drive, we take the fro-
zen-noise limit and approximate the density of membrane
potentials (i.e., the solution of the associated Fokker—Planck
equation) as a Gaussian with time-dependent mean. In this
framework we can analytically approximate the frequency
and amplitude of the network oscillation as a function of
excitatory drive. We show that for a wide parameter regime
(spanned by noise intensity, coupling strength, reset poten-
tial, synaptic delay) this ansatz provides a good approxima-
tion of the cyclo-stationary dynamics beyond the bifurca-
tion. It captures the transition of the network from a regime
of sparse, irregular synchrony to full synchrony as the excita-
tory drive increases. This transition comes with a mono-
tonic increase in the amplitude of the oscillation in the mean
membrane potential. We demonstrate that, given transient,
sharp wave-like drive, IFA results from a speed-dependent
hysteresis effect in the amplitude of the oscillatory mean
membrane potential. Since this finding is largely independ-
ent of specific parameter choices, it establishes IFA as an
inherent feature of the bifurcation-based inhibitory model.
Conversely, we find that the perturbation-based inhibitory
model cannot exhibit IFA without additional parameter
tuning. The present work thus highlights the importance
of considering transient ripple dynamics, such as IFA, to
guide the selection of the true generating mechanism of rip-
ple oscillations.
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Fig. 1 Intra-ripple frequency
accommodation (IFA) in
simulated inhibitory spik-
ing network: Given transient,
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We present our recent effort of the continuous-state formula-
tion of active inference in the brain [1,2], which attempts to
undergird the free energy principle (FEP) in neuroscience
[3]. Our goal is to make the FEP a more rigorous formalism
by implementing FE minimization based on the principle
of least action [4]. Consequently, we cast the neural imple-
mentation of variational Bayes under the FEP as an effective
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Hamilton's equation of motion in continuous time, invoking
Bayesian mechanics (BM) in the brain. The ensuing BM
prescribes the dynamics of the brain states and their conju-
gate momenta in neural phase space; the momentum vari-
able represents the discrepancy between the environmental
dynamics and the brain's internal model about it. We also
present a simple agent-based model of the brain performing
integration of the BM to demonstrate our framework.

The FEP stipulates that all viable organisms perceive and
behave in the natural world by calling forth the probabil-
istic models in their neural system—the brain—in a manner
that ensures their adaptive fitness [3]. We consider that
the brain continually confronts sensory streams and con-
ducts the Bayesian inversion of inferring external causes
using the continuous state representations. We formulate
a plausible computational implementation of the FEP by
postulating that the informational FE — an upper bound
for surprisal-plays the role of a Lagrangian in theoretical
mechanics [4]. Accordingly, we furnish a variational scheme
of the brain’s updating the internal model and acting on the
external world by minimizing the sensory uncertainty, which
is a long-term surprisal over time [2].

The prescribed BM is subject to a time-dependent signal
arising from the prediction errors at the sensory level on the
sensorimotor loop, which serves as the motor command. To
this extent, the BM bears a resemblance to the motor-control
equations derived from Pontryagin’s maximum principle in
optimal control theory [5]. By numerically integrating the
Bayesian equations of motion for the considered parsimoni-
ous model, we illustrate the brain’s transient trajectories in
continuous time, performing active perception of the causes
of nonstationary sensory stimuli [1]. The steady-state solu-
tion of the BM reveals an attractor about which stationary
limit cycles form, which suggests that the brain undergoes
nonequilibrium transit between spontaneous state and aware
state upon sensory perturbations.
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How auditory evoked responses (e.g., P1, N1, P2) in EEG/
MEG are generated in the cortex is still poorly understood.
One approach is to employ biological neural models to inter-
pret the underlying network mechanisms. However, existing
models targeting this question (e.g., the Human Neocorti-
cal Neurosolver [1]) are not constrained by other recorded
neural activities such as the local field potentials (LFPs),
which can potentially lead to biased interpretation. In this
study, we attempt to investigate the generation of the evoked
responses by constructing a rate-based cortical column model
constrained by LFPs from multi-contact electrode record-
ing. The electrode recorded the laminar neural activities in
response to 60 dB SPL 200 ms duration pure tones at the
best-frequency (BF) sites in the primary auditory cortex (A1)
of awake monkeys (a total of 11 sites, each with 16 laminar
depths). Since the LFPs are contributed by the activities of
various types of excitatory (E) and inhibitory neurons such
as parvalbumin-expressing interneurons (PV), somatostatin-
expressing interneurons (SOM), and vasoactive-intestinal-
peptide-expressing neurons (VIP), we include several neural
populations in different layers (E, PV, and SOM in layer 2/3;
E in layer 4; E and PV in layer 5/6) in the column model. The
model's state variables include the firing rates, postsynaptic
potentials (PSPs), and synaptic efficacy reflecting short-term
plasticity (STP). The model parameters include network con-
nection strengths, synaptic time constants, and STP rates. We
fitted the column model to the laminar profiles of multi-unit
activity (MUA) and current source density (CSD) derived
from the recorded LFPs. The fitting procedure was imple-
mented in the VBA toolbox [2] to find the best parameters
using the variational Bayes algorithm. To explore plausible
solutions, we randomly selected starting parameter sets in
a reasonable range of the parameter space (2000 samples
at each recording site). The preliminary fitting results sug-
gest that the diverse CSDs at different recording sites can be
transformed into the product of diverse CSD spatial profiles
with relatively consistent patterns of firing rates. So far we
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have demonstrated the applicability of our column model in
estimating population-level neural interaction from LFP data.
The model simulations also suggest that the current sources
and current sinks indicated by the CSD result from multiple
transmembrane current flows. Future work will be concerned
with the interpretation of fitted parameters, choice of priors
and constraints for computational efficiency of fitting, and
fitting across multiple recording sites.
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Ephaptic coupling effects in parallel nerve fibers have been
observed experimentally since the early 1940s [1,2]. These
are characterized by the synchronization and slowing down
of action potentials, a phenomenon that has been reproduced
in modelling studies based on biophysically realistic models
[3,4]. The latter, however, preclude the theoretical study of
ephaptic coupling effects in nerve fibers with a large number of
axons. Here, we present a spike-propagation model (SPM) that
sheds excessive biophysical detail in favor of computational
efficiency, without loss of capturing the essential features of
propagating action potentials and their ephaptic interaction.

The SPM describes an action potential by its position on the
axon and its velocity. The velocity is primarily defined by
intrinsic features of the axons, such as diameter and myelina-
tion status, but it is also modulated by changes in the extra-
cellular potential. These changes are due to transmembrane
currents that generate an action potential. Within the SPM
framework, this change of extracellular potential is modelled
by a coupling function that is derived from passive axonal
properties. In the absence of external perturbations, an action
potential propagates with the velocity intrinsic to the axon. In
the presence of external perturbations, the resulting change
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in the velocity is appropriately described by a linearized cou-
pling function, which is calibrated with a biophysical model.
The efficiency of the SPM allows us to systematically study
peripheral nerve bundles with a large number of axons.
We find that fiber density and the number of active fibers
are critical for the emergence of synchronization between
action potentials and their slowing down. The transition
from asynchrony to synchrony is characterized by a phase
transition that occurs at a critical fiber density and activity
level. This transition is counteracted by the heterogeneity
of the fiber bundle, specifically by the heterogeneity of fiber
diameters. We study different distributions of fiber diameters
and identify corresponding critical values for the transition
to synchrony. In addition, we compare our results with previ-
ous results obtained for fiber bundles in the central nervous
system [5], where ephaptic coupling has no synchronizing
effect and accelerates signal transmission.
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Many neuroimaging studies examined reward prediction
errors (PEs), focusing on dopamine-rich brain regions,
which encode PEs [1]. Systematic approaches combining
results across these studies will improve our understand-
ing. To examine brain regions responding to dimensions of
PE across studies, we used coordinate-based meta-analysis
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— multi-level kernel density analysis (MKDA; [2]) to analyze
data from 263 papers and 464 contrasts representing 6,454
participants, as shown in Fig. 1.

Both computational modeling work and experiments on PE
have considered whether regions encoding PEs respond to
both unexpected rewards and violations of beliefs in tasks
without explicit rewards [3]. To examine this, we used a
conjunction analysis to look for regions computing PEs in
reward tasks and perceptual and cognitive tasks without
explicit rewards, finding a core PE circuit including mid-
brain, insula, and striatum. There was also specialization
for different PE types, such that perceptual PEs recruited
visual and parietal areas, and social PEs more consistently
recruited dorsomedial prefrontal cortex (dmPFC) than
non-social.

Predictive coding theories suggest that precision, the reli-
ability of statistical estimates, influences the contribution
of PEs to learning [4]. A conjunction analysis of signed and
precision-weighted (unsigned) PEs revealed striatum, pari-
etal lobe, supplementary motor area (SMA), and frontal eye
field. Comparing the two, signed PEs had more consistent
activity in midbrain, striatum, medial PFC and cingulate
regions, while precision-weighted PEs had more consistent
activity in cerebellum, dorsolateral PFC, dmPFC, SMA, dis-
tinct insula and cingulate regions, and parietal and temporal
regions.

Recent theories of PE propose that some circuits encode
value, increasing for appetitive and decreasing for aversive

a) Core PE circuit b) Specialization

Perceptual, Cognitive, and Reward PEs

c)Signed PE > Precision-Weighted PEs

Perceptual

outcomes, while others capture salience, increasing for both
valences [5]. We examined salience using a conjunction of
appetitive and aversive valence PEs, which revealed mid-
brain, striatum, and insula. However, a meta-contrast anal-
ysis found that distinct regions of striatum and midbrain
responded more consistently to aversive PEs than appetitive,
consistent with recent evidence [6].

Overall, we show a core circuit in the midbrain, striatum,
and insula that responds to PEs across valences and tasks as
well as distinct regions for more specialized computations,
such as social and perceptual inferences. This has important
implications for theories of PE.
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Neurons receive a stream of random excitatory and inhibitory
inputs arising from the background network activity, leading to
fluctuations of the neuron's membrane potential [1-3]. Exper-
imentally, it has been observed that evoked inhibitory input to
the neuron may decrease its membrane potential fluctuations,
despite the mean value of the membrane potential remaining
unchanged [4]. However, the evoked inhibitory input (paired
with an evoked excitatory input, necessary to keep the mean
membrane potential unchanged) leads to an increase in the
total synaptic noise and the synaptic current fluctuations. We

Fig.1 The increase in
inhibitory input (A) leads to
an increase in the fluctuations A:
of the synaptic current (B), but )
decreases the fluctuations of

the membrane potential of a
non-spiking membrane (C). The
evoked inhibition decreases the
firing regularity in the model
with M-current SFA (D), but B:
increases the firing regularity in

Ai(kHz)

0

Synaptic current

provide a theoretical explanation for this observation and ana-
lyze its effect on the neuronal firing variability.

We used single compartmental neuronal models to show that
evoked inhibitory input decreases the membrane potential
fluctuations if the signal to noise ratio of the input scales
slower than the square of the input intensity, a condition
which is implicitly satisfied for the Poisson shot noise.
Moreover, we show that in order to reproduce this behavior
in neural models, reversal potentials and synaptic filtering
has to be included in the model of the synaptic input.

To clarify the effects on spike-firing regularity, we used models
with different spike-firing adaptation (SFA) mechanisms. When
SFA was implemented through ionic currents or not at all,
higher levels of inhibition led to lower firing regularity, despite
the decreased membrane potential fluctuations. On the other
hand, we observed that evoked inhibition may lead to more
regular firing (while keeping the mean firing rate unchanged),
if the neuron exhibits a dynamic spike firing threshold (Fig. 1).
See [5] for the published version of the presented work.
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Studies revealed that outcomes of complex video game (VG)
training can be predicted by individual differences in demo-
graphic and behavioral characteristics [1]. However, there is
still no unanimity on the effectiveness, settings, and benefits
of VG training for particular subjects. Therefore, researchers
used measures of individual differences in neuroanatomy
to shed light on the inconsistent results. Most of the stud-
ies in the domain used voxel-based morphometry (VBM)
method to obtain neuroanatomical measures of grey matter
volume [e.g., 2, 3, 4]. Surface based morphometry (SBM)
measures such as cortical thickness (CT) provide a better dif-
ferentiation of tissue boundaries [5], but only one study used
it to predict complex VG skill acquisition [6]. Researchers
revealed that CT of the lingual gyrus (LG) can be a signifi-
cant predictor of First Person Shooter VG learning [6].

In our research we have concentrated on prediction of VG
skill learning from CT in a game with different mechanics,
Real Time Strategy. We have selected regions of interest
from previous studies which were possible to investigate
using the SBM method such as LG [6], medial frontal gyrus
and anterior cingulate cortex [4]. This study provides impor-
tant evidence of the usefulness of SBM measures for predic-
tion of complex VG learning. We hope that our study and
future reports will allow researchers to better adjust training

regimes for esport professionals, create personalized reha-
bilitation programmes and explain theoretical underpinnings
of neuroplasticity after complex VG training.
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A neural circuit is highly recurrent and shows rich internal
dynamics. The internal dynamics interplay with external
stimuli to generate their neural representation. How such a
representation emerges and is related to internal dynamics
are important questions for understanding neural process-
ing. Random recurrent neural networks are basic substrates
for answering these questions by virtue of their simplicity.
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However, behaviors in these models are quite simple and
neurons in a biological neural circuit are not randomly con-
nected but organized into a somewhat structured network.
To clarify the relation between internal dynamics, network
structure, and its response, “low rank” networks such as
Hopfield networks and reservoir networks with feedback, are
studied. Still, however, it remains unclear how a structured
network with multiple memorized items generates response
behaviors.

To investigate this point, we present a structured network
model composing of inputs and their representation patterns
with their pseudo-inverse matrix. The response of this net-
work to the input is analytically described for an arbitrary
strength of the input.This is a great advantage point against
previous models.By using this model, we identified three
regimes of responses depending on the gain parameter of
the activation function and the number of the used inputs
(load factor): continuous response, discrete response, and
no response regimes. The continuous regime appears for the
smaller gain parameter and load factor of inputs, wherein the
analytically described response is a stable fixed point for any
input strength. As the input strength increases, the response
increases continuously. Secondly, in the discrete response
regime for the larger gain and load factor, the described
response becomes unstable and chaotic dynamics emerge.
The response discretely surges to the maximum value at
the critical input strength. Finally, for the much larger gain
parameter and load factor, the no response regime appears
where the response does not increase sufficiently even for
the strong input.

We focused on the computational functions in these regimes:
susceptibility against input strength and learning speed for
a new item. The susceptibility takes the highest value in the
discrete response regime. At the same time, the fastest learn-
ing is achieved. Thus, the chaotic dynamics in the discrete
regime provide the best computational ability.

Recent experimental studies observed the discrete response
as the input strength changes in auditory and odor cortices.
Interestingly, we found that random neural networks and the
low rank networks did not provide such a discrete response,
indicating an important role of the pseudo inverse matrix
in the discrete response. We also demonstrated the pseudo
inverse matrix can be shaped through a simple learning
rule requiring only local (i.e., pre- and post-synaptic neural
activities) information in the previous study. In total, these
results suggest that the discrete responses observed in the
several cortical areas reflect the high computational ability
and they are based on the pseudo inverse matrix.
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Obsessive—compulsive disorder (OCD) is characterized
over-reliance on habitual control system [1]. The bias toward
habits is considered to produce unbalanced decision arbitra-
tion between goal-directed (model-based, MB) and habitual
(model-free, MF) learning strategies in OCD [2]. Although
previous literature has demonstrated dysfunctional reward
prediction error (RPE) signals in fronto-striatal circuitry in
OCD [3], little is known about how neural signals encod-
ing the RPE and state prediction error (SPE) are disrupted
in dynamics of the decision arbitration between MB and MF
systems in OCD. We scanned functional magnetic resonance
imaging from thirty patients with OCD and thirty one healthy
controls. We used the sequential two-choice Markov decision
task to dissociate MB and MF systems and the reinforcement-
learning computational model developed to estimate arbitra-
tion process between two learning strategies [4]. Through the
computational framework of dynamic competition between
two models, we estimated RPE and updated the state-action
value using the SARSA algorithm, while we estimated SPE
and updated the state-action value using the learning algo-
rithm employing FORWARD learning and BACKWARD
planning [4]. We tested group differences of neural signals
encoding prediction errors between patients and healthy con-
trols and analyzed correlation between hit rate and prediction
errors within patients. Patients with OCD had greater negative
RPE than healthy controls (1=-3.08, p=0.003) during MB-
favored trials, while SPE was comparable between groups.
Hit rate was lower in patients than healthy controls when MB
system was favored (U=271.0, p=0.003). Within patients,
the greater negative RPE was associated with lower hit rate
(r=0.89, p<0.001). We found neural correlates of RPE sig-
nal in the bilateral nucleus accumbens and SPE signal in the
bilateral insula. Compared to healthy controls, patients had
hypoactivated regions encoding RPE signal in the right dor-
solateral prefrontal cortex (dIPFC; MNI [52, 42, 22], cluster
pFDR <0.001) and the left dIPFC (MNI [-36, 32, 38], cluster
pFDR <0.001). In conclusion, we demonstrated that unbal-
anced decision arbitration in OCD was attributed to enhanced
negative RPE, but not SPE, and that hypoactive dIPFC signal
in cortico-striatal circuitry underlay the erroneous prediction
in reward-based learning strategy in OCD (Fig. 1).
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GABA is a dominant mediator of inhibitory signaling

between neurons and plays critical roles in neural network
functions. Experimental studies have reported diverse forms
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and origins of GABA-mediated inhibition. One of them is
tonic inhibition mediated by extra-synaptic GABA recep-
tors, arising from distinct sources, such as slow spillover of
GABA from synaptic to extra-synaptic regions and GABA
release from glial cells [1-3]. Notably, the developmental
process can regulate the underlying mechanisms of tonic
inhibition and change which one dominates during matura-
tion [4]. However, the causes and functional impacts of such
a shift have not been understood well.

In this study, we addressed this question by intracellular
recording experiments and computational modeling of tonic
inhibition in principal neurons, called granule cells, in the cere-
bellar cortex. Experimental data showed a significant decrease
in the spontaneous inhibitory postsynaptic current (sIPSC) and
also in the neuronal activity-dependent component of tonic
inhibitory current (TIC) from the adolescent (P21-28) to adult
(P56-96) animals. At the same time, the total TIC remained the
same. We built models of the granule cell inhibition for each
age group based on the data. Then, we integrated them into a
large-scale network model of the cerebellar granular layer [5].
Our analysis of the simulated data showed that the global
network activity, shaped by the excitatory granule cell-
inhibitory interneuron loop, significantly depends on how
much the activity-dependent component contributes to tonic
inhibition. Therefore, the different compositions of tonic
inhibition at different developmental stages can result in the
distinct encoding of external inputs by the cerebellar granule
cells in the network despite similar level of overall tonic
inhibition in individual cells. We also created different mod-
els based on data from animals with the genetic knockout of
the glial Bestrophine 1 channel, which is mainly responsi-
ble for the activity-independent tonic inhibition [2,3]. With
network simulations with those models, we investigated
the dependence of the network activity on various param-
eters such as the synaptic conductance, conductance of the
activity-independent tonic inhibition, etc. Our study can help
us understand how development changes in tonic inhibition
impact the cerebellar neural network in relation to age-
dependent changes in motor behavior across adolescence.
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The oligodendrocytes, a type of glial cell insulating axons in
the central nervous system, are the targets of immune attacks
in demyelinating diseases such as multiple sclerosis. Oligo-
dendrocytes create myelin, a lipid-rich substance surrounding
axons that influences the conduction velocity of electrical
impulses by enabling saltatory conduction. Delays, deter-
mined by conduction velocities, should coincide to achieve
simultaneous signalling in the neuron network (synchrony).
It is yet unclear the mechanism making oligodendrocytes rec-
ognize the quantity of myelin needed to secure synchrony. In
this project, we study the influence of the geometry of myeli-
nated axons (variable lengths of nodes of Ranvier and myelin
sheaths) in conduction delays between neurons.
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For many years, the idea of a ‘blanket of inhibition’ that
modulates excitatory currents on average had been nearly
universally accepted. However, recent experimental and
theoretical findings have demonstrated evidence and ben-
efits of excitatory/inhibitory co-tuning [1]. This, in turn,
opens questions about how such co-tuning can potentially
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emerge. The experimental observation of STDP in inhibi-
tory synapses [2] along with relevant theoretical studies [3]
suggest that synaptic plasticity mechanisms can generate E/I
co-tuning. Still, studies of the ability of inhibitory plastic-
ity to generate detailed E/I co-tuning have been focused on
feedforward networks with distinct input currents which are
virtually free of noise and cross-correlations that may dis-
rupt the tuning process. However, cortical networks rarely
exhibit such architectures and are typically characterized by
high levels of noise and recurrent connectivity. Our study
examines the ability of a standard inhibitory plasticity rule
[3], which has been shown to produce E/I co-tuning in feed-
forward networks, to tune inhibitory connections that match
static tuned excitatory connectivity under realistic levels of
noise and recurrent connections in the presynaptic neurons.
We find that noise and unstructured recurrent connectivity
can significantly reduce the ability of inhibitory synaptic
plasticity to produce E/I co-tuning (Fig. 1). We trace this phe-
nomenon to the covariance structure of inputs which affects
the loss function of the inhibitory learning rule. We make
a theoretical investigation of a reduced rate neuron model,
and then compare predictions from it with the behaviour of
a large complex network of LIF neurons. We subsequently
investigate which types of pre-synaptic connectivity can
restore the desired input statistics for E/I tuning to emerge.

Fig.1 A Network schema with
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We find that clustering of the pre-synaptic connections
(increased connectivity within each input group) can create
the appropriate input statistics for E/I tuning to emerge even
in the presence of strong pre-synaptic noise.

Our findings suggest that despite the negative effects that
noise and recurrent connectivity can have on the ability of
inhibitory plasticity to tune inhibitory connections, these
effects can be effectively mitigated by the topology of the
presynaptic network. Thus, we suggest that a combined
effect of connectivity and plasticity allows E/I co-tuning
to emerge in networks with biologically plausible levels of
noise and realistic connectivity structures.
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The hippocampal formation is thought to learn spatial maps
of environments, and in many models this learning process
consists of forming a sensory association for each location
in the environment. This is inefficient, akin to learning a
large lookup table for each environment. Spatial maps can
be learned much more efficiently if the maps instead con-
sist of arrangements of sparse environment parts. In this
work, we approach spatial mapping as a problem of learn-
ing graphs of environment parts. Each node in the learned
graph, represented by hippocampal engram cells, is associ-
ated with feature information in lateral entorhinal cortex
(LEC) and location information in medial entorhinal cortex
(MEC). Each edge in the graph (Fig. 1) represents the rela-
tionship between two parts, and it is associated with coarse
displacement information. Thus, the model uses a hybrid
approach to storing spatial information, learning ambiguous
grid cell locations of environment parts and also learning
coarse displacements between those parts. The two com-
plement each other, as the grid cells provide fine-grained
resolution that augments the coarse displacements while the
coarse displacements disambiguate the grid cells so that a

Fig. 1 Each graph node is

a distributed engram cell
representation which repre-
sents an environment part. It
is associated with information
about that part, shown as solid
lines. Nodes are associated

Conceptual view of a learned graph
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single module is sufficient for unambiguously representing
locations. Using this graph approach, environments can be
learned with just a few associations, and the graph can be
formed nearly instantly by attending to each of the environ-
ment parts. This arrangement-of-parts model offers inter-
esting perspectives on multiple hippocampal phenomena.
First, it suggests that each entorhinal module is running
an independent mapping system, rather than requiring the
modules to work together to represent unambiguous loca-
tions. Second, it suggests a reason why grid cells seem
to track viewed locations, as that information is exactly
what should be associated with nodes in the graph. Third,
it offers an explanation for grid cell distortions, suggest-
ing that they occur because the animal fits idealized parts
onto actual environment features, and based on this insight
we use empirical grid cell data to reconstruct the idealized
maps that could lead to such distortions. Fourth, this view
explains why hippocampal engram cells are often classified
as place cells, suggesting that they actually represent a node
in a graph which the animal can attend to from many loca-
tions. Fifth, the core idea of associating arbitrary informa-
tion with nodes and edges is not inherently spatial, so this
graph-based view of processing in the hippocampal forma-
tion can expand to incorporate non-spatial tasks. Our model
shows that hippocampal modules may dynamically create
graphs representing spatial arrangements, and it opens up
new ways of understanding how animals make rapid spatial
and non-spatial inferences.
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We consider a biological network of the hippocampal den-
tate gyrus (DG). The DG is a pre-processor for pattern sepa-
ration which facilitates pattern storage and retrieval in the
CA3 area of the hippocampus. The main encoding cells in
the DG are the granule cells (GCs) which receive the input
from the entorhinal cortex (EC) and send their output to the
CA3. We note that the activation degree of GCs is so low
(~5%). This sparsity has been thought to enhance the pattern
separation. We investigate the dynamical origin for winner-
take-all (WTA) competition which leads to sparse activa-
tion of the GCs. The whole GCs are grouped into lamellar
clusters. In each GC cluster, there is one inhibitory (I) basket
cell (BC) along with excitatory (E) GCs.

There are three kinds of external inputs into the GCs; the
direct excitatory EC input, the indirect inhibitory EC input,
mediated by the hilar perforant path-associated (HIPP) cells,
and the excitatory input from the hilar mossy cells (MCs). The
firing activities of the GCs are determined via competition
between the external E and I inputs. The time-averaged ratio
of the external E to I conductances, RE-I(con)(#), may repre-
sents well the degree of such external E-I input competition.
It is thus found that GCs become active when their RE-I(con)
(1) is larger than a threshold Rth*, and then the mean firing
rates of the active GCs are strongly correlated with RE-I(con)
(®). In each GC cluster, the feedback inhibition of the BC may
select the winner GCs. GCs with larger RE-I(con)(?) than the
threshold Rth*survive, and they become winners; all the other
GCs with smaller RE-I(con)(#) become silent. In this way,
WTA competition occurs via competition between the firing
activity of the GCs and the feedback inhibition from the BC
in each GC cluster. In this case, the hilar MCs are found to
play a role of enhancing the WTA competition.
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Neurostimulation is a process of treating neurological dis-
eases by inducing electrical activity at specific brain regions
in order to recover lost functionality. In the context of Brain-
Computer Interfaces (BCI), few studies have used external
stimulation to by-pass the signal transmission from one
region to another, induce the formation of new synapses
between neurons or bridge two region via an implanted
chip. To note few examples, the damage of nerves connect-
ing the motor cortex to muscle damaged, is accommodated
by functional electrical stimulation (FES) devices which
detect motor activity to initiate external electrical pulse to
muscle cells [1]. In another study, implanted chips were used
to establish artificial connection between two neuronal areas
by detecting activity in one region and triggering another
[2]. Recently, developments have shown that possibility
of replacing a lost circuity with silicon neural network, an
embedded VLSI circuitry. These devices bridge the informa-
tion flow between regions.

The existing studies often deliver activity (of another region)
dependent stimulus to another region and such stimulation
process either deliver stimulus at fixed frequency or the chip
is designed to mimic the spiking patterns of lesioned region.
However, delivery of fixed stimulus pattern is not an optimal
approach and the chip designed to mimic certain regional
patterns required pre-lesioned data, which is not practical
for all applications. Therefore, this preliminary study pro-
poses to use Reinforcement Learning (RL)to overcome these
limitations and find optimal stimulation patterns at single
neuron level. A Leaky-Integrate-Fire (LIF) spiking neuron
model was considered as the environment and Double Deep-
Q-Learning (acting as stimulator) was applied to find the
action sequence (i.e., stimulus patterns) such that a desired
spiking pattern is produced by the neurons (Fig. 1). For each
of the spike pattern produced, Deep Q Network identifies the
optimal input spike stimulation need to be delivered. The
future direction of this study includes to expand the current
approach to network level.
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Fig.1 A Overview of system architecture where DQN acts as exter-
nal stimulator to the LIF neuron. Neuron properties such as current,
voltage, spikes and past information on action and reward constitute
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Decision making is a fundamental function of animals
in their daily tasks. Evidence accumulation is a regarded
paradigm to study the neurological bases for the decision-
making process. Evidence accumulation involves integrat-
ing evidence from past stimuli towards or against a choice
until a decision is made. Towards this task, studies have
performed visual stimulus-based experiments on rat model
using a T-maze experiment [1]. Here, a series of visual cues,
say Left and Right cue of different proportions, are presented
to the rat for a few milliseconds. After the set of stimuli, the
rat takes a Left/Right turn at the T junction and receives a
reward (e.g. water). The objective for the rat is to keep track
of the Left vs Right stimulus and taking a corresponding
turn (decision), i.e., Left or Right. This experiment is also
often used to study working memory as the decision-making
outcome is made at a timescale larger than the individual
neuronal timescale. Studies have shown that the decision
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the state for RL and action are either spike or no-spike. B Output cur-
rent of LIF neurons produced by LIF due to optimal stimulation from
DQN and its comparison to desired pattern

outcome is affected as the difference in the number of left
vs right cues (D-LR) becomes smaller.

Despite these studies, understanding the processes of working
memory in decision making is still largely unknown. There-
fore, a biologically inspired computational model mimicking
the behavior could potentially help unveil these processes. To
this end, a rate based recurrent neural network (RNN) model
was trained using Reinforcement Learning (RL) to solve the
T-Maze task. Like the existing experiments, the Left vs Right
cue was presented as step input current to the input layer
which gets processed in RNN and the final readout layer
outputs the model decision. The RNN was trained for D-LR
of 0.8, i.e., either Left or Right cue comprises 80% of the
stimulus stream in each trial. The trained model was tested
for a different fraction of D-LR and the model’s behavior
resembled the actual rat experiments, where decision accu-
racy increases with an increase in D-LR in a sigmoid fashion
(Fig. 1) as in [2]. In addition, an animal model could perform
the task continuously on longer-time scales. Here, the neural
activity resets automatically between two consecutive T-maze
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tasks, where the cue of the first task does not affect the cues
of the following tasks. Such reset behavior is often ignored
in modelling studies. The model we used in the work was
also able to reset RNN activity after each task and make new
independent decisions. We trained an agent on two consecu-
tive T-maze tasks (Fig. 1) and tested the performance on 100
consecutive T-maze tasks. The agent was able to make cor-
rect decision for all the 100 tasks.

At the start of a T-maze task, a random cue is chosen as a
dominant cue. Each cue is given at random time points for
850 ms. After a delay of 250 ms, the mean output activity
of 100 ms is computed. The output node with a higher mean
will be the action decided by the agent. When the agent
chooses a correct action, it is rewarded with 3 and —1 other-
wise. The agent is trained for 300 episodes, with a D-LR of
0.8. After which the agent is tested on 2 sequences T-maze
task for different D-LR's (0.55-1) for 20 episodes. Figure 1C
shows the mean across these 20 episodes. To understand the
reproducibility, we trained the agent with 3 different seeds.
Figure 1D shows the mean of rewards (solid line) and stand-
ard deviation (shaded region).

