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ABSTRACT: This study compares the spread in climatological tropical cyclone (TC) precipitation across eight different

reanalysis datasets: NCEP-CFSR, ERA-20C, ERA-40, ERA5, ERA-Interim, JRA-55, MERRA-2, and NOAA-20C. TC

precipitation is assigned using manual tracking via a fixed 500-km radius from each TC center. The reanalyses capture

similar general spatial patterns of TC precipitation and TC precipitation fraction, defined as the fraction of annual pre-

cipitation assigned to TCs, and the spread in TC precipitation is larger than the spread in total precipitation across rean-

alyses. The spread in TC precipitation relative to the inter-reanalysis mean TC precipitation, or relative spread, is larger in

the east Pacific than in the west Pacific. Partitioned by reanalysis intensity, the largest relative spread across reanalyses in TC

precipitation is from high-intensity TCs. In comparison with satellite observations, reanalyses show lower climatological

mean annual TC precipitation over most areas. A comparison of area-averaged precipitation rate in TCs composited over

reanalysis intensity shows the spread across reanalyses is larger for higher intensity TCs. Testing the sensitivity of TC

precipitation assignment to trackingmethod shows that climatological mean annual TC precipitation is systematically larger

when assigned via manual tracking versus objective tracking. However, this tendency is minimized when TC precipitation is

normalized by TC density. Overall, TC precipitation in reanalyses is affected by not only horizontal output resolution or any

TC preprocessing, but also data assimilation and parameterization schemes. The results indicate that improvements in the

representation of TCs and their precipitation in reanalyses are needed to improve overall precipitation.

SIGNIFICANCE STATEMENT: Many studies use reanalysis datasets (numerical weather prediction models con-

strained by observations) to study precipitation patterns in regions with high amounts of rainfall from tropical cyclones.

Knowing how tropical cyclone precipitation varies in reanalyses is critical for contextualizing results in these studies and

improving reanalyses for future work. There are notable differences across reanalyses in both tropical cyclone pre-

cipitation and its contribution to total precipitation in regions of high tropical cyclone activity. Reanalyses also agree

better in some ocean basins than others. These results show that the choice of reanalysis dataset is important and

highlight the need for continued improvement in the representation of tropical cyclones and their precipitation in

reanalyses so as to improve overall precipitation.
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1. Introduction

Precipitation provides freshwater for agricultural use and

drinking supplies for populations around the globe, but also

can be destructive through devastating flooding (Trenberth

et al. 2003). As precipitation extremes and the resulting im-

pacts are expected to increase in a warming climate, it is crucial

that precipitation datasets used in both forecasting and re-

search for management of water resources and climate pro-

jections continue to be improved (Groisman et al. 2005;

O’Gorman and Schneider 2009; Sun et al. 2018).

It has become popular to use gridded datasets such as

reanalyses to analyze precipitation in observation-sparse

regions around the globe and over longer time periods than

merged satellite datasets cover. This is in part because

reanalyses are often the only tool available for assessing

precipitation in the context of other meteorological and

climate variables in a dynamically consistent manner (Sun

et al. 2018; Yao et al. 2020). However, reanalyses employ

different model horizontal and vertical resolutions, differ-

ent parameterizations of unresolved physical processes such

as convection and microphysics, and different data assimi-

lation methods (Sun et al. 2018). Precipitation is especially

sensitive to reanalysis model configuration, including con-

vective parameterizations (Cui et al. 2017), since rainfall

observations are not as frequently assimilated into rean-

alyses as other observations (Bosilovich et al. 2008).

Prior work has shown that rainfall in the intertropical con-

vergence zone is overestimated in reanalyses owing to different

convective parameterizations and the high spatiotemporal

variability of tropical precipitation that cannot be explicitly

resolved (Pfeifroth et al. 2013; Zhang et al. 2013). In areas with

complex terrain and high elevations, where precipitation is

predominantly a process governed by moisture convergence,

orography, and convection at small scales, reanalyses tend to

overestimate precipitation relative to observations (Yao et al.

2020). Zhou andWang (2017) compared precipitation in China

in eight reanalyses and found that heavy precipitation and its

frequency are underestimated, while lighter precipitation is
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overestimated. Cui et al. (2017) noted that coarser horizontal

resolution models used in reanalyses may include more pre-

cipitation generated from parameterized convection.

In many regions across the globe, tropical cyclones (TCs)

are a major source of rainfall (Rogers et al. 2009). Previous

studies have considered the climatological contribution of TCs

to total rainfall regionally using in situ and satellite observa-

tions. Using a network of rain gauge observations, Khouakhi

et al. (2017) found that TCs contribute 30%–50% of total an-

nual precipitation in the western North Pacific (WPAC), the

eastern Pacific (EPAC), and northwest Australia. Prat and

Nelson (2013, 2016) determined, by utilizing satellite rainfall

measurements from the Tropical Rainfall Measuring Mission

3B42 satellite dataset (TRMM), that the contribution of TC

precipitation to total precipitation is highest in regions such as

the EPAC due to the low amount of annual total precipitation

and high TC activity, while the highest amounts of climato-

logical TC precipitation in general occur over the WPAC and

Southeast Asia.

Precipitation from TCs in reanalyses has not been consid-

ered much in prior work, likely in part due to poor represen-

tation of TC characteristics in reanalyses. Manning and Hart

(2007) investigated the representation of the structural evolu-

tion and life cycle of North Atlantic TCs in the 40-yr European

Centre for Medium-Range Weather Forecasts (ECMWF) Re-

Analysis (ERA-40). They found that TCs are not adequately

represented, with central pressures between category-1 and

category-5 tropical cyclones (as rated in the best track) only

having a difference of 5–7 hPa in intensity in ERA-40.

Schenkel and Hart (2012) compared TC characteristics in

five different reanalyses and showed that all reanalyses un-

derestimate TC intensity in terms of both minimumMSLP and

10-m maximum wind speed relative to the best track in all

basins. They concluded that this misrepresentation is not solely

explained by the coarse horizontal output resolution of rean-

alyses but is highly dependent upon reanalysis model formu-

lation. Hodges et al. (2017) showed using six different reanalyses

that newer reanalyses with improved bias correction schemes for

data assimilation and preprocessing to aid in correcting TC po-

sition and structure tend to reproduce TCs better. Kim et al.

(2020) examined the representation of TCs in the National

Aeronautics and Space Administration (NASA) Modern-Era

Retrospective Analysis for Research and Applications version 2

(MERRA-2). They found thatMERRA-2 initiates TCs at lower

latitudes than is observed and underestimates the recurvature of

TCs in the west Pacific andNorthAtlantic. TCs in global climate

models have been shown to be sensitive to convective parame-

terizations (Duvel et al. 2017; Kim et al. 2012; Murakami et al.

2012; Reed and Jablonowski 2011; Zhao et al. 2012), so similar

sensitivities would also be expected in reanalyses for TC

precipitation.