0.8 was tested with different D-LR's (percentage of cues 55 to 100)
resulted in a sigmoid fashioned decision accuracy/reward (moving
average). D Moving average of rewards during training
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Sensory processing involves a series of stages progressing
from the sensory periphery, where neural assemblies may
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principal cells receive local, lateral inputs, share inputs with
other layers within a column and between columns, and are
inundated with top-down input from other cortical areas and
bottom-up sensory input. In each of these stages, neurons
encode the sensory information while experiencing stochas-
ticity from many sources, including channel noise, back-
ground synaptic input, and through their own heterogenei-
ties. This stochasticity of course influences how efficaciously
the neural populations within a processing stage encode a
sensory stimulus. The neural assemblies in stages near the
sensory periphery with little recurrence can be represented
by feedforward networks, which have been shown to improve
their encoding of even strong signals under stochastic con-
ditions (additive white noise or heterogeneity) through a
phenomenon known as suprathreshold stochastic resonance
[1]. We demonstrate through simulations of the recurrent
spiking network illustrated in Fig. 1A that the same reso-
nance effect can be displayed by recurrent networks, which
has implications for later cortical processing stages [2]. In
this case, however, suprathreshold stochastic resonance is
found with increased levels of network noise, controlled via
the synaptic strength, instead of additive white noise. The
results are robust across a large parameter space, in which
single-neuron, network, and signal parameters are varied, a
selection of which are shown in Fig. 1B-D. Finally, control
experiments are run with a feedforward network (Fig. 1E) in
order to confirm that the noise from the network is responsi-
ble for the improved encoding.
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Brain function depends on segregation and integration of
information processing in brain networks often separated
by long-range anatomical connections. Neuronal oscilla-
tions orchestrate such distributed processing through tran-
sient amplitude and phase coupling; however, little is known
about local network properties facilitating these functional
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connections. Here, we test whether criticality—a dynamical
state characterized by scale-free oscillations—optimizes the
capacity of neuronal networks to couple through amplitude
or phase, and transfer information. We coupled in silico net-
works with varying excitatory and inhibitory connectivity,
and found that phase coupling emerges at criticality, and
that amplitude coupling, as well as information transfer, are
maximal when networks are critical. Our data support the
idea that criticality is important for local and global informa-
tion processing and may help explain why brain disorders
characterized by local alterations in criticality also exhibit
impaired long-range synchrony, even prior to degeneration
of physical connections.
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The brains of organisms are capable of performing a daz-
zling array of computations. The ability to perform these
computations is undergirded by a highly-developed compu-
tational capacity. This capacity is often studied within the
framework of information dynamics, where it is decomposed
into the fundamental atomic information processing opera-
tions of storage, transfer and modification. The structure
and distribution of these operations has been well studied in
mature brains, in particular using the Transfer Entropy (TE)
to measure information flow. At the neural level, TE has pre-
viously been used to study information flows in recordings
of spikes in slice cultures, but these studies analysed fully
developed neural networks. As such, we lack an understand-
ing of how such neural information flows arise during the
development of neural systems. Here, we present progress
towards filling this gap by studying the emergence of infor-
mation flows (as measured by TE) in neural development
using an open dataset [1] of recordings from developing
cultures of dissociated cortical neurons. By estimating the
TE between nodes (electrodes) on different recording days
over a period of about a month, we are able to analyse how
information flows change over neural development.

Crucially, we make use of a newly-developed continuous-
time estimator of TE on spike trains [2], which is able to

capture relationships that occur over relatively large time
intervals without any loss in temporal precision. This con-
trasts with previous studies of TE making use of the tradi-
tional discrete-time estimator on spiking data, which suffers
from numerous weaknesses including an inability to meas-
ure relationships occurring over fine and large timescales
simultaneously [2].

We find that the amount of information flowing across the
cultures increases dramatically throughout development.
This is reflected in substantial increases in the average esti-
mated TE between nodes as well as the number of source-
target pairs for which there is a statistically significant TE
value. We further find that the structure of these flows is
locked in early in development: there is a large correlation
in the information flowing between a given source-target pair
between early and late days of development. We also find
that, during the critical periods of population bursting, the
nodes consistently take on specialised computational roles
as either transmitters, mediators or receivers of information.
Moreover, this specialisation corresponds with their position
in the burst propagation: those that burst early are transmit-
ters, late bursters are receivers and middle burster are media-
tors. This provides confirmatory evidence for the conjecture
that middle bursters occupy the critical computational role
of “brokers of neuronal communication” [3].
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Inter-areal brain communication relies on the ability of
coupled brain areas to flexibly exchange information. It
has been argued that fast neural rhythms known as Gamma
oscillations could support inter-areal brain communica-
tion provided that there exists sufficient coherence between
connected brain areas. This is known as Communication
Through Coherence (CTC) [1,2]. However, the synaptic
mechanisms behind inter-areal brain communication is still
unknown. For example, pieces of information coming into
and out of a brain area must occur in different intervals of
time. A simple mechanism could be that a brain area is pas-
sive when it receives information from another area and
active when it sends to other brain areas [3]. This requires
dynamic coupling between brain areas. However, the “con-
nectome” inferred from imaging techniques is fixed. The
fundamental question is to investigate the mechanisms that
allow the flexible information sharing required for the brain
to perform cognitive tasks like perception, attention, and
working memory. We consider two coupled brain areas in
the gamma band. Each brain area can be described by the
stochastic Wilson-Cowan model of neural rhythms. Our
goal is to identify the critical parameters and the dynami-
cal regimes that allow flexible information sharing between
the two networks. We successively consider the cases where
the system of coupled networks lies in the quasi-cycle
(noise-induced rhythm) and noisy limit cycles (noise-per-
turbed rhythm) regimes, since both of these regimes have
been identified as potential candidates for certain rhythms.
We also investigate the cases where the conduction delay
between the networks is considered or not. We use numeri-
cal simulations of the delayed mutual information between
the phase signals of each Local field's potentials, as well as
a recently developed theory [4] of amplitude-phase coupling
for quasi-cycles.We define flexibility in information shar-
ing by the number of peaks (local maxima) and the sign
of their locations in delayed mutual information curves.Our
preliminary results show that the ability of the system to
flexibly share information depends critically on the dynami-
cal regime of interest and the presence of conduction delay
between the connected networks. This suggests that gamma
oscillations could be efficiently used by the brain as sup-
port for communication between areas in spite of the noise-
induced or noise-perturbed nature of the rhythm’s origin. In
all cases investigated, including with asymmetry and het-
erogeneity, we find a continual stochastic exchange of phase
leadership between the areas.
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Neuronal noise as resulting from spontaneous baseline fir-
ing is believed to play an important role in cognitive pro-
cesses, with theories postulating a contribution to gradual
memory trace decay (forgetting). However, the exact cortical
mechanisms underlying this process remain unclear. Spe-
cifically, transcranial direct current stimulation (tDCS) has
been shown to promote memory consolidation; furthermore,
a moderate degree of neural noise has also been suggested
to positively affect memory consolidation, whereas high
degrees of noise are suspected to negatively interfere with it.
To shed light on the exact cortical mechanisms underlying
the differential contributions of low and high neural noise
to memory consolidation (and decay) in the neocortex, we
used a deep, spiking, neurobiologically constrained compu-
tational model of primary, secondary and associative areas
in frontal and temporal lobes of the human brain. The net-
work's "primary cortices" were repeatedly confronted with
model-correlate of perception and action patterns, while
strengths of all synaptic links were allowed to change by
means of neurobiologically realistic learning mechanisms.
This lead to the emergence of stimulus-specific cell assem-
bly (CA) memory circuits in it, binding together perception
and action inputs. To simulate the effects of noise on such
memory traces, after the training two identical copies of
the model were subjected to a period of constant high (or
low) intensity noise, respectively, while synapses remained
plastic.

Intriguingly, we observed that high noise levels induced
rapid decay of previously formed CA memory traces in the
network, whereas low noise levels lead to further CA-cir-
cuit consolidation. Preliminary analyses suggested that this
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behaviour was a result of the periodic re-activation of the
model's memory circuits, which was observed in the low-
noise condition but not in the high-noise one. We conjec-
tured that, while a relatively small amount of noise allowed
ignition (and hence consolidation) of the existing memory
circuits to occur, too much prevented it (due to the net-
work's inhibitory response to exceedingly high noise levels).
These observations were confirmed by statistical analyses of
changes in high-frequency oscillatory activity of the network
during CA circuit stimulation.

The present results provide a neuromechanistic account able
to bridge the gap between theories of forgetting and cur-
rent experimental data on memory consolidation and brain
stimulation effects.
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In this project, we set up a novel ring model based on den-
dritic bistable/hysteretic response function and show how
it can be used to memorize both amplitude and width of
the Gaussian input signal without any fine tuning of param-
eters. Ring model is commonly assumed as a way the brain
encodes continuous periodic information like location, color
and orientation. Classically, ring model can only maintain a

5
&
A
0 [ 1 10
—_ 15
O —
2 A =
o= 2
IS — »
j S—_— %5
o -
c"
= —
Tas
5
0 T T Y T T T
a 50 100 150 200 20 200 350

Neural label

fixed delayed bump and all information about the amplitude
and width of input signal is lost. It is unclear how amplitudes
and widths can be encoded, which is significant because
they have a potential correspondence to the intensity and
certainty of the memorized item. With additional structures,
later ring model developments have realized more flexible
parametrized systems of working memory, but they usually
require fine tuning of parameters.

Here, we propose a novel ring model that incorporates
bistable dendrites. For each dendrite, instead of a linear
or sigmoid response function, the dendritic output to the
soma behaves in a hysteretic way based on the presynaptic
input. Such an input/output function can be realized by, for
example, widely distributed NMDAr. The basic structure
follows the classical ring model. However, each of inputs
from other neurons to the target neuron is received through
one separated dendrite of that target neuron. Such bistable
dendrites work, relatively independently, as basic units in
this system that each has a different selectivity. While intra
layer input goes presumably through NMDA receptors in
dendrites, external signal would go directly into the somas
through AMPA receptors with a constant conductance. In
the continuous limit, this ring model obeys an integral equa-
tion that shows how input amplitudes determine the bump
amplitudes during the delay. Because such an equation is
not solvable analytically beyond a single iteration, we have
simulated it based on firing rate.

Simulations show that the delayed activity successfully
encodes the intensity level of the input signal. Gaussian con-
nectivity is analyzed at first. To achieve better performance,
power law connectivity is also explored. As in (Fig. 1, left), a
simulation ran on 360 neurons with different inputs centered
in the middle. Each color means an independent run with a
certain amplitude. Activities during the delay period show
how different amplitudes are maintained. In addition, this
dendritic instability ring model can also encode input width,
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Fig. 1 Activities during the delay period when input amplitudes (left) and Gaussian variance (right, zoomed in to neurons 150-210) equal to the

values represented by corresponding colors
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which may represent the certainty of the bump(Fig. 1, right).
Notably, to achieve amplitude and width encoding, the model
only requires bistable dendrites but not inhibition tuning or
additional neural types. We further perturbed each parameter
of the model and the system shows robustness under a wide
range of variations so that no fine tuning is required.

The pre-stable dynamics of this ring model can also serve
as a bump integrator for evidence accumulation among a
continuous range of locations. Experimentally, the independ-
ency of dendritic units of single neuron has been observed
and some models of NMDAr dynamics support a hyster-
etic response function. While NMDAr is widely known to
affect working memory performance, a more direct relation
between dendritic hysteretic function and working memory
remains to be verified.
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Olfaction is a critical driver of many cognitive and behavio-
ral tasks that can motivate risk-reward survival habits. It is
particularly unique with two naturally occurring modes of
stimulation: orthonasal from inhaling and retronasal from
exhaling during feeding. Prior imaging studies have shown
the brain responds differently to ortho versus retro stimula-
tion. However, no work has detailed how the olfactory bulb
(OB), where odor information is processed before relayed
to cortex, responds at a cellular level to ortho versus retro
stimulation. Specifically, mitral cell (MC) (and tufted cell)
spiking responses have critical implications for odor pro-
cessing, but any such differences are largely unknown.

For the first time, we perform in vivo recordings in rats using
multi-electrode arrays to measure MC spiking response to
the two modes of olfaction. We find significant differences
in evoked firing rates and spiking covariances (i.e., noise
correlations) between ortho and retro stimulus. Retro stimu-
lation elicits larger firing yet lower correlations than ortho
(Fig. 1A). Our data further highlight the different sensory
response to the two modes of olfaction but remain limited in
explaining underlying details prompting these differences.
For this reason, we constructed a biophysical OB network
model that balances biophysical attributes with computa-
tional efficiency.

Previous work suggests that olfactory receptor neu-
ron (ORN) activity, presynaptic to the OB, may lead to
observed differences in OB activity. Thus, we construct
an OB model to account for ORN input differences with
synapses driven by a correlated, inhomogeneous Poisson
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Fig. 1 A Larger evoked firing rate for retro (red) than ortho (blue),
but smaller spike covariance in data. B OB model with correlated
ORN synaptic input. C Various input rates and correlations (not
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consistently larger for slower/retro-like temporal profile



Journal of Computational Neuroscience (2021) 49 (Suppl 1):53-5204

S117

process (Fig. 1B). The ORN input is defined by three critical
attributes: input rate temporal profiles, amplitudes, and input
correlations (Fig. 1C). ORN response to retro stimulation is
thought to be temporally slower and spatially smaller rela-
tive to ortho stimulation response, but the implications of
this on OB remain unexplored. With these constraints, we
find our model captures trends observed in our data.

We further analyze how our OB model maps a particular
statistic (mean, variance, or covariance) in a simple and
transparent manner by fitting a linear-nonlinear (LN) model
to our OB model spike statistics. We show that the OB fil-
ters inputs (in time) differently for retro than ortho, with
retro having overall larger filter values. However, the key
attribute(s) of ORN inputs that can result in different ortho
and retro statistics consistent with our data are not obvious.
Therefore, we additionally evaluate multiple combinations
of the three critical attributes of ORN input and find the tem-
poral profile plays a critical role in shaping the magnitudes
of the linear filters and in matching our data (Fig. 1D-E).
Specifically, the slower input rate (rise and decay) is a key
signature of retro stimulation to capture the trends in our
data with retro stimulation, while faster rise and decay is
similarly a key signature of ortho stimulus.

These findings provide a basis for understanding how differ-
ences in OB spiking statistics arise with these two natural
modes of olfaction while providing a model framework of
how to analyze attributes responsible for different OB spik-
ing driven by differences in ORN inputs.
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Neurons in the right atrial ganglionic plexus (RAGP), a

dorsally located structure in the right atrium, mediate con-
trol of the sinoatrial node (SAN) via the vagus nerve, with

implications for understanding cardiac pathologies and neu-
romodulatory control of the heart via vagal stimulation and
pharmacotherapeutics.

We identified 405 single neuronal cells of pig RAGP using a
transcriptomic map derived from HT-qPCR (High Through-
put quantitative Polymerase Chain Reaction) and RNA-
sequencing. To create neuronal simulations, we mined the
transcriptomic data to identify ion-channel coding genes and
surveyed available kinetic models for ion channel protein
subtypes coded by those genes. Our single-compartment
electrophysiological models, developed on NEURON and
NetPyNE, utilized Hodgkin-Huxley-based ion channel mod-
els: sodium channels (Nav 1.1, Scnla); potassium channels
— Kv 1.1 (Kcnabl) and Kv 3.1 (Kcncl); HCN channels
(Hcnl, Hen2, Hen3, Hen4); and calcium channels — Cav
2.1 (Cacnala), Cav 2.2 (Cacnalb), Cav 1.2 (Cacnalc), Cav
1.3 (Cacnald), Cav 3.1 (Cacnalg) and Cav 3.3 (Cacnali).
Out of the 405 neuronal cells, we found 115 patterns defined
by distinct ion channel combinations. Three of our models
demonstrated phasic and tonic firing patterns, consistent
with existing experimental data. We will next determine how
many of the distinct binary transcriptomic classes define
populations with distinct neuroexcitability phenotypes.

As experimental RAGP data demonstrate the presence of
both cholinergic and catecholaminergic milieus, future
directions include tuning our models to reflect behaviors
based on differential inputs. This is relevant ultimately to
understanding control of the SAN via vagal neuromodula-
tion with myriad potential applications to treatment of car-
diac pathologies.
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Mossy cells (MCs) are glutamaergic interneurons in the
hilus. They receive synaptic inputs mainly from Gran-
ule cells (GCs), CA3 pyramidal cells and hilar inhibitory
interneurons, and project their outputs back to GCs, and
hilar interneurons. They have an intermediate firing rate
as compared to GCs and inhibitory interneurons, and fire
action potentials as a response to the animal passing through
specific spatial positions. These positions that elicit firing
are called place fields, making MCs place cells of multiple
place fields. MCs participate in many processes involving
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the storage and retrieval of memories, spatial navigation,
fear conditioning, and separation of patterns [1]. However,
its membrane potential dynamics is often overlooked in
theoretical and computational models of memory.

Here, we introduce a minimal bottom-up exponential inte-
grate-and-fire (EIF) model to account for many of the MCs
experimental features. Integrate-and-fire neurons offer a rea-
sonable framework to model complex slow processes at the
expense of replacing the fast action potential dynamics by a
threshold parameter [2]. This makes them somewhat analyti-
cally tractable [2,3] and relatively efficient for large-scale
computer simulations [4]. We built a data-driven model
with feedback from current and voltage clamp experiments,
constraining many of the EIF parameters and membrane
currents.

From simple step current experiments, we identified mem-
brane currents that are essential to correctly reproduce
the experimentally observed current-dependent threshold
increase, spike-dependent threshold, long-term threshold
decay, and threshold-dependent reset potential. We also
modeled the noisy synaptic input that constantly drives
the MC behavior. An important feature of the EIF is that it
describes a simplified rise of the Na inactivation [3], allow-
ing our model to capture the threshold increase in the MC
spike initiation — a feature that could not be fitted by linear
leaky IF. On the other hand, we simplified gating variables
to constants that were fitted to the experiments, keeping the
model as simple as possible.

We present some preliminary results about the cell model
computational properties by tracing f-I curves. We also test
the filtering properties of the model, and whether MCs could
act as a positive feedback to the GC layer, due to its ana-
tomical position. These features are tested with and without
synaptic noise. This work shines some light on the role of
the strong MCs’ threshold adaptation and noise for memory
tasks and spatial localization. This model also serves as a
building block for future large-scale, and hopefully more
realistic, models of the Dentate Gyrus and hippocampal
networks.
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Small conductance calcium activated potassium (SK) chan-
nels are purely activated by intracellular calcium concentration
and play an important role in mediating the firing frequency
of spontaneously active detrusor smooth muscle (DSM) cells.
These channels have been found to be associated with bladder
instability and their suppression have shown to induce detrusor
overactivity [1]. Thus, they need to be investigated as potential
therapeutic targets for the treatment of bladder pathophysiolo-
gies. Here, we propose the application of an SK channel activa-
tor in order to alleviate overactivity in a DSM cell.

The SK channel family includes four isoforms, of which
SK3 is predominantly expressed in human DSM. Since the
SK channel density is very low, we propose that SK chan-
nel activators will be more effective than their blockers. A
potent SK3 activator, CyPPA (cyclohexyl-[2-(3,5-dimethyl-
pyrazol-1-yl)-6-methyl-pyrimidin-4-ylJ-amine) has been
reported [2] to alter the cooperativity by left-shifting the
channel’s activation curve (Fig. 1A).

We had previously developed a biophysically constrained
Hodgkin-Huxley-based SK channel model and integrated it
with a composite cellular model comprising DSM-specific
calcium dynamics and ion channel models [3]. We simu-
lated the effect of increasing concentrations of CyPPA on a
single-cell DSM action potential. It was observed that CyPPA
hyperpolarised the resting membrane potential (rmp) and
prolonged the after-hyperpolarisation (AHP) phase without
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affecting the peak or width of the action potential (Fig. 1B).
A hyperpolarised rmp reduces the excitability of the cell
and a prolonged AHP phase reduces its firing frequency.
These findings, thereby, support the potential applicability
of CyPPA to ameliorate overactivity in a cell.

We were unable to simulate the effect of CyPPA on a spon-
taneously active DSM cell, sinceour DSM-specific cellular
model failed to generate spontaneous action potential activ-
ity. Our integrated model needs to be improved in order to

Fig.1 A Effect of CyPPA on
the activation curve of the SK
channel. B Effect of CyPPA on

generate biophysically realistic spontaneous firing required
to explore the effect of CyPPA on a DSM cell’s excitability.
Most drugs prescribed for the treatment of bladder dysfunc-
tion induce unwanted side-effects since they alter excitabil-
ity of vascular smooth muscles. However, pharmacological
activation of SK3 channels is of particular importance since
these are not expressed in vascular smooth muscles [1], and
thus will not produce unanticipated side-effects when SK3-
specific drugs are administered to a pathological bladder. To

a DSM cell action potential
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this end, our preliminary findings show promise and can be
taken forward for further study.
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Purkinje cells within the cerebellum are known to sup-
press their tonic firing rates for a well defined time period
in response to the conditional stimulus after classical
eye-blink conditioning training. The classical eye-blink
conditioning training protocol consists of stimulation of
the Purkinje cells by two stimuli: conditional and uncon-
ditional stimulus separated by a finite time interval called
interstimulus interval (ISI). This ISI duration decides the
temporal profile i.e., the onset and the duration of the drop
in tonic firing rate of Purkinje cells. Direct stimulation
of parallel fibers and climbing fiber by electrodes which
provide conditional and unconditional stimuli to Purkinje
cells respectively was found to be sufficient to reproduce
the same characteristic drop in the firing rate. In addition,
the specific metabotropic glutamate-based receptor type 7
(mGluR7) was found responsible for the initiation of the
response, suggesting that there exist an intrinsic mecha-
nism within the Purkinje cell for the temporal learning. In
an attempt to look for a underlying mechanism for time-
encoding memory formation within individual Purkinje
cells, we propose a biochemical mechanism based on
recent experimental findings. The proposed mechanism
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attempts to answer key aspects of the “Coding problem”
of Neuroscience by focusing on the Purkinje cell’s ability
to encode time intervals through training. According to the
proposed mechanism, the time memory is encoded within
the dynamics of a set of proteins—mGluR7, G-protein,
G-protein coupled Inward Rectifier Potassium ion channel,
Protein Kinase A, Protein Phosphatase 1 and other associ-
ated biomolecules -which self-organize themselves into a
protein complex. The intrinsic dynamics of these protein
complexes can differ and thus can encode different time
durations. We propose that the amount of mGluR7 receptor
proteins and the collective dynamics of protein complexes
within individual synapses allow Purkinje cell to suppress
its own tonic firing rate for a specific time interval. The
time memory is encoded within the effective dynamics of
the biochemical reactions between involved biomolecules
and altering these dynamics means storing a different time
memory. The proposed mechanism is verified by both a
minimal and a more comprehensive mathematical model
of the conditional response behavior of the Purkinje cell.
Furthermore the dynamical simulations of the involved
biomolecules, provide us testable experimental predictions
to verify the proposed mechanism.
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Detailed single neuron modeling is widely used to study
neuronal functions. While cellular and functional diversity
across the mammalian cortex is vast, most of the available
computational tools are dedicated to the reproduction of a
small set of specific features characteristic to a single neu-
ron. Here, we present a generalized automated workflow
for the creation of robust electrical models and illustrate its
performance with models present in the rat somatosensory
cortex (SSCx). Each model is based on a 3D morphological
reconstruction and a number of ionic mechanisms specific to
the cell type of interest. We use an evolutionary algorithm to
optimize the densities of ion channels and other parameters
to match the electrophysiological features extracted from
a number of recordings of each type. To better understand
which parameters were well constrained by the optimization
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and which ones might be degenerate, we performed a param-
eter sensitivity analysis. We also validate the optimized
models against the experimental data of additional stimuli
and test how they generalize to other morphologies of the
same neuronal type. By applying this workflow to various
electrical and morphological types of the SSCx we created
a new generation of SSCx neuronal models which reproduce
the variability of neuronal responses observed in experi-
ments. Due to its versatility, our workflow can be used to
build robust biophysical models of any neuronal type.
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Traditionally detailed computational neuron models use phar-
macologically characterized generic ion channel models for
the membrane currents. Although these generic ion channel
models represent different current types (K, Na, HCN, KCa
and Ca), they mostly capture the response of a mixture of
several genetic subtypes of an ion channel family. With this
approach one can faithfully capture the electrical properties
of different neurons, and one can trace the causal events of an
emergent phenomenon down to individual neurons as well as
to current types. However, one can not link such phenomena
to specific ion channel genes. Now that cell-type-specific gene
expression data from the Allen Institute for Brain Science [1]
and corresponding models for a set of genetically-specified
ion channels have become available [2], we were able to con-
struct a detailed electrical model of the mouse somatosensory
cortex layer-5 pyramidal neuron. We adjusted the density of
35 genetic ion channels from the Kv, Nav and HCN fam-
ily, along with generic voltage-gated calcium (Cav) channels
and calcium-activated potassium (KCa) channels so that the
electrical behavior of the modelled neuron matched somatic
membrane potential recordings. The model parameters were
constrained using BluePyOpt [3] with the experimental elec-
trophysiology features extracted with BluePyEfe [4]. With
such a large parameter space, the optimization time and
computational resources used were substantially higher than
those used by models with generic ion channel models. Opti-
mization results corroborate the established concepts of ion
channel degeneracy as multiple combinations of ion channel
conductances were able to replicate the experimental electro-
physiological features [5]. The resulting model could be used

to explore the role of ion channels in cellular physiology and
in a longer-term perspective, such models could allow simu-
lation of channelopathies at the cellular and network level.
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The cortical local field potential (LFP) is a commonly used
experimental metric and has a growing number of applica-
tions in brain-machine interfaces. Previous modeling stud-
ies of the LFP have helped to clarify its biological origins.
However, the contributions of axonal currents to the LFP
signal are poorly understood. Simulations of morphologi-
cally and electrophysiologically detailed neuron models
that include explicit axons with full propagation of action
potentials along the branches may provide further insight
into the origins of the LFP signal. Similarly, extracellular
electrical stimulation is frequently used to perturb neurons
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and neuronal circuits, both experimentally and in clinical
applications. It is believed that electrical stimulation primar-
ily affects axons, but it is unclear how this effect depends on
axonal properties. In silico experiments with realistic axon
models may therefore provide insight into the mechanisms
of electrical stimulation.

In this work, we will present an extension of the L5 pyrami-
dal model of Markram and colleagues with continuous
adapting (cAD) electrical type, that adds an axon model
comprising axon initial segment (AIS), myelinated inter-
nodes, nodes of Ranvier and unmyelinated collaterals; with
an axon-specific pool of ion channels and optimized ion
channels densities. We show that this model reproduces the
main axonal electrical features, such as the action potential
(AP) waveform and its preferential initiation at the AIS, as
well as propagation throughout the axonal arbor, and that
the modeling approach generalizes to a wide range of recon-
structed L5 pyramidal morphologies. We use our model to
compute realistic LFP generated by a single neuron and
study the electrical response of each compartment under
extracellular stimulation from point source electrodes (Intra-
cortical Microstimulation or ICMS) at various locations.
We quantified the difference between the LFP generated
by these neuron models and the LFP created by the neuron
without a detailed axon model. We evaluate differences that
arise not only due to direct axonal contributions, but also due
to the changes in the electrical behavior of the non-axonal
compartments that the addition of the axon entails. We find
that simulated ICMS is able to generate action potentials
in the axon. The location of action potential initiation, and
consequently, the action potential properties, vary within the
neuronal arbor as a function of electrode position and stimu-
lus parameters. Moreover, excitability and backpropagation
effectiveness vary between the main axon and collateral
branches. Our model may therefore help in clarifying the
mechanisms of ICMS stimulation and in optimizing stimula-
tion / recording parameters.
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Recent advancements in engineering has made it possible
to record spike-time data of dozens of individual neurons
simultaneously. This data has made it possible to answer
long-standing questions on how the brain stores information
and performs various tasks. A central tenant of neurosci-
ence has been that populations of interconnected neurons
orchestrate to perform these tasks, and that the firing pattern
of any single neuron need not correlate with the organism’s
behavior. What was hypothesized, and what we can now
observe, is that the firing patterns of these large groups of
neurons tend to have a low dimensionality that matches the
canonical variable which they are meant to represent. Some
examples of this phenomenon that have been studied in this
way are the head-direction system in mice, auditory pitch
detection, and hand movement [1-3].

When high-dimensional data is hypothesized to represent a
low-dimensional variable, the process by which this variable
is uncovered in the data is known as manifold discovery.
Manifolds are locally Euclidean regions of space that may
have distinct topologies such as circles, spheres, or tori. Here
we examine a 22-dimensional data set of spike-time data
that has a clear ring structure and circular variable when
properly embedded in 3-dimensional space. There are many
methods of dimensionality reduction, both linear and non-
linear; we provide a survey of these methods and test the
conditions under which data sets with non-trivial topology
are preserved.

Some methods that are presented are Locally Linear Embed-
ding (LLE), Modified Locally Linear Embedding (MLLE),
Principal Component Analysis (PCA), Spectral Embedding,
t-SNE, Multi-Dimensional Scaling (MDS), and Isomap [4].
In particular, it is shown that methods such as Isomap that
account for global distances in the high-dimensional data are
best equipped to preserve the ring structure. We investigate
what types of pre-processing on the data is necessary in
order to reproduce the manifold structure when mapped by
these methods as well as their resiliency in the presence of
noise. Finally, we present a novel method that uses flux to
quantify the stability of such manifolds in terms of dynami-
cal system attractors.
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Migraine is a complex neurological condition affecting more
than 10% of the general population and is characterized by
global dysfunctions in multisensory information process-
ing. Mouse models of familial hemiplegic migraine display
increased glutamatergic transmission at intracortical syn-
apses, while GABAergic transmission remains unaltered
[1]. Moreover, excitatory thalamocortical afferents are also
enhanced. This effect is stronger in fast-spiking inhibitory
neurons than in pyramidal cells [2]. These results suggest
that the dysregulation of the excitatory-inhibitory cortical
balance might be one of the central mechanisms underlying
the intricacies of migraine neurobiology.

The development of new therapeutic interventions is how-
ever limited by our poor understanding of the link between
such cellular alterations and the subsequent dysfunctional
computations at the network level. Here we investigated this
link by modeling migraine-related cellular alterations in a
recurrent network of spiking neurons developed in previous
works [3]. We investigated the effects of each of the patho-
logical synaptic changes at the macroscopic network level,
and their relationship with the dysregulation of excitatory-
inhibitory balance observed experimentally [2]. The network
reproduced the experimental spectral content of murine V1
local field potentials (LFPs) in response to visual grating
stimuli of different spatial contrasts in both healthy and
migraine conditions. In particular, the thalamic input caused
the emergence 1) of a broad [30-100] gamma band by trig-
gering local resonances and ii) of a narrow gamma band at
60 Hz through entrainment to an oscillatory drive.

Our model could shed new light on how the experimentally
observed cellular alterations at the basis of the migraine
are reflected into the macroscopic measurements of brain
activity, such as LFP and EEG. Unraveling the correlates
of a pathological cellular circuitry into such network-wide
signals (commonly recorded in clinical neurophysiological
investigations) could be of unvaluable help in using EEG or
LFPs to probe the alterations of information processing in
migraineurs patients. Finally, a model capturing the network
dynamics of migraine could be a valuable benchmark for
developing new pharmacological targets and for predicting
in silico their effects.
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Gamma rhythms are thought to underlie many different cog-
nitive processes in the brain, ranging from attention over
working memory to sensory processing and has further been
suggested as a key mechanism in neuronal communication
[1]. Recently, Meng and Riecke [2] demonstrated that, coun-
terintuitively, synchronization across networks of inhibitory
neurons increased when neurons were subject to independent
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noise. However, they focused on inhibitory networks with
gamma band activity produced by the interneuronal net-
work gamma (ING) mechanism. We therefore asked whether
uncorrelated noise can also have a beneficial effect on the syn-
chronization of interacting gamma rhythms produced by the
pyramidal-interneuronal network gamma (PING) mechanism.
We modelled two interconnected excitatory-inhibitory (EI)
networks in different network settings and analyzed how
synchronization within and across the networks changed
depending on the strength of uncorrelated noise the networks
received. The EI networks comprised 1000 excitatory adap-
tive exponential integrate and fire (aEIF) neurons [3] and
250 aEIF neurons each and were coupled using conduct-
ance-based synapses. We explored two different connectiv-
ity settings (all-to-all and sparse random coupling) and for
each setting three network configurations: 1) weak coupling
between networks and weak noise, 2) strong coupling and
weak noise and 3) weak coupling and strong noise.
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Results for the two different settings did not differ strongly,
therefore we only present the results for the sparse random cou-
pling. In the weak coupling and weak noise configuration, we
found a strong synchronization within but no coupling across
networks as coupling and noise were too weak. For configura-
tion 2 with strong coupling but weak noise, we found a strong
synchronization both within and across networks. Both net-
works showed the same dominant frequency and spike time
variability was very low, especially in the inhibitory population.
In configuration 3 with weak coupling but strong noise, we also
found a strong synchronization across the networks but with a
weaker within-network synchronization compared to configura-
tion 2. Here, we found an increased spike time variability and a
sparse participation of the inhibitory population in the network
rhythms. We further saw that the synchronization depended
on the weakening of the intra-network synchronization which
allowed the second network to control the activity of a subpopu-
lation thereby synchronizing the two networks (Fig. 1).
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In conclusion, our results suggest that synaptic noise can
have a supporting role in facilitating inter-regional commu-
nication, however, with a different signature and mechanism
than synchronization through strong coupling. Importantly,
our models build a basis to investigate mechanistic explana-
tions for altered neuronal dynamics in neurologic or psychi-
atric disorders, where deficits of inter-regional communica-
tion in the gamma band seem to play a crucial [4].
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Learning in a changing and stochastic world is a chal-
lenging problem. To face stochasticity, one should inte-
grate over past observations to infer stable estimates of
the world’s statistics. However, if those statistics change
over time, one should also update her estimates quickly
and flexibly. Ideally, the weights assigned to past ver-
sus new observations should thus be adjusted dynami-
cally according to the occurence of changes. The ability
to dynamically strike this balance between stability and
flexibility is known as adaptive learning. On the compu-
tational level, Bayesian inference indicates that confidence
about our estimates is key to adaptive learning: high con-
fidence promotes stability and inversely, low confidence
fosters flexibility. On the implementational level, specific
neuromodulators such as noradrenaline (NA, a.k.a. nor-
epinephrine) have been linked to unexpected uncertainty
[1,2], a form of uncertainty that reduces confidence about
current estimates when changes arise. However, the role
of NA in the confidence-weighted regulation of learning
remains unclear.

Here, we tested the implication of NA in the confidence-
weighting of learning by combining two learning tasks with
pupillometry (one previously published [3] and a new one)
in 36 participants (24 4 12). Subjects had to learn the hid-
den probabilities that generated auditory sequences of binary
stimuli, and report their probability estimates together with
the associated confidence. Subjects were fully informed in a
non-technical way that these probabilities changed abruptly
over time without notice and that an order-1 Markov process
and Bernoulli process generated the sequences in the two
tasks, respectively. We designed an ideal Bayesian learning
model for each task and we formalized surprise as the log
improbability of each observation and confidence about prob-
ability estimates as their (log) posterior precision.We relied
on pupillometry to indirectly probe brain levels of NA [4].

We found that reported probability estimates and confidence
levels correlated with the Bayesian solution and exhibited dif-
ferent qualitative signatures of this solution, replicating previous
studies [5]. Phasic and tonic changes in pupil size showed an
interesting dissociation. Phasic changes were accounted for by
surprise and tonic changes by confidence. Those results were
obtained in each task, demonstrating robustness to the task
statistics used. Our findings are compatible with noradrenaline
playing a role in the confidence-weighted regulation of learning.
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Neural oscillations are evident across cortex but their spatial
structure is not well explored. Are oscillations stationary or do
they form “traveling waves”, i.e., spatially organized patterns
whose peaks and troughs move sequentially across cortex? Here,
we show that oscillations in the prefrontal cortex (PFC) organ-
ized as traveling waves in the theta (4-8 Hz), alpha (8-12 Hz)
and beta (12-30 Hz) bands. Some traveling waves were planar
while many rotated around an anatomical point. The waves were
modulated during performance of a working memory task. Dur-
ing baseline conditions, waves flowed bidirectionally along a
specific axis of orientation. During task performance, there was
an increase in waves in one direction over the other, especially
in the beta band. We discuss potential functional implications.
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Fig. 1 Simulation of hip-
pocampal replay. a Raster plot
of an example simulation with
movement-related spiking and
then spontaneous activity. Sig-
nificant replay events marked in
grey. Cells sorted by their order
of firing along the completed
trajectory. b Raster plot of the
second replay event in A. ¢
Linear Bayesian decoding of

The reactivation of neural activity associated with past
experiences has been found in both human and non-human
mammals to support memory recall as well as consolida-
tion, but how the intrinsic and synaptic properties of neurons
produce this network-level activity is not well understood.
Replay has been best studied in the hippocampus of rodents
performing spatial navigation tasks. The hippocampus has
place cells, which are cells that fire when the animal is in a
particular region of the environment. During rest and pauses
in movement the hippocampus then replays on a compressed
timescale sequences of place cells that correspond to actual
trajectories through the environment. The content of a replay
event can potentially be of any possible trajectory through
the environment, and the replay can occur in either forward
or reverse order of the actual movement. There are several
existing models that show how particular plasticity fea-
tures can produce replay in biological recurrent neuronal
networks, but none replicate the change in replay content
observed over learning.

Here, we performed new data analysis on an existing hip-
pocampal replay data set [1], and we perform network
simulations to assess which plasticity rules are necessary to
replicate the experimental results. Shin et al. [1] recorded
hippocampal replay events in rats that learned to perform a
W-track spatial-alternation task in a single day. They found
that the fraction of reverse replay events at the side well that
were of the taken past path decreased with learning, while
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the fraction for forward replay events of the taken future
path increased with learning. We performed additional data
analysis on this data set and found that this change in replay
content is explained by 1) a decrease over learning of the
probability that a locally starting replay is reverse ordered
and 2) an increase over learning of the probability that a
remotely starting replay is reverse ordered.

From these results we can infer how the likelihood of a given
place cell to participate in each type of replay event changes
over learning. We adapt a previously published model of
replay [2] to simulate the spiking activity of an animal per-
forming the W-track spatial alternation task (Fig. 1a). The
model spontaneously generates replay events during pauses
in movement (Fig. 1b), which are analyzed using Bayesian
decoding as in Shin et al., 2019 (Fig. 1c). With this model
we develop and test several hypotheses to explain the experi-
mental results through a combination of intrinsic and syn-
aptic plasticity.
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Attention allows the human auditory system to preferen-
tially process specific stimuli of behavioural or situational
relevance. The neural mechanisms underlying frequency-
based attention, the attention to a specific sound frequency,
have been studied across species and spatial scales. At the
neuronal level, electrophysiology studies in animals have
shown attention-induced changes in the response properties
(i.e., the receptive field) of individual neurons [1]. The influ-
ence of frequency-based attention has also been studied in
the human brain using, for example, functional MRI (fMRI).
These studies uniformly showed increased responses to
attended sounds [2,3], but did not provide evidence for
receptive field modifications, similar to those observed in
animal electrophysiology, in the human auditory cortex.
This study combined the collection of fMRI data during a
frequency-based attention task to measure attention-induced
changes in auditory cortical responses with computational
modeling to simulate the neuronal mechanisms underly-
ing the fMRI data. Unexpectedly, fMRI showed a reduced
response to attended sounds, which was strongest in cortical
locations whose preferred frequency matched the attended
one (Fig. 1). To explore the neuronal underpinnings of these
observations, frequency-based attention was incorporated in
a Wilson Cowan Cortical Model (WCCM) of the auditory
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cortex [4] as frequency-specific sharpening of neuronal
receptive fields (at population level) and decreased response
gain. These mechanisms were implemented by modifying
parameters defining excitatory-inhibitory WCCM connec-
tions. Model responses replicated the suppressed response
to attended sounds as seen with fMRI. While the observa-
tion of decreased responses with frequency-based attention
conflicts with previous fMRI studies, both increases in fre-
quency selectivity and decreased gain have been described
in animal studies [5,6]. Our results therefore suggest that
the mechanisms underlying frequency-specific attention
may depend on the employed experimental paradigm. They
furthermore put a reduced gain and increased frequency
selectivity forward as candidate mechanisms underlying
our fMRI findings, and future modeling endeavors will be
aimed at discriminating between (or determining the relative
contribution of) these alternatives.
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Working memory (WM) is the ability to retain informa-

tion not directly perceived by sensory systems. A neural
correlate of WM retention is sustained firing rate elevation
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in cortical circuits, which is usually modelled using bista-
ble systems with the background and active steady states
[1]. The active regime could be also metastable, so the sys-
tem slowly returns to the background after a stimulus [2].
WM retention is accompanied by increased gamma-band
power and coherence between cortical sites [3]. However,
the functional role of gamma activity in WM is not fully
understood.

Here we explore stabilizing effect of gamma oscillations on
a multi-circuit single-object metastable WM model. Each
circuit (Fig. 1A) is described by firing rate equations. The
system contains two local clusters with two circuit groups
in each (Fig. 1B). Circuits within a cluster receive gamma-
band input in the same phase. The groups C1 and C2
receive a common white noise, which mimics an input from
a larger WM representation. The circuits from I1 and 12
receive independent white-noise inputs. Circuits are linked
via excitatory connections, fast within a cluster and either
fast or slow between the clusters. The results are shown in
Fig. 1C. Gamma input increased the post-stimulus activity
duration, as well as the duration difference between C and
I groups. In the model with fast (but not slow) inter-clus-
ter connections, these effects were more prominent when
gamma inputs to the clusters had the same phase. Thus,
we demonstrated that gamma input could selectively stabi-
lize WM-related activity in the circuits that participate in a
larger WM network, and such stabilization is more efficient
when long-range connections are fast and local gamma gen-
erators are synchronized.
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Epilepsy is a chronic neurological disease that affects 1
in 200 people. In 30% of those affected there is a negative
response to pharmacological treatment, where this type is
called refractory epilepsy. In this case, a surgical interven-
tion is indicated as treatment, where success consists in
finding the cortical area responsible for the generation of
seizures, called the epileptogenic zone. In this work, elec-
trical recordings of this area were studied in patients with
refractory epilepsy in order to discern the underlying oscilla-
tory mechanisms during the epileptic process. For this, neu-
ronal activity was studied for basal (far from the seizure) and
preictal (immediately before the seizure) periods through
recordings of intracerebral electrodes implanted in patients
to achieve a greater resolution of the local field potential.
Then, the intrinsic dynamics of the two types of records was
discerned by using a time windows analysis and studying the
amplitude and phase couplings for each signal. The causal-
ity of these records was also quantified through information
theory tools and the Bandt-Pompe permutation methodol-
ogy, which showed an increases in the carry of information
of brain oscillations in the range of high frequencies.
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The phenomenon of synchronization between two or more
asymmetrically coupled brain areas is a very relevant topic
for understanding the mechanisms and functions within the
cerebral cortex. Anticipatory synchronization (AS) refers to
the situation in which the receiving system, referred to as the
'slave’, synchronizes with the future dynamics of the send-
ing system, referred to as the 'master'. In contrast, delayed
synchronization (DS) represents the intuitively opposite
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case. In this work we investigate and compare the magni-
tude of connection between simulated neural networks in
AS and DS regimes making use of causal information and
calculating the Jensen-Shannon divergence through a sym-
bolic formalism of ordinal patterns. By studying multiple
temporal scales, it could be observed that Jensen-Shannon
divergence is bigger for the AS regime than the DS regime,
which means that AS has a lower magnitude of connection
than the DS regime. Furthermore, this formalism allows us
to successfully discern the dynamical characteristics that dif-
fer in these two synchronization cases.
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Neural circuits display nonlinear dynamics. For instance,
central pattern generators display internally generated

Fig.1 A The equations govern-

ing a CTLN. B If the underlying A
graph of a CTLN is a directed

acyclic graph, then all trajec-

oscillations. Multistable systems are used as models of
memory storage and retrieval. The structure of network
connectivity is a key feature determining network dynam-
ics, but many questions remain as to how structure shapes
activity. We study the relationship between structure and
dynamics in a simple model of neural activity, combinato-
rial threshold linear networks (CTLNs), whose activity is
governed by a system of threshold-linear ordinary differen-
tial equations determined by an underlying directed graph
(Fig. 1A). Like real networks, CTLNs display the full spec-
trum of nonlinear behavior, including multistability, limit
cycles, and chaos.

Much is known about fixed points of CTLNs, but much less
is known about their dynamic attractors [1-3]. On one
hand, the activity of a symmetric TLN always converges to
a stable fixed point [2]. On the other, CTLNs whose under-
lying graph has no bidirectional edges or sinks have must
have persistent dynamic activity [3]. However, many CTLNs
outside this family also exhibit dynamic attractors, and both
dynamic attractors and stable fixed points can coexist in a
network. Networks with superficially similar structure can
have wildly different dynamics.

We give some of the first results which go beyond fixed
points and relate the structure of a CTLN to its dynamics.
We focus on a structural relationship, graphical domination,
and show that if one neuron graphically dominates another
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neuron, then the firing rate of the dominating neuron eventu-
ally becomes greater than the firing rate of the dominated
neuron. This constrains trajectories of the dynamical system.
Using this fact, we show that many CTLNs do not have per-
sistent dynamic activity. We prove that if a CTLN's underly-
ing graph is a directed acyclic graph, neural activity really
must flow through the graph and must eventually end up at
a stable fixed point (Fig. 1B). This is the first example of a
proof guaranteeing convergence of the activity of a TLN to
a stable fixed point outside the symmetric case.

We also construct a family of sequential memory networks.
Each network consists of m layers of #n neurons connected
cyclically (Fig. 1C). The network has mn limit cycles,
each corresponding to a sequence of neurons. Different
initial conditions lead to different limit cycles (Fig. 1C).
Our domination result allows the network to “remember
its place” once it comes back around to a previously vis-
ited layer. These networks have a large capacity to encode
dynamic patterns via limit cycles, giving a richer set of
memory patterns than stable fixed points. Thus, these net-
works can model sequential memories, rhythms, or central
pattern generators.
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Threshold linear networks (TLNSs) are recurrent networks
whose neuron dynamics are prescribed by a system of dif-
ferential equations with threshold nonlinearities. The choice
of the ReLU function [] + as threshold makes the system
piecewise linear in the state space, providing a very simple
yet rich framework. A special case of TLNs with uniform
synaptic weights was first introduced in [1] and provides
a purely combinatorial framework in which the dynamics
of the network solely dependent on the connectivity of the
associated graph (hence called Combinatorial Threshold
Linear Networks, CTLNs), whereby changing only the con-
nections among edges, rich dynamics (multistability, chaos,
quasiperiodicity) arise. Moreover, since the CTLN model
consists of simple perceptron-like units, it does not require
the neurons to intrinsically oscillate, further simplifying the
assumptions posed on neurons.

This very simple mathematical setup makes it particularly
suitable for engineering circuits performing common neural
functions, yet still allowing a lot of flexibility in terms of
the kind of dynamics that might be observed. The CTLN
model then constitutes a powerful unifying framework for
modelling a wide range of phenomena in neuroscience, in
which the various neural computations can be obtained as
graph variations. Our aim here is to present a few interesting
cases that exemplifies how connectivity alone gives rise to a
diverse range of important neural functions (Fig. 1).

In the first example, in panel A, we present a TLN that can
count the number of pulse inputs it has received via the posi-
tion of the attractor in a linear chain of attractor states. More
precisely, when the network receives a uniform input, it will
move to the next state in the chain, indicating an increase
in the count. Activity is maintained in this state indefinitely
until future pulses are provided to the system, allowing to
track the number of pulses by the attractor position in the
chain. This network is a very simple alternative to the neural
integrators used to maintain a count in working memory of
some number of input cues.

The network in panel B only differs from A on the direction
of the bottom arrows. This small change now allows the net-
work to count signed pulses, since now it can travel back to

T1w/T2w-derived
heterogeneity map

Fig. 1 Parcels are modelled as
circuits containing an excita-

the previous attractor on the chain as well. This type of signed
count is valuable for tracking the relative number of left and
right cues as in various two-alternative forced-choice tasks.

Finally, in panel C we exhibit a CTLN capable of produc-
ing two coexisting quadrupedal gaits: bound and trot. In fact,
all quadrupedal gaits presented in [2] can be reproduced by
CTLNs and moreover, it is possible to have at least three coex-
isting gaits in a single network (not pictured here) without hav-
ing to resort to synaptic plasticity (corresponding to changes
in the synaptic weights in the network). This constitutes a new
outlook on central pattern generators (CPGs) where different
gaits correspond to different attractors in the same network,
that differ only by initial conditions (equivalently, by the stimu-
lation of a specific neuron) and not by a parameter bifurcation.
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Popular for its ability to non-invasively image the macro-
scopic anatomical and functional connections in the brain,
functional magnetic resonance imaging (fMRI) of the human
cortex has revealed promising results concerning the relia-
bility and stability of individual-level cortical connectomics.
However, the synapse-level mechanisms underlying inter-
individual variability are not well-understood, such as the
respective roles of long-range white-matter structural con-
nectivity vs. cortical physiological dynamics. One approach
to bridging these mechanistic gaps is using biophysically-
based neural circuit models of large-scale brain dynamics
which can be quantitatively fit to empirical neuroimaging
data. In this study we have utilized a circuit model [1] with
neurobiologically interpretable parameters to model func-
tional connectivity (FC) at the individual level in healthy
subjects, finding that such a model is able to capture differ-
ences between subjects.

We generated parcellated, resting-state FC matrices for 879
healthy adults. We employ a cortical circuit model devel-
oped by Demirtas et al. (Fig. 1) whose free parameters
represent synapse-level activity, allowing the macroscopic
inter-individual variations apparent in fMRI scans to be
understood in terms of the underlying cellular architecture
[1]. A key advantage of this model lies in its assumption that
local circuit properties are heterogeneous across the cortex,
following a large-scale gradient related to cortical hierarchy
and indexed by the T1w/T2w structural MRI measure [1,2].
Using this low-dimensional circuit model, we generate simu-
lated FC matrices which are optimized to maximally fit the
respective empirical data at the level of individual subjects
as well as the group average.

Our circuit model, with hierarchical heterogeneity in local
circuit properties, is sensitive to subject-level differences in
FC. Allowing a hierarchical, heterogeneous distribution of
weight parameters across the cortex substantially improves
the model's ability to fit empirical FC data by specifically
adding to the model the flexibility to capture leading com-
ponents of inter-individual variation. To verify that these

Fig. 1 Circuit mechanisms for
top-down attentional modula-
tion. Major topics of study
here include roles of hetero-
geneous of population coding

for bottom-up and top-down
signals in thalamus; differential
potency of RE vs. TC cells as
sites of top-down control; and
inter-regional communication
between thalamus and down-

stream cortical circuits Stimulus »\
input -
Jee

Top-down
modulated
input

improvements in fit meaningfully capture inter-individual
variation, we visualize the leading principal components
of the empirical FC matrices across subjects. We use these
principal components of inter-individual variation to develop
a novel method to quantify a model's ability to capture inter-
subject variability and propose extensions to the model
accordingly. Further, model parameters related to cortical
physiological dynamics explain the majority of variation
across subjects, while subject-level structural connectivity
failed to significantly capture variation. Thus, our model
supports the notion that microcircuit properties related to
cortical physiology and dynamics contribute to neural vari-
ability across individuals in healthy populations.
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The thalamus is a key brain structure engaged in attentional
functions, such as selectively amplifying task-relevant
signals of one sensory modality while filtering distrac-
tors of another. Whether the architectural features of tha-
lamic circuitry offer a unique locus for attentional control
is unknown. Here, we developed a biophysically grounded
thalamic circuit model of comprising excitatory thalamocor-
tical and inhibitory reticular neurons, which captures charac-
teristic neurophysiological observations from task-engaged
animals (Fig. 1). Our results provided important insights into
the following questions.

We found that top-down attentional control inputs onto retic-
ular neurons effectively modulate thalamic gain and enhance
downstream readout, to improve performance across detec-
tion, discrimination, and cross-modal task paradigms. In
addition, our simulations and theoretical analyses reveal that
the thalamic reticular nucleus (TRN) is much more potent a
site for top-down control than thalamocortical neurons. This
provides mechanistic insight and functional explanation and
for the experimental finding of the indirect, TRN-mediated
pathway for top-down attentional control neurons [1]. Both
bottom-up and top-down inputs increase firing rates in thala-
mus, raising the questions of how they are disambiguated
in downstream readout. Our analyses reveal that heteroge-
neity of thalamic response patterns plays an essential role
in attentional enhancement of stimulus information. We
examined neuronal recordings from auditory thalamus and
primary auditory cortex in the mice during a cross-modal
attention task, and found the existence of the similar geo-
metrical structure in population activity patterns (i.e., coding
and readout axes).

It has been a question of whether attentional gain modula-
tion observed in thalamus is generated locally within the
thalamic circuit or instead whether such signals could be
inherited from downstream sensory cortex via corticotha-
lamic feedback projections. We analyzed spiking activity
from simultaneously recorded auditory thalamus (MGB) and
primary auditory cortex (A1) during task performance, and
our results revealed that thalamic gain modulation is not
explained by corticothalamic feedback. Furthermore, audi-
tory cortex activity patterns show signatures of the readout
strategy predicted by the model, to decode information from
multiplexed bottom-up and top-down modulations. Moreo-
ver, our modeling indicates that strong recurrent excitation
degrades the separability between bottom-up from top-down
signals from population firing patterns.

Significance and Fit for OCNS Audience. This work should
be of broad appeal to the OCNS audience.

Our model makes specific predictions on how distinct synap-
tic-level perturbations could alter circuit dynamics and atten-
tional behaviors, allowing direct testing in animal models

@ Springer

using optogenetics and electrophysiological recordings. In
addition, our well-constrained thalamic circuit model in the
awake regime can be further extended to study how distrib-
uted thalamo-cortical networks perform cognitive computa-
tions. More generally, we hope such studies will encourage
the study of circuit models to make dissociable, testable
predictions across circuit and behavioral levels.

References

1. Nakajima M, Schmitt LI, Halassa MM. Prefrontal cortex
regulates sensory filtering through a basal ganglia-to-thala-
mus pathway. Neuron. 2019 Aug 7;103(3):445-58.

P131 Mixed vine copula flows for flexible modelling of
neural dependencies

Lazaros Mitskopoulos', Arno Onken’

TUniversity of Edinburgh, School of Informatics, Edinburgh,
United Kingdom

Email: lazarosmits @ gmail.com

The advent of large high-dimensional datasets in neuroscience
has been an important milestone for advancing our under-
standing of neural information processing and improving per-
formance of brain computer interfaces. However, most exist-
ing methods of analysis fall short of capturing the complexity
of interactions within the concerted population activity. Novel
techniques need to address this complexity and be applicable
in a wide range of neural data analysis scenarios. In this work,
we employed copulas which disentangle single-neuron sta-
tistics from the dependency structures within the population
and evade the curse of dimensionality with pair copula con-
structions [1,2]. This approach makes it possible to study the
shapes of dependency structures between variables with vastly
different statistics, (Fig. 1A) e.g. discrete spiking activity and
continuous behavioural response variables like running speed.
We adopted a fully non-parametric approach for the single-
neuron margins and copulas, since parametric copula families
impose strong assumptions on the shape of the stochastic rela-
tionships which can lead to misspecification, especially in the
case of discrete variables. Both copula and margin densities
were estimated using Neural Spline Flows (NSF) [3]. Over-
all, NSFs performed better relative to existing non-parametric
estimators when trained on artificial data with known depend-
ency structures (Fig. 1.B), while allowing for easier sampling
and more flexibility. Finally, we demonstrate our framework’s
aptitude to capture non-symmetric tail dependencies (Fig. 1C)
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Fig. 1 A Joint probability density function with continuous and dis-
crete margins is decomposed into a copula and separate margins. B
NSFs outperform other non-parametric estimators on artificial data

in deconvolved spiking responses from calcium recordings of
neurons in the rodent primary visual cortex responding to a
visual learning task [4].
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Segregation and integration are two fundamental principles
of brain organization [1,2]. While segregation is necessary

for specialized processing of information, integration allows
the coordination of the activity of several brain regions to
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produce a coherent behavioral outcome. Recent studies show
that neuromodulatory systems dynamically promote the tran-
sitions between different functional states, starting from a
static connectome [2]. Specifically, a recent framework pro-
posed that the cholinergic and noradrenergic systems promote
segregated and integrated brain states, respectively [2]. Here,
we combined empirical fMRI recordings with computational
modeling to gain insights into the biophysical mechanisms
involved in the pro-segregation effects of the cholinergic sys-
tem. The empirical fMRI data consider recordings under the
effects of nicotine in healthy smokers, both in resting-state
and in a Go/No-Go attentional task [3]. We built functional
connectivity (FC) matrices from the fMRI BOLD signals,
and quantified integration and segregation using tools from
graph theory [4]. We showed that nicotine has a pro-segre-
gation effect (increase transitivity and decrease global effi-
ciency) in the task block, but not in the resting-state. Then,
we used a whole-brain neural mass model [5], interconnected
using a human connectome and coupled to a hemodynamic
function to simulate fMRI BOLD-like signals. We simulated
the effects of nicotine by decreasing global coupling and the
feedback inhibition of the model, and then fitted the empirical
and simulated FC matrices. The model fitted to the empirical
data showed an increase in transitivity, a decrease in global
efficiency, and a loss of modular organization under the
effects of nicotine. Therefore, our model validates the results
using the empirical data, that is, confirms the pro-segregation
effects of nicotine and provided a biophysical mechanism to
simulate these effects. This framework constitutes a new set
of tools and ideas to test how neural gain mechanisms medi-
ate the balance between functional integration and segrega-
tion in the brain.
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The complexity of brain dynamics has been approached
from several points of view, in particular, using measures
coming from dynamical systems and information theory.
Several studies have proposed the existence and importance
of chaotic regimes in brain activity, and chaotic oscilla-
tors have been used to simulate brain data due to their rich
dynamical repertoire. On the other hand, plenty of measures
have been used for assessing complexity from real neural
data and theoretical models. In particular, Information
theory provides tools for defining synergy: the information
contained in the interactions of the system is higher when
looking at the system as a whole than as separated parts,
i.e., there are more high order than low order interactions.
Using the O-information, a measure that builds on multi-
variate extensions of the mutual information, synergy was
assessed in fMRI data and shown to decrease with aging. In
this work, we try to answer how the dynamical and infor-
mation-theoretic views on the complexity of brain signals
are related. For this purpose, we studied the emergence
and quality of statistical high-order interdependencies on
small networks of homogeneous neural oscillators, assessed
through the calculation of the O-information. The analysis
consisted on a survey over the possible coupling configu-
rations of 2 and 3 nodes oscillators, varying the inter-and
intra-node connection parameters, and the calculation of the
Lyapunov spectrum and the O-information, for distinguish-
ing distinct dynamical and information-theoretic regimes,
respectively. In addition, we performed a search over the
possible 3-node configurations using a genetic algorithm,
looking for the best connectivity matrix in terms of synergy
i.e., minimizing O-information. We found that the simple
limit-cycle dynamical regimes were redundant, i.e., show-
ing positive O-information, and dynamical regimes with
non-integer attractor dimension showed negative O-infor-
mation, suggesting synergy. The higher dimensional inte-
ger dimension tori (quasiperiodic regimes) showed mixed
results, being redundant in some cases and synergistic in
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others. However, when the interdependencies between the
variables were broken through a random time shifting of the
data points, the O-information in the quasiperiodic (toroi-
dal) regimes was maintained, making the synergy in these
regimes non-significant. On the other hand, O-information
in time-shifted data from chaotic series dropped to zero.
These results were confirmed using simulations of simple
chaotic systems such as the Lorenz equations. In the case
of three oscillators, the optimal synergistic configuration
among nodes presented one independent node influencing
the other two ones, and the induce dynamical regime was
chaotic. A parameter sweep in the vicinity of the optimum
also showed correspondence between synergy and higher
dimensional dynamics. Our results invite further numerical
and theoretical approaches for understanding the relation
between dynamical complexity and information-theoretic
measures, especially for oscillatory systems. Also, the
relationship between synchronization and redundancy may
underlay previous results related to aging.
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Measuring neural activity with fMRI while a person is
memorising and retrieving information, can provide insight
into cognitive processes of short-term memory distortions
[1], or shortly, false memories. Functional activations have
been analysed through a range of methods, however, they
have a non-trivially associated auto-correlation and cross-
correlation signal structure and are notoriously challenging
to analyse due to their very low temporal resolution.

In our study, we applied detrended fluctuation analysis
(DFA) to investigate fMRI data representing a diurnal

variation of working memory [2] in four types of experimen-
tal tasks: two visual-verbal (based on lists of semantically or
phonetically associated words) and two non-verbal (pictures
of similar objects). The regional brain activity was quanti-
fied with the Hurst exponent and detrended cross-correlation
coefficients [3]. Our analyses clearly show that the fMRI
data obtained from most brain areas within a small-scale
range can be regarded as 1/f type process identified in many
physical, biological or even economic systems. However, the
obtained characteristics of the signals in specific occipital
lobe areas depend not only on the type of experimental tasks
but also on the stage of the experiment, i.e., memorising the
stimuli or information retrieval.

A particularly apparent difference is visible between memo-
risation in verbal and non-verbal tasks. In the former case,
for some brain regions in the Visual II resting-state network,
the Hurst exponents assume values very close to 0.5, indicat-
ing a lack of linear temporal correlations in the signals [4].
In contrast, we observe more persistent behaviour in the lat-
ter. The reduction of persistent behaviour in tasks relative to
the spontaneous brain activity (resting state) is statistically
significant in many brain areas, as presented in (Fig. 1). The
cross-correlations between brain areas are, too, indicative
of differences in the processing of tasks and experimental
stages. Uncovering such regionally coordinated changes
involves comparing distributions of correlation matrices’
eigenvalues. We strengthen these results by grouping eigen-
values according to their eigenvector similarity rather than
their natural order. The detrended correlations turn out to
be more sensitive than Pearson correlations, showing the
greatest differences between the resting state and other tasks,
between memorisation and retrieval and between verbal and
non-verbal tasks, as well as other subtler results.
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We recorded the activity of midbrain dopamine (DA) neu-
rons in a task where monkeys had to use working memory to

discriminate between two temporally separated vibrotactile
stimuli. Since the animal had no clue about trial difficulty, its
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motivational level could be quantified by the reaction time
(RT) to a tactile start cue through which the animal com-
municated its readiness to perform the task at the beginning
of each trial (Satoh et al., 2003). Then, the animal was pre-
sented randomly and independently with one of 12 stimulus
classes (f1, £2). Even if If1-f2| was the same, performance
in some classes was clearly worse. This disparity was previ-
ously explained by a contraction bias that shifts f1 percep-
tion towards its mean and generates a subjective difficulty
[1].

Here we address the question of how motivation influ-
ences behavior and DA activity in the discrimination task.
To do so the recorded trials were divided into two groups
based on their RT (short- and long-RT trials). Interestingly,
when averaged over all classes, the RT was significantly
longer in error trials. Furthermore, a shorter RT improved
performance in classes with a higher subjective difficulty
(Fig. 1A). To find out the reason of this enhancement a
Bayesian model for the discrimination was fitted to both
trial groups independently. The noise parameter introduced
to emulate uncertainty was smaller in the short-RT condi-
tion (p <0.001, t-test), implying that motivation increased
precision. Since smaller noise generates a weaker contrac-
tion bias, subjective difficulty was diminished, boosting
performance in that group. These results confirmed that
the motivation level of the animal had a strong impact in
decision-making by selectively enhancing perception and
reducing subjective difficulty in conflictive classes, therefore
increasing reward rates.

Midbrain DA activity codes reward prediction errors. How-
ever, these predictions can be modulated by the eagerness
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Fig.1 A Performance for each pair of stimuli (class number) sorted
by short- and long-RTs. Central classes (5-8) are those in which the
bias is stronger (higher difficulty) while extreme ones (1, 2, 11, 12)

to work for rewards. DA activity in the two trial groups
exhibited significant differences. Phasic responses to the
initial cue and to the first stimulus were larger in short-RT
trials (Fig. 1B). Contrastingly, during the second stimulus
and at reward delivery phasic DA did not depend on the
RT. DA responses to the start cue and to the first stimulus
represented the motivational state in the trial since they had
significant negative correlation with the RT on a trial-by-
trial basis. Instead, responses to the second stimulus only
represented reward prediction errors. Firing activity during
working memory was a purely motivational signal: it was not
tuned to the initial stored frequency and exhibited a ramp-
ing behavior. Importantly we found that the ramp-like DA
activity was more pronounced in short-RT trials (Fig. 1B).
To sum up, we showed that willingness to work for rewards
leads to better outcomes by enhancing precision and reduc-
ing a perceptual bias. Also, high motivation was associated
with larger DA activity. During the delay period, when the
bias presumably appears, DA showed a more pronounced
ramping in trials with higher motivation. Such a higher sus-
tained DA activity may be related to a better usage of cogni-
tive resources such as working memory, allowing for more
precise inferences when needed. Together, our results point
to an intricate relation between DA and perception as they
are both modulated by the animal’s intrinsic motivation.
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In delayed comparison tasks the first stimulus is perceived
contracted towards its mean; an effect known as contraction
bias. However the nature of the bias and its representation
by the neural population activity are not well known. To
get insight about these issues, we trained recurrent spik-
ing neural networks (RSNNs) to decide which of two-time
intervals (d1, d2), presented sequentially separated by a
delay interval, was longer. Networks were trained with a set
of duration pairs, selected randomly and independently in
each trial (Fig. 1a), using the full-FORCE algorithm. Then,
a large number of test trials were obtained from the trained
networks for further analysis of task performance and popu-
lation activity.