While prior work has considered TC tracks in reanalyses and

compared this with satellite observations of TC precipitation

regionally (Franco-Díaz et al. 2019), so far no study has been

undertaken to consider the systematic representation of TC

precipitation in reanalyses. One exception is Vannière et al.

(2020), who considered TC precipitation in four reanalyses, but

this is in the context of an evaluation of global climate models

and only considered the 200 strongest TCs in the period of

study. Numerous past studies have considered total precipita-

tion trends using reanalyses for areas that receive a nontrivial

amount of climatological rainfall from TCs without consider-

ing how adequately TC precipitation itself is depicted in those

same reanalyses (e.g., Kim et al. 2019; Pascale and Bordoni

2016; Angélil et al. 2016; Acharya et al. 2019). Since TC pre-

cipitation also represents the extremes in precipitation in many

of these areas, any discrepancies in TC precipitation in rean-

alyses will invariably distort a statistical analysis that involves

precipitation in these studies. Therefore, despite the expecta-

tion that the aforementioned biases in the representation of

TCs by reanalyses may also affect TC precipitation, there is

nevertheless strong motivation to investigate how reanalyses

represent TC precipitation and its imprint on total precipita-

tion. Investigation is needed to provide context for studies that

consider total precipitation variability in reanalyses in TC-

prone regions and to improve reanalyses for future scientific

research.

This study compares and quantifies the representation of

TC precipitation across reanalysis datasets on a grid point

by grid point basis and determines the spread between them

using manual tracking of TCs from the best-track dataset.

We also examine the contribution of TCs to total precipi-

tation. Section 2 describes the data used in this work.

Section 3 describes the methods used to assign TC precipi-

tation in reanalyses and analyze it. Section 4 discusses the

spread of TC precipitation across reanalyses on a grid point

by grid point basis. Section 5 discusses the analysis of TC

precipitation in reanalyses based on intensity-binned com-

posite precipitation. Section 6 considers the sensitivity of

the results to the method of tracking. Section 7 summarizes

the results and discusses limitations of this work.

2. Data

a. Reanalyses

Eight different reanalysis datasets are used for this study:

The National Centers for Environmental Prediction (NCEP)

Climate Forecast System Reanalysis (CFSR; Saha et al.

2010b); the ECMWF’s Twentieth Century Reanalysis (ERA-

20C; Poli et al. 2016), ERA-40 (Uppala et al. 2005), ERA5

(Hersbach et al. 2019), and ERA-Interim (Dee et al. 2011); the

Japanese 55-year Reanalysis (JRA-55; Kobayashi et al. 2015);

MERRA-2 (Gelaro et al. 2017); and NOAA’s Twentieth

Century Reanalysis (NOAA-20C; Compo et al. 2011). Table 1

shows characteristics of each reanalysis, including model res-

olution, output horizontal resolution, time period of coverage,

data assimilation schemes, convective parameterizations, and

any preprocessing of TC characteristics. The use of the Tiedtke

(1983) convective scheme in newer ECMWF reanalyses, like

ERA5, includes additions and updates to the original scheme

(Bechtold et al. 2008; Hersbach et al. 2020). For NOAA-20C,

precipitation is only available on a latitudinal Gaussian grid;

hence, the data are bilinearly interpolated onto a regular 28 3
28 grid for uniformity in comparison with other datasets [For

additional reanalysis parameterizations, see Table S1 in the

8462 JOURNAL OF CL IMATE VOLUME 34

Brought to you by FLORIDA STATE UNIVERSITY | Unauthenticated | Downloaded 07/18/22 03:13 PM UTC



online supplemental material and Fujiwara et al. (2017) for a

general overview].

CFSR features vortex relocation, where the TC vortices are

synthetically inserted or moved from their initial location

generated in the reanalysis to the best-track position, based on

data from the National Hurricane Center (NHC) and Joint

Typhoon Warning Center (JTWC), prior to data assimilation

of storm observations (Saha et al. 2010b). MERRA-2 also in-

cludes vortex relocation based on operational estimates of TC

position (McCarty et al. 2016). JRA-55 features the insertion of

TC wind profile retrievals, which are generated from historical

observations and assimilated into the reanalysis as dropsonde

observations for TCs with 10-m wind speeds greater than

34 kt (1 kt ’ 0.514m s21) (Kobayashi et al. 2015). NOAA-

20C assimilates sea level pressure observations from IBTrACS

(Compo et al. 2011).

Some agencies have issued statements about errors in me-

teorological variables in some reanalyses. For instance, ERA5

features a cold bias in the lower stratosphere during the period

2000–06 (Simmons et al. 2020) and themisrepresentation of 10-

m u and y winds for some TCs, some of which have unusually

strong winds of up to 300m s21 (see https://confluence.ecmwf.int/

display/CKB/ERA5%3A1large110m1winds). JRA-55 features

a few TCs that are misrepresented as anticyclonic vortices be-

tween 1959 and 1987, mostly in the North Atlantic Ocean (Japan

Meteorological Agency 2020). These errors are not expected to

significantly impact the results presented in this study since only 19

TC snapshots are misrepresented between 1979 and 1987.

b. Satellite observational datasets

We compare the reanalysis precipitation with operational

estimates from the Tropical Rainfall Measuring Mission (TRMM)

3B42, version 7, Multi-Satellite Precipitation Analysis dataset

(TMPA; Huffman et al. 2007). The TRMM Multi-Satellite

Precipitation Analysis combines remotely sensed microwave

and infrared (IR) data from multiple satellite sources and

calibrates these against each other. Combined with rain gauge

analysis of precipitation, the resulting product is a continuous,

3-hourly precipitation rate between 508N and 508S at all lon-

gitudes (Huffman et al. 2007). The TRMM product is provided

for the years 1998–2018 and has a spatial output resolution of

0.258 3 0.258. Satellite datasets such as TRMM are subject to

their own biases and errors arising from inadequate sampling

and uncertainties in the algorithms used to produce precipi-

tation estimates, since satellites do not measure rainfall di-

rectly (Sun et al. 2018). There are also some underestimates

in rainfall algorithm estimates over land for the TRMM

Microwave Imager, but these are greatly reduced by incor-

porating rain gauge data into the final product (Lonfat et al.

2004; Huffman et al. 2007). We also use another satellite-

based dataset, the Climate Prediction Center morphing

technique dataset (CMORPH; Joyce et al. 2004). However,

the results are similar to those from TRMM and hence are

not shown here.

c. Best tracks

Manual tracking of TCs in the reanalyses is performed using

the International Best-TrackArchive for Climate Stewardship,

version 4 (IBTrACS; Knapp et al. 2010). We use IBTrACS

because many previous studies use this best-track data to ex-

amine TC characteristics (Kim et al. 2020; Prat and Nelson

2013, 2016; Hodges et al. 2017; Franco-Díaz et al. 2019; Skok

et al. 2013). IBTrACS compiles the historical records of TCs

from different meteorological agencies worldwide and is the

most complete global historical archive of these observations.