The trained networks exhibited the contraction bias (Fig. 1b),
implying that temporal correlations in the sequence of the
training stimuli are not needed to generate the bias. To inves-
tigate its origin we explored the idea that the perceived dura-
tion resulted from combining present and past stimuli. With
this goal, we considered two models: Bayesian inference and
a plausible Bayesian heuristics. In the latter, the perceived
dlwas an exponentially weighted sum of current and past
dl ‘s. At the behavioral level we fitted both models to the
performance data from the trained networks (Fig. 1b). The
parameters were the variance of the two noisy observations.
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Although the models yielded statistically similar fits, a given
network favored either one or the other, as assessed by their
RMSE:s. At the neural activity level we analyzed the kin-
ematics of the population trajectories in state space. The
mean population activity for each d1 described orbits for
which we computed all the relative distances [1].

To assess whether the delay-period population activity
combined present and past d1 ‘s (either as a Bayes estimate
or as a Bayesian heuristics) or coded the true value of d1,
we reasoned that the mean relative distances <D > should
reflect the network’s estimate of d1. Then, once the model
that best fitted the performance data and its estimate of d1
were determined, we confronted the two hypotheses as fol-
lows: the coefficients of a linear function (a<D > +b) were
separately fitted to the estimated d1 and to the true d1 and
the goodness of the fits were compared using their RMSEs
[2]. For the 20 tested networks the test favored the mixing
hypothesis (Fig. 1c). The evaluation of the mutual infor-
mation that neurons had on previous d1's showed that the
mixing of current and past stimuli came from the network
recurrent connectivity, which allowed information from past
stimuli to persist and be combined with the current d1.

To summarize, during the delay period the trained RSNNs
combined current and past stimuli, thus generating a con-
traction bias. The population activity for fixed d1 described
orbits in state space maintaining relative distances that
coded an estimate of d1. Interestingly, this estimate closely
approximated either Bayesian inference or a simple Bayes-
ian heuristics, depending on the network. Networks pro-
cessed information about the stimulus in a way that closely
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resembled the way that cortical populations reproduced a
sample interval [1]. Our results suggest that a similar strat-
egy could be employed both by the brain and by trained
RNNs and in different tasks, generating biases through
Bayesian or Bayesian-like computations
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The brain is a hierarchical system composed of diverse inter-
actions among neural units (referring to neurons or neural
populations) across different levels of hierarchy, however we
are yet to finalise the method of multiscale brain model con-
struction. To resolve this issue, we propose a computational
framework, namely multimodal dynamic causal modeling
(mmd-DCM). Extending the conventional DCM method,
which has been widely used for macroscale and mesoscale
brain data analysis with the Bayesian modeling method, we
coupled one neural model with multiple observation models.
More specifically, neural activity is translated into differ-
ent observation signals: all model parameters are fitted to
reproduce the observation data and share neural activity. The
present mmd-DCM focuses on model construction using
electrophysiological data. This opens up the possibility of
considering microscale brain dynamics, and includes three
types of observation signals: voltage-sensitive dye imaging
(VSDI), calcium imaging (Cal), and blood-oxygen-level-
dependent (BOLD) signals, which are in different temporal
and spatial resolutions.

In order to apply the proposed mmd-DCM to a large brain
circuit, we developed a systematic estimating scheme that
integrates information from local and global circuits. In our
previous studies [1,2] we showed that the incorporation of
interactions with other brain regions (not observed) is nec-
essary for the modeling of local activity. The local activity
is not the result of exclusive interaction among local neural
units (neurons or neural populations depending on the level)
isolated from other neural populations, but is affected by the
external neural inputs or contexts. Thus, while estimating the
connectivity, multiscale and multimodal data would comple-
ment the inference of the system circuitry. In the current
study, we combined multimodal data to link multiscale cir-
cuitry and to infer circuitry at each scale using mmd-DCM.
To evaluate our scheme with mmd-DCM, we constructed a
biologically plausible model with Cal signals obtained from
the 2/3 layer of the barrel cortex. Then, we simulated Cal,
VSDI, and BOLD signals at different temporal and spatial
scales, and estimated model parameters. The results show that
by integrating local and global circuit information with mmd-
DCM, we are able to estimate model parameters with a higher
accuracy than those of the conventional method, thereby show-
ing its usefulness for extending multiscale brain dynamics.
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Category learning can be achieved by using different cog-
nitive strategies. Learners might focus on acquiring the
response associated with particular exemplars or they can
try to extract a pattern from the stimuli and learn the rule or
structure behind the associations. This work aims to extend
the literature on exemplar and rule learning by outlining the
context in which participants either learn to extract a rule
or the value of each exemplar. We design a task in which
multiple stimuli are relevant and the appropriate response
depends on the pattern of stimuli presented. Participants
were not directly instructed to find a rule but to learn the
association between stimuli and outcomes. We manipulated
two contextual settings: the stimulus—response mapping
(rule) and the temporal structure of the stimuli that were
presented. We had two different rules, where participants
had to either add or subtract stimulus features to find the
pattern. The subtraction rule was designed to be easier to
explicitly declare. We had three different trial structures: one
where order was interleaved, one where it was blocked and
a mixed one, which was a mixture of the first two, blocked
first, then interleaved. We fitted an online latent cause model
of participants’ behaviour. It allowed us to cluster stimuli
based on their similarity, participants action and the cat-
egory the stimuli belonged to, giving us insights about par-
ticipants strategy. We analyzed the number of clusters cre-
ated, the pruning threshold which defined which cluster to
prune during learning, and two additional measures derived
from the model: entropy and recognition. Those indexed
the uncertainty about which cluster a stimulus belongs to
and the probability of a stimulus given the model. Later
we used these measures as regressors for a following EEG
study. Participants performed better for the subtraction rule
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and the blocked temporal structure. The proportion of par-
ticipants who correctly declared the underlying association
performed better than participants who did not. The differ-
ence in performance was clear in the mixed temporal struc-
ture: when the temporal structure switched from blocked
to interleaved performance for non-declarative participants
decayed compared to the declarative ones. The model cre-
ated more clusters in the blocked temporal structure com-
pared to the others. The cluster pruning threshold was higher
for the addition compared to the subtraction rule and for the
interleaved compared to the blocked and mixed temporal
structure. Recognition varied based on temporal structure
and differed between declarative and non-declarative par-
ticipants in the mixed conditions after the switch in temporal
structure. Our results describe the context in which rule and
exemplar learning occur, so providing a foundation for fur-
ther behavioural and neuroimaging studies.
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50 million people worldwide suffer from epilepsy, among
which one-third of patients cannot be effectively treated by
pharmacotherapy or surgery. Epilepsy is a highly patient
specific neurological disease and epileptogenesis is not
well understood. Clearly, the individual brain structures and
functions play an important role in contributing to epilep-
togenesis, the gradual process by which a brain develops
epilepsy. Fortunately, with modern technology, we are able
to visualise those changes through measurements of brain
activity. Functional neuro-imaging data such as EEG shows
that there is hyper-excitable and hyper-synchronous neuronal
activity during seizures. Critical slowing down (CSD) is a
phenomenon seen in many dynamical systems. When a sys-
tem is getting closer to a critical transition state, its variance,
autocorrelation and the time for a perturbed system to return
back to baseline increases. The first two passive characteris-
tics (variance and autocorrelation) have been seen in epilep-
tic patients [1]. On the other hand, phase transitions are often
used to describe pathological brain state transitions observed
in neurological diseases such as epilepsy. In this project, we
are interested in investigating the phase transitions through
CSD biomarkers as a way to measure the state of a brain.

We have reviewed the state of art literature on the top-
ics of critical slowing down, seizure prediction and time
series analysis. Eventually, we have come up with 6 new
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biomarkers on the top of traditional critical slowing bio-
markers (variance, autocorrelation and response to pertur-
bation). Together we have 9 biomarkers which are designed
for time-series signals such as EEG. The goal of the bio-
markers is to forecast the state transitions of a dynamical
system when a system is close to a criticality. We tested
those biomarkers in simple mathematical models. The aim
is to examine the performance of the biomarkers in noise-
free and noisy environments through simulations. All of the
models are known for their bifurcations when some struc-
tural parameters are varied [2]. The work in this stage is
also carried out as a proof of concept; the biomarkers are
able to indicate the upcoming critical transition before it
takes place. Most of the biomarkers are able to indicate the
state changes, but those changes are only shown qualitatively
not quantitatively. The values of the biomarkers measured
from one system are not necessarily comparable with the
same biomarkers from another system. Noise tolerances are
also tested for each biomarker obtained at different levels of
white noise superposed on the simulation data. The noise
level is categorised as low, medium and high based on their
signal-noise-ratios (SNRs). We examined whether each bio-
marker derived from 100 realisations of simulations is still
able to provide a statistically significant separatrix under
different SNRs.
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The rapid changes in sleep patterns over the first few years

of life vary widely between children. In fact, never are sleep
characteristics and dynamics more varied than during early
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childhood [1,2]. Sleep is important for infant and child neu-
rodevelopment, yet there is a lack of mechanistic understand-
ing of what drives the changes on sleep over the early years
of life. While sleep in the adult brain has been studied and
modelled extensively, very little has been done in infants and
children, mainly limited to descriptive studies of sleep behav-
iour. Here, we adapted an existing, physiologically based
model of adult sleep to study infant and child sleep behav-
iour [3,4]. We used Bayesian model estimation to identify
the likely physiological parameters underpinning population-
level diversity in sleep characteristics as a function of age
from O to 5 years. We found that the empirically observed
decrease in total sleep duration and consolidation of sleep
bouts with increasing age are well explained by decreases in
the constant inhibitory input to sleep promoting neurons and
increases in the characteristic time to clear somnogens (sleep
inducing agents) during sleep. Moreover, we explored time-
dependent parameter changes to simulate individual matura-
tion of sleep patterns, finding realistic sleep—wake dynam-
ics consistent with heavily sampled, single infant data. Our
findings show that physiologically based models can be used
to understand the developing neurophysiology driving sleep
behaviour in children.
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Many higher brain functions are attributed to the cere-
bral cortex, characterized not only by a large number of
neurons but also by an extensive connectivity with other
districts. The finely regulated interactions between these
different areas are suggested to be at the basis of the rise
of complex patterns of activity. Due to the complexity of
the system itself, unravelling the mechanisms underlying
brain functions such as sensory processing and memory
consolidation requires to devise simplified in vitro mod-
els that allow to understand how cells of different brain
circuits interact.

In this work, we recorded the emerging electrophysiologi-
cal activity by means of Micro-Electrode Arrays (MEAs)
paired with ad hoc polymeric structures in order to rec-
reate interconnected heterogeneous networks. We stud-
ied how the spontaneous activity of a cortical population
is modulated by two distinct and specific physiological
inputs provided by thalamic and hippocampal subpopu-
lations. Using compartmentalized polymeric engineered
masks, we recreated and recorded the electrophysiological
activity of the cortico-thalamic and cortico-hippocampal
circuits, which are highly relevant as they are involved in
the genesis of physiological oscillatory rhythms whose
alterations induce pathological conditions, such as absence
seizures, and during sensory processing and memory con-
solidation, respectively. From the spike and burst trains,
we obtained parameters to characterize the spiking and
bursting activity, to identify the excitatory and inhibi-
tory functional connections, and to evaluate the interac-
tion between sub-populations in terms of synchroniza-
tion level of the spiking activity. In particular, statistical
interdependence between neuron pairs was obtained by
convolving the cross-correlogram with an edge filter to
identify the local maxima and minima in the peak trains.
Finally, the synchronization level was evaluated by means
of the Coincidence Index defined on the basis of the cross-
correlation function.

We found that the thalamic and hippocampal input modu-
late cortical activity in a complementary way. We observed
that the specific features of thalamic activity, character-
ized by tonic spiking, and the hippocampal one, which
presents highly stereotyped high-frequency bursts, modu-
lated both the spiking and bursting dynamics of the co-
cultured cortical population. Hippocampal neurons drove
a more sustained and packed cortical activity. Moreover,
they induce a change in the distribution of the inhibitory
connections, which resulted in a decrease in the amount of
inhibitory information exchanged between the two popula-
tions. It was also observed that the sub-populations in the
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cortical-hippocampal co-cultures established a greater num-
ber of strong connections within themselves than in con-
trols. A possible consequence is the observed modification
of the synchronization of the two sub-populations, which
shows a significant increase of the synchronization level
within the compartments with respect to the one between
them. Thalamic neurons induced a more random and scat-
tered activity pattern, with a strong redistribution of the
functional inhibitory links. The thalamic assembly gener-
ates more inhibitory connections than in controls, however
none of them are projected to the cortical compartment.
This difference in functional connections may be the cause
of the observed strengthening of the cortical compartment
inner synchronization.
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The disruption of coronavirus disease 2019 (COVID-19)
poses a serious threat to global public health and local
economies. The combination of antimalarials hydroxychlo-
roquine (HCQ) with azithromycin has confirmed the anti-
viral treatment on an urgent basis in limited clinical studies
[1]. With the growing interest in the potential use of HCQ
for the treatment of COVID-19, it is essential to reflect on
the risks of treatment, particularly for cardiac toxicity. The
purpose of this computational study was to investigate the
propensity of hydroxychloroquine (HCQ) on various ionic
mechanisms to cause diverse effects on the sinoatrial action
potential. The sinoatrial node cell (SAN) was described as
an equivalent electrical circuit with a number of variable
conductances representing voltage-gated Na + channels
(INa), voltage-gated Ca2 + channels (ICa), voltage-gated
K+ channels (IK), Ca2 +—dependent K + channels (IKCa)
and hyperpolarization-activated current (funny current,
If). AHCQ drug model for the multiple ion channels was
simulated after mining data from experimental studies [2].
The biophysically altered ionic currents (ICa, IK, and If)
were integrated into the single SA node electrophysiologi-
cal model [3].The resting membrane potential (RMP) was
set at —80 mV. Application of 1 uM HQN showed inhibitory
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effects on ICa, IK, and If. The steady-state values for activa-
tion and inactivation parameters are altered. The If current
was substantially reduced with comparison to other currents.
As a consequence, the model produced SAN action potential
prolongation, and the frequency was reduced. The results
show that the modified funny current plays an important
role in reducing the frequency of the spontaneous action
potentials at SA node.The model successfully reproduces
both ionic currents and action potential observed in intra-
cellular recordings from individual SAN cell. The effects
of Hydroxychloroquine drug are simulated with respect to
funny current and action potential. As Hydroxychloroquin
reduces the frequency rate of the spontaneous action poten-
tial firing, we should prevent it as a potential drug against
COVID-19. It also supports the FDA guideline against using
HCQ for COVID-1.
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Thoracic sympathetic postganglionic neurons (tSPNs)
receive synaptic inputs from preganglionic neurons in the
spinal cord and regulate downstream effector targets includ-
ing vasomotor and thermoregulatory systems. Rather than
acting as simple relays of spinal signals to the periphery,
tSPNs can integrate and transform signals depending on
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their cell-intrinsic biophysical properties. Understanding
tSPN cellular integrative and recruitment principles is essen-
tial to study mechanisms that alter excitability, including
those seen after spinal cord injury (SCI).

A previous conductance-based computational model of mouse
tSPNs was described in [1]. In the current study, we present
updated ensemble tSPN models that effectively describe
experimental data from different electrophysiological modali-
ties, including voltage-clamp (VC) step and ramp, as well as
current clamp (CC) protocols. A model of electrode resistance
and capacitance is incorporated [2] to separate experimental
artifacts from ion channel dynamics, across multiple cells and
multiple trials. In line with the previously studied mRNA pro-
files in these cells, we determine ion channel properties such
as maximal conductance and decay time constants that best
describe the experimental recordings. VC step protocol data
(before and after the application of Na+—channel blocker tet-
rodotoxin) is used to determine the dynamics of transient cur-
rents via Na+and A-type K+ channels, as well as electrode
artifact properties. This data also gives an estimate of the sum
of all the long-lasting currents (delayed rectifier K+, M-type
K+, Ca2 +—dependent K +etc.), which are further separated
and their maximal conductances determined based on their
voltage dependent peaks under VC ramp protocol. With this
setup, including the electrode model, we can obtain ensemble
models tuned to individual neurons and describe the voltage-
dependent delays observed in the onset of Na+ currents under
VC step protocol. Further improvement of space clamp errors
is expected with a spatial model of the cell.

Future work will incorporate data obtained from CC record-
ings and all channel properties will be simultaneously tuned
to match the firing properties of the cells in response to cur-
rent injections.We will employ this updated tSPN model to
study differences in passive and firing properties of geneti-
cally identified tSPN subpopulations and the putative home-
ostatic plasticity engaged to maintain excitability after lost
central drive as seen after high level SCls.
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Na+/K + ATPases (Na+ pumps) mediate long-lasting
activity-dependent ionic currents that provide a neuronal
memory for previous activity than can last tens of seconds
[1]. The cellular mechanisms controlling the dynamics of
these long events are not well understood and counterin-
tuitive. Long-lasting memory traces arise from Na + pumps
that instantaneously respond to Na+ concentration changes,
with no explicit pump activation time constant. Here, we use
computational modelling of pump currents to examine how
pump dynamics without time constants shape both electri-
cal (membrane potential) and chemical (Na+ concentration)
memory traces.

We incorporated 1) a Na+ pump, 2) its effects on intracel-
lular Na + concentration, and 3) a dynamic Na 4+ reversal
potential into a Drosophila larval motor neuron model [2].
The pump current Ip=Ipmax / (1 +exp((Nah—Na)/Nar)) is
modeled as a maximal pump current Ipmax multiplied by
an S-shaped function of intracellular Na + concentration
(Na) with two parameters, the Na+ concentration (Nah)
of pump half-activation, and a factor (Nar) that determines
the range of the current’s dependence on Na. This model
does not include a time constant 7au of pump activation
— the pump responds instantaneously to changes in Na. The
pump current shapes neuronal dynamics in two ways: 1) The
electric current resulting from extrusion of Na+ions and
pumping into the cell of K+ions contributes to membrane
potential changes. 2) The extrusion of Na+ions contrib-
utes to changes in intracellular Na+ concentration and the
Na +reversal potential.
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We find that despite the absence of an explicit Tau, the pump
produces after-hyperpolarizations (AHPs) following bursts
of action potentials that can last for multiple seconds, as
in experimental preparations [1]. This ‘Tau from no Tau’
arises from the interaction of the pump current with mem-
brane currents and the intracellular Na + buffering system.
The AHP duration depends on both parameters Nah and
Nar, with larger values of either producing longer AHPs.
The dependence of AHP duration on Nah is weaker than
its dependence on Nar. We further show that at the end of
the AHP, when the electrical effect of the pump has largely
subsided, Na is still substantially different from its resting
level. The chemical effects of pump activity in the cell can
thus last several-fold longer than the electrical effects. This
chemical memory trace that out-lasts the electrical memory
arises solely from interactions of the pump with membrane
conductances and ion buffering. It does not require addi-
tional molecular signaling cascades with slow dynamics.
We conclude that even in the absence of an activation time
constant Tau, Na+ pumps provide a mechanism for long last-
ing electrical (AHP) memory traces and even longer chemi-
cal (Na+ concentration) memory traces. Our work provides
testable predictions for physiologists and has implications
for understanding information processing in neural networks
and the neural control of animal behavior.
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Thoracic sympathetic postganglionic neurons (tSPNs) reside
in the sympathetic ganglia and receive excitatory inputs from
preganglionic spinal neurons. tSPNs were long thought to
act as relays of input from the spinal cord to targets such
as vasomotor and thermoregulatory systems. We previously
used modeling to show that tSPNs may play a more active
role in signal integration in the sympathetic pathway [1].
Important questions are whether tSPN membrane properties:
(1) are tuned to optimally process synaptic inputs, (ii) repre-
sent a locus for behavioral state-dependent modulation, and
(iii) undergo compensatory homeostatic changes in excit-
ability due to long-term alterations in central preganglionic
synaptic drive (e.g., after spinal cord injury). We address
these questions in a model of mouse tSPNs [2]. Its mem-
brane currents include: a fast Na + current INa; a low-thresh-
old Ca2 + current ICaL; K + currents IKd (delayed rectifier),
IA (fast transient), IM (slow non-inactivating), and IKCa
(Ca2 + dependent); a hyperpolarization-activated inward
current IH; and a leak current. To simulate input from the
spinal cord, we provide the tSPN model with excitatory syn-
aptic conductance waveforms that match measurements from
mouse tSPNs in number, synapse strength, and presynaptic
firing pattern. In the “canonical” version of the tSPN model
[2], this synaptic input results in a synaptic gain (defined as
tSPN firing rate divided by preganglionic firing rate) larger
than 1, meaning that tSPNs can integrate and amplify these
synaptic inputs. This confirms that tSPNs may act as more
than relays of spinal inputs [1].

We next individually vary the maximal conductance for each
membrane current from its canonical value and observe that:
1) Varying the conductances for IKd, TA, and IHhas little
effect on synaptic gain. These currents therefore may not be
effective targets for modulation or plasticity. 2) Increasing
the conductance for INaincreases synaptic gain, as expected
for an inward current. 3) Increasing the conductance for the
potassium currents IM and IKCa and for the Ca2 + current
ICaL decreases synaptic gain. For IM and IKCa this occurs
because they are outward currents, thus increasing their
conductance decreases tSPN excitability. ICaL is an inward
current, but has a negative effect on synaptic gain because
it indirectly reduces excitability via increasing the outward
current IKCa.

Our simulations implicate the tSPN membrane currents INa,
IM, IKCa, and ICaL as factors that may determine tSPN
excitability and synaptic gain, with Ina being a positive
regulator of gain, while IM, IKCa, and ICaL are negative
regulators. These membrane currents may thus be suitable
targets for plasticity and modulation of signal integration in
the thoracic sympathetic pathway, including in the context
of systemic changes after spinal cord injury.
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Understanding the relationship between the functional activ-
ity and the structural wiring of the brain is an important
question in neuroscience. To address this, various math-
ematical modeling approaches have been undertaken in the
past, which largely consisted of non-linear and biophysically
detailed mathematical models with regionally varying model
parameters. While such models provide us a rich repertoire
of dynamics that can be displayed by the brain, they are
computationally demanding. Moreover, although neuronal
dynamics at the microscopic level are nonlinear and chaotic,
it is unclear if such detailed nonlinear models are required to
capture the emergent meso- (regional population ensemble)
and macro-scale (whole brain) behavior, which is largely
deterministic and reproducible across individuals. Indeed,
recent modeling effort based on spectral graph theory has
shown that a linear and analytical model without regionally
varying parameters can capture the empirical magnetoen-
cephalography frequency spectra and the spatial patterns of
the alpha and beta frequency bands accurately.

In this work, we explore the properties of an improved hier-
archical, linearized, and analytic spectral graph theory-based
model that can capture the frequency spectra obtained from
magnetoencephalography recordings. The model consists
of coupled excitatory and inhibitory dynamics of the neural
ensembles for every brain region, and white-matter structural

wiring-based long-range excitatory macroscopic dynam-
ics. We demonstrate that this model, with just a parsimonious
set of global and biophysically interpretable model param-
eters, can display frequency-rich spectra. In particular, we
show that even without any oscillations on the regional level,
the macroscopic model alone can exhibit oscillations with a
frequency in the alpha band. We also show that depending on
the parameters, the model can exhibit damped oscillations,
limit cycles, or unstable oscillations that blow up with time.
We further determined bounds on these parameters to ensure
stability of the modeled oscillations. These biophysically
interpretable model parameters can be employed to investi-
gate correlates of differences in frequency spectra observed
in different brain states and neurological diseases.
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The cerebellum has a distinctive circuit architecture in
which each mossy fibre input typically projects to 250 gran-
ule cells, a population that comprises more than half of the
neurons in the brain [1]. How does this size expansion relate
to cerebellar function? This has been an active research topic
for decades [2-4]. Recent theoretical work has shown how
this expansion facilitates pattern separation and smooth
function approximation [5,6]. However, we currently lack a
theory that explains why this architecture is suited to rapid
online learning.

The cerebellum is critically involved in motor learning,
refining trajectories as movements are being executed. This
is a dynamic problem requiring fast learning from limited
information. We ask how this specific class of learning prob-
lem informs the distinctive cerebellar architecture.

We consider a cerebellar-like network, with sparse, tunable
connections that map low-dimensional inputs into a high-
dimensional internal, ‘granule cell’ layer. The network is
tasked with simultaneously learning an internal model of
a motor system, and then using this model to better control
motor output (Fig. 1A). Learning happens concurrently with
trajectory execution, using a biologically plausible learning
rule to adapt synaptic weights (Fig. 1B).

Learning online from motor output as a motor plan is exe-
cuted introduces a narrow time window that severely limits
the information available for synaptic plasticity mechanisms
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Fig.1 A Task diagram. The cerebellar-like net (FF) modulates the
motor commands sent to the motor plant P. The weights W adapt
online so the plant output y matches the target trajectory yd. B Learn-

to appropriately adjust synaptic weights. We show, theoreti-
cally and numerically, that increasing the number of gran-
ule cells effectively trades time for space, allowing rapid
and accurate learning in an online context. Our theoretical
analysis uses general, geometric arguments that are inde-
pendent of specific learning rules. We find that the effect
of having limited information depends on the spread of the
Hessian of the task error. As the number of granule cells
increases, the spread decreases. Hence the geometry of the
error surface becomes more favourable for online learning,
diminishing the effect of information error and allowing
for faster learning (Fig. 1C, D). This suggests that the large
energy cost associated with maintaining the majority of the
brain’s neurons might be an inevitable cost of precise, fast,
motor learning. Our result fills gaps in the understanding of
how cerebellar structure is optimised for online learning of
motor tasks.
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Introduction
Spiking probability as a function of stimulus intensity is the

key-control element in the input—output relation in functional
electrical nerve stimulation. The range of intensities where the



Journal of Computational Neuroscience (2021) 49 (Suppl 1):53-5204

S149

spiking probability of an auditory nerve fiber (ANF) increases
from 10 to 90% is defined as its dynamic range and reflects
the fiber’s individual loudness contribution during cochlear
implant stimulation. The strongest noisy components during
the excitation process are fluctuations in sodium ion currents.
A single ANF has a quite inhomogeneous structure with chang-
ing diameter and large variations in sodium channel densities.
The question arises how much the dynamic range depends on
the position of the stimulating electrode of a cochlear implant.

Methods

The noisy currents across the cell membrane were simu-
lated in a simple, computationally efficient way: A Gauss-
ian noise current was added to each segment (compartment)
of the ANF model every 2.5 ps, scaling proportionally to
the square root of the number of sodium channels (defined
by sodium conductance measured in mS/cm?). The inten-
sity could thus be controlled by a deterministic parameter
(Kpoise =0.05) [1]. This selected k, ;. value induced root
mean square amplitudes of the transmembrane voltage com-
parable to experimental results [1,2]. We placed the elec-
trode at possible positions along a selected ANF varying
from terminal to soma and calculated the relative spread
(RS) [2], a normalized measure which is about half of the
dynamic range.

Results

For a standard ANF (dendrite diameter =1.35 pum, axon
diameter =2.67 pm [3], 100 um non- myelinated presomatic
region and 20 um soma) increased stochastic behavior was
found especially for electrode positions at the dendrite,
while the soma acted as a dampening factor. The closer
the electrode was to the ANF, the more pronounced the
regional differences in spiking behavior and RS were. For
an ANF-electrode (center) distance of 300 um the RS were
13.10% for stimulation at the terminal, 5.51% for middle
of dendrite and 3.97% for soma, respectively — the 3 corre-
sponding thresholds (100 us pulses) were 117.1, 113.3 and
460.2pA. For the terminal position spiking probabilities of
10, 50 (=threshold) and 90% need currents of 97.7, 117.1
(threshold) and 136.1pA, resulting in a dynamic range of
38.8uA (136.1-97.7) and 33.1% normalized to threshold
(~2.5%RS).

Conclusion

The dynamic range of an average human ANF stimulated
from a cochlear implant is largest for electrodes close to the
fiber terminal (that is close to the outer wall of scala tym-
pani) where it exceeds a central position (close to modiolus)
by a factor in the order of three.
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Models of neuronal activity across scales have been widely
studied, but few models consider coupling of neuronal
activity to its metabolic supply. Disruption of energy and
oxygen availability to neurons, for example during asphyxia
or during epileptic seizures, leads to pathological activ-
ity in the electroencephalogram (EEG) [1-3]. By varying
energy supply and demand in a network model of Hodg-
kin-Huxley neurons, we observe that activity varies from
healthy asynchronous-irregular (Al) activity, to pathologi-
cal states of iso-electric activity, burst-suppression activ-
ity, and seizure activity. In the burst-suppression regime, as
the energy supply ([O2] Bath) increases, a transition from
highly synchronous bursts to scale-free (semi-synchronous)
bursts to less synchronous bursts takes place. In parallel
with this transition the average shape of the bursts changes
from asymmetric to symmetric. Scale-free bursts and a
transition from asymmetric bursts to symmetric bursts are
seen in neonates recovering from hypoxic insult [1]. There-
fore, we validate our model using EEG data from hypoxic
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neonates. We estimate the model parameters that best fit
empirical EEG epochs in terms of their burst statistics dur-
ing the recovery phase, yielding trajectories through the
parameter space of [K +] Bath and [O2] Bath. We show that
for neonates with good outcomes (normal or mild injury),
the projections of the time series tend to travel toward the
healthy regime. On the other hand, in neonates with bad
outcomes (died or severe injury), the projections of the time
series tend to dwell in the pathological region of parameter
space. Our modeling thus provides a general platform to
study recovery from brain pathologies arising from distur-
bances of brain metabolism.
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Studies on the olfactory system of insects have found that
Kenyon cells (KCs) show variable sensitivities to stimuli [1].
One of the mechanisms responsible for this could be the con-
trol of their activity level through their neural firing threshold.
Controlling the activity level of the KCs could have a posi-
tive impact on the discrimination capacity of the network. To
explore this hypothesis, we have used a similar model of the
insect olfactory system to the one in [2], which includes a learn-
ing algorithm capable of finding the best distribution of neu-
ral thresholds in KCs to solve a classification problem. After
training the model using a random threshold distribution and
other one adjusted by the learning algorithm to obtain different
levels of activity in the layer corresponding to the KCs. As a
first approximation to study the impact of threshold variability
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on the discrimination capacity of the system we measure the
similarity between the internal representations of the patterns
belonging to different classes using cosine distance [3].

The results are shown in (Fig. 1), using boxplots that repre-
sent the distribution of the cosine distances of the patterns of
one class to the patterns of the other classes. The first column
shows the similarity between the representations of classes
when the thresholds of the KCs are random. The thresholds
were initialized randomly with values in this range between
0 and the maximum number of inputs that a KC neuron can
receive, so it could be determined whether the threshold adjust-
ment made by the learning algorithm in the rest of the cases
results in better representations than the random case. The
second column in the figure shows the results for low activity
(s=0.1), the third for medium activity (s=0.5), and the last
one for high activity (s=0.9). It is clear that the only activa-
tion level for which the similarity between the representations
decreases is for the low activity level. This shows that a thresh-
old distribution that allows neurons to have different degrees
of sensitivity improves the case of random thresholds when
the activity level of neurons is kept low. This advantage is
lost as the specific threshold distribution in the KCs begins to
increase their level of activity. These results are coherent with
the findings of other studies like [4]. The fact that the control
and variation of the neural threshold in a population of neurons
improve its discrimination capacity could be one of the mecha-
nisms from which the generation of a sparse code in biological
systems is achieved, and leaves the door open to adapt this into
a bio inspired algorithm that could work in the context of deep
learning to improve the effectiveness of neural networks.
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Event-related potentials (ERP) are positive and negative
voltage deflections detected on the scalp related to a specific
stimulus. ERPs can be used to study and understand mem-
ory, attention, or as a control signal for brain-computer inter-
faces (BCI) [1]. Due to their wide utility, new technologies

have been offered to facilitate brain monitoring for ERP
detection e. g., dry ones, which are more comfortable and
require less set-up time than their wet counterparts. How-
ever, this modern technology still has problems to solve as
its low signal-to-noise ratio compared to traditional wet elec-
trodes [2], which are combined with the well-known prob-
lem of inter-and intra-subject variability in brain activity in
the context of precise detection of ERPs. Thus, it is neces-
sary to develop algorithms to improve the detection accuracy
of ERPs with dry electrodes. We propose to take advantage
of the hit vector, which is a feature vector obtained of the
characterization of ERPs with the maxAUC method [3] in
each electrode. This method benefits from the continuous
calculation of the area under the curve (AUC) in each epoch
of the EEG signal related to the presented stimuli, thus keep-
ing ERPs’spatial and temporal information structure. We
initially proposed the AUC calculation to convert the hit

@ Springer



5152

Journal of Computational Neuroscience (2021) 49 (Suppl 1):53-5204

vector into a scalar and thus rank each electrode. However,
along with the P300, other components such as the N200 are
generated [3]. Therefore, we propose the variance (VAR) as
another metric to qualify the electrodes from the hit vector.
We applied our methodology to a data set from a 12-subject
P300-based BCI experiment using dry electrodes on three
different days to study the variability. The results show that
characterizing the ERPs with maxAUC and scoring each
dry electrode with AUC and variance has an advantage over
choosing a set of standard electrodes (STD), traditionally
used in P300 detection. We tested our method with five con-
figurations of 1, 2, 3, 5, and 7 electrodes and recordings per-
formed on the same subjects on distinct days. Table 1 shows
the accuracy reached with a Bayesian classifier (BLDA) in
one electrode.

Table 1 Accuracy reached with one electrode. Cross-validation was
implemented with two sessions (one training and one test) by day.

STD AUC VAR

First day 45% 57% 62%
Second day 41% 62% 66%
Third day 35% 48% 56%

For the rest of the configurations, the precision achieved
with our methodology is higher, although with configura-
tions considering a larger number of electrodes the advan-
tage decreases. The results show that with AUC it is possible
to deal with data with a low signal-to-noise ratio, reduce
the number of electrodes and achieve better accuracy in
ERP detection. Finally, due to the minimal electrode con-
figuration search for each subject, it is possible to create
technologies to customize the detection of ERPs with better
performance managing variability, and being user-friendly.
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Temporal code-driven stimulation (TCDS) has been defined
as a closed-loop method for studying temporal sequences of
activity in complex biological systems [1]. It adds to a long
list of closed-loop stimulation techniques applied in neurosci-
ence research (e.g., since the generalization of dynamic clamp
methods [2]). Particularly, it provides an easy and generaliz-
able method to register, as binary codes, the sequential activ-
ity of a living system. It can be used to establish closed-loop
stimulation with a biological system by triggering stimuli after
the detection of predetermined sequences of events.

This method has been successfully applied to study weakly
electric fish signaling [1,3,4]. The properties of the elec-
tromotor system of weakly electric fish, which generates
electric signals in the water to communicate, enable TCDS
to be used to answer questions in the intersection between
computational neuroscience and neuroethology. In the case
of Gnathonemus Petersii, a species of pulse-type weakly
electric fish, patterns of sequences of pulse intervals (SPI)
have been related to behavioral responses [5]. Two of these
patterns — scallops and accelerations — were used here to
stimulate the fish during closed-loop stimulation sessions.
The relevance of minimal codes — 2 bits representing short-
term sequential activity — for the characterization of the
state of the system was addressed. Two different codes were
selected to trigger the stimuli: 01 and 11. Results from 29
experiments and 7 different specimens show that, even when
using such simple codes as triggers, distinct responses arose
from different codes. As indicated by preliminary results
using an aversive stimulus, these results hold as long as the
stimulation is presented in a closed-loop manner, regardless
of the shape of the stimulus [1].

This response of the system could be explained by an
increase of the probability of generating SPI patterns with
shorter IPIs — like scallops or accelerations — due to the pres-
ence of an artificial social context implemented by closed-
loop stimulation. TCDS also enables the use of triggering
codes with behavioral significance, which is expected to
evoke more significant changes in the SPI pattern generation.
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Feedback loops are relevant to understand complex dynamics
in neural systems. Closed-loops methodologies, in which the
system is stimulated based on its ongoing activity are well-
suited to study this kind of dynamics [1,2]. However, relevant
neural systems events frequently occur within or below the
milliseconds scale. Therefore, closed-loop tasks must be
implemented at this time range with appropriate precision.

To guarantee compliance with these temporal constraints, it
is convenient to use a real-time system, which performs tasks
and responds to certain asynchronous events within a deter-
ministic time frame. To analyze the performance of real-time
systems it is necessary to measure latency, which is defined
as the difference between the time when a task should start
and the time when the task actually starts.

A real-time implementation of a closed-loop stimulation
method known as Temporal Code-Driven Stimulation
(TCDS) [3] is presented here. This implementation uses
the Real-Time eXperiment Interface (RTXI), an updated,
open-source, flexible, and fast hard real-time framework spe-
cifically designed for research in biology and neuroscience
widely used by many laboratories [4]. The TCDS protocol
acquires a biological signal in real-time with the required
precision and binarizes it. The binary stream is used to
stimulate the system after the detection of a predetermined
binary code. This real-time protocol is useful for studying
how neural systems encode, decode, and process temporal
information, which is a complex task due to the high vari-
ability of temporal coding schemes that can even be mul-
tiplexed. A performance analysis is carried out measuring
latency values to verify that the TCDS protocol complies
with the temporal constraints for its correct operation. In
addition, a validation test of the protocol is performed using
an electronic neuron mimicking a living entity.

The average latency obtained during this performance analy-
sis is below the order of milliseconds and the maximum
latency obtained is below RTXI task period. Based on these
results, we can conclude that the implemented TCDS pro-
tocol using the RTXI tool fulfills the temporal requirements
for the study of temporal coding in a wide variety of neural
systems. Finally, the validation test results showed that stim-
uli are emitted after code detection in the electronic neuron
with a coherent response to the stimulation. These results
provide evidence of a successful TCDS implementation.
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The striatum is the input structure to the basal ganglia and
plays an important role in the selection of motivated behav-
iors. Its dysfunction is involved in some neurological disor-
ders. The processing of information from upstream regions
to the basal ganglia is believed to happen locally in the stria-
tum circuitry. While this implies that the striatal output is not
simply a relay station, it is still unclear how this processing
occurs and how the flowing information is shaped by the
striatal network components, and ultimately affects behav-
ior. It is also unclear how the presence of dopamine affects
these patterns. In previous work, we proposed a framework
for the striatal projection cells microcircuit based on lateral
inhibition among different functional units containing spiny
projection neurons from both the direct and indirect paths
[1], and argued that the asymmetrical architectures resulting
from experimental findings on the synaptic connectivity are
best suited to produce the behaviorally correlated patterns
where complementary “go” and “no go” cells are simultane-
ously active and switches between different types of behav-
iorally correlated patterns.

In this project we use biophysically plausible modeling,
computational simulations and experimental information
to systematically analyze the patterns that emerge in these
lateral inhibition medium spiny neuron (MSN) networks as
the result of the interplay of the intrinsic properties of the
participating neurons and the network architecture. We use
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two qualitatively different types of MSN models, differing in
their excitability properties, connected with GABA , inhibi-
tion with experimentally determined weight relations. One
was adapted from the equations presented in [2] (type II) and
the other combines information from the models previously
used in [3,4] (type I). The neuron models were systemati-
cally reduced to have two-dimensional subthreshold dynam-
ics. We implement realistic network architectures following
[1] and investigate the emerging patterns. We analyze the
different ensembles the neurons can form, their dependence
on the intrinsic cellular properties and the network con-
nectivity, and the effect of dopamine on these patterns. We
determine the dependence of the asymmetrical patterns on
the heterogeneity of both the weights of the lateral inhibitory
connections and the cellular properties. We compare our
results with other scenarios involving non-realistic architec-
tures and non-realistic neuron models (e.g., no active ionic
currents) to further establish the roles of the model building
blocks on the emerging network patterns. Furthermore, we
test the resonant properties of the networks and compare
between the two scenarios determined by the two model

types.
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Resonance refers to the ability of dynamical systems to
exhibit a peak in their amplitude response to oscillatory
inputs at a preferred (resonant) frequency. In neuronal cir-
cuits, resonance is typically measured by using the imped-
ance amplitude profile Z defined as the absolute value of
the quotient of the Fourier transforms of the output and the
input. Resonance has been investigated in single neurons by
many authors both experimentally and theoretically [1,2].
Network resonance has received much less attention. Two
important questions are (i) whether and under what condi-
tions a network of neurons exhibits resonance in one or more
neurons in response to inputs to one or more neurons, and
(ii) whether and under what conditions the information is
communicated between neurons in a frequency-dependent
manner.

In this project we address these issues by using a minimal
network consisting of two passive cells (linear, non-resonant
neurons) recurrently connected via graded synaptic inhibi-
tion or excitation and receiving oscillatory inputs in either
one or the two nodes [3]. In order to investigate how network
resonance emerges we extend the concept of impedance to
nonlinear systems by computing the peak-to-trough ampli-
tudes normalized by the input amplitude. In order to investi-
gate the communication of frequency-dependent information
across neurons in the network we borrow the concept of the
coupling coefficient from the gap junction literature. The
coupling coefficient K, defined as the quotient between the
postsynaptic and presynaptic membrane potentials of two
electrically coupled neurons, is used to measure the strength
of the connection in the presence of constant (DC) inputs.
Here we extend this metrics to synaptically connected neu-
rons and to the frequency domain. Linear networks (linear
neurons and linear connectivity) can only show a low-pass
filter K profile (K as a function of the input frequency). We
show that the presence of the more realistic nonlinear synap-
tic connectivity can produce band-pass K profiles. We note
that the concept of communication of information we use
here is different than the standard one used in information
theory.
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Neuronal synaptic inputs are processed in a frequency
dependent manner, exhibiting either low-pass or band-pass
(resonance) response properties [1]. Resonance is believed
to play a key role in the frequency-specific information flow
in neuronal networks. While the generation of resonance
by ionic conductances is well understood, less attention has
been paid to the dependence of the resonant properties on
the spatial structure of the cell and its voltage-dependent
characteristics. It is well established that the spatial structure
has a key role in supporting different and spatially segre-
gated mechanisms of resonance. Previous works [2] investi-
gated the generation of resonance in CA 1-pyramidal neurons
due the presence of different currents distributed along the
cell. The authors uncover two mechanisms: a somatic M-res-
onance at depolarized levels and a dendritic H-resonance at
hyperpolarized levels. However, the mechanisms by which
the interplay of these two mechanisms occurs are not well
understood and it is not clear what interactions will ensure
due to the presence of voltage heterogeneities along the cell
such as these expected to be present in realistic conditions
due to inhibitory inputs coming from PV + (proximal) and
OLM (distal) interneurons.

In this work we show how the mechanisms mentioned above
interact at subthreshold level due significant differences of
voltage across the cell membrane and generate new filtering
regimens and resonant profiles, thus modifying the dendro-
somatic integration and signal transmission across the neu-
ron. For this, we build a simple reconstruction of a biophysi-
cal neuron derived from standard multicompartment models.
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The model exhibits great flexibility to support different volt-
age distributions and when the DC-terms are applied with a
spatial distribution mimicking the potential inhibitory input
patterns, the difference between the somatic and distal com-
partment resting voltage values could be sufficient to activate
or inactivate different mechanisms simultaneously. With a
minimum amount of currents, this model can recreate the
classic results about the coexistence of different resonant
mechanisms and also produce new scenarios with interac-
tion between them. Futher, we obtain the network impedance
profile [3] and show that the spatial structure determines
differences of magnitude between somatic and dendritic
responses. These differences are then amplified by ionic
currents and change for different H-channels distributions
[4]. Finally, we study the implication this has for the signal-
attenuation profile, such as the appearance of phasonance
and frequency bands with less attenuation.
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Neuronal oscillatory patterns can be characterized by a num-
ber of attributes such as frequency, amplitude, duty cycle,
characteristic transition times between silent and active
phases, and number of spikes per burst. The values of these
attributes are determined by the interplay of the participat-
ing currents and, for the appropriate currents, can be cap-
tured the maximal synaptic conductances. Experimental and
theoretical work has shown that multiple combinations of
parameters can generate patterns with the same attributes
[1-4]. This endows neurons and networks with flexibility
to adapt to changing environments and is substrate for home-
ostatic regulation [4]. At the same time, it presents model-
ers with the phenomenon of unidentifiability in parameter
estimation. Attribute Level sets (LSs) in parameter space are
curves (surfaces or hypersurfaces) joining parameter values
for which a given attribute is constant. Typically, but not
always, LSs are attribute-dependent [2]. In previous work we
have characterized the dynamic compensatory mechanisms
leading to the generation activity-attribute LSs in realistic
models for single neurons [2]. Whether and under what cir-
cumstances the attribute LSs for individual neurons are con-
served in the networks in which they are embedded and what
additional network level sets emerge is not well understood.
In this work we describe a canonical (C-) model for oscil-
lations LSs for single cells exhibiting a wide range of real-
istic neuronal oscillatory patterns. The model is canoni-
cal in the sense that all attributes share the same LS (the
oscillations are identical along LSs) and can be considered
as an idealization of the familiar, conductance-based two-
dimensional models. A systematic symmetry breaking in
the C-model leads to the familiar phase-plane diagrams for
neuronal oscillations and to the separation of LSs for differ-
ent attributes. The LSs for individual C-cells are preserved
in networks of C-cells connected via gap junctions where all
cells belong to the same LS, but are not necessarily identical.
In contrast, LSs are not preserved for excitatory or inhibi-
tory networks, except for certain connectivity patterns for
which the model symmetries are maintained. However, new
level sets emerge in these networks. We characterize them in
terms of the single cell LSs and the connectivity parameters
for both homogeneous and heterogeneous networks where
individual cells are identical or not, respectively, within the
considered LS. We extend our results to include biophysi-
cally plausible conductance-based network models.

References

1. Prinz AA, Bucher D, Marder E. Similar network activity
from disparate circuit parameters. Nature neuroscience. 2004
Dec;7(12):1345-52.

2. Rotstein HG, Olarinre M, Golowasch J. Dynamic compen-
sation mechanism gives rise to period and duty-cycle level



Journal of Computational Neuroscience (2021) 49 (Suppl 1):53-5204

S157

sets in oscillatory neuronal models. Journal of neurophysiol-
ogy. 2016 Nov 1;116(5):2431-52.

3. Olypher AV, Calabrese RL. Using constraints on neuronal
activity to reveal compensatory changes in neuronal param-
eters. Journal of Neurophysiology. 2007 Dec;98(6):3749-58.
4. Olypher AV, Prinz AA. Geometry and dynamics of activ-
ity-dependent homeostatic regulation in neurons. Journal of
computational neuroscience. 2010 Jun;28(3):361-74.

P158 Flexible selection of cognitive tasks and memory
suppression in a hippocampus — prefrontal cortex net-
work regulated by the nucleus reuniens

Rodrigo Pena', Horacio Rotstein’

'New Jersey Institute of Technology, Federated Depart-
ment of Biological Sciences, Newark, NJ, United States of
America

2New Jersey Institute of Technology, Federated Department
of Biological Sciences, NJIT / Rutgers University, Newark,
NJ, United States of America

Email: pena@njit.edu

Our ability to switch and perform an action in response to
some attended information is known as cognitive flexibility.
The prefrontal cortex (PFC) is responsible for selecting and
flexible routing oscillatory information (item) from the hip-
pocampus (HPC) to the target areas [1]. These may receive
commands from PFC to suppress items in HPC (retrieval
suppression). Recently, a PFC model [2] showed that mul-
tiple stored items could be selected by making use of firing
rate resonance (fr) and lateral inhibition. There is evidence
PFC and HPC transient coupling via oscillatory-synchrony
is favored by the nucleus reuniens (Re) [1]. This raises the
questions of how these structures cooperatively operate and
what are the dynamic mechanisms behind it.

We address these issues by developing a PFC-HPC model
which extends [2]. It includes (i) simpler neurons, which
allows for a mechanistic understanding of flexible routing,
(i1) an HPC network with local inhibition from interneurons
(IN) preferentially to closer principal cells (PC), and (iii)
relative input/output activity ratios in PFC [3]. The HPC
network receives square-wavePoisson modulated spikes with
different frequencies and keeps multiple oscillatory activity.
Third, it also contains external Re input which influences the
cognitive selection and memory suppression [3]. We con-
sider 2D conductance-based neuron models [4] where 20
PC connect to all 5 IN in a single PFC gate. A second gate
also connects to the same IN population. The HPC network
contains 850 PC and 250 IN. Whichever PCs in the gate
receives an input frequency from HPC closer to fr will fire

more and engage with the IN population suppressing other
cells from the network. PC and IN have different fr, thereby
engaging with IN is more important in order to suppress the
other item. In accordance with [2], (ii) and (iii) are the only
necessary ingredients to observe this effect in the PFC.
Our results show that chosen inputs by PFC, given its prox-
imity with the gate’s internal fr, can be switched by the
activity from Re which alters the periodicity of the selected
item. In addition, Re input into PFC can awaken an other-
wise suppressed gate and engage with HPC reversing the
direction flow. This shows the importance of Re in routing
oscillatory-synchrony HPC-PFC in both directions [3]. We
also show the relevance of HPC local inhibition to main-
tain many stored items in the same network. There is more
flexibility if Re area controls HPC-PFC since it creates
competition between PFC resonant networks in cognitive
selection and HPC memory storage through activation of
local inhibition.
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A sharp peak near zero in cross-correlation functions
(CCFs) indicates the presence of a putative monosynap-
tic connection between the pre- and post-synaptic neurons
[1,2]. However, CCFs are complex and contain significantly
more information about the spiking pattern relationships
[2]. Some of this information is apparent from the spiking
patterns themselves, but spiking patterns are controlled by
the neuronal subthreshold (membrane potential) dynamics
whose effects remain hidden in CCFs. Whether and how the
subthreshold dynamic information of post-synaptic neurons
can be extracted from CCFs remains an open question. This
is not a straightforward task since in vivo neuronal interac-
tions occur in the presence of background noise, oscillatory
network activity, and resonances which very often can give
rise to similar spiking patterns as subthreshold mechanisms
making it difficult to disambiguate the source of the pattern.
We address this issue by combining biophysical modeling,
numerical simulations, and dynamical systems tools (phase-
space analysis). By systematically focusing on a wide num-
ber of representative scenarios we identify the presence of
additional, lower peaks in the CCFs and link them to the
type of nonlinearities and time scales that operate at the neu-
ronal subthreshold level. Under certain conditions, the com-
bination of these dynamic components which result from the
neuron’s biophysical properties cause a subset of trajectories
in the phase-space diagrams to remain at subthreshold mem-
brane potential levels for a longer time than others before
escaping the subthreshold regime and producing a spike.
The variability of this spike-time delay is due to a combina-
tion of noise and intrinsic dynamics. Similarly, our observa-
tions show that lower peaks also emerge in the presence of
background oscillations or ripples, but these come from a
second wave of spikes and not from subthreshold delayed
spikes. We discuss the differences between these two types
of peaks. Our results shed light on the mechanisms underly-
ing monosynaptic interactions and more general synaptic
and background patterns.
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Auditory nerve fibers (ANFs) from the center to the edge
of the cochlear spiral are tuned to progressively higher fre-
quencies. This results in the sound frequency being "place
coded", which is an important property of the ANF response.
Several methods have been proposed and used in auditory
models to encode the real-valued vibrations of the basilar
membrane into discrete ANF neural signals. However, it is
not known to what extent these spike encoding methods can
encode the frequency of sounds. In this work, we investi-
gate the amount of information that these methods carry in
their population response on the instantaneous frequency of
a time-dependent sound stimulus.

We first generate a simple stimulus that consists of random
continuous frequency modulations in the range of 100 Hz to
10 kHz. We then extract a cochleagram representation from
the stimulus, which is a rough approximation of auditory nerve
fiber discharge probabilities, using a Gammatone filter bank.
We encode the cochleagram into spikes with a population of
neurons with a spike time resolution of 1 ms. We use four
encoding methods: ISC (Independent Spike Coding with an
inhomogeneous Poisson process), SoD (Send-on-Delta, based
on the delta modulation sampling strategy) [1], BSA (Ben's
Spiker Algorithm, based on stimulus estimation by reverse
convolution) [2], and LIF coding (by injecting the cochleagram
as current to Leaky Integrate-and-Fire neurons). To probe the
place coding of frequency, we investigate how much informa-
tion the instantaneous neuronal population response in time
carries on the time-dependent instantaneous frequency of the
sound stimulus, for each encoding method. To do so, we esti-
mate the mutual information between these two variables. In
doing this, we take into account any latency due to the pro-
cessing of the spike encoding methods by finding the time
delay between the two time series which maximizes the mutual
information. We estimate this information for a wide range of
mean firing rates by varying the parameters of each method
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Fig.1 The information that the population response encodes on the
instantaneous frequency of the sound stimulus. The y-axis is normal-
ized by the total available information. The x-axis is the mean firing
rate of the response which depends on the parameters of the encoding
methods. BSA is limited in firing rate by design. LIF coding is the
most efficient method

(Fig. 1). The instantaneous frequency is quantized into 8 levels
yielding a quasi-uniform distribution, and the total available
information is about 3 bit. To make sure our mutual informa-
tion estimation is reliable, we use a stimulus long enough such
that the estimated error (shuffling bias) is less than 0.02 bit. We
use the quadratic extrapolation method to correct for bias in all
mutual information measures [3].

We observe that the encoding methods peak in mutual infor-
mation at different mean firing rates. The most efficient
method to place code frequency is Leaky Integrate-and-Fire
coding, which captures about 80% of the available informa-
tion at a low firing rate of about 180 Hz (Fig. 1). This result
is relevant for applications in which sound stimuli have to be
transformed into spike representations in a biologically plau-
sible way, like in computational modeling of the auditory
system, in neuromorphic silicon cochleae (which are audio
sensors that output asynchronous spikes), and in biologically
plausible spiking neural networks used in audio applications.
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In Chapter 9 of his book, "Dynamical systems in neuro-
science", Izhikevich describes the deterministic dynam-
ics of various types of neurons which emit a number of
rapid spikes with quiet intervals between these bursts. In
this study we explore the stochastic pattern of bursts which
results from including in the model the random noise which
plays a part in the behaviour of any active neuron. The inter-
spike interval histogram, which uses long simulation runs
of the process and plots the number of occurrences of times
between bursts as a function of time, is an estimator of the
probability distribution of times between bursts, and is a
useful characteristic of such a model. Here we extend an
earlier study of the sample path behaviour of the stochastic
Morris Lecar process to the case of a Morris Lecar family
of bursters.
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Synchronization in neural system plays important role
in many brain functions such as perception and memory.
Abnormal synchronization can be observed in neurological
disorders such as Parkinson’s disease, schizophrenia, autism,
and addiction. Neural synchronization is frequently inter-
mittent even in a short time scale. That is, neural systems
exhibit intervals of synchronization followed by intervals
of desynchronization. Thus, neural circuits dynamics may
show different distributions of duration of desynchronization
even if the synchronization strength is similar, and it was

@ Springer



5160

Journal of Computational Neuroscience (2021) 49 (Suppl 1):53-5204

found that the patterning of neural synchrony (even if the
overall synchrony strength is not changed) may be correlated
with behavior [1-3]. In general, some partially synchronized
systems can exhibit a few but long desynchronized inter-
vals while other systems can yield many but short desyn-
chronized intervals. Experimental data thus far has shown
that neural synchronization follows the latter trend in either
healthy or diseased brains [4,5]. In this study, we use a con-
ductance-based PING network to study neural synchroniza-
tion specifically in the low gamma band. We explore the
cellular and synaptic effects on the temporal patterning of
the partially synchronized model gamma rhythms and con-
siders potential functional implications of different temporal
patterns. We found that changing synaptic strength does not
only change the average synchronization index but also alter
the temporal patterning of synchronization (and these two do
not necessarily co-vary in the same way). Stronger synapses
from inhibitory to excitatory neurons and from excitatory
to inhibitory neurons promote shorter desynchronizations,
while stronger connections between inhibitory cells may
have an opposite effect. However, in almost all the cases,
short desynchronizations were the most frequent, similar to
the experimental observations.
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We investigate optimal control strategies for a biophysical
mean-field model of excitatory and inhibitory neural popula-
tions [1]. Efficient stimulation can drive the model into spe-
cific activity patterns. We compute optimal control strategies
for this nonlinear dynamical system to understand how to
efficiently apply external perturbation to neural populations.
This can give insights into the interaction of excitation and
inhibition during state changes in neural activity. Also, it can
help understand how external stimulation should be designed
to optimally induce or stop specific activity patterns.

Our model is a mean-field approximation of the adaptive
exponential integrate-and-fire model [1]. It consists of an
excitatory and an inhibitory node with feedback and feedfor-
ward couplings, which receive external input. These exter-
nal currents define the dynamical landscape of the system.
There is a stable up state, a stable down state, oscillations,
and a bistable region. Studying optimal control strategies
for a biologically plausible model of neural dynamics might
enable efficient perturbation strategies as opposed to ad-hoc
stimulation protocols found by trial and error. The concept
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of optimality requires to measure the cost of a control and
the resulting neural activity. The total cost is the sum of
the precision cost (how much does the activity differ from
a defined target?), the sparsity cost (is control applied over
extended periods of time and through one or both nodes?),
and the energy cost of the control [2]. The optimal control
is the control that has minimum cost (Fig. 1).

As a first exploration into the potential of such optimal con-
trol strategies, we investigate transitions from down to up
or from up to down state throughout the bistable regime,
imposing constraints on either sparsity or energy. We com-
pute the optimal control for these state switching tasks with
an iterative algorithm. In each step, it first applies the adjoint
method [3] to compute the control gradient, and second
approaches the optimum control by gradient descent. This is
done numerically within neurolib, a simulation framework
for neural modeling [4].

The optimal control at one particular point in the state space
is shown in the figure. We analyze dimensionality (does the
control use both nodes, or one node?), amplitude, and cost
of the bell-shaped control currents. Enforcing energy effi-
ciency leads exclusively to two-dimensional solutions (con-
trol is applied through both nodes). Enforcing sparsity can
lead to solutions where control is applied through either the
excitatory or inhibitory node, as well as to two-dimensional
solutions. Which type is found depends on the location in
the state space. Control through excitatory and inhibitory
currents is inherently different in a sense that firstly, inhibi-
tory control is sparser, and secondly, energy-efficient control
operates primarily through the excitatory node.
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The functional role of the observed neural and behavioural
variability in repetitions of the same task is a fundamen-
tal question in neuroscience [1]. However, the relationship
between trial-by-trial shared variability (noise correlation)
and behavioural performance is heterogeneous [2]. For
instance, it has been proposed that neuronal pairwise cor-
relations might not always serve as a proxy for behavioural
performance, since only the variability along the encoding
axis is detrimental to information transmission [3].

In this study, we investigate the complex relationship
between predictability of optimal choices, correlations, and
stable states in rodent lateral orbitofrontal cortex (OFC)
ensembles. The OFC has been associated with multiple
behaviourally relevant variables in the decision-making
task space. However, unlike in other frontal areas, the OFC
signature of whether optimal choices are or are not predict-
able from previous trials outcomes is less established [4].
We used a two-choice interval-discrimination task, designed
such that the rewarded stimulus is repeated in the upcom-
ing trial after an incorrect choice, and thus it can be pre-
dicted. Methodologically, we demonstrated the mapping
between noise correlations of order 6, decoders operating
in specific high-dimensional Hilbert state-spaces, and stabil-
ity of ensemble states associated with correct choices. This
mapping enabled us to explore the full space of all possible
0-order correlations, not directly accessible computationally,
leveraging Bayes-optimal kernel classifiers [5].

Results showed that only states associated with correct
choices that can be predicted from the previous trial out-
come, are effectively decoded [5]; and showed higher posi-
tive noise correlations [2,5]. Moreover, such states behaved
as attractors embedded in a high-dimensional state-space
spanned by all possible constellations of up to =3 cor-
related units. However, both incorrect and unpredictable
choice outcome states were unstable in the state space, and
non-decodable. This was due to strong negative correlations
occurring before stimulus presentation. These phenomena
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were significantly weaker for pairwise correlations and for
other correlation orders.

Our results suggest that the successful processing of the task
by I0OFC ensembles could map to long-lasting metastable
states over trials. Such metastable states gain stability when
the optimal choice is deterministic and behaviourally rel-
evant by attenuating triple-wise negative correlations; and
destabilize otherwise [5].
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Slow oscillations are a pattern of synchronized activity com-
monly observed in the cerebral cortex, characterized by the
alternation of high (Up) and low activity states (Down).
The structure of local brain networks underlying such char-
acteristic activity pattern is largely unknown.

In order to fill this gap, we study the evolution in time of
network structure during synchronized (isofluorane anes-
thesia) versus desynchronized activity patterns during the
awake state.

We recorded the activity from head-fixed mice expressing
gCampbs calcium indicator in a window of 1 mm side on
the temporal lobe that allowed monitoring the simultaneous
activity of ~200 neurons. Calcium images were preprocessed
to identify neuronal cell bodies, extract the mean calcium
fluorescence signal of each neuron and reconstruct the spike
train of each neuron [1].

We used Fano Factor of calcium spike times to measure
network synchronization. We estimated the time evolving
network topology with a sliding window approach, where
for each window we calculate the L1-regularized precision
matrix of fluorescence traces. As a result, we obtained a time
sequence of functional networks.

Our results are summarized as follows: During synchronized
periods of Up and Down states, population events (groups
of spikes emitted by different neurons in a short time win-
dow) alternated with silent periods that are characteristic
of slow oscillations. Network synchronization as measured
by the Fano Factor increases at the beginning of a popula-
tion event, then decreases and increases again at the end of
the population event (Fig. 1). Although electrophysiological
recordings have suggested that the majority or all neurons in
the network contribute to Up states [2], our results revealed
that during each population event only part of the observed
network synchronizes giving rise to a so-called chimera state
(where synchrony and asynchrony coexist) [3]. As previ-
ously reported [4], these Up-like states were represented by
repeating neuronal ensembles. Interestingly, we show that
these ensembles present a non-trivial network structure char-
acterized by the presence of a rich club of highly connected
hub neurons connected to peripheral (less connected) nodes,
which produces negative assortativity. During the awake
state, the activity in the network was generally higher and
less synchronized, although some population events could
still be identified. These Up-like events were less synchro-
nous and their structure more similar to that of a randomly
connected network.
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The cerebral cortex exhibits a rich dynamic repertoire of
activity ranging from highly synchronized to desynchro-
nized states. Each of these states, either physiological or
pathologic, can be characterized by its spatiotemporal com-
plexity. An approach used in the clinic to quantify cortical
complexity is the perturbational complexity index (PCI),
which quantifies the causal interactions that follow an exog-
enous perturbation of the cortex [1]. It consists of estimating
the Lempel-Ziv complexity of the spatiotemporal matrix
of cortical activation after perturbation. However, how do
cellular, synaptic and network parameters modulate cortical
spatiotemporal complexity? In cortical processing there is
co-occurrence of excitation and inhibition both during spon-
taneous activity and in response to stimulation. To shed light
on the role of inhibition in cortical complexity, here we pro-
posed a data-driven biophysically detailed two-dimensional
computational model to investigate the relevance of fast inhi-
bition, GABA-A receptors-mediated, and slow inhibition,
mediated by GABA-B-Rs.
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Our model consists of pyramidal and inhibitory conduct-
ance-based neurons randomly distributed and interconnected
through biologically plausible synaptic dynamics within a
local range [2]. The model is able to reproduce spontane-
ous activity in the form of slow oscillations (SO, character-
ized by Up and Down dynamics) as well as evoked activity
by means of external perturbation. In our model, fast and
slow inhibition modulated Up and Down dynamics. During
spontaneous activity, the progressive blockage of GABA-A
resulted in a shortening of Up states and elongation of Down
states while the progressive blockage of GABA-B resulted in
a gradual elongation of Up and Down states. During evoked
activity, the progressive reduction of GABA-A and GABA-
B resulted in a decrease in the PCI. We took advantage that
the model allowed us to explore a larger parameter space
than the experiments did, and so we did a parametric varia-
tion of the inhibition levels. We explored the effects of fast
inhibition on PCI also by enhancing inhibition and found
that there is a window of excitatory/inhibitory balance in
which complexity was maximal, but either enhancing or
decreasing inhibition diminished complexity. Indeed, we
observed that during SO, a disinhibited network was fully
integrated, while weakly segregated, giving rise to activation
waves that rapidly spanned the whole network. Conversely,
in an inhibited network, the spontaneous activity was highly
segregated and weakly integrated, and the activation waves
propagated more locally and did not span over the whole
network. Nonetheless, where there was a balance between
integration and segregation, the activation waves spanned
over the whole network recruiting their nearest neighbors.
Our findings suggest that there is a close link between inte-
gration and segregation with E/I balance and that higher/
lower PCI values are not the consequence of merely increas-
ing/decreasing excitability.
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Spatiotemporal patterns of neural activity, often called brain-
waves, have been established as common expressions of the
collective dynamical behaviour of neurons over mesoscopic
[1-4] and macroscopic [5—8] spatial scales. Recently,
it has been shown that macroscopic wave patterns can be
simulated in whole-brain oscillator networks derived from
human MRI tractography, when oscillator dynamics reflect
the mean activity in a cortically localised neural aggregate
with a high degree of biophysical fidelity and nearby regions
exert strong influences on each other’s dynamics [9]. How-
ever, until now, it remained unknown whether whole-brain
waves also emerge with realistic, tractography-based time
delays, though distance-dependent delays are well known
to contribute to the formation of spatial patterns [10]. We
simulate whole-brain waves with delays empirically derived
from human MRI tractography, and develop a classification
system for the array of resulting dynamics. We utilise a
dual approach to characterising patterns in 3-dimensional
space. Firstly, we follow previous research in calculating
3D flow-fields [9], making use of the neural-flows toolbox
(https://github.com/brain-modelling-group/neural-flows).
The resulting flow patterns are described as sinks, sources,
travelling waves, rotating waves, diverging waves, or com-
plex waves. Secondly, we assess the local phase coherence
[11,12] of patterns by use of a time- and node-averaged
Kuramoto local order parameter, and describe dynamics as
synchronised, coherent, partially coherent, or incoherent.
Simulations exhibiting a variety of dynamical behaviours
are obtained by varying global coupling strength, global
conduction speed, and time delay spatial structure. We clas-
sify each simulation into one of 6 classes, constructed by
observation of common pairings of a particular flow pattern
and coherence description.