IBTrACS has some biases based on agency responsibility in

different basins, how TCs are classified and tracked in a par-

ticular basin by the governing agency, and forecaster subjec-

tivity of various TC parameters in the best track (Knapp et al.

2010). Since the data in some basins are available from several

different agencies, to homogenize and obtain a global picture

of TC activity we use best-track information from the NHC

Hurricane Database (HURDAT) for the North Atlantic

Ocean (NATL) and the EPAC, the Central Pacific Hurricane

TABLE 1. Summary of the reanalysis datasets and their characteristics used in this study. Model resolution is shown as based on the

model spectral resolution, with the approximate horizontal resolution in parentheses. EKF stands for ensemble Kalman filter.

Reanalyses using the convective parameterization scheme by Tiedtke (1983) include changes and updates to the original scheme,

such as in ERA5.

Reanalysis Model resolution

Output

resolution Coverage

Data

assimilation Convective parameterization TC preprocessing

CFSR T382L64 (;0.348) 0.58 3 0.58 1979–2010 3DVar Tiedtke (1983), Moorthi

et al. (2001)

Vortex relocation

ERA-20C TL159 (;1.1258) 18 3 18 1900–2010 4DVar Tiedtke (1989) None

ERA-40 TL159 (;1.1258) 2.58 3 2.58 1958–2001 3DVar Tiedtke (1989) None

ERA5 TL639 (;0.288) 0.258 3 0.258 1979–2018 4DVar Tiedtke (1989) None

ERA-Interim TL255 (;0.78) 0.758 3 0.758 1979–2018 4DVar Tiedtke (1989) None

JRA-55 TL319 (;0.568) 1.258 3 1.258 1957–2018 4DVar Arakawa and Schubert (1974),

Xie and Zhang (2000)

TC wind profile

retrievals

MERRA-2 0.58 3 0.6258 0.58 3 0.6258 1980–2018 3DVar Moorthi and Suarez (1992) Vortex relocation

NOAA-20C T62L28 (;1.898) 28 3 28a 1850–2014 EKF Tiedtke (1983), Moorthi

et al. (2001)

IBTrACS TC

pressures

a The NOAA-20C output resolution is displayed as interpolated from its approximately 200-km horizontal Gaussian grid resolution.
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Center, and JTWC for the WPAC, Indian Ocean, and the

Southern Hemisphere (Knapp et al. 2010).

3. Methods

Individual reanalyses provide their precipitation products

in different ways: as an average rate centered at each time

step (MERRA-2), a 1-h accumulation (CFSR and ERA5),

or a precipitation forecast initialized at the beginning of their

forecast periods (ERA-Interim, ERA-40, ERA-20C, JRA-

55, and NOAA-20C). TRMM provides precipitation mea-

surements as an average rate over 3 h. To properly compare

the precipitation output from each reanalysis and TRMMand

assign it to a TC in 6-hourly intervals using the IBTrACS

official best-track times, all precipitation is converted to a 6-h

accumulation centered at 0000, 0600, 1200, and 1800 UTC as

in Hénin et al. (2019). This is representative of how much

rainfall fell at a given location accumulated over 6 h. Some

studies have used a linear interpolation of 3-hourly TC po-

sition to consider the 3-hourly rainfall rate associated with

a TC [e.g., Prat and Nelson (2013, 2016), with TRMM], but

we use the 6-hourly accumulation in this study to avoid

sensitivity to interpolation of the best-track positions. For

fast-moving TCs, there is the possibility of distortions in TC

precipitation patterns due to accumulating precipitation

over 6 h.

For identification of TC centers in reanalyses using manual

tracking, the center of a TC in a reanalysis at each time step is

determined by first using the best-track position as an initial

guess of TC location. The minimum SLP within a 38 search
radius of the best-track position is identified as the position of

the TC in the reanalysis [similar to the approach of Schenkel

and Hart (2012)]. Only times in which a TC is represented as a

local minimum in SLP (surrounded by a closed contour of

higher pressure) are counted in each reanalysis to assign pre-

cipitation to a TC. We use this approach to minimize the as-

signment of precipitation to a non-TC feature in the reanalyses,

consistent with prior work (Schenkel and Hart 2012). Our

approach will miss cases where the position difference between

IBTrACS and the reanalysis TC is greater than 38, but since
prior work (e.g., Schenkel and Hart 2012) showed that most

position differences are less than 38, we do not expect this

limitation to severely affect our results. For statistics on the

number of 6-hourly IBTrACS TC time steps included in each

reanalysis, as well as the number of TCs counted in each re-

analysis in comparison with IBTrACS, see Table 2. (See

Figs. S1 and S2 in the online supplemental material for

IBTrACS track densities and reanalysis manually tracked TC

track densities and supplemental Fig. S3 for the probability

distribution functions of best-track and reanalysis TC intensity

based on MSLP.) We argue there is strong motivation and

utility in using IBTrACS and our manual tracking method,

since many previous studies have used the best track as a

starting basis for analyzing reanalysis TC characteristics

(Hodges et al. 2017; Schenkel and Hart 2012; Bieli et al.

2019a,b; Brannan and Chagnon 2020). As reanalyses are in-

tended to represent actual past meteorological conditions,

including for TCs, this provides convincing motivation to use

best-track data to consider the precipitation that reanalyses

generate for observed TCs, even if the simulated TC may not

rise to the level of intensity and structure to be detected by an

objective algorithm. We test the sensitivity of our results to

the method of tracking in section 6, where we assign TC

precipitation based on TC tracks from an objective tracking

algorithm using only reanalysis data (TempestExtremes;

Zarzycki and Ullrich 2017). Analysis with TRMM uses the

actual best-track center for assignment of precipitation.

Six-hourly accumulated precipitation is assigned to a TC

from its reanalysis position if it falls within a 500-km great

circle distance of the center. As noted by Skok et al. (2013), the

use of a fixed radial distance could result in missing precipi-

tation features outside of the 500-km radius associated with a

given TC. For some storms, a fixed 500-km radius, as opposed

to using a dynamically changing radius size, could overestimate

the region of TC-related precipitation and include precipita-

tion not associated with a TC (Franco-Díaz et al. 2019;

Stansfield et al. 2020). The 500-km radius, however, has been

used by numerous previous studies (Jiang and Zipser 2009;

Prat and Nelson 2013, 2016; Lavender and McBride 2021;

Vannière et al. 2020) and is expected to be suitable for cap-

turing both the TC’s primary circulation of tangential winds

(Prat and Nelson 2013) and most rainfall associated with a

given TC.

All rainfall located inside this circle is assigned to the TC.

For grid boxes that lie on the edge of the 500-km radius, a

fractional amount of the value of that grid box is assigned to the

TABLE 2. Number of 6-hourly interval samples included based onmanual tracking in each reanalysis, percent samples based on 6-hourly

interval samples in IBTrACS, number of storms included in each reanalysis, and percent of storms based on the number of storms in

IBTrACS, all between the years 1980 and 2001. IBTrACS is included at the bottom of the table for reference.