We find that wave patterns emerge most strongly (i.e., with
a high degree of local phase coherence) when global cou-
pling strength and global conduction speed are high. We also
find that while wave patterns with a high degree of coher-
ence can occur even when time delays have been completely
restructured, the empirical delay structure preferentially sup-
ports a stable coherent rotating wave when global coupling
strength and conduction speed are sufficiently high. Other
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Fig. 1 Dominant flow patterns
arising from dynamics under
tractography-data based delays
change with network global
coupling strength and global
conduction speed
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delay structures tend to either obliterate large-scale patterns
(i.e., have very low local phase coherence) or support coher-
ent activity with a variety of flow patterns other than the
stable rotating wave (Fig. 1).
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Long-term potentiation (LTP) and long-term depression
(LTD), the ability of a synapse to enhance or weaken its
strength, is believed to be a biological basis of learning and
memory. Hippocampal synaptic plasticity is modulated by
the alterations in neuronal intrinsic excitability. Intrinsic
excitability and synaptic plasticity are affected in Alzhei-
mer’s disease (AD), a neurodegenerative disorder, character-
ized by progressive memory loss and cognitive dysfunction.
In the early stage of AD, hippocampal learning impairment
is observed due to the accumulation of amyloid precur-
sor protein (APP) metabolite APP intracellular fragment
(AICD) that modifies intrinsic excitability of hippocampal
CA1 pyramidal neuron and disrupts synaptic plasticity [1].
In this study, we investigated the effect of altered intrinsic
excitability on synaptic plasticity in a hippocampal CA1
pyramidal cell affected by AD using a computational mod-
eling approach. We used a detailed compartmental model
of a hippocampal CA1 pyramidal neuron [2] and included
the influence of AICD by altering the small-conductance
calcium-activated potassium channels (SK), L-type cal-
cium channels, and contribution of the GluN2B-containing
NMDA receptor (NMDAr). A modified NMDAr depend-
ent voltage-based synaptic plasticity model [3] was used to
analyse synaptic plasticity changes at clustered Schaffer col-
lateral synapses. Each cluster contained 50 synapses distrib-
uted along the dendritic branches with densities in a range of
0.05 to 1.0 synapse/pm. The synapses were stimulated with
1 Hz for 900 s to induce LTD and 2 bursts of 100 Hz for 1 s,
separated by 2 s window for LTP [1]. The results show that
altered neuronal intrinsic excitability due to the increased
AICD production disrupts LTP leaving LTD intact. Elevated
AICD levels enhance NMDAr expression and lead to SK
channel overactivation, thus reducing neuron sensitivity to
the incoming presynaptic inputs for high frequency LTP
induction protocol. Contrary, neuron adequately responds
to low frequency stimulation and maintains LTD. Partial
blockade of NMDAr restores normal SK channel function
and rescues LTP. These findings provide insights into the
pathological dynamical effects of AICD on NMDAr, SK
channel properties, the resulting neuronal intrinsic excitabil-
ity and impaired synaptic plasticity.
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Pyramidal neurons commonly fire with short bursts of high
frequency. [1] used a computational model of pyramidal
neurons to understand if particular spatial and temporal fea-
tures in neuronal inputs trigger these bursts, which would
suggest that these firing patterns represent special neuronal
coding. Their two-compartmental model fired bursts most
often at the positive slopes of both sinusoidal and natural-
istic inputs.

Here, we simplify their model, with the view of a more
efficient simulation and implementation on neuromorphic
hardware. We do this by investigating whether the same
behaviours from their model can be seen in a network of
intrinsically bursting (IB) Izhikevich neurons [2]. We create
a comparably similar input signal of Gaussian white noise
(sampling rate fs=400 Hz, p=0.003, and 6 =0.005) and
use a 20 Hz Butterworth low-pass filter. It was first injected
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Fig. 1 Depiction of the IB
Izhikevich neurons’ response
to the first 1s of stimulus. The
e spiketrain shows the response | |} \
for the input current as shown, 0.002 -|
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as input current directly into an excitatory IB Izhikevich
neuron. The input current was then inverted and injected into
the same neuron to obtain the inhibitory response, investigat-
ing whether the neuron has the bidirectional slope detection
demonstrated in the Kepecs model [1].

The results show that the neuron fires most often at the posi-
tive slopes and also demonstrates bidirectional slope detec-
tion (Fig. 1 shows an example of this behaviour), specifically
for the low-pass filter cut-off frequency fc >20 Hz. There-
fore, the IB Izhikevich neuron can indeed display similar
behaviours in comparison to theKepecs model [1].
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Our ability to sense, think, and react emerges from neural
interactions at all scales, thus methods investigating such
causal relationship is essential to the study of brain functions.
A rich repertoire of statistical methods has been introduced to
the field. Still, it remains difficult to efficiently and correctly
estimate the network connection, especially the connection
direction [1]. Our previous work empirically evaluated dif-
ferential covariance (dCov) [2], calculated as the covariance
between the derivative signal and the original signal, and
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then demonstrated its superior performance in detecting net-
work connections. In this paper, we explored the intrinsic link
of dCov to dynamical systems and modified it for dynami-
cal differential covariance (DDC). After formulating system
equations of multiscale neural dynamics, DDC was derived
analytically and validated in both simulations and real data-
sets. In networks with common false positive motifs governed
by various dynamics, DDC could correctly estimate both the
existence and direction of ground truth connections with low
bias and variance. In addition, DDC retrieved ground truth
connections with high sensitivity in both microscopic and
macroscopic neural dynamic simulations. Furthermore, using
the Human Connectome Project (HCP) resting state fMRI
(rs-fMRI) recordings, DDC consistently picked up regional
interactions with stronger structural connectivity, measured
by diffusion MRI (dMRI) [3], at the individual level. Com-
pared to the empirical dCov, DDC has higher noise tolerance
and higher sensitivity. Moreover, it has the potential to adapt
to different interacting dynamics and recording techniques.
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At the onset of sensory stimulation, the variability and co-
variability of spiking activity is widely reported to decrease,
especially in cortex. Considering the potential benefits of
such decreased variability for coding, it has been suggested
that this could be a general principle governing all sensory
systems. Here we show that this is not so. We recorded
mitral cells in olfactory bulb (OB) of anesthetized rats and
found increased variability and co-variability of spiking at
the onset of odor stimulation. Using models and analysis,
we predicted that these increases arise due to network inter-
actions within OB, without increasing variability of input
from the nose. We tested and confirmed this prediction using
optogenetic stimulation of OB in awake animals. Our results
establish increases in spiking variability at stimulus onset as
a viable alternative coding strategy to the more commonly
observed decreases in variability in many cortical systems.
Simultaneous microelectrode array recordings were made
from the OB and anterior piriform cortex (aPC), with and
without an odor stimulus (1120 cells, 17,674 pairs, 10 tri-
als). An odor (Ethyl Butyrate) was presented for 1 s, from
which we computed the population firing rate (i.e., the
PSTH), spike count variance, and spike count covariance in
100 ms overlapping time windows (Fig. 1A). In contrast to
recordings in cortex, measures of variability and covariability
in OB increased when the stimulus was presented (Fig. 1A).
In order to explain this, we studied a minimal microcircuit of
7 cells with 2 representative glomeruli (Fig. 1B) each with
a Periglomerular and Mitral cell. Three granule cells pro-
vided inhibition; two independent to each glomerulus, and
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Fig.1 A Recordings in anesthetized rats show evoked increases in
variability (variance and covariance too, not shown), 1120 cells,
17,674 pairs, averaged over 10 trials; gray regions represent popula-
tion heterogeneity. B Two glomeruli model focusing on individual
(WMG) and shared (wGc) inhibition, and excitation (wGM). C
wMG >wGM >wGc captures data best. D Small, fixed ORN input
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a third common to both glomeruli. Each cell was described
by a firing rate model in the form of a stochastic differen-
tial equation. The transfer functions, synaptic variables, and
time-scales are all derived from a detailed biophysical model
[1] for each cell type. To identify the circuit mechanisms
consistent with our experimental data, we considered both:
i) the dynamics of plausible olfactory receptor neuron input
noise (presynaptic to OB) that capture our data, ii) whether
the OB synaptic strengths were a factor, focusing on those
known to modulate mitral cell activity [2,3]: independent
granule cell inhibition of mitral cells (WMG), shared granule
cell inhibition (wGc), and mitral cell excitation of granule
cells (WGM). We calculated model PSTH for 10,000 points
that fill the 3D volume of parameter space (Halton sampling)
and retained those which matched the experiments within a
certain tolerance.

We found that granule inhibition to distinct MCs must be
relatively strong, while shared GC inhibition among MC
must be weak (Fig. 1C). Qualitatively matching our experi-
mental data is not automatically ensured but requires specific
combinations of co-tuned parameters (Fig. 1E). Importantly,
we also found that total error between model and data are
minimized when the ORN input noise is relatively small
and fixed (Fig. 1D). Thus, we predict that evoked increases
in OB variability does not require increases in ORN input
noise. In awake mice with direct optogenetic OB stimulation
(Fig. 1F) that circumvents the ORN pathway [4], we indeed
verify our prediction.
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Our brain works with a complex network of hundreds of mil-
lions of components, cells. With recent advances in meas-
urement technology, the measurable size of data on brain
connectivity is becoming larger. Therefore, more efficient
compression methods are becoming more important. This
study utilized a Deep Neural Embedding (DAE) technique
to compress ~1000 neuronal functional connectivity [1] into
small data as the form that can be fully recovered. We then
analyzed what features of the brain were captured by the
compressed data, comparing it to several network variables
and principal components (PC). We also compared perfor-
mance of DAE with that of Principal Component Analysis
(PCA), a commonly used linear dimensional compression
method.

Fig. 1 The network pattern
: (a)
shows a functional neuronal
connectivity pattern. Here, the
marker sizes show Degree in
panel (a), Betweenness Central-
ity in panel (b), and a new
metric in panel (c)

We could expect that DAE extracts features within the range
of human explanations and may also extract features that are
beyond the range of human explanation. Therefore, we not
only tried to interpret the extracted features by widely com-
paring them with representative network-metrics, and but also
designed a new metric, which is not commonly used for net-
work analyses to complement the difficult features to simply
interpret. This compression scheme will help us to effectively
extract rules of various complex connectivity architectures.
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In Parkinson's disease (PD), the relationship between cor-
tical thinning and various physical and mental symptoms
is not fully understood. Here, we attempted to predict PD
symptoms from cortical thinning patterns in PD patients.
We evaluated the motor and non-motor symptoms of 181
PD patients treated at Kyoto University Hospital using neu-
rological tests, neuropsychological tests, and questionnaires.
In addition, head MRI was also recorded, and T1-weighted
images (MPRAGE) were obtained. Then, we determined
cortical thickness for T1-weighted images using FreeSurfer
(ver. 6) by dividing cortex into 180 unilateral regions (360
bilateral regions) based on the HCP-MMP1 atlas.

(b) (c)
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and even-numbered tasks are listed on the left and right respectively.
Here, we used omitted names of tasks and subcategories to express
individual tasks

Fig. 1 Dendrogram of behavioral tasks based on Spearman correla-
tions, which reflect individual differences in scores of tasks. The den-
drogram is colored just to identify branches of subgroups easily. Odd-
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From the dataset, first, we drew a dendrogram based on the
Spearman correlations (Fig. 1), which evaluates the simi-
larity of individual differences in behavioral performance
among tasks, and we were able to naturally classify clinical
tasks close to known domains. Second, we predicted the
clinical-task performances based on combinations of cortical
thickness in all cortical regions using a a machine learning
algorithm. Because we found age severely affected to indi-
vidual difference of many tasks performances, we will report
the prediction result after correcting the effect of age in the
main conference.
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Hypothalamic neurons that synthesize the neuropeptide
melanin-concentrating hormone (MCH) are active during
waking and REM sleep. We used deep-brain calcium fluo-
rescence imaging to identify individual hypothalamic neu-
rons that contain MCH. Previous in-vivo electrophysiologi-
cal studies established a linear relationship between neural
depolarization and calcium fluorescence in MCH neurons.
Spatial and temporal correlation maps of the change in fluo-
rescence between pairs of MCH neurons revealed local cou-
pling among neurons and the changes in connectivities that
take place at the transition between REM sleep and explora-
tory behavior [1]. In this study, we investigated the causal
relationship among different MCH neurons and modeled the
local network using a Generalized Linear Model (GLM) and
Transfer Entropy (TE). GLM is a generalization of linear
regression [2] and TE is a measurement of directed informa-
tion flow. The calcium fluorescence z-scores were fed into
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Fig. 1 GLM Modeling. a Prediction of a test dataset against the actual test dataset. b Multivariate connections calculated using Generalized Lin-

ear Models

the MLSpike package to extract spike trains from calcium
fluorescence. MLSpike maps the continuous z-score values
to a discrete point process. We used normal distribution for
calcium fluorescence and tested Poisson and Gaussian dis-
tributions for the spike trains. In each of these cases, GLMs
and TE models were utilized for each neuron, determining
each neuron's effect on every other neuron. This approach
differs from correlation measures of neural activity in that it
is directional. Using GLMs and TE, we were able to approxi-
mate the directional (causal) couplings among neurons, i.e.,
the neural network's functional structure.

Comparisons between actual test data (red) and GLM pre-
dictions (blue) reveal strong model performance (Fig. 1).
Correlation was used to measure the similarity between pre-
dicted and actual z-scores. While the weighted connections
estimated by GLM (not shown) are nearly mirrored across
the diagonal, as it becomes more difficult to determine direc-
tionality with only one experimental variable. Additionally,
there are a large number of extreme coefficients, with both
strong excitatory and inhibitory connections.

In contrast, GLMs coefficients were more targeted, due to
the multivariate approach (Fig. 1). Only a few weights fell
outside of one standard deviation, with the set following
a normal distribution (not shown). This determination was
reinforced by a kstest. Still, this was sufficient for predicting
the test dataset. Additionally, the coefficients are less reflex-
ive than with linear regression models, such that neuron 1's
effect on neuron 2 is not identical to neuron 2's effect on
neuron 1.
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In order to understand the complex cognitive functions of

the human brain, it is essential to study the structural macro-
connectome, i.e., the wiring of different brain regions to each
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Fig. 1 The representative
structural connectivity of the
human brain can be resolved
into two components: the
“basal” network (left) and

the “superstructure” network
(right). The former comprises
1106 ubiquitous links, i.e., those
that occur in every individual,
and the latter consists of the
remaining 2806 links. Thick-
ness of each link corresponds to
their average weights acros the
population

Basal Network

other through axonal pathways, that has been revealed by imag-
ing techniques. However, the high degree of plasticity and
cross-population variability in human brains makes it difficult
to relate structure to function, motivating a search for invari-
ant patterns in the connectivity. At the same time, variability
within a population can provide information about the generative
mechanisms. In this paper we analyze the connection topology
and link-weight distribution of human structural connectomes
obtained from a database comprising 196 subjects. By demon-
strating a correspondence between the occurrence frequency of
individual links and their average weight across the population,
we show that the process by which the human brain is wired
is not independent of the process by which the link weights of
the connectome are determined. Furthermore, using the spe-
cific distribution of the weights associated with each link over
the entire population, we show that a single parameter that is
specific to a link can account for its frequency of occurrence,
as well as the variation in its weight across different subjects.
This parameter provides a basis for “rescaling” the link weights
in each connectome, allowing us to obtain a generic network
representative of the human brain, distinct from a simple average
over the connectomes. We obtain the functional connectomes by
implementing a neural mass model on each of the vertices of the
corresponding structural connectomes. By comparing these with
the empirical functional brain networks, we demonstrate that
the rescaling procedure yields a closer structure—function cor-
respondence. Finally, we show that the representative network
can be decomposed into a basal component that is stable across
the population and a highly variable superstructure (Fig. 1).
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Synapses are complicated pieces of biochemical machin-
ery that are necessary for various cognitive functions [1],
and their dynamics have long been modelled computation-
ally using ordinary differential equations (ODEs). Recent
proteomic studies have shown that synapses contain on the
order of a thousand unique protein species [2]. However,
to date, models of biochemical activity within a synapse
contain at most 55 unique protein species [3]. This dispar-
ity in the number of biochemical species between real and
model synapses can be attributed to a dearth of knowledge
that is needed to construct a structurally faithful and a fully
parameterised dynamical ODE model of a synapse.

Since there is currently not enough data on the synaptic
biochemical reaction structure and rates to construct a fully
parameterised model, alternative approaches are necessary
in order to have a model that incorporates more of the known
synaptic physiology. Specifically, any new approach would
have to be agnostic to the full structure and parameterisation
of the biochemical system. We present a hybrid modelling
framework where well parameterised parts of the biochemical
network are modeled using ODEs, and parts of the network
that are not well parameterised are modeled using a recur-
rent neural network (RNN) [4]. The RNN can learn dynam-
ics that are consistent with a minimal set of assumptions and
physiological data without relying on the precise knowledge
of reaction structure and rates. Thus, we can link an existing
ODE model to a learnable RNN model that represents parts of
the system lacking data via a minimal set of assumptions. The
state vector in our model consists of three parts: real biochem-
ical species from the ODEs (e.g., calcium, calmodulin, etc.),
RNN hidden states and bridge species connecting the two.
The result is a machine learning model that is partly inter-
pretable, can learn from data in order to reproduce observ-
able dynamics and does not require prohibitively restrictive
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amounts of data on reaction structures and rates. We present
a working toy example in order to illustrate our approach.
Most other models of synaptic activity are constructed in
order to investigate a single or at best a handful of phenom-
ena. Because existing models include only a small part of
the full synaptic biochemical network [3], it is unclear how
they would perform in reproducing a broader range of syn-
aptic dynamics. While our work is still in its early stages, we
believe that our semi-black box RNN model could ultimately
produce a dynamical model that is rich enough to repro-
duce a much larger set of observations of synaptic dynamics.
In addition, we believe that such a model will serve as an
invaluable tool for future experimental research via its usage
inprobabilistic experimental design techniques.
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The cerebellum plays key roles in motor learning, tem-
poral information processing and cognition. It has been
suggested that the cerebellar granule cells (GrCs), the most
numerous neurons in the brain, convert mossy fibre (MF)
input patterns into sparser signals, which could maxim-
ise the storage capacity of the synapses onto the Purkinje
cells (PCs). However, the postulated sparse coding scheme
is still under discussion due to conflicting experimental
findings. A clustered activation of MFs has been found

in vivo, but the computational advantages of this cluster-
ing also remain unclear. Furthermore, GrC axons have two
distinct parts, ascending axons (AAs) and parallel fibres
(PFs). Experimental studies indicate that AAs excite PCs
more strongly but AA synapses onto PCs are less plastic
than PF synapses.

The goal of the present study was to examine how PCs can
recognise spatial patterns in the input. In a previous study
the input was applied directly to PFs [1]. Here we extended
the previous model with a detailed granular layer model [2]
to apply input to MFs. The extended network model meas-
ured 4.00 mm X 0.40 mm X 0.51 mm along the transver-
sal, sagittal, and vertical axes, respectively, and contained
491,520 GrCs, 1,228 Golgi cells (GoCs), 1 PC, and 16,158
MFs forming 137,793 glomeruli. Based on different dis-
tributions of PC spines for PFs and AAs, the PC received
input through 110,777 PF synapses (77.08%) and 32,933
AA synapses (22.92%). We also introduced 1,695 stellate
cells as inhibitory Poisson generators spiking at 3.5 Hz. The
spontaneous firing rate was 5 Hz for MFs, which evoked
spontaneous spikes at a rate of 1.00+0.12 Hz for GrCs,
7.6 +2.4 Hz for GoCs and 67 + 32 for PCs.

In particular, we wanted to explore the effect of the spatial
extension, position and sparsity of the MF input [3], and in the
next stage, the projection patterns from the GrCs to the PCs
[4]. We found that fewer GrCs were activated with clustered
MEF than when the same number of MFs were excited in a
distributed fashion. As sparse coding is beneficial for pattern
recognition, this result predicts that clustered MF input would
improve the storage capacity of the cerebellar cortex. In these
preliminary simulations, we also found large effects of the
location of the excited MF patch. When we stimulated MFs
beneath the PC, the PC showed stronger firing rates or depo-
larisation block depending on the intensity of stimuli. Owing
to the randomness of positions of cells and connectivity,
there were large variations of the strength of the PC response
depending on the precise location of the stimulus. Likewise,
we found a large variability in the difference between the PC
responses to learnt and novel pattern stimuli. We are currently
investigating the effect of this variability on the reliability of
pattern recognition.
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The neural circuits that control movements can be dynami-
cally reconfigured to support a wide range of behaviours.
This flexibility is supported by the modular organization of
these circuits into Central Pattern Generators (CPGs). The
CPGs that generate swimming in fish and tadpoles form a
chain of synaptically coupled oscillators along the spinal
cord. For a tadpole to swim forward, the oscillators along the
chain have to be phase locked, with oscillations propagat-
ing from head to tail. Tadpole can also struggle — a stronger
movement with oscillations propagating from tail to head.

Fig.1 Activity propagation
along a chain of Morris-Lecar
oscillators. A Tadpole body
and chain of 20 oscillators with
one-way excitatory synap-

tic coupling, to model wave
propagation along the tadpole
spinal cord. B “Tail-to-head”
propagation for short synaptic
pulse duration. C “Head-to-tail”
propagation for large synaptic
pulse duration
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There is no clear mechanism to explain why the direction of
propagation is reversed during struggling. Current hypoth-
eses consider that the relative frequencies of the oscillators
along the chain, or the ratio between descending and ascend-
ing excitatory coupling between oscillators, determine the
direction of propagation.

Here we demonstrate that the duration of the synaptic pulses
coupling the oscillators also determines the direction of
propagation. In a chain of identical oscillators with unidi-
rectional coupling, long synaptic pulses support propagation
in the direction of the coupling, while short synaptic pulses
support propagation in the opposite direction (Fig. 1).

To understand why this is happening, we consider two iden-
tical Morris-Lecar oscillators, with a unidirectional synaptic
connection, and analyse the phase difference between the
postsynaptic and the presynaptic oscillators. At the relaxation
limit, and for an infinitely short synaptic pulse duration, the
postsynaptic oscillator is phase-advanced, by its entire active
phase. This is because during the active phase, a short excita-
tory pulse phase-advances the postsynaptic oscillator, while
during the silent phase a short pulse delays the oscillator. The
stable point where the pulse neither delays nor advance the
oscillator is at the jump from active to silent phase.

When pulse duration is increased, the pulse may delay the
oscillator during the active phase, if it spans a significant
amount of time close to the jump from active to silent phase.
If it is received close to this jump, the pulse will delay the
jump. This reduces the phase advance of the postsynaptic
oscillator, and for large enough pulse duration the postsyn-
aptic oscillator may even be phase-delayed.

This transition from advance to delay of the postsynaptic
oscillator, as synaptic pulse duration is increased, is robust.
We observe it far from the relaxation limit, and for other
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oscillator models, such as the Hodgkin Huxley model. It
does not rely on the excitability type of the oscillators. The
phase difference between the oscillators is controlled by the
duration of the synaptic pulse, relative to the duration of the
active phase of the oscillation.

These results extend from a pair to a chain of coupled oscilla-
tors as shown Fig. 1. This highlights a new hypothesis for the
change in the direction of propagation between forward swim-
ming and backward struggling. During struggling, oscillations
are slower so the synapses become depressed, shortening the
relative duration of the synaptic coupling between oscilla-
tors. This shortening of the relative synaptic coupling duration
could reverse the direction of propagation during struggling.
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Fig. 1 Schematic representation
of our dynamical system. The
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Astrocytes are a major cell type in the mammalian brain that
produce large cytosolic calcium signals that are thought to
mediate astrocytes’ critical functions in the brain. These cal-
cium transients are often initiated by the binding of neuro-
transmitters (e.g., glutamate and ATP) to G-protein-coupled
receptors (GPCRs) on the surface of astrocytes. In this work,
we extend an earlier detailed model of the astrocyte calcium
response [1,2] to include biochemical reaction cascades from
the GPCR activation to the calcium signal. Importantly, we
build in putative positive and negative feedback loops from
the cytosolic calcium to the signaling molecule inositol
1,4,5-triphosphate (IP3), as well as two types of desensitiza-
tion proposed for GPCRs (see Fig. 1 for a schematic of our
model). We use dynamical systems analysis and numerical
simulations of the model to test a number of experimentally-
derived hypotheses about the astrocyte responses, and offer new
testable predictions to further our understanding of this system.
Namely, we make the following observations and predic-
tions. We start by providing computational evidence for two
types of GPCR desensitization. Homologous desensitization
affects only activated receptors, while the slower heterolo-
gous desensitization depends on a downstream intermediary
molecule and affects all GPCRs. We propose experiments
that would distinguish whether one or the other or both
types of desensitization are at play in a particular experi-
mental preparation. Then, we suggest that the experimen-
tally-observed reduction in calcium level (or a reduction in
amplitude of the continued calcium spike oscillations) in
response to a sustained stimulus may be more dependent on
GPCR desensitization than on depletion of calcium levels
in the endoplasmic reticulum of the cell. Next, we show
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that astrocyte spontaneous calcium activity contributes to
the variability of calcium responses to a brief agonist pulse.
Finally, we demonstrate that potential positive and negative
feedback loops from calcium onto IP3 production play cru-
cial roles in determining the response delay and the distri-
bution of the calcium response types. Thus, we predict that
the presence and the relative prominence of these feedback
loops can be assessed based on experimentally recorded
calcium responses to specific experimental perturbations.
Overall, our results improve our understanding of astro-
cyte physiology, and provide specific predictions for future
experiments.
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Working memory training (WMT) has been used to improve
attention and cognitive functions. Neuroimaging studies
have shown its effects on brain function and structures in
cognitive control, salience, and default networks [1]. How-
ever, WMT-induced neurochemical changes are sparsely
investigated and how brief WMT could change brain metab-
olism in these networks remains unexplored. Utilizing a
non-invasive 3 T proton magnetic resonance spectroscopy
(1H-MRS), we conducted the first pilot study investigating
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whether brief WMT could change the excitatory and inhibi-
tory responses of neurotransmitters within the key nodes of
these networks — dorsal lateral prefrontal cortex (dIPFC),
anterior cingulate cortex (ACC) and posterior cingulate
cortex (PCC), regions highly relevant for WMT [1,2]. Ten
healthy college students completed ten 1-h online WMT
sessions within two weeks and brain metabolisms were
assessed before and after WMT. Following survey imag-
ing and T1-weighted structural imaging, single-voxel point-
resolved spectroscopy (PRESS) was conducted for estimat-
ing the metabolite concentrations in left dIPFC, dorsal ACC
and PCC [1,3]. PRESS scan parameters included TR 2 s,
TE 90 ms, sweep width 2.5 kHz, 1024 sampling points, and
256 signal averages. Water suppression and BO shimming
up to second order were performed with the vendor-sup-
plied tools. Reference water signal was acquired for eddy
current compensation, multi-channel combination, and
metabolite quantification. Spectral fitting was performed
with LCModel software [4], using in-house basis spectra
of 18 metabolites which were calculated incorporating the
PRESS slice selective RF and gradient pulses. The spec-
tral fitting was performed between 0.5-4.0 ppm. After cor-
recting the LCModel estimates of metabolite signals for
the T2 relaxation effects, the millimolar concentrations of
metabolites were calculated with reference to water at 42 M
[5]. Results indicated a significant increase in myo-inositol
(p=0.017) in left dIPFC and choline metabolism in both
dorsal ACC (p=0.007) and PCC (p=0.021) after WMT.
Our results suggest that brief WMT can change glia-related
metabolites such as myo-inositol and choline in key hubs of
cognitive control, salience, and default networks. However,
this warrants further investigations in large sample size.
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Efficiency subcomponent in Kirton Adaption-Innovation
Inventory (KAI) [1] is closely linked to conscientious-
ness in Big-Five personality traits [2]. Conscientiousness
can predict a better sleep continuity and subjective sleep
quality [3]. Neurologically, conscientiousness is associated
with the functional connection of dorsal anterior cingulate
cortex (dACC) and insula, two main components of Sali-
ence Network (SN) [4]. However, an over-activated SN was
frequently observed in previous insomnia research [e.g.,
5]. Therefore, the relationships between sleep quality, effi-
ciency, and SN require further clarification. The resting-
state electroencephalogram (RS-EEG) microstates can be
divided into four classical types, with type 3 (MS3) localized
to operculo-cingulate cortex, including ACC and anterior
insula [6]. Utilizing EEG microstate analysis, the current

Fig. 1 Effects of Efficiency 1.0
and Sleep Latency on Dura- S
tion of MS3. The graph is for
description only. All inferential 0.8
analyses keep continuous data ’
of Efficiency and Sleep Latency
o .
E 0.6
G 04
(=
2
< 02 4
=
A
-0.1 -
-0.3 -+
-0.5

—+—Shorter Sleep Latency
y -#-Longer Sleep Latency

study aims to elucidate the link between trait efficiency and
sleep quality as well as the underlying neural mechanism.
We hypothesize that sleep quality moderates the association
between Efficiency and the RS-EEG microstates. Sixty-one
Chinese college students (22 females, 20.84 +1.53 years
old) participate in this study. Their adaption-innovation and
sleep quality (e.g., sleep latency) were measured by KAI and
Pittsburgh sleep quality index [7]. EEG microstate analy-
sis was conducted on their resting-state EEG datasets. We
applied the PROCESS macro (model 1, sample size 5000, in
95% confidence interval) to examine the moderating effect,
in which Efficiency is chosen as the independent variable,
MS3 as the dependent variable, Sleep Latency as the regu-
latory variable. We found a significant effect of Efficiency
on MS3 (b=0.29, p <0.05), which is moderated by Sleep
Latency (b=0.25, p<0.05, see Fig. 1). We visualized the
relationships between MS3 and Efficiency at high and low
(1 SD above and below the mean) levels of Sleep Latency.
Simple slope tests indicated that only in the participants with
long sleep latency, higher levels of efficiency were associ-
ated with longer duration of MS3 (see Fig. 1). These results
indicate that the difficulties of falling asleep, reflected by a
longer sleep latency, are prominent in high Efficiency popu-
lation who tend to have an overly activated SN.
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Abnormal synchronization of neuronal activity is related
to multiple neurological disorders including Parkinson’s
disease (PD) and epilepsy. High-frequency deep brain
stimulation (HF DBS) is an established treatment for PD;
however, symptoms typically return shortly after stimula-
tion ceases. Coordinated reset (CR) is a novel stimulation
method that aims at counteracting hypersynchrony in neu-
ral networks. During CR, phase-shifted stimuli are deliv-
ered through multiple stimulation sites. CR has been used
for the treatment of Parkinson's disease using both DBS
electrodes and noninvasive fingertip vibrotactile stimula-
tion, and its efficacy was demonstrated in preclinical and
clinical studies. Computational studies in neural networks
with spike-timing-dependent plasticity (STDP) showed
that CR stimulation might reduce the synaptic weights, and
in doing so it leads to a long-lasting desynchronization by
ultimately moving the neural networks to a weakly coupled
and stable desynchronized state. CR stimulation frequency
in most studies was adjusted to the dominant rhythm, how-
ever that may limit the use of CR due to the coexistence of
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multiple disease-related abnormal rhythms. Motivated by
new multi-contact electrode designs and spatially directed
stimulation current steering algorithms, we study the impact
of the number of stimulation sites and the CR frequency in
leaky integrate-and-fire (LIF) neural networks with STDP.
We show that long-lasting effects become most pronounced
when stimulation parameters are adjusted to the charac-
teristics of STDP—rather than to the dominant rhythm. In
addition, we reveal a nonlinear dependence of long-lasting
effects on the number of stimulation sites and the CR fre-
quency. Intriguingly, optimal long-lasting desynchronization
does not require larger numbers of stimulation sites or high-
frequency CR stimulation.
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Excessive neuronal synchrony is a hallmark of several neu-
rological disorders, including Parkinson’s Disease (PD). An
established treatment for advanced PD is invasive high-fre-
quency deep brain stimulation (DBS). PD symptoms return
shortly after stimulation ceases. Theory-based approaches,
such as coordinated reset (CR) stimulation, counteract neu-
ronal synchrony by delivering spatio-temporal stimulus pat-
terns. In computational studies, CR stimulation reshaped
synaptic connectivity and drove plastic neuronal networks
into an attractor of a stable desynchronized state. This led
to desynchronization effects that outlasted stimulation. Cor-
responding long-lasting therapeutic effects were reported
by preclinical and clinical studies delivering CR through
implanted DBS electrodes. Recent computational studies
provided evidence that long-lasting effects of CR stimula-
tion might be sensitive to changes of the stimulation fre-
quency. This might limit clinical applicability as excessive
synchrony in different frequency bands is associated with
PD symptoms.

To improve parameter robustness of long-lasting effects of
invasive electrical stimulation, we studied synaptic reshap-
ing due to spatio-temporal stimulus patterns in neuronal net-
works with spike-timing dependent plasticity [1]. Our theo-
retical and computational results led to the hypothesis that
randomized stimulus patterns improve parameter robustness
of long-lasting effects. In our theoretical and computational
work, we analyzed sequence- and stimulus-induced synap-
tic reshaping [1]. These two mechanisms describe synaptic
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Fig. 1 Long-lasting desynchro-
nization of a plastic neuronal
network by coordinated reset
(CR) stimulation. A,B CR
stimulation is delivered to

four neuronal subpopulations
(colored regions). C-H Simula-
tion results for the degree of
in-phase synchronized spiking
(C) and the mean synaptic
weight (D) during randomized
vibrotactile CR stimulation.
E-H Snapshots of connectivity
matrix at different times

A

reshaping as a result of spatio-temporal (sequence-induced)
correlations in the stimulus pattern and as a result of neuronal
response variability to individual stimuli (stimulus-induced),
respectively. Stimulus patterns that adequately combined
both mechanisms led to strengthening of certain groups
of synapses while weakening others. Focusing on patterns
that stabilize desynchronized neuronal activity by weaken-
ing excitatory synapses, we found that randomized stimu-
lus deliveries lead to more robust effects [1,2]. Long-lasting
effects motivated the development of non-invasive, sensory
therapies that require the stimulus to be delivered only reg-
ularly or occasionally [3]. Accordingly, we extended our
approach to model the effects of (moderately) randomized
non-invasive, vibrotactile CR stimulation, taking into account
vibratory masking and habituation constraints [4].

In a corresponding clinical feasibility study in six PD
patients, both regular and randomized vibrotactile CR fin-
gertip stimulation turned out to be safe and well-tolerated
[4]. Patients experienced a sustained, significant cumulative
improvement of motor performance. Stimulation led to a
significant reduction of high-beta EEG power in the sensori-
motor cortex after 3 months of therapy, indicating long-last-
ing desynchronization effects (Fig. 1). Our results provide
promising first evidence that randomized spatio-temporal
stimulus patterns may be suitable for inducing long-lasting
desynchronization effects and symptom relief in PD patients.
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Both sensory and motor processes are driven by coordinated
activity across brain areas. Analyses based on dimensional-
ity reduction have shown that some patterns of covariance
amongst populations of neurons fall within a "potent space"
that influences downstream neural responses. Other patterns,
however, fall within a "null space" that inhibits the propaga-
tion of activity. These patterns are ubiquitous across neural
modalities, and are reported in primary visual areas [1] as
well as preparatory motor areas [2]. Nevertheless, despite
growing support for the role of null space activity, its origins
within synaptic circuits remain unclear. Here, a mean-rate
model was developed to capture the feedforward propagation
of activity between two interconnected areas (a "sender” and
a "receiver" area) each representing an anatomically distinct
network (Fig. 1a). Null and potent modes of activity were
gated by adjusting the connections between the two areas
based on a novel synaptic rule. Mode-specific propagation of
neural activity was readily observed by applying a singular
value decomposition to the activity of both sender and receiver
areas, and computing the correlation between each mode of
activity, respectively (Fig. 1b). Altering the number of null
modes propagated between the two areas yielded no systematic
changes in firing rates, pairwise correlations, or mean synaptic
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Fig. 1 Feedforward propaga-
tion of null and potent modes
of neural activity. a [llustration
of a feedforward network with
sender and receiver neurons. b
Correlation between modes of
the sender and receiver areas
with N=100 units and N/2 null
modes. ¢ The null ratio provided
an estimation of the proportion
of null modes in the model. d
Null/potent modes of V1-V1
and V1-V2 interactions
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strength. Thus, characterizing the interactions between the two
areas could not be achieved by standard measures of func-
tional connectivity, highlighting a fundamental limitation of
these approaches. As an alternative, a measure termed the "null
ratio" was developed to capture the proportion of null modes
propagated from one area to the other (Fig. 1c). This measure
was applied to experimental data consisting in simultaneous
recordings from primate visual areas V1 and V2 while subjects
were presented with oriented stimuli. The null ratio revealed
that feedforward propagation between these areas consisted
of a predominant proportion of null modes, whereas only a
few potent modes of V1 activated downstream targets in V2
(Fig. 1d). These results are consistent with the small number
of potent modes required to encode simple oriented images,
suggesting that the ratio of null and potent modes may reflect
properties of the visual stimuli employed in experiments.
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Many everyday tasks require that we produce and repeat
sequences of thoughts or behaviors that unfold over time.
Examples abound, from playing golf to uttering sentences.
Recent computational advances offer a solution to this
problem whereby a recurrent network projects to a read-
out layer whose synaptic weights are trained to generate
the desired response [1,2]. However, these approaches
rely on iterative learning rules that cannot account for the
rapid, one-shot learning reported in sensory and motor
domains [3]. Here, we describe a one-shot algorithm,
termed Extreme Neural Machine (ENM), that learns to
reproduce static and sequential patterns of activity. The
centrepiece of our model is a recurrent circuit comprised
of either mean-rate or integrate-and-fire neurons (Fig. 1a).
These neurons activate an output layer via connections that
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Fig. 1 One-shot learning of
static and temporal patterns in a
recurrent network. a Archi-
tecture of the model. b Static
image reproduced at the output
of a rate-based network. ¢ Rate
and spiking networks improve
their performance on static
images with more recurrent
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are adjusted by a one-shot supervised learning rule whose
goal is to compress the desired signal onto a smaller num-
ber of dimensions, where each dimension is a neuron from
the recurrent network. While the learning process is not
biologically-grounded, the model is informative of recur-
rent population activity regimes that support task perfor-
mance. First, networks learned to compress and reproduce
natural images (Fig. 1b). Error rates were computed by
the mean squared error between input images and network
output. Error was lower for ENMs than statistical (princi-
pal components analysis) and one-shotmachine learning
(extreme learning machine) approaches (Fig. 1¢). Random
elimination of a small proportion of recurrent network con-
nections prior to training yielded a negligible impact on
performance. Neurons of the recurrent network exhibited
mixed selectivity for particular characteristics of the stim-
uli, capturing aspects of cortical responses to combinations
of input features. Next, networks learned to draw and recall
2D figures (Fig. 1d), as well as reproduce high-resolution
movie scenes (Fig. le). Following a training phase where
the model received a short movie segment (10 s), the recall
capacity of the network was tested by presenting a brief
1 s segment. The output units generated the remainder
of the sequence, and accurate performance was attained
with only a few hundred recurrent units. An analysis of the
activity within the recurrent network revealed that neurons
responded preferentially to spatial locations of the movie
with high contrast. Overall, the model provides a novel
avenue to perform one-shot learning in recurrent networks.
Distinct signatures of recurrent activity obtained as a result
of training will inform experiments on the biological basis
of temporal sequence acquisition.
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Reversal learning is often used to assess cognitive flexibil-
ity which reflects the ability to rapidly adjust behavior to a
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changing environment and which is affected in psychiatric
disorders. Determining the neural mechanisms underlying
reversal learning is therefore important for advancing our
understanding of cognitive processes in health and disease.
It is currently not clear how the brain regions collaborate to
achieve this type of adaptive behavior.

We analyzed the neural responses in non-human primates
during a reversal learning task [1] in which to obtain a
reward they needed to make an eye movement instructed
by the direction of motion of one of two objects that con-
tained a target feature. The target feature changed (reversed)
uncued multiple times during the session. Multiple neurons
in LPFC, ACC and striatum were recorded simultaneously.
We converted the spike times into normalized firing rates
and combined these across multiple sessions to create a data
matrix with three dimensions — neuron identity, trial index
relative to reversal and time relative to reward onset. We
used this matrix to extract the changes in the neural popu-
lation response accompanying learning the target feature
reversal. Our hypothesis was that the changes across learning
trials could be either in the form of overall activity changes
as well as in shifting the onset time of response features.
To test this, we evaluated a number of tensor factorization
methods [2-4] to extract these changes across trials while
preserving the natural structure of the tensor. We found that
tensor component analysis (TCA, [2]) could extract relevant
components better while accounting for a larger fraction of
the response. TCA achieved this by identifying additional
factors related to the same subset of neurons. In our hands,
for this data set, even methods explicitly designed to extract
latency changes did not work as well as TCA. In addition,
our simulation results using artificial data showed that the
TCA results were stable against white noise and resampling
noise.

In our analysis we focused on the neurons in the striatum that
previous analysis identified as broad spike neurons which
comprised 83% of the neurons in the dataset [1]. TCA-
decomposition of the population firing rates identified two
distinct components whose activity increased or decreased
with trial index relative to reversal. Some components are
active right after the reward, while others show an activation
at later stages. Based on these components we could identify
two groups of neurons, whose firing rate responses shift in
time when the target is learned. One group shifts forward
and the other backwards. This paves the way for a more
comprehensive analysis of these groups in terms of changes
in spike-spike correlations between them as well as the rela-
tion to the local field potential. In conclusion, we found that
TCA can be used to find groups of neurons with distinct
learning profiles, which is a first step towards improving
our mechanistic understanding of multi-areal interactions
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during learning as well as other processes involving cogni-
tive flexibility.
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Many experimental observations have shown that the
expected utility theory is violated when people make deci-
sions under risk. Here, we present a decision-making model
inspired by the prediction of error signal in reinforcement
learning. In the model, we choose the expected value across
all outcomes of an action to be a reference point which peo-
ple use to gauge the value of different outcomes. Action
is chosen based on a nonlinear average of the anticipated
surprise, defined by the difference between individual out-
comes and the abovementioned reference point. The non-
linear ‘surprise function’ assumes that (1) surprises of large
amplitudes have disproportionately magnified effects, and
(2) negative surprises have larger effects than positive ones.
It is also straightforward to extend the model to multi-step
decision-making scenarios. In the extended model, new ref-
erence points are created as people update their expecta-
tion when they evaluate the outcomes associated with an
action sequentially rather than simultaneously. The creation
of these new reference points could be due to partial rev-
elation of outcomes, ambiguity or segregation of probable
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and improbable outcomes. Several economic paradoxes and
gambling behaviors can be explained by the single-step and/
or the multi-step version of the model. Our model might
bridge the gap between theories on decision-making in quan-
titative economy and neuroscience.
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Neural oscillations are a fundamental mechanism for the
communication and coordination of neural activity between
brain regions. The temporal coordination of these oscilla-
tions underlies many cognitive and behavioural responses
and higher order brain functions, such as attention and work-
ing memory. As a result of this, there has been increased
attention on targeting these oscillations for intervention
in neurological disorders. Of particular interest has been
expanding treatment from pharmaceutical interventions,
which are not always successful, to include non-invasive
stimulation techniques, such as transcranial alternating cur-
rent stimulation (tACS) and transcranial magnetic stimula-
tion (TMS). These approaches have shown great promise for
improving our understanding of the dynamics underlying
and entrainment of neural oscillations, and intervention in
neurological disorders. Existing models for external stimu-
lation are often abstracted for computational efficiency,
making use of mean-field approaches and various simpli-
fied neuron models, such as leaky integrate-and-fire neu-
rons. These models, while useful for parsing out system
dynamics, do not account for cell-type differences in their
frameworks. Improved understanding of cell-type specific
responses to external stimulation provides a pathway for
testing the limits of acute targeting via external stimulation.
In-vivo this would be an intractable task, however, in-silico
approaches give an efficient way to investigate these effects.
In recent years, the Allen Institute has made available mor-
phologically accurate models of individual excitatory and
inhibitory cells. Using these models, we recreate external
stimulation frameworks and investigate cell-specific reac-
tions to multiple stimulation paradigms of varying angle,

strength, distance, and frequency. By taking such stimulation
parameters into consideration we begin to create a mapping
of excitatory and inhibitory cell-type responses to external
stimulation in multiple cortical layers. The exploration of
the state-space surrounding individual cell type stimulation
responses offers important insight into inter-cell dynam-
ics. Of particular interest are differences in the reactivity of
inhibitory versus excitatory cell populations that may sug-
gest future targeting options via external stimulation. Fur-
ther, these classifications offer a way to ameliorate existing
abstracted models to better capture the underlying dynamics
of the system and better our understanding of the effects of
external stimulation on the brain.
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In schizophrenia, large-scale connectivity differences across
illness stages have been identified in resting-state fMRI-
data [1]. Furthermore, analyses of resting-state MEG-data
(rsMEGQG) identified stage-specific changes to signal power
in the gamma frequency band, with first-episode schizophre-
nia patients showing increases in gamma power and chronic
patients showing reductions [2]. However, frequency-
resolved connectivity changes across illness stages remain
largely unexplored in schizophrenia.

Therefore, we investigated the frequency-resolved functional
connectivity (frFC) of first-episode psychosis patients (FEP,
n=27) and healthy controls (HC, n=49) using rsMEG
recordings. We analyzed global brain connectivity, differ-
ences in subnetwork connectivity and, the topology of cor-
tical networks through graph theoretical measures of frFC.
frFC was calculated by correlating the slow (<0.2 Hz)
signal envelope between cortical regions for specific,
narrow frequency bands (delta [1-3 Hz], theta [3-7 Hz],
alpha [8-12 Hz], beta [18-22 Hz], gamma [32-42 Hz]). We
assessed group differences of global brain connectivity and
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Fig. 1 I. Global Brain Connectivity of first episode psychosis patients (FEP) and control subjects across frequency bands. II. Graph Measures

within the alpha frequency band

graph measures and identified differences in the subnetwork
connectivity using network-based statistics.

We found a significant reduction of global brain connectivity
in the alpha band for the FEP group, which was most pro-
nounced in left frontal regions. Furthermore, for the alpha
band, we also identified a specific network of connections
that showed a significant reduction in FEP patients in the
default and frontoparietal system. We additionally found sig-
nificantly increased gamma band connectivity in a network
that was mostly located in the limbic system and the default
mode network. Lastly, graph measures assessing information
integration, segregation and network centrality were signifi-
cantly lower in FEP patients then in HC subjects in the alpha
band (Fig. 1). These results further support the notion that
the onset of psychosis is characterized by impairments of
interregional cortical communication which depends on neu-
ronal synchronization. Whereas alterations of the alpha band
connectivity might relate to cognitive impairments, reduced
attention, and executive control in FEP, alterations in the
gamma band connectivity may be involved in emotional and
cognitive impairments.
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Computation in the brain takes place through the integra-
tion of the information processed in different specialized
brain regions. Brain oscillations can affect integration of
the information by controlling the communication between
interconnected brain regions. It is hypothesized that the syn-
chrony and the phase relations between local oscillations of
the brain regions controls the efficacy of the communication
channels in the brain circuits. Like every other network of
oscillating dynamical systems, the synchronization between
the oscillatory activities of brain’s modules depends on how
their phase change upon the impact of the inputs from other
connected modules. This property is conventionally quanti-
fied by the phase response curve (PRC) which shows how
much the brief inputs incoming at different phases of oscil-
lation, change the phase of the receiving oscillator. The main
challenge for quantifying the inter-module synchrony in the
brain is that every module is itself a giant oscillator com-
posed of many neurons that cannot be readily treated by the
methods developed for low-dimensional oscillators.

In this study, we numerically study the collective PRC
(cPRC) for oscillating networks of excitatory-inhibitory (EI)
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Fig. 1 The effect of synaptic
strength on cPRC. A-C show
cPRC for networks composed
of different neuronal types as 04
discussed in results section. The
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neurons and show how they affect the phase relation between
two interconnected populations. We first show that in hybrid
networks, whereEandIneurons of different types, changing
the strength of connections between E and I continuously
changes the cPRC and can ultimately change the type of
PRC. Then we apply the results to study the synchronization
between two inter-connected populations and show that in a
more biologically plausible low coherence regime, when the
synchrony within the populations is low, the cPRC cannot
adequately predict the phase difference.

First, we investigated the cPRC of a EI network and the
effect of synaptic strength from I to E neurons on the type
of cPRC. To show the effect clearly, we built three types of
populations. In the first case, we modeled the E neurons by
Hodgkin-Huxley (HH) and the I neurons by Wang-Buzsaki
(WB) models as generic forms of Type-II and type-I neu-
ron models, respectively (Fig. 1). By increasing the strength
of synaptic connections from the I neurons to E neurons,
we observed that the cPRC changed from type-II to type-I
(Fig. 1A). In the second experiment, we interchanged the
type of E and I neurons (Fig. 1B), and by following the same
procedure, we observed a similar result. In the third experi-
ment, we modeled the neurons all by the HH neuronal model
(Fig. 1C), and in this case, increasing the synaptic strength
of I o E neurons didn’t have a significant effect on the cPRC.
So, for those simulations with a single type of neurons, the
connection strength between E and I neurons does not play
an important role, but it crucially affects the results whenE-
andIneurons are of different kinds.

In the second part of the study, we connected two EI popula-
tions to explore if cPRC could adequately predict depend-
ence of the phase relation between the two populations to
the inter-population communication delay (Fig. 1D). We
changed the coherency of population activity by varying the
noise level and observed that the phase relation of coupled

(B)os

0.55
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populations qualitatively changed by the level of coherency
so that the prediction based on the cPRC does not work for
lower values of coherency.
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The nature of information transfer in neuronal circuits has
been a mystery in neuroscience throughout the history of this
discipline. Effective population coding is dependent on con-
nectivity, active and passive postsynaptic membrane param-
eters and synapse dynamics, but how it relates to information
transfer and information representation in the brain is still
poorly understood. Recently, Brendel et al. [1] showed how
spiking neuronal networks can efficiently represent a noise
input signal. This "Dy.qe” successfully showed that spiking
neural networks can recreate input signal representations and
how these networks can be resilient to the loss of neurons.
However, this model has multiple unphysiological character-
istics, such as instantaneous firing, single neuron firing per
time frame, and the lack of units related to physical values.
To determine how this model relates to information transfer
in biological systems, it would be important to implement
the Dy4. in @ more physiologically accurate simulator.
The aim of the present study is to build upon the Dy, 4 to
study how information transfer is affected by biophysical
parameters.
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We first modified the Dy, 4. in the Matlab environment to
allow for the simultaneous firing of the neurons. The net-
work saturated when the simultaneous firing model used the
synaptic weights previously learned for single neuron firing
but simulating de-novo with all neurons allowed to fire, the
simultaneous firing D, 4. Was able to reduce reconstruc-
tion error and firing rate. Using our CxSystem?2 simulator
in a Python environment, we built a network consisting of
300 excitatory and 75 inhibitory neurons, replicating the
network used in the Dy 4. We quantified the information
transfer of Leaky Integrate-and-Fire neurons that had identi-
cal physiological values for both inhibitory and excitatory
neurons (Comrade cells) as well as more biologically accu-
rate physiological values (Bacon cells). We used Granger
causality, transfer entropy, reconstruction error, coherence,
cross-correlation latency, and classification accuracy based
on Granger causality F-statistics to quantify the information
transfer of the network. Using the weights obtained from the
trained Dy, 4, in the CxSystem2 simulator, we were able
to quantify information transfer with a conductance-based
spiking model.

We examined the behavior of the network while altering
the values of the capacitance, synaptic delay, equilibrium
potential, leak conductance, reset potential, and voltage
threshold. Broad parameter searches showed that no single
set of biophysical parameters maximized all information
transfer metrics, but some ranges fully blocked information
transfer by either saturating or stopping neuronal firing.
This draws boundaries on the possible electrophysiological
values neurons can have. This held true even under closer
inspection with narrow searches within electrophysiological
ranges. From this, we conclude that there is no single opti-
mal set of physiological values for information transfer. We
hypothesize that different neuronal types may specialize in
transferring different aspects of information (e.g., accuracy)
or act as frequency filters, providing the evolutionary pres-
sure that gave rise to the diversity of cell types observed in
the nervous system.
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Hybrid circuits built using living and model neurons and
connections allow a precise characterization of neuronal
and synapse dynamics. They are also useful to validate
model neurons and to unveil key components of neural cir-
cuit dynamics. Our previous works have shown that adap-
tation and calibration of model neuron and synapse mod-
els are a necessary step to build hybrid circuits, and that
automatization of these processes leads to highly success-
ful implementations [1,2]. Many parameters affecting the
dynamic interaction in hybrid circuits have complex non-
linear dependencies which are difficult to establish a priori.
An option to deal with this problem is a massive search
within the parameter space to map the regions that lead to
robustness in the target dynamics. This is possible but it is a
high time-consuming process. Instead, we propose here an
informed search that optimizes this process in a short time
by exploring the parameter space using a genetic algorithm.
This approach does not consider a detailed full parameter
characterization but results in a fast adaptation that is con-
venient for many experimental goals.

To illustrate this approach, we implemented a hybrid circuit
to reproduce dynamical invariants between living and model
neurons in the pyloric CPG of crustaceans. Dynamical
invariants are robust linear relationships between intervals
that build an activation sequence between neurons [3]. With
this goal in mind, and from an initial automatic adaptation/
calibration, we explored online the parameter space of the
neuron and synapse models involved in the modulation of
key elements that affect a specific dynamical invariant. In
our study, we used the linear correlation between the time
intervals that define a dynamical invariant between a liv-
ing neuron and a model as the cost function for the genetic
algorithm.

Our results show that within minutes, by employing just a
dozen of individuals and 5 generations, the genetic algo-
rithm can easily obtain a valid configuration for the hybrid
circuit to build the dynamical invariant. We also compare
the online solution provided by the genetic algorithm explo-
ration with a full characterization of the parameter space
obtained with a computer cluster implemented with paral-
lelization. The full cluster exploration validates the proposed
genetic approach. The genetic algorithm approximation for
tuning synapse and model neurons can be easily generalized
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to achieve other target dynamics, serving as a useful tool in
the construction of hybrid circuits.
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Effective stimulation of neural cells has played a key role in
the study of neural activity. Perturbation of ongoing neural
dynamics has been traditionally implemented with electro-
physiological and chemical techniques. Even though the
former techniques are highly effective at changing dynami-
cal states, they are usually more invasive and frequently
produce irreversible effects in neural activity. Such invasive
techniques limit the possibilities of stimulation and experi-
mental set-ups, limiting their applications, e.g., in protocols
such as transcranial stimulation. These limitations motivate
the search for less invasive techniques that achieve effective
dynamic modification while avoiding neuron damage as well
as allowing the recovery of departing states. Here we demon-
strate that infrared-laser stimulation elicits changes in neural

dynamics in a non-invasive way. Previous works have shown
that laser stimulation successfully changes neural dynamics
[1-3]. However, the biophysical source of these alterations
is still under study. In this work we analyze the effect of
near infrared laser stimulation in the neural system of the
mollusk Lymnaea stagnalis, which is frequently employed
in a wide variety of experimental and theoretical studies
in neuroscience research [4,5]. Using intracellular record-
ings, we characterized the spiking activity before, during and
after infrared-laser stimulation of individual neurons. During
stimulation, a laser beam was focused on the specific cell
being recorded. We characterized spike amplitude, duration,
depolarization and repolarization slopes. The most notable
changes were present in spike duration, which was notably
reduced by a dynamical change mainly in the repolarization
phase. This change is reversible, right after the stimulation
ceases the neuron recovers its original waveform. Changes
in spikes characteristic were sustained throughout all experi-
ments, showing the reproducibility of the stimulation effect
and the subsequent recovery. We assessed possible bio-
physical sources of the observed phenomena in a detailed
conductance-based model. Different electrotonic and active
ionic channel parameter combinations were studied in a
Hodgkin-Huxley model. The results point out possible fac-
tors generating the laser effect observed experimentally.
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Central Pattern Generators (CPGs) are convenient neural
circuits to study sequential neural activations because their
connection topology and neuron dynamics can be charac-
terized in detail using both experimental preparations and
biophysical models. Multiple studies have addressed the
coordination of multifunctional CPG rhythm cycles and
have established that, in many CPGs, it is a consequence of
mutual inhibition by chemical synapses and synchroniza-
tion induced by electrical coupling [1]. In this study, we
use a biophysical model [2,3] of the pyloric CPG to assess
the role of electrical synapses in shaping the intervals that
build up the sequence of the circuit. We have analyzed the
effect of the electrical conductance between the neurons of
the pacemaker group (AB-PD1-PD2) to induce variabil-
ity in the circuit and thus discuss the change produced in
the different intervals that define the CPG sequence with-
out disturbing theorderof the neuron activations (LP-PY-
AB(PDs)). We quantified the variability of all time intervals
measured cycle-by-cycle in a set of long simulations. Our
results show that the conductance of electric gap junctions
can regulate the variability of the intervals that build up the
cycle-by-cycle period. Several of such intervals are known
to participate in dynamical invariants in the form of robust
relationships with the period. Dynamical invariants have
been proposed to balance flexibility and robustness of CPG
sequences and their coordinated rhythm [4]. These results
support the view that electrical coupling largely contributes
to shape the intervals that define functional sequences and
dynamical invariants in CPGs. The hypotheses drawn from
this modeling study could be tested in hybrid circuits of
living and model neurons with modern dynamic clamp pro-
tocols [5,6].
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Electrical synapses are an efficient mechanism for achieving
a high level of synchronization of neural activity between
neighbor cells [1-5]. Invertebrates Central Pattern
Generators (CPGs) are suitable for studying coordination
of neural dynamics and, in particular, they allow for
long recordings of simultaneous activity to characterize
synchronization, sequential activations, and overall
circuit coordination. The present work aims to analyze
the evolution of synchronization between the two pyloric
dilators (PD) neurons of the pyloric CPG of crustaceans
as a first step to assess the role of electrical coupling in
flexible coordination of sequences generated by this circuit.
Long time series of simultaneous bursting activity were
recorded with intracellular electrodes in the PD neurons
of Carcinus maenas. The activity was analyzed first with
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a detailed temporal characterization of the synchronization
of the time series, then a precise assessment of the timing
and delay of action potentials within each burst, and finally
with maps showing the degree of synchronization of both the
depolarizing wave and spike dynamics. The results indicate
that in this system the synchronization is not constant, but
evolves smoothly with each spike during the bursts. The
observed spike delay variability between the PD neurons is
linked to their transient desynchronization, which in turn is
influenced by the duration of the bursts. The experimental
analysis is complemented with a conductance based model
study to estimate the coupling conductance and the source
of its dynamical features. Within the context of these results,
we discuss the role of gap junctions in shaping the time
intervals that build robust sequences in central pattern
generators [6] and tips to test the hypothesis derived from
the experiments through the design of hybrid circuits of
living and model neurons [7, 8].
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The brain can be seen as working in a metastable regime. In
the phase space of its dynamics, the trajectories pass through
one state to the next one, consecutively [1]. From this per-
spective, every behavior and thought involves different brain
networks that interact with each other in a sequential man-
ner in this dynamical space [2]. Hence, the identification of
robust sequences can be key to relate neural activity with
behavior and cognition. The sequences of each process in
the brain, as a complex biological system, are not exactly
the same in every repetition. However, they retain enough
similarities to be distinct and distinguishable from one
another. These features allow sequences to be robust in func-
tionality while retaining flexibility regarding the dynamic
external environment.

While the mathematical description and conceptual basis
of the neural sequences had been proposed and studied in
previous works [3], they have not been systematically inves-
tigated in brain signals. The focus of the current work is to
provide a unifying approach to identify robust sequences
from brain signals. Methodologies for the study of M/
EEG datasets are still developing due to the nature of these
nonstationary waves. Designing an approach to character-
ize neural sequences, as fundamental features of any brain
activity, is a pending milestone in M/EEG analysis. This
will lead to novel biomarkers and metrics foranalysis of M/
EEG signals for the purpose of predictive and diagnostic
implementations, as needed for patients with brain disorders
or trauma, and for the design of brain-machine interfaces
and biologically inspired technologies. Such an approach
can also be leveraged for better understanding the dynamics
of M/EEG microstates, i.e., quasi-stable spatial configura-
tions of brain activity, which have been shown to exhibit
structured sequential activity [4].

The current study is a step forward in finding a methodology
to clearly characterize neural sequences and understanding
the principles that govern their composition and the transi-
tion between them. We propose several metrics for the analy-
sis of their robustness and flexibility, and their hierarchical
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spatio-temporal organization. In particular, we report on
observed sequences in the study of the publicly available
brain activity datasets. We also illustrate the usefulness of
computational models to interpret the characterization of
robust sequences from experimental data.
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Background

Cardiovascular disease is a principal cause of death, with
stress being one of the risk factors [1]. Physiological
stress markers can be used for preventive, diagnostic, and
therapeutic purposes. Lab-based studies have associated
decreases in HRYV, that is, variations in the timing of con-
secutive heartbeats, which index parasympathetic cardioreg-
ulation [2] with higher levels of self-reported stress [3]. It
remains unclear to what extent this link generalizes to daily
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life, particularly as naturalistic settings typically involve
physical activity, which itself affects HRV [4].

Methods

ECG and ACC data were ambulatorily recorded with a chest
strap (EKGmove3; Movisens, Germany) in the daily life of
healthy older adults. Participants reported the level and
timing of stress events (10-min temporal resolution) every
waking hour via a smartphone-based ecological momen-
tary assessment. Heart rate and HRV features were calcu-
lated. Supervised learning models (Decision Forest, Sup-
port Vector Machine, Multilayered Perceptron and Stacking
Ensemble) were trained on the extracted heart rate and HRV
features with and without including physical activity to clas-
sify binary stress labels. fivefold nested cross validation was
applied for hyperparameter tuning. SHapley Additive exPla-
nations (SHAP) technique was used for feature importance
calculation.

Results

Twenty-five older adults (11 females; 69+4, 60-76 years)
provided data from (on average) 5.76 days, which included
168 stress events from 20 participants. The best performing
supervised machine learning model, trained without physi-
cal activity, was predictive with an accuracy of 74.2% (F1:
72.9%). Highly predictive features were Median-RR- and
Mean-RR-Interval. Including physical activity increased pre-
dictive model performance by 9% to 83.2% accuracy (F1:
82.6%).