Reanalysis Samples included Percent samples Storms included Percent storms

CFSR 54 308 83.6% 2172 98.4%

ERA-20C 31 933 49.1% 2073 93.9%

ERA-40 26 591 40.5% 2046 92.7%

ERA5 52 230 80.4% 2181 98.8%

ERA-Interim 39 258 60.4% 2104 95.3%

JRA-55 60 753 93.5% 2187 99.0%

MERRA-2 53 031 81.6% 2155 97.6%

NOAA-20C 27 159 41.8% 1905 86.3%

IBTrACS 64 960 2208
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TC. For TCs whose centers are located close enough to each

other that their 500-km radius circles overlap, TC precipitation

is assigned as the total amount of rainfall to avoid double

counting of precipitation. This precipitation assignment is done

for all time steps and all possible years covered by the different

reanalyses at each of their original output resolutions to create

outputs of 6-hourly accumulation of TC precipitation. Our

analysis primarily focuses on 1980–2001, which is the time

period of overlap between all eight reanalyses, and we consider

annual precipitation accumulations, computing the climato-

logical mean by taking an average over those same years.

When comparisons are made between TRMM and reanalyses,

we exclude ERA-40 to obtain a maximum time period of

overlap of 1998–2010. All mathematical operations across re-

analyses (e.g., inter-reanalysis spread, mean) are carried out

after interpolating to a common 28 3 28 grid, the resolution of

FIG. 1. Climatological mean annual TC precipitation PTC in each reanalysis at their original horizontal output

resolutions (1980–2001).
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the lowest output horizontal resolution reanalysis overlapping

with TRMM (after TC precipitation has been assigned).

4. Reanalysis spread in TC precipitation

We first consider the climatological mean annual TC pre-

cipitation PTC in each of the eight reanalyses to determine

qualitative differences between them (Fig. 1). In the WPAC,

JRA-55, CFSR, ERA5, and MERRA-2 feature higher PTC

amounts than ERA-Interim, ERA-40, ERA-20C, and NOAA-

20C, with large areas receiving over 500mmyr21 on average.

In the EPAC, there are lower amounts of PTC overall than

in the WPAC, and these amounts are especially low for

ERA-Interim, ERA-40, ERA-20C, and NOAA-20C; PTC

amounts are relatively higher in the EPAC for CFSR, JRA-

55, ERA5, and MERRA-2. Other basins, such as the NATL

FIG. 2. Climatological mean annual TC precipitation fraction FTC in each reanalysis at their original horizontal

output resolutions (1980–2001).
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and South Indian (SIND) basins, have less PTC in compar-

ison with the WPAC and EPAC but generally exhibit the

same patterns across the reanalyses.

To examine the climatological contribution of TC precipi-

tation to climatological mean annual total precipitation PTOT,

it is useful to consider the climatological mean annual TC

precipitation fraction FTC, defined as

F
TC

5
P
TC

P
TOT

.

All reanalyses show local maxima of FTC in regions where

there is also high TC activity in the real world (Fig. 2). For

regions with both high TC activity and high PTOT, the rean-

alyses generally capture lower FTC in these areas, such as the

WPAC; FTC is higher in regions with lower PTOT but high TC

activity, such as the EPAC and near the coast of northwestern

Australia. In all reanalyses except NOAA-20C, ERA-20C, and

MERRA-2, the largest contribution of TCs to PTOT occurs in

the EPAC (Table 3). In the NATL, maximum FTC ranges from

0.05 in ERA-40 to 0.21 in CFSR. Figure S4 in the online sup-

plemental material shows PTOT during the same period in all

eight reanalyses.

In general, each reanalysis captures similar qualitative spa-

tial patterns ofPTC and FTC. The above results indicate that the

magnitude of PTC and its contribution to PTOT are not solely a

function of the spatial horizontal output resolution of the re-

analyses, as the lowest values are not necessarily found in the

reanalyses with the coarsest output resolution and the highest

values are not necessarily found in the reanalyses with the

highest output resolution. Since prior work has also shown that

the representation of TCs themselves in reanalyses is not

simply a function of output resolution (Schenkel and Hart

2012; Murakami 2014), this appears to be imprinted on results

for TC precipitation amounts as well. These differences are

thus more likely a function of contrasts in model numerics and

various model parameterizations (Table S1 in the online sup-

plemental material). A preliminary examination of PTC sepa-

rated into its convective (PCP) and large-scale precipitation

(PLSP) components (Figs. S8 and S9 in the online supplemental

material) shows that there are large differences in bothPCP and

PLSP across the reanalyses. This indicates that the spread across

reanalyses is in part due to differences in convective parame-

terizations, although we note that some reanalyses, such as

ERA5 andMERRA-2, have an equal or larger contribution to

PTC from PLSP than PCP. Further analysis is needed to under-

stand the decomposition ofPTC into convective and large-scale

components, but this is beyond the scope of this study.

a. Relative spread comparisons

To directly compare and quantify the spread across rean-

alyses of their representation of TC precipitation, the range

across all eight reanalyses is calculated for PTC at each grid

point. To remove the dependency on the underlying distribu-

tions of TC precipitation in different regions, this range is

normalized by the mean across reanalyses ofPTC to determine a

relative spread. This is similar to the method used in prior work

(Sun et al. 2018), who used the interquartile range (IQR). (For

reference, Figs. S5–S7 in the online supplemental material show

these relative spread comparisons using both the range and IQR.

The conclusions are qualitatively similar.) For the main part of

this study, the relative spread of TC precipitation RSTC is de-

fined as

RS
TC

5
Range across reanalyses of P

TC

Mean across reanalyses ofP
TC

.

Figure 3a shows a global map of RSTC. Higher RSTC values

are identified most notably in portions of the NATL, EPAC,

and SIND. We also calculate the relative spread in total pre-

cipitation RSTOT, defined as

RS
TOT

5
Range across reanalyses of P

TOT

Mean across reanalyses ofP
TOT

.

The ratio of these two relative spreads (Fig. 3b) shows that in

most of the high TC activity regions around the world, RSTC is

larger thanRSTOT (values shaded in green), with themaximum

ratio of 8.67 in the EPAC. This indicates that there is less

consistency across the reanalyses in TC precipitation than in

total precipitation. For regions with a high amount of TC ac-

tivity, and high PTC, high variability across reanalyses in PTC

has a large impact on how individual reanalyses represent total

precipitation. A comparison of the range across reanalyses of

PTC with the range across reanalyses of PTOT (Fig. 3c) shows

that the range across reanalyses of PTC is closest to the range

across reanalyses of PTOT in high TC activity regions. We

also compute the relative spreads in PCP and PLSP and their

ratio (see Fig. S10 in the online supplemental material).

There is a larger relative spread in PLSP in regions of high

TC activity than in PCP, an interesting result that warrants

future investigation.

b. Region-specific relative spread examples

To consider specific examples of differences in the consis-

tency of TC precipitation in reanalyses, we consider two re-

gions in detail: the EPAC (Figs. 4a,c,e) and the WPAC

(Figs. 4b,d,f). These basins have high TC activity with distinct

differences in their PTC and relative spread patterns as seen in

Figs. 1 and 3a. Figures 4a and 4b show the range across rean-

alyses of PTC during the period 1980–2001. Figures 4c and 4d

show the mean across the same reanalyses of PTC. RSTC in

TABLE 3. Maximum FTC by reanalysis and basin where the

maximum occurs (1980–2001).

Reanalysis Max FTC Basin

CFSR 0.63 EPAC

ERA-20C 0.21 Arabian Sea

ERA-40 0.25 EPAC

ERA5 0.57 EPAC

ERA-Interim 0.45 EPAC

JRA-55 0.60 EPAC

MERRA-2 0.42 SIND

NOAA-20C 0.36 SIND
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Figs. 4e and 4f is equivalent to the values in Fig. 4a divided by

Fig. 4c, and Fig. 4b divided by Fig. 4d, forPTC in the EPAC and

WPAC, respectively.

The locations of the largest range and largest mean PTC are

not necessarily collocated with each other. In the EPAC, where

the highest values of range in Fig. 4a are located nearly atop the

highest mean PTC values in Fig. 4c, the same location in Fig. 4e

has a lower RSTC. The highest RSTC in the EPAC is on the

periphery of the main region of TC activity, because it is here

that small differences in TC position lead to a larger RSTC. At

FIG. 3. (a) Relative spread of TC precipitation (RSTC), (b) ratio of the relative spread

across reanalyses in TC precipitation (RSTC) to the relative spread across reanalyses in total

precipitation (RSTOT), and (c) ratio of the range across reanalyses of PTC to the range across

reanalyses of PTOT, all 1980–2001. Values are only plotted in (a) where the climatological

mean annual TC precipitation across the reanalyses is higher than 35mmyr21 to focus on

areas where there is meaningful TC precipitation. The black contour in (b) is where this ratio

is equal to unity.
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higher latitudes, the spread values become larger, because of

normalization by a small mean PTC. As noted by Schenkel and

Hart (2012), the EPAC has some of the largest position dif-

ferences in comparison with the best track for TCs when using

manual tracking because of a lower amount of observations

in comparison with other basins, the sharp elevation gradient

from the Mexican Pacific coast to central Mexico, and rela-

tively weak reanalysis TC intensities there.

In the WPAC, the range across reanalyses of PTC (Fig. 4b)

and the mean across reanalyses of PTC (Fig. 4d) have similar

spatial patterns, and thus there is a relatively uniform RSTC
throughout the basin (Fig. 4f). The RSTC is smaller than in the

EPAC, indicating that in the WPAC there is more agreement

and consistency across the reanalyses. Given that the region of

TC activity in the EPAC is very spatially confined, any shifts in

the location of EPAC TCs across reanalyses will result in a

larger RSTC. In the WPAC, high TC activity occurs over a

broader region; thus, the gridded TC precipitation is less

sensitive to position errors, leading to better agreement across

reanalyses.

c. Dependence on intensity

A consideration of how PTC compares when separated by

reanalysis TC intensity (based on MSLP) provides insight into

whether reanalyses struggle more with depicting rainfall from

higher or lower intensity TCs. For this analysis, PTC is divided

into 10-hPa-wide bins based on reanalysis intensity. Figure 5a

shows, at each grid cell, which intensity category has the

greatest PTC, considering the mean across all eight reanalyses.

Stronger intensity TCs generally produce higher rainfall rates

(Rogers et al. 2009), but lower and moderate strength re-

analysis intensity TCs generate the most PTC. The maximum

PTC is caused by TCs with low andmoderate intensities inmost

regions except the midlatitudes (Fig. 5). This is likely due to

the large numbers of TCs that occur on an annual basis.

We speculate that the increasing TC intensity contributing to

FIG. 4. (a),(b) Climatological mean annual TC precipitation range across reanalyses; (c),(d) mean PTC across

reanalyses; and (e),(f) relative spread across reanalyses RSTC for the (left) EPAC and (right) WPAC (1980–2001).

Values shown in (e) and (f) are only plotted where the mean PTC across the reanalyses is higher than 35mmyr21 to

focus on areas in which there is meaningful TC precipitation.
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maximum PTC at higher latitudes is related to TCs undergoing

extratropical transition.

We then accumulate PTC separately for each of the intensity

bins and consider which has the greatest value of relative

spread by taking the range across the reanalyses of precipita-

tion from each category and dividing by the mean across the

reanalyses of that same category. In general, the higher-

intensity TCs have the largest RSTC in Fig. 5b. There are

some areas of the WPAC where the lowest-intensity TCs

contribute to the largest relative spread. This is likely a result of

our manual tracking in some reanalyses missing weak TCs that

occur in the best track, thus contributing to a larger relative

spread at that location. For regions where the maximum rela-

tive spread is from higher-intensity TCs, this is likely due to a

combination of the small sample size in the 970-hPa bin (from

23 samples in ERA-40 to 1865 in ERA5, as compared with well

over 30 000 samples at lower intensities in some reanalyses)

and differences in best-track intensities of the strongest TCs

across reanalyses, since some reanalyses struggle more with

resolving the inner structure and finer details such as rainbands

of higher-intensity TCs. This representation would vary greatly

based on the underestimation of reanalysis TC intensity and

the large differences in model resolution and physical param-

eterizations between the reanalyses. If the reanalysisMSLP bin

FIG. 5. Color indicates, for each grid point, which intensity category has the maximum

(a) PTC (considering the mean across all reanalyses) and (b) RSTC, both for 1980–2001. The

values used to select the maximum RSTC are limited to where the mean precipitation in an

intensity category is greater than 1mmyr21 to remove noise due to normalization by a very

small number. The intensity categories are based on the reanalysis MSLP values. Values in

(a) are only shown for where the corresponding best-track TC is classified as a tropical system

to exclude TCs in a subtropical or extratropical phase.
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of less than 970 hPa is excluded, the category with largest RSTC
is different at isolated locations but the overall conclusion that

more intense TCs have a larger RSTC is unchanged.

d. A comparison with satellite observations

While a comparison across reanalyses is useful for determining

differences between them, it is also important to contextualize the

representation of TC precipitation in reanalyses with satellite

observations of TC precipitation. The PTC and FTC values deter-

mined using TRMM (Fig. 6) show that there are similar qualita-

tive spatial patterns in PTC and FTC as in the reanalyses.

Tropical cyclone precipitation and TC precipitation fraction

in TRMM and reanalyses cannot be directly compared over

the exact same sample of storms, as not all observed TCs are

present in each reanalysis (Table 2), but the comparison is

important for contextualizing how close climatological TC

precipitation as represented by reanalyses is to that shown by

satellite measurements. The mean of PTC and FTC across the

reanalyses is calculated at each grid point (after interpolation

of all datasets to a common 28 grid) and subtracted fromTRMM

(excluding ERA-40 due to insufficient temporal overlap with

TRMM). In most regions, PTC (Fig. 7a) and FTC (Fig. 7b) in the

reanalyses are anomalously low in comparison with TRMM.