Conclusions

This study provides evidence for the link between heart rate,
HRYV and acute stress under naturalistic conditions, as well
as when including physical activity. Ambulatorily assessed
HRYV as a physiological stress marker can be useful for clini-
cal applications. The approach of integrating physical activ-
ity into machine learning models is expected to be of broader
relevance for naturalistic (i.e., interactive and dynamic) psy-
chophysiological studies.
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The ability to visually recognize different actions and com-
plex movements is necessary for the survival of many social
species. The detailed circuitry underlying the neural process-
ing of the visual recognition of body movements is not yet
known. For a detailed comparison with electrophysiological
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data, we have developed a physiologically inspired hierarchi-
cal neural model for the recognition of body movements.
The model combines a feed-forward deep network (VGG-19
[1]) with a neurodynamical model that has been demon-
strated to reproduce the neural dynamics at the single-cell
level in higher areas of the visual and premotor cortex [2].
The lower levels of the visual hierarchy were modeled by
the layers up to the conv5.1 layer of the VGG-19 network,
pre-trained on the ImageNet database. This readout level was
chosen since it was shown to match the activity of middle
superior temporal sulcus body (MSB) patch neurons well
[3]. These output features were massively reduced by a fea-
ture reduction procedure that eliminates features with low
variability over the training set in combination with PCA.
The reduced feature responses are used as input signals for
radial basis function networks that were trained with indi-
vidual keyframes of the action (Fig. 1A). (Up to this level,
the model assumes a feed-forward architecture). Sequences
of such keyframes were then encoded by recurrent neural
networks (RNNs). Building on previous work modeling in
detail the activation dynamics of neurons in the superior
temporal sulcus (STS) and of mirror neurons in the premo-
tor cortex [2,4], these recurrent networks were modeled by
a set of neural fields with mutual inhibition, resulting in a
competitive selection between the different learned actions.
The outputs of the individual neural fields were summed up
by motion pattern neurons that are active only during one of
the learned actions.

We tested the model using movies that show macaque mon-
keys involved in different types of actions. Similar movies
are presently being used in physiological experiments on
body motion encoding in monkeys. The model successfully
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Fig. 1 A Activity of snapshot neurons for the three actions. B Activity of motion pattern neurons for the three actions (represented by different

colors)
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recognizes the actions from real videos. The snapshot neu-
rons are showing a traveling pulse of activity within the neu-
ral field that encodes the corresponding pattern (Fig. 1A).
The motion pattern neurons show responses that clearly dif-
ferentiate between the different encoded actions (Fig. 1B).
The model makes precise predictions about the response
dynamics of different neuron classes, which are presently
being compared to recordings from the macaque visual
cortex.
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All dynamical processes in vertebrate brains are physi-
cally embedded in a dense matrix of thin axons (fibers) that
release serotonin (5-hydroxytryptamine) — a neurotransmit-
ter that modulates neural, glial, and vascular processes. Ser-
otonergic axons appear to be an essential ingredient of any
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adaptive nervous tissue and may inform future architectures
in machine learning. However, they typically do not form
classical synapses and therefore cannot be understood within
the connectomics framework. We have recently introduced
the novel concept of the "stochastic axon systems," the scale
of which may be comparable to that of the "deterministic,"
point-to-point axons systems. To advance the theoretical
understanding of the trajectories of serotonergic axons, we
propose two theoretical approaches.

The first approach is based on a random, step-wise 3D-walk
driven by the von Mises-Fisher (vMF) directional distribu-
tion [1]. We have developed an algorithm to automatically
trace serotonergic axons in 3D-confocal images in a trans-
genic mouse model and obtained estimates of the vMF-
concentration parameter (k) in several neuroanatomical
regions. We hypothesize that the value of this parameter may
control the self-organization of serotonergic fiber densities,
with immediate implications for normal and diseased brain
states. For example, an increase in serotonergic fiber densi-
ties have been reported in brains of individuals diagnosed
with Autism Spectrum Disorder [2]. The second approach is
based on fractional Brownian motion (FBM), a continuous
stochastic process that generalizes normal Brownian motion.
The model includes the recently discovered properties of the
reflected FBM (tFBM) [3,4]. In the superdiffusive regime,
rFBM-paths reproduce some essential features of serotoner-
gic fiber densities in the forebrain and brainstem. Our super-
computing simulations show that rTFBM-walkers accumulate
near the surface of brain-shaped domains, just as seroton-
ergic axons tend to produce higher densities near the pial
and ventricular surfaces [3]. The FBM model can be further
enriched with a "diffusing-diffusivity" (DD) component, to
reflect the heterogeneous environment axons travel in [5].
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The ability of neurons to communicate with each other is
crucial for normal functioning of the brain. The informa-
tion transfer from one neuron to the other occurs primar-
ily through synapses. In most organisms, the two synaptic
modalities viz., chemical and electrical synapses co-exist,
although their distribution is largely unknown. Moreover,
neuronal dynamics is influenced to a great extent by the pres-
ence of inhibitory neurons. Although they constitute only
10%-20% of the neuronal population, they play a crucial
role in maintaining normal brain activity. It has been shown
that such inhibitory (GABA-ergic) neurons are largely con-
nected through electrical synapses or gap-junctions. Further-
more, certain brain areas such as Reticular Thalamic Nuclei
(RTN) has predominant occurrence of inhibitory neurons,
it is crucial to understand how the interplay of synapses and
gap-junctions influence the neuronal dynamics, especially in
networks of inhibitory neurons. Hence, in this work, using
a generic model of excitable neurons, coupled through both
synapse and gap junctions, we study the conditions for
self-sustained neuronal activity. We first show that coupled
inhibitory neurons, with high inhibitory conductance and
comparatively low gap-junctional conductances exhibits per-
sistent activity. By systematically varying the gap-junctional
conductance, we show the emergence of chaotic attractor
arising through a series of period doubling bifurcations. We
further extend our study by considering a ring of inhibitory
neurons and obtain the optimal conditions required for sus-
tained network activity.
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Reward positivity (RewP), an event-related potential
observed 250-300 ms after feedback [1], is hypothesized
to reflect the dopaminergic response to the reward predic-
tion error (RPE) during the reward processing. However,
the traditional grand averaging approach of ERP analyses
cannot answer whether RewP is merely a response to RPE
valence in a categorical way (i.e., better-than-expected or
worse-than-expected) or reflects the computation of RPE
in a parametric way. In this study, we take a model-based
approach to explore the effect of RPE on RewP. Specifically,
we use the hierarchical Bayesian modelling to estimate indi-
vidual parameter under the reinforcement learning model
and extract the trial-by-trial RPE as the regressor for model-
based EEG analysis.

Thirty-seven healthy adults (19 male, 18 female,
Mage =26.97) performed four blocks of probabilistic
reversal learning task while we acquire their EEG response
using a 128-channel system. The preprocessed data were
segmented into 1000 ms epoch from -200 ms before to
800 ms after the feedback slides. The reinforcement learn-
ing model based on Rescorla Wagner model with separate
learning rates for positive and negative feedbacks was fitted
with the choice data of the subjects to estimate the hyper-
parameter and individual parameters using the hBayesDM
package [2]. Using the fitted parameters, the trial-by-trial
RPE is generated and input as the trial-by-trial regressors
for the model-based EEG analysis using the LIMO-EEG
plugin of EEGLAB [3].

Traditional ERP analysis found a P200, FRN, and P300
effect of feedback valence at FCz (Fig. 1A). For the model-
based analysis, one-sample t-test is applied to condition
contrast (reward vs. non-reward) and RPE contrast (posi-
tive RPE vs. negative RPE). While no significant cluster is
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found for condition effect after correction for multiple com-
parisons using spatiotemporal clustering, the results reveal
a significant modulation of ERP for positive RPE than for
negative RPE (Fig. 1B — cluster started at 212 ms and ends
at 268 ms encompassing frontocentral electrodes, mean beta
value =0.68, 95% CI [-0.07 1.42], maximum t-value =5.20
at 232 ms channel F6, corrected p-value =0.003). The
results support that a more positive RPE predicts a more
positive EEG response at frontocentral region, though the
corresponding time is earlier than the typical RewP time
window. Model-based analysis provides an alternative angle
to the average-based RewP and shed a new light on the tem-
poral dynamic of reward computation. It provides direct
evidence that the “early” RewP encode positive RPE in a
parametric way.
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Sequence learning, prediction and generation has been pro-
posed to be the universal computation performed by the
neocortex [1]. The Hierarchical Temporal Memory (HTM)
algorithm [2] realizes this form of computation. It learns
sequences in an unsupervised and continuous manner using
local learning rules, permits a context-specific prediction of
future sequence elements, and generates mismatch signals
in case the predictions are not met. While the HTM algo-
rithm accounts for a number of biological features such as
topographic receptive fields, nonlinear dendritic processing,
and sparse connectivity, it is based on abstract discrete-time
neuron and synapse dynamics, as well as on plasticity mech-
anisms that can only partly be related to known biological
mechanisms. Here, we devise a continuous-time imple-
mentation of the temporal-memory (TM) component of the
HTM algorithm [3], which is based on a recurrent network
of spiking neurons with biophysically interpretable variables
and parameters. The model learns non-Markovian sequences
by means of a structural Hebbian synaptic plasticity mecha-
nism supplemented with a rate-based homeostatic control. In
combination with nonlinear dendritic input integration and
local inhibitory feedback, this type of plasticity leads to the
dynamic self-organization of narrow sequence-specific feed-
forward subnetworks. These subnetworks provide the sub-
strate for a faithful propagation of sparse, synchronous activ-
ity, and, thereby, for a robust, context-specific prediction
of future sequence elements as well as for the autonomous
replay of previously learned sequences. By strengthening the
link to biology, our implementation facilitates the evaluation
of the TM hypothesis based on experimentally accessible
quantities. The continuous-time implementation of the TM
algorithm permits, in particular, an investigation of the role
of sequence timing for sequence learning, prediction and
replay. We demonstrate this aspect by studying the effect of
the sequence speed on the sequence learning performance
and on the speed of autonomous sequence replay.
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At the beginning of the last century, the British psycholo-
gist William McDougall [1] had proposed a model for color
sensations. The neural stage for color sensations consists
of four channels — three of them correspond to the three
primary colors conceived by Thomas Young and the fourth
one is for the white sensation — and is at a monocular level in
visual cortex. Also related to color vision, the British neuro-
anatomist Le Gros Clark [2] had proposed that the three lay-
ers per retina within the Lateral Geniculate Nucleus (LGN)
correspond to Young’s three primary color channels.
Presently, both McDougall’s and Le Gros Clark’s ideas have
largely been ignored or dismissed by researchers in color
vision (e.g., see [3]). Here I attempt to revive their ideas
(with some modifications) and to develop a neuroanatom-
ically-based model for color sensations. Based on the fact
of phenomenological monocularity of color sensations, I
localize the neural stage for color sensations to the thalamic
recipient layer (i.e., Layer 4, which is usually but incorrectly
labelled as Layer 4C, see [4]) of the primary visual cortex
(i.e., V1). More specifically, I propose the following six-pack
model for this layer: tangentially, it consists of two ocular
subsystems — namely, the ocular dominance columns receiv-
ing inputs from the two eyes respectively; Vertically, from
the top of the layer (i.e., the pia side of the cortical sheet)
to its bottom, it consists of three sublayers corresponding
to the three primary color sensations: blue, green, and red.
Textbooks on the neuroanatomical organization of the pri-
mate visual system usually explain the geniculo-cortical wir-
ing schema as follows: for each retina, the M-layer (magno-
cellular) in the LGN projects to Layer 4Ca in V1; and the
two P-layers (parvocellular) project to Layer 4Cf. But, why
does the Nature twist two bundles of neural fibers together
into one on the geniculo-cortical route? Here I propose that
the organizational feature of three divisions per retina in
the LGN is still conserved within V1 Layer 4—though there
may be a transform from the three cone-based (i.e., S-, M-,
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and L-cones) spectral selectivities in the LGN to the three
primary colors (i.e., B-, G-, and R-colors) in V1 Layer 4.
Furthermore, I propose that the neural code directly corre-
sponds to color sensations is single-moment synchronization
and that the magnitude of a sensation directly corresponds
to the number of neurons within a synchronously-firing cell
assembly. In this view, for any snapshot of visual conscious-
ness, the bindings at various levels—among spatial points,
between the two ocular subsystems, within one primary
color channel, across color channels (i.e., color fusion or
mixture), and among visual features (such as between color
and orientation)—are all due to the same neurophysiological
mechanism (i.e., synchronization).
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The Neuroscience Gateway (NSG) [1-3] has been in opera-
tion since early 2013. It provides ~20 neuroscience modeling
and data processing software on high performance comput-
ing (HPC) and high throughput computing (HTC) resources
of Extreme Science and Engineering Discovery Environ-
ment (XSEDE). It currently has over 1250 registered users
(Fig. 1). Computational modeling of cells and networks has
become an essential part of neuroscience requiring HPC,
and similarly processing of experimental data (EEG, fMRI)
increasingly require compute power of HTC and cloud. NSG
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lowers or eliminates the administrative and technical barriers
that make it difficult for neuroscientists to use HPC/HTC/
cloud resources. It offers free supercomputer timethat the
NSG team acquires on XSEDE resources. NSG is open to
any neuroscientist from any country.

We recently integrated NSG with the Open Science Grid
(OSG) that is a framework for distributed HTC for the aca-
demic community. We have also demonstrated a capability
of NSG job submission to AWS cloud resources where the
NSG jobs use the “cloudbursting” features of supercomput-
ers to send jobs to AWS resources. Both of these capabilities
are to satisfy computing needs of experimental and cognitive
neuroscientists who utilize HTC for data processing [4], just
as computational neuroscientist utilize HPC for modeling.
Recently added new features to NSG include ability for users
to (i) transfer large data directly to NSG’s backend storage,
(i1) share data with their NSG collaborators, (iii) process
publicly shared data, etc. We have expanded NSG to include
a software development platform where neuroscience soft-
ware developers get direct access and which provides a
neuroscience software stack. Neuroscientists can use this
platform to develop, benchmark, and scale their software.
Robust software can be made available in containerized
or cloud image form for dissemination either via NSG or
otherwise for the neuroscience community. We have added
a software repository and a web front end which provides
detail information about the software such that users can
use the software on NSG or their computing resources of
choice such as commercial cloud. NSG is increasingly used
in workshops, training classes and classroom teaching. Since
its inception, NSG has enabled over 250 publications, pres-
entations and thesis work.
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From recollecting childhood memories to recalling if we
turn off the oven before we left the house, memory defines
who we are. Losing it can be very harmful to our survival.
Recently we quantitatively investigated the biophysical
mechanisms leading to memory recall improvement of a
computational CA1 microcircuit model of the hippocampus
[1]. The model consisted of excitatory (pyramidal cells) and
four types of inhibitory cells: axo-axonic, basket, bistratified
and OLM cells. Cell properties were validated extensively
against experimental data. Cells’ firings were timed to a
theta oscillation paced by two distinct medial septal neu-
ronal populations exhibiting highly regular bursting activity,
one tightly coupled to the trough and the other to the peak of
theta. To test recall of a previously stored memory pattern,
the associated input pattern was applied as a cue in the form

2015 2016Yagqr 2017 2018 2019 2020 (Ocr) 2021

(MARCH)

of spiking of active CA3 inputs (those belonging to the pat-
tern) exciting the network’s excitatory cells’ proximal to the
soma dendrites. The EC perforant path excitatory input (sen-
sory input) to network’s excitatory cells’ distal dendrites was
disconnected. Dendritic inhibition acted as a non-specific
global threshold machine that removed spurious activity dur-
ing recall. To systematically evaluate the model’s recall per-
formance against stored patterns, pattern overlap, network
size, and active cells per pattern, we selectively modulated
feedforward and feedback excitatory and inhibitory path-
ways targeting specific excitatory and inhibitory cells. Our
simulations showed that the number of “active cells” rep-
resenting a memory pattern was the determining factor for
improving the model’s recall performance regardless of the
number of stored patterns and degree of overlap between
them. As “active cells per pattern” decreased, the model’s
memory capacity increased, interference effects between
stored patterns decreased, and recall quality improved.

In the present study, we investigated the synergistic effects
of the EC excitatory input (sensory input) and the CA3
excitatory input (contextual information) on the recall per-
formance of the CA1 microcircuit. Our results showed that
when the EC input was exactly the same as the CA3 input
then the recall performance of our model was strengthened.
When the two inputs were dissimilar (degree similarity:
40%—-0%), then the recall performance was reduced. These
results were positively correlated with how many “active
cells” represented a memory pattern. When the number of
active cells increased and the degree of similarity between
the two inputs decreased, then the recall performance of the
model was reduced. The latter finding confirms previous
results of ours where the number of cells coding a piece of
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information plays a significant role in the recall performance
of our model.
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One of the significant dynamic property of neural networks
is their ability to synchronize. Synchronization plays a key
role in the formation of functional states in the brain [1].
Experimental evidence suggests that distinct functional
cognitive states are associated with distinguishable patterns
of brain activity, and these are flexibly rebuilt when solv-
ing different cognitive tasks. Notably, neuronal populations
engaged in the task form spatio-temporal synchronous net-
works, while neurons that are not involved in the task may
remain unsynchronized [2]. The coexistence of synchronous
and asynchronous oscillations is called a chimera state [3].
Studies of chimera states in the neuronal networks are rap-
idly developing and have a great interest for computational
functional importance [4].

Fig.1 State diagram on (r, g) 12
plane when the external current
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In this work, we consider a ring neural network with asym-
metrical chemical inhibitory synapses, modelling a prototypical
connectivity for sequential information passing (see, for exam-
ple, [5]). We describe each neuron by Morris-Lecar model with
type II dynamics [6] which allow us to reproduce excitability
properties of fast-spiking interneurons. First, to understand if
our network is capable of rapid and flexible spatio-temporal
state reconfiguration we need to determine exhaustively the
dynamic modes of the network. Second, we make the ansatz
that for flexible reconfiguration, our network needs to be in a
multistability mode. To perform large-scale scanning of the net-
work spatio-temporal dynamical regimes, we used the adaptive
coherence measure [3]. Depending on the synaptic coupling
strength (gsyn) and connectivity parameter (r=R/N, where R
is a number of connections of each neuron andNis a number of
neurons), we found cluster synchronization, travelling waves,
chimeric states and regimes of oscillator death (cessation of
activity). The multistability map is shown in Fig. 1.

We find that for the vast majority of the parameter space the
network shows multi stability with different combinations
of dynamic states coexisting. This shows that even simple
network architectures allow for a rich repertoire of dynami-
cal behaviors and that these can be rapidly and flexibly navi-
gated between by inputs, resetting of initial conditions or
neuromodulatory influences.
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In this work, we processed sets of images obtained by the
light-sheet fluorescence microscopy method. We selected
different cell groups and determined areas occupied by
ensembles of cell groups in mouse brain tissue. Recogni-
tion of mouse neuronal populations was performed on the
basis of visual properties of fluorescence-activated cells.

Fig. 1 Selection of segments at

different scales. A The original A
set of elements schematically: at

scale 1 there are gray and lilac

ovals; scale 2 contains lilac cir-

cles; scale 3 has orange strokes. '
B-D Different scales highlighted
in light green

The identification of individual ensembles and the princi-
ples of their interaction, and the correlation of activity of
ensembles, are considered by many authors. Segmentation
of a large set of neurons involves grouping them into neural
ensembles, which are usually formed as populations of cells
(or cultured neurons) with similar properties.

The proper selection of scale makes it possible to reduce
errors and to use flexible settings for the integration of het-
erogeneous data, and to define filters for noise reduction.
Data obtained at intermediate scales affects the identification
of single image segments during their processing. Figure 1
shows how final segment contours can be formed in different
ways, depending on initial scales. In this work typical sam-
ples of cell groups in the brain were studied. Spatial analysis
of the distribution of cells according to fluorescence micros-
copy datasets was performed based on data packages [1,2]
(https://ebrains.eu). In our study 60 fluorescence microscopy
datasets obtained from 23 mice ex vivo were analyzed.
Based on data from the light-sheet microscopy datasets, we
identified the visual characteristics of elements in multi-page
TIFF files, such as the density of surface fill and its distribu-
tion over the study area, the boundaries of distinct objects
and object groups, and the boundaries between homogene-
ous areas. To identify topological properties of the images,
we performed operations such as contouring and segmenta-
tion, and identification of areas of interest. Individual ele-
ments in fluorescence microscopy records were selected
based on their brightness in grayscale mode. Frequently
occurring patterns formed by individual elements were
classified and found in other sets of images: this way we
built a training sample and classified the data in optogenet-
ics multi-page TIFF files. The presence of training samples
was tested for different types of fluorescence microscopy.
We selected and constructed six sets of typical samples, with

B
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certain topological properties, on the basis of the density at
the boundaries, the density inside the boundaries, and the
shape type.

In this work we demonstrated the usability of spatial data
processing methods for pattern recognition and comparative
analysis of fluorescence microscopy records. Geoinformation
applications provide sets of options for processing topological
properties of images, such as contouring and segmentation,
identification ROIs, data classification, and training sample
construction. We have shown that the application of the pro-
cedure for combining a group of cells into typical ensembles
enriches the possibilities of brain image processing.

Such applied algorithms and methods can be used for data
processing at an "intermediate scale" and in describing the
specific characteristics of the distinctive regions formed near
the borderlines of stable ensembles.
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Individuals differ in their behavior and cognitive abilities,
but to what extent the brain connectome vary between indi-
viduals remain largely unknown. By combining diffusion-
weighted images (DWI), fMRI, and magnetoencephalogra-
phy (MEG), this study quantifies the individual variations
of connectome and their consistency across imaging modali-
ties. Furthermore, we associated individual variability in
connectome with cortical myelin content and white-matter
microstructure [1]. We recruited 64 healthy participants
in two cohorts (49 females, age 18-35 years (mean:21.1,
std:2.94). Cohort 1 (N =29) underwent 3 T DWI, fMRI and
MEG scanning sessions. Cohort 2 (N=35) completed a7 T
high-resolution (0.65 mm isotropic) structural MRI session.
For Cohort 1, we generated individual DWI-based struc-
tural connectome from whole-brain probabilistic tractogra-
phy. The connectivity matrix was calculated as the region-
to-region connectivity strength, based on cortical surface
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parcellations from the HCP multimodal atlas [2]. White
matter microstructural metrics were calculated from DTI,
NODDI [3] and CHARMED models [4]. fMRI functional
connectome was calculated by correlating BOLD responses
between regions of interest. MEG functional connectome
was calculated from regional correlations of source recon-
structed alpha and beta-band oscillatory power. For Cohort
2, we measured the T1 relaxation rate (R1) as a proxy to
cortical myelin content.

We quantified the inter-subject variability (ISV) on connec-
tome as the average cosine distance between the connectiv-
ity profiles of individuals. The ISVs of structural and func-
tional connectomes are characterized by higher variability
in association cortices and lower variability in sensory and
visual cortices (Fig. 1A). This pattern is consistent across
all modalities at varying degrees, as shown by significant
alignments between functional and structural connectome
variabilities in selective cortical clusters. Cortical myelin
content, indexed by the R1 value, is high in somatosensory,
motor, auditory and visual cortices and low in associa-
tion cortices (frontoparietal and temporal areas) (Fig. 1B).
Across the cortex, R1 is negatively related to ISV across
modalities (Spearman’s correlation between R1 map and
structural ISV: r=-0.11, p=0.009; fMRI ISV: r=-0.50,
p=0.78e-39; alpha-band MEG ISV: r=-0.24, p=0.0006;
beta-band MEG ISV: r=-0.36, p=1.04e-07). Furthermore,
fMRI ISV is mediated by the level of anisotropy in white-
matter microstructure (ISV: r=-0.4, p=0.22e-26).

Our findings contribute to understanding of the individual
differences in the functional and structural organization of
brain. The identification of consistent individual differences
across modalities could provide benchmarks to understand
how disease modifies brain function.
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Diverse cognitive processes set different demands on locally
segregated and globally integrated brain activity. However, it
remains an open question how resting brains configure their
functional organization to balance the demands on network
segregation and integration to best serve cognition. Here, we
use an eigenmode-based approach [1] to identify hierarchi-
cal modules in functional brain networks, and quantify the
functional balance between network segregation and integra-
tion. In a large sample of healthy young adults (n=991), we
combine the whole-brain resting state functional magnetic
resonance imaging (fMRI) data with a mean-filed model on
the structural network derived from diffusion tensor imaging
and demonstrate that resting brain networks are on average
close to a balanced state. This state allows for a balanced
time dwelling at segregated and integrated configurations,
and highly flexible switching between them. Furthermore,
we employ structural equation modelling to estimate general
and domain-specific cognitive phenotypes from nine tasks,
and demonstrate that network segregation, integration and

Subject n Isv

sxr) ERISV(r)

E}Clusterk
£} Cluster |

ISV(r) = T ; CosDist(S™(r),S*(r))

m,n=1

m=n

. fe-ISV ’ R1 map -
& \j)t\_ ’ & "\"
Beta meg-ISV
' ‘ zZ-score
L \/‘r Py | B

their balance in resting brains predict individual differences
in diverse cognitive phenotypes. More specifically, stronger
integration is associated with better general cognitive abil-
ity, stronger segregation fosters crystallized intelligence and
processing speed, and individual’s tendency towards balance
supports better memory. Our findings provide a comprehen-
sive and deep understanding of the brain’s functioning prin-
ciples in supporting diverse functional demands and cog-
nitive abilities, and advance modern network neuroscience
theories of human cognition. The work was published in [2].
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We have proposed that the cognitive cost of task perfor-
mance should depend on the rate of acquisition of novel
information and be independent of the amount of sensory
data that can be predicted from past inputs. We have defined
and computed a lower bound for such information rate in a
visuomotor tracking task (Lam & Zénon, 2021), and showed
that effective information rate in human subjects decreased
as a function of the predictability of the signal, suggesting
that subjects were modulating information rate to cope with
the amount of noise in the signals. In the current study, we
attempted to draw a positive relationship between informa-
tion rate and cognitive effort. To do that, we evaluated effort
by means of subjective effort ratings, pupil size data, choice
preferences between conditions with different information
processing rate and dual task interference on a concurrent
auditory N-back task. Our results showed that higher infor-
mation rate in the visuomotor tracking task was associated
with higher subjective mental effort ratings, larger pupil
dilations during trial performance, lower choice prefer-
ences and lower performance in the N-back, both in terms
of accuracy and reaction time. Preliminary results suggest
that these associations are specific to information rate and
do not depend on confounding factors such as performance
and physical effort.

P211 Multi-scale spiking network model of human cortex
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Is our current knowledge about the structural connectivity
of the brain compatible with the measured activity? Using
a large-scale spiking network model of leaky integrate-and-
fire neurons to achieve simulations with the full neuron and
synapse density, we previously answered this question in
the affirmative for macaque cortex [1,2]. Here, we apply the
same framework to investigate human cortex. Concretely,
we present a large-scale spiking network model that relates
the cortical network structure to the resting-state activity of
neurons, populations, layers, and areas.

The construction of the model is based on the integration
of data on cortical architecture, single-cell properties, and
local and cortico-cortical connectivity into a consistent
multi-scale framework. It predicts connection probabilities
between any two neurons based on their types and locations
within areas and layers. Every area is represented by a 1
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mm? microcircuit with area-specific architecture and the full

density of neurons and synapses. The cortical architecture in
terms of laminar thicknesses and neuron densities is taken
from the von Economo and Koskinas atlas [3] and enriched
with more detailed data extracted from the BigBrain atlas
[4]. While connectivity on the area level is informed by
diffusion tensor imaging (DTI) data [5], it is necessary to
complement this with predictions on laminar connectiv-
ity patterns. We rely on predictive connectomics based on
macaque data which express regularities of laminar con-
nectivity patterns as a function of cortical architecture. The
local connectivity uses the model by Potjans and Diesmann
[6] as a blueprint and is scaled according to the cytoarchitec-
tonic data. Analysis of human neuron morphologies provides
synapse-to-soma mappings based on layer- and cell-type-
specific dendritic lengths [7]. The model contains roughly 4
million neurons and 50 billion synapses and is simulated on
a supercomputer using the NEST simulator.

While the available data constrain the parameter space to
some extent, the model remains underdetermined. Mean-
field theory guides the exploration of the parameter space
in search for a low-rate asynchronous irregular state that
generates substantial inter-area interactions through cortico-
cortical weights that poise the network at the edge of stability.
Different realizations of the model are assessed via compari-
son with experimental data. The simulated functional con-
nectivity is compared with experimental resting-state fMRI
data. Furthermore, simulated spiking data is compared with
spike recordings from medial frontal cortex recorded in epi-
leptic patients [8]. Preliminary results show that the model
can reproduce an asynchronous irregular network state and
functional connectivity similar to the resting-state fMRI data.
The model serves as a basis for the investigation of multi-
scale structure-dynamics relationships in human cortex.
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Changes of synaptic strength during learning allow ani-
mals to adapt to tasks and environment. However, synaptic
plasticity requires significant amounts of metabolic energy,
which is so high that learning shortens the lifespan of fruit
flies by 20% when feeding is stopped, compared to naive
flies [1]. Consolidated associative memories in Drosophila
have different metabolic cost, for instance, the formation of
protein synthesis dependent long-term memory (LTM) is
more energetically costly than anaesthesia-resistant memory
(ARM) [1]. As an organ with a key role in the regulation of
energy and metabolism, the brain is likely to modulate the
use of energy while learning. Indeed, to survive during star-
vation, flies stop some forms of energy-intensive memory
formation [2].

To research under which condition it is better to halt ener-
getically costly LTM plasticity, we add an energy constraint
to a reinforcement learning setup. We modelled a behav-
ioural paradigm of instrumental conditioning as a decision-
making network with two populations of sensory neurons

corresponding to two alternatives, connecting with two
populations of pre-motor neurons, and the choice of action
is determined by the competition between the pre-motor
populations. The synaptic strengths are modified by a covar-
iance-based plasticity, modulated by reward and presynaptic
activity. We associate an electric shock to one alternative;
the fly should learn how to choose the safe alternative and
avoid the hazard from aversive stimuli. We assume that the
lifetime of the fly is affected by two hazards: 1) the aversive
stimulus, and 2) when the remaining energy is low there is a
hazard to perish from starvation. As the files will consume
energy to learn to avoid the electric shock, they are facing
a trade-off between starvation caused by synaptic plasticity
and the hazard of aversive stimuli. We find the optimal regu-
lation of the memory pathway by maximizing the lifespan
the lifespan of the fruit flies. We implemented two distinct
consolidated memory pathways in Drosophila — a high-cost
LTM pathway with a strong memory retention and a low-
cost ARM pathway which however decays over time [3].
When we implement a single memory pathway with a fixed
initial energy, we found the fruit flies with sufficient initial
energy using the LTM pathway survived longer than flies
that don't learn. However, when the initial energy was low,
exclusively using the ARM pathway led to a longer lifespan.
Next, we gated the memory pathway by an energy threshold
so that the model will select the LTM (ARM) pathway when
the energy is above (below) the threshold. In this regime, the
expected lifetime can exceed the case of a single memory
pathway. Hence, the results show that energy adaptive learn-
ing allows the fruit flies to save energy when starving, and
enable long-term memory retention when the energy is suf-
ficient. This learning mechanism helps the fruit flies survive
aversive tasks and hostile environments.
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In typical artificial neural networks with backpropagation,
synaptic updates are distributed across the entire network.
In principle, all synapses might be modified following a sin-
gle learning event. In contrast, biological synaptic plasticity
appears to be competitive at various levels, including between
individual synapses [1], between dendritic branches [2,3], and
between individual neurons [4]. As a result, in biology only a
few synaptic connections undergo modifications at any time.
A possible reason for this restriction is that synaptic plasticity
can be energetically costly [5]. Thus, competition effects may
be due to the requirement that learning is "frugal", minimis-
ing the amount of metabolic energy consumed. For instance,
it may be the case that energy debit constraints only allow a
certain number of neurons to undergo memory consolidation
in any particular time interval, requiring such selection mech-
anisms in order to efficiently allocate the energetic resources.
Here, we investigate the energetic impact of limiting
neural plasticity through competition. We utilise a setup
similar to that employed in [7], training a 2-layer artificial
neural network on the MNIST dataset, and defining energy
consumption as the magnitude of changes in the model's
weights. We mainly focus on neuron-level competition,
using a random selection rule where, after a training exam-
ple is presented and backpropagation gradients are com-
puted, only a subset of neurons have their weights updated.
We show that spatial competition between neurons can sig-
nificantly reduce the energy needed for synaptic plasticity. We
observe energy savings both in terms of the total energy required

Fig. 1 The total energy required
to train the network to 95%
accuracy; the learning rate

is 5e-4, and the hidden layer
consists of 10,000 units with
exponential linear unit (ELU)
activations

Total energy consumed during training

to reach a set accuracy threshold, with a more than two-fold
reduction in cost for large networks of over 10,000 neurons
(Fig. 1), as well as in terms of the energy efficiency ratio between
the minimum energy needed to learn the final set of weights and
the actual energy cost. Using the same methodology, we then fur-
ther investigate the effects of more refined forms of the algorithm,
such as synaptic-level and refractory competition.

In conclusion, the experimentally observed spatial competition of
neural plasticity may be associated with a reduction in the energy
needed to learn, providing evidence for the theory that such
effects are at least in part caused by metabolic energy constraints.
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