The largest magnitude differences between the reanalyses and

TRMM are found in the EPAC and WPAC, with negative

anomalies of over 150mmyr21 for PTC and over 0.15 for FTC.

There are anomalously high values over some areas of land in

reanalyses compared to TRMM, where topographical effects

may come into play and lead to an overestimation of PTC in

regions such as the southern coast of China and the west coast

of Mexico. Anomalously high values of FTC over some regions

such as the Gulf of Oman and northwest Australia could be a

result of small climatological annual total precipitation in the

reanalyses as well as TC position differences versus what is in

IBTrACS, but this is not seen in all basins.

In the NATL, for instance, PTC and FTC are both anoma-

lously low compared to TRMM, but there is less of a bias than

for other basins. This could be due to the denser and longer

record of observation that is assimilated into reanalyses in this

basin than in other basins, such as the EPAC, where there are

less observations to constrain the reanalyses (Schenkel and

Hart 2012). The large underestimation ofPTC in theWPAC, an

active basin for TCs, compared to TRMM is likely a result of

the weaker TCs not being adequately represented in the re-

analyses, and thus leading to lower rainfall amounts, or not

being included at all with manual tracking. While most regions

underestimate the climatological mean annual PTC and FTC in

the mean across reanalyses compared to TRMM, observations

and reanalyses generally have similar spatial patterns. The un-

derestimation of PTC and FTC in comparison with TRMM is

FIG. 6. TRMM climatological mean annual (a) TC precipitation and (b) TC precipitation

fraction, both over 1998–2010.
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also found when considering anomalies from TRMM for each

individual reanalysis (not shown), although some reanalyses

(such as ERA-20C, ERA-40, and NOAA-20C) have a greater

underestimation than others in some regions, which could be

due to the coarser model horizontal resolution and lower

number of TCs manually tracked in those reanalyses.

5. Intensity-binned precipitation analysis

Thus far, the representation ofPTC andFTC in reanalyses has

been considered on a grid point by grid point basis across the

globe. Another perspective to quantify the differences across

reanalyses is to examine the TC precipitation assigned to a TC

at each time step along its track as a function of its intensity,

based on the reanalysis-depicted minimum MSLP. In this

analysis, to account for differences in grid spacing across re-

analyses, when determining the total precipitation accumu-

lated within 500 km of the TC center, the TC precipitation

value in each grid box is weighted by the area of the grid cell

(including the effect of varying latitude).

First, the accumulation at each grid cell for a given TC in a

reanalysis is converted to a rate per hour, as has been done in

past work considering TC precipitation rate as a function of TC

intensity (Rogers et al. 2009). We then take the area average

within the 500-km radius of the TC, appropriately weighting by

grid box size when calculating this average. This is then

composited by intensity according to the reanalysis minimum

MSLP. This calculation results in the TC’s area-averaged pre-

cipitation rate [similar to Vannière et al. (2020)]. This analysis is
performed and compared with TRMM for 1998–2010 using all

reanalyses except ERA-40 (Fig. 8; ERA-40 is excluded since it

did not overlap sufficiently with the time period of TRMM),

where the minimum MSLP associated with a composite pre-

cipitation rate is that found in the reanalysis by manual tracking

and in TRMMbased on the best-track data. Bin counts for each

reanalysis and TRMM are shown in Table 4.

Because of the inability of reanalyses to adequately depict

TC intensity, the lowest bin shown in Fig. 8 is 970–980 hPa.

While TCs in the best track do have minimum MSLP values

much below that, those values are not seen as often in the re-

analyses, and there are not enough samples of MSLP less than

970 hPa to take a meaningful composite. In general, the re-

analyses capture higher composite precipitation rates for TCs

of higher intensity (lower minimumMSLP), a relationship also

noted by Rogers et al. (2009). At lower intensities, composite

precipitation rates are lower than or very close to those shown

in TRMM using the same method. As intensity increases, the

composite precipitation rates in all reanalyses are higher than

that in TRMM. This overestimation of precipitation likely re-

sults from the inability of the reanalyses to adequately repre-

sent the inner TC structure rainfall patterns and an

overestimation of precipitation generated by individual

FIG. 7. Anomaly of the multi-reanalysis mean from TRMM (1998–2010), defined as multi-

reanalysis mean minus TRMM, for (a) PTC and (b) FTC.
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convective parameterizations that occurs both around the

center of a TC and in the outer bands.

Reanalyses such as CFSR, MERRA-2, and JRA-55, which

feature preprocessing of different TC characteristics, are far-

ther away from TRMM at higher intensities relative to some

other coarser datasets, such as ERA-20C and ERA-Interim,

without any TC preprocessing. This indicates that model res-

olution and TC preprocessing do not necessarily translate to

precipitation rates that are closer to observations, but rather a

production of too much rainfall by convective parameteri-

zations. Other coarser output resolution datasets, such as

ERA-20C and ERA-Interim, have values of mean composite

precipitation at higher intensities that are closer to TRMM

than higher-output-resolution datasets, such as CFSR. To de-

termine the sensitivity of these results to reanalysis output grid

resolution, precipitation was also assigned and binned for

ERA5 after regridding to a coarser horizontal resolution of

2.58. There is a minimal difference in the results, indicating that

the output grid spacing likely does not contribute much to the

differences in TC precipitation across reanalyses. The inter-

reanalysis spread is more likely due to the inherent differences

in data assimilation, model horizontal resolution, and physics

schemes.

Percentages shown on the plot represent the maximum and

minimum percent error from the mean across the seven rean-

alyses in each intensity bin as an indication of the reanalysis

spread (not including TRMM). Across the seven reanalyses,

the percent error across the reanalyses is the largest for the

highest intensity TCs. Hence, while reanalyses capture the

general relationship between higher precipitation rates and

higher TC intensity, the larger spread across reanalyses at

higher intensity reflects the difficulty reanalyses have with

capturing more intense TCs.

6. Sensitivity to tracking method

Previous studies have demonstrated that the representation

of TCs in reanalyses is sensitive to the method used to track

them (Murakami 2014; Hodges et al. 2017; Franco-Díaz et al.
2019). To test the sensitivity of the results to how TCs are

tracked in reanalyses, we also investigate TC precipitation

using objective tracking. TC tracks are obtained using

TempestExtremes (Zarzycki et al. 2021) for five of the eight

reanalyses considered in this study: CFSR, ERA-Interim,

ERA5, JRA-55, and MERRA-2. TempestExtremes detects

TCs in each reanalysis by first identifying a minimum in SLP

surrounded by a closed contour of pressure. Then a 300–500-hPa

geopotential thickness maximum must be located horizontally

within 18 of the identified TC center to track only warm-core cy-

clones. For more information about TempestExtremes and how

the tracks are generated in each reanalysis, see Zarzycki and

Ullrich (2017). TC position, intensity, and maximum 10-m winds

are provided every 6h. On average, IBTrACS has a higher

number of TCs per year than TCs tracked in TempestExtremes,

except MERRA-2. For more information on the statistics of

TempestExtremes tracks in comparison with IBTrACS, including

hit and false alarm rates and TC density calculations, see Zarzycki

et al. (2021).

The difference inPTC assigned using IBTrACS-basedmanual

tracking and TempestExtremes are shown in Fig. 9 for the five

reanalyses during the years 1980–2010, the maximum time of

overlap for these five reanalyses (similar results are seen for

FTC but are not shown). TempestExtremes-derived PTC is

generally lower than IBTrACS-derived across the globe, with a

few exceptions. There are large positive differences in the re-

sults between tracking methods in the EPAC, most notably in

ERA-Interim and JRA-55. MERRA-2 and, to a lesser extent,

ERA5 show some regions where TempestExtremes-derived

PTC is higher than that of IBTrACS. There are negative differ-

ences of largermagnitude inMERRA-2, especially in theEPAC

and SIND, than in the other reanalyses. One reason for this may

be that storms in TempestExtremes are sometimes tracked well

before the start of their best-track positions. These patterns may

reflect these position errors, despite the use of vortex relocation

in MERRA-2. Since TempestExtremes tracks a comparable

number of storms in MERRA-2 and IBTrACS, this could

allow for position differences to be more apparent. In other

reanalyses, the differences in Fig. 9 are likely dominated by the

fact that TempestExtremes has fewer storms per year relative

to those included bymanual tracking with IBTrACS. There are

minor quantitative differences between results for PTC as-

signed using TempestExtremes (see Figs. S11–S17 in the online

supplemental material for reproductions of Figs. 1–5, 7, and 8

using TempestExtremes). For example, the weakest TCs have

the largest RSTC in the WPAC when using TempestExtremes,

which may result from a smaller sample size of those weak

storms in TempestExtremes than in IBTrACS (Fig. S15b

in the online supplemental material). However, the overall

qualitative conclusions are unchanged from those of IBTrACS;

there are similar spatial patterns between methods and still

large differences between reanalyses.

To remove the dependence on the number of TCs tracked by

each tracking method, we also consider the spread in the rep-

resentation of PTC when normalized by the density of TCs at

FIG. 8. Composite mean precipitation rate and binned MSLP

(10-hPa width) for IBTrACS-derived TC precipitation in rean-

alyses and TRMM (1998–2010). Percentages shown are the maxi-

mum and minimum percent error from the mean across the seven

reanalyses in each intensity bin as an indication of the reanalysis

spread.
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that particular location. For each of the five reanalyses and

each tracking method, we determine the climatological

mean of the number of TCs passing within 500 km of each

28 3 28 grid box per year between 1980 and 2010. TCs are

counted if, on average, at least one passed through a 28 3 28
grid box per year. To determine PTC per TC, PTC assigned

from each tracking method was linearly interpolated from

its native output grid resolution to a common 28 3 28 grid.
Then, at each grid point, PTC is normalized by the TC den-

sity at that same grid point.

The differences between TempestExtremes-derived and

IBTrACS-derived PTC are much reduced when normalized

by TC density, but differences do remain (not shown).

Thus, to further diagnose and quantify these, spatial cor-

relations between the two are computed on a grid point by

grid point basis for both PTC and PTC normalized by TC

density. Previous studies have used a similar method to

quantify the differences between precipitation from two

different sources (Pfeifroth et al. 2013). These correlations

are calculated separately for the WPAC (blue), SIND

(orange), EPAC (green), and NATL (red) in all five re-

analyses for both PTC (Fig. 10) and PTC normalized by TC

density (Fig. 11).

The IBTrACS-derived and TempestExtremes-derived

PTC values are highly correlated on a grid point by grid

point basis (Fig. 10). These correlations slightly decrease

but are still very high when considering IBTrACS-derived

and TempestExtremes-derived PTC per TC (Fig. 11). All are

statistically significant, with p values well below 0.05. Since the

intent of both trackingmethods is to capture the same results of

PTC (and of that normalized by TC density), the high correla-

tions are not surprising, but reassuring.

In general, with the exception of the WPAC, on a per TC

basis (Fig. 11), the points shift toward the TempestExtremes

axis, resulting in the slopes of the best-fit lines becoming larger

than in Fig. 10. While less of the variance between the two

tracking methods is explained when considering results on a

per TC basis, these generally larger slopes in Fig. 11 than in

Fig. 10 indicate that the tendency toward greater IBTrACS-

derived precipitation is reduced when precipitation is consid-

ered on a per TC basis. TempestExtremes only tracks storms

that are actually simulated by the reanalyses as TCs (having an

appropriate structure and intensity beyond just a local mini-

mum of SLP in our manual tracking), and the results indicate

that the TempestExtremes sample of storms is associated

with higher precipitation on average, with the exception of

the WPAC. The reasons for the difference in the WPAC

are unclear, but we speculate that this could be an artifact

of the TempestExtremes sample of storms being different

in the WPAC than in other basins, with possibly higher

FIG. 9. IBTrACS-derived PTC minus TempestExtremes-derived PTC interpolated to a common 28 grid (1980–2010).

TABLE 4. Number of samples in each 10-hPa-wide bin of MSLP (hPa) by reanalysis and for TRMM (MSLP from IBTrACS).

Only TCs whose centers are equatorward of 458 are binned so as to avoid values where tracked TCs partially occur outside the latitudinal

boundaries of TRMM at 508.

970–980 980–990 990–1000 1000–1010 1010–1020

CFSR 315 1352 5014 16 421 2518

JRA-55 232 1087 4805 17 169 3134

ERA-Interim 352 1017 3753 13 365 2874

ERA-20C 140 548 2805 9590 1767

ERA5 1156 2375 6123 13 374 2070

NOAA-20C 187 1024 3193 7029 925

MERRA-2 948 2387 6257 12 632 1897

TRMM 1737 3270 4838 12 198 1390
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false alarm rates in that basin (C. Zarzycki 2021, personal

communication).

ERA5 and JRA-55 both have the highest average correla-

tion values across basins in Fig. 11. This could be a result of the

high native horizontal model resolution of ERA5 that can

more effectively resolve inner structures of precipitation, while

the high correlations in JRA-55 may be due to the use of TC

wind profile retrievals, thus resulting in less sensitivity to

tracking method. The lower spatial correlations in MERRA-2

may be due to large position differences between tracking

methods, with previous work demonstrating that TCs in

MERRA-2 are occasionally initiated at lower latitudes than

the best track (Kim et al. 2020). Overall, the tendency toward

higher PTC based on IBTrACS than TempestExtremes is re-

duced when considered on a per TC basis.

7. Conclusions

This study considers how TC precipitation is represented in

eight different reanalysis datasets: CFSR, ERA-20C, ERA-40,

ERA5, ERA-Interim, JRA-55, MERRA-2, and NOAA-20C.

Similar spatial patterns result for both PTC and FTC assigned

from manual tracking based on the best-track data using a

500-km radius, but with notable magnitude differences. The

highest PTC occurs in the WPAC in CFSR, JRA-55, ERA5, and

MERRA-2. The highest FTC occurs in the EPAC in JRA-55,

CFSR, and ERA5 and near northwest Australia in MERRA-2

and NOAA-20C.

The relative spread in TC precipitation varies across the

globe, but the ratio of RSTC to RSTOT shows that there is less

consistency across reanalyses in PTC than PTOT. This empha-

sizes the importance of and need to continue improving the

representation of TCs and TC precipitation in order to im-

prove the representation of total precipitation in reanalyses. A

preliminary comparison of the convective and large-scale TC

precipitation and their relative spreads across reanalyses shows

that there are large differences in both precipitation types

across the reanalyses, but additional analysis is needed to

specifically link these differences to the model parameteriza-

tions. As an example of how some regions have more consis-

tency across reanalyses than others, we examined RSTC in the

EPAC and WPAC. Overall, the EPAC features a larger RSTC
across reanalyses than the WPAC.

While the maximum contribution to PTC across the rean-

alyses comes from weak and moderate reanalysis-strength

TCs, the highest RSTC occurs for higher-intensity storms.

FIG. 10. Tropical cyclone precipitation PTC by grid point for TempestExtremes-derived TC precipitation (TE) and IBTrACS-derived

TC precipitation (IB) for the WPAC, SIND, EPAC, and NATL basins and ERA-Interim, MERRA-2, JRA-55, CFSR, and ERA5

reanalyses (1980–2010 average). The dashed line in the middle of each figure shows the 1:1 line, and the solid lines in each plot represent

the best-fit line. The top-left corner shows the correlation coefficient and slope of the best-fit line.
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Compared to observations from TRMM, PTC and FTC are

generally underestimated by reanalyses in most basins across

the globe. There are a few areas where both are higher than

TRMM in the mean across reanalyses, most notably over land

areas and in some basins because of position differences for

TCs tracked as compared with the best track, particularly

over land.

The TC precipitation was also analyzed in reanalyses by

considering the area-averaged precipitation rate for each TC,

composited as a function of intensity. The reanalyses show a

larger spread for composite mean precipitation rate at these

higher intensity TCs than at lower intensities. Furthermore, all

reanalyses overestimate mean precipitation rate relative to

TRMM at higher intensities, likely because of the difficulties

reanalyses have with capturing TC intensity as compared with

the best track.

To test the sensitivity of the results to the method of track-

ing, TC precipitation was also assigned based on tracks from

TempestExtremes, an objective tracking algorithm. In compari-

son with IBTrACS-derived TC precipitation, TempestExtremes-

derivedPTC is lower inmost basins andmost of the five reanalyses

considered, likely dominated by the lower number of TCs

tracked in TempestExtremes. The overall results, in terms of

the spatial patterns and spread of PTC across reanalyses, are

qualitatively unchanged when using TempestExtremes, with

similar spatial patterns.

In addition, PTC was also considered by normalizing it by

annual average TC density. On a grid point by grid point

basis, TempestExtremes-derived and IBTrACS-derived PTC

are highly correlated, but tend toward greater values of PTC in

IBTrACS-derived. This tendency is reduced when normal-

izing by TC density, and in the majority of basins and rean-

alyses, the slopes of the best fit lines increase. This indicates

more precipitation on a per TC basis in TempestExtremes,

which tracks only storms that have a simulated structure

consistent with a TC. Our manual IBTrACS tracking, on the

other hand, may assign precipitation to a non-TC feature,

even with the requirement for a local minimum in SLP.

The limitations of this study most likely impact some of the

results presented. For instance, the use of a dynamically

changing threshold for assignment of precipitation based on

the actual size of each TC would reduce error that results

from a constant circular shape and constant size, since some

basins have TCs that are generally larger than others. This

could have implications for the dependence of TC precipita-

tion in different ocean basins. It is also likely that errors with

FIG. 11. Tropical cyclone precipitation normalized by TC density by grid point for TempestExtremes-derived TC precipitation (TE) and

IBTrACS-derived TC precipitation (IB) for theWPAC, SIND, EPAC, and NATL basins and ERA-Interim,MERRA-2, JRA-55, CFSR,

and ERA5 reanalyses (1980–2010 average). The dashed line in the middle of each figure shows the 1:1 line, and the solid lines in each plot

represent the best-fit line. The top-left corner shows the correlation coefficient and slope of the best-fit line.
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the 500-km radius become more prominent at higher latitudes,

where some TCs undergo extratropical transition and change

their size and structure. Additionally, using another best-track

dataset, such as from the Japan Meteorological Agency or the

Australian Bureau of Meteorology, as opposed to the U.S.

agency data used here, would likely change some biases in best-

track data while also introducing others in various basins, in-

variably affecting the TC precipitation ultimately assigned.

Assignment of TC precipitation at higher temporal intervals,

such as every 3 h, may also reduce errors associated with

assuming a constant position over 6 h for the TC position used

in assignment. We also did not consider the effect of TC

translational speed on accumulated TC precipitation, espe-

cially in midlatitude regions, where higher translational speeds

could lead to distorted TC precipitation patterns. We note that

there can be inconsistencies in rainfall for individual reanalyses

that are due to changes in model configurations within their

period of record, but these are beyond the scope of this study

(Parfitt et al. 2017; Masunaga et al. 2015).

Many factors contribute to the differences in TC precipita-

tion across reanalyses. Different methods of data assimilation,

parameterization of small-scale atmospheric processes, model

resolution, and the use of any TC preprocessing all affect both

the precipitation generated and the resulting TC precipitation

that is assigned. We have shown that the choice of reanalysis

dataset is important and has implications for studies consid-

ering precipitation in regions with high TC activity. This impact

is not negligible, and our contextualization of climatological

TC precipitation provides insight into any distortions in results

in these studies arising from the inadequate representation of

TC precipitation in reanalyses.

While there is not one reanalysis that performs much better

than all others, and all exhibit similar spatial patterns in TC

precipitation, those with vortex relocation and TC wind profile

retrievals, as well as those with higher output resolution, tend

to be closer to observations. However, higher output resolution

or the use of TC preprocessing does not always correspond to

TC precipitation representation that is closer to observations

either. Overall, the spread of TC precipitation across rean-

alyses is large and sensitive to the method of tracking and

method of assignment used. This work lays the foundation for

future analysis of trends and patterns in TC precipitation, and

its imprint on total precipitation, in reanalyses. To continue to

improve the total precipitation in reanalyses, this motivates the

need to improve the representation of TC precipitation, and

thus TCs themselves, in reanalyses.
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