
SUPPORT FOR INTEGRABLE HOPF ALGEBRAS VIA

NONCOMMUTATIVE HYPERSURFACES

CRIS NEGRON AND JULIA PEVTSOVA

Abstract. We consider finite-dimensional Hopf algebras u which admit a
smooth deformation U → u by a Noetherian Hopf algebra U of finite global

dimension. Examples of such Hopf algebras include small quantum groups

over the complex numbers, restricted enveloping algebras in finite character-
istic, and Drinfeld doubles of height 1 group schemes. We provide a means

of analyzing (cohomological) support for representations over such u, via the

singularity categories of the hypersurfaces U/(f) associated to functions f on
the corresponding parametrization space. We use this hypersurface approach

to establish the tensor product property for cohomological support, for the
following examples: functions on a finite group scheme, Drinfeld doubles of

certain height 1 solvable finite group schemes, bosonized quantum complete

intersections, and the small quantum Borel in type A.

1. Introduction

The present paper is dedicated to analyses of cohomology and support for finite-
dimensional Hopf algebras. Given a Hopf algebra u over a field k, we are particularly
interested in its associated tensor category of finite-dimensional representations
rep(u). At a basic level, cohomological support theory proposes that one can use a
certain geometry, namely the geometry of the spectrum of the cohomology algebra
Ext∗u(k, k) to understand the representation theory rep(u) as a tensor category.
We study support for distinguished classes of Hopf algebras via the production of
certain rank varieties, which we refer to as hypersurface support.

Support theory has its foundations in the modular representation theory of finite
group (schemes), that is, the representation theory of finite group schemes in finite
characteristic. This geometric approach to modular representation theory arguably
began with work of Quillen in the 70’s [73] and continues into the present with
strong contributions of many authors. For a finite group scheme G one assigns
to any finite-dimensional G-representation V a closed subvariety supp(V ) in the
spectrum of the cohomology ring H∗(G, k) = Ext∗G(k, k). The subvariety supp(V )
is defined as the support of the H∗(G, k)-module Ext∗G(V, V ), with action defined
via the tensor structure on rep(G) and Yoneda product. In the studies [10, 14],
for example, supports of objects are employed to provide strong analyses of the
global structure on the (stable) category of G-representations. The fundamental
property which allows one to access the tensor structure on rep(G) via support is
the so-called tensor product property, which appears as the equality

supp(V ⊗W ) = supp(V ) ∩ supp(W ). (1)
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One proves the above equality by identifying the spectrum of cohomology with a
certain moduli space of maps from rep(G) to rep(Z/p) called the rank variety or
the π−support for G [27, 77, 42, 43].

For a given finite-dimensional Hopf algebra u one can still define support varieties
supp(V ) of finite-dimensional u-representation via cohomology as above. However,
for almost all examples over the complex numbers, it is not known how these sup-
port varieties acknowledge, or do not acknowledge, the tensor structure on rep(u).
Indeed, it is known that the precise relation (1) fails to hold for various classes of
Hopf algebras which have non-symmetric representation categories [17, 72].

One conceptual ambition of this paper is to develop an analog of the relation (1)
which can hold in general, and to test the viability of this new relation by study-
ing a number of nontrivial examples in detail (see §10.4). As suggested above, an
understanding of how cohomology and the tensor structure on rep(u) intertwine is
essential, for example, in understanding the global structure of the derived (or sta-
ble) category of u-representations, for a given Hopf algebra u. As far as the present
study is concerned, results of this paper are used to classify thick ideals in the
derived categories of representations for quantum groups, and derived categories
of sheaves on finite group schemes, in subsequent works [66, 65, 67]. So, baseline
analyses of cohomology and support for Hopf algebras provide the necessary foun-
dations for more homotopical analysis of their derived categories. This principle
is well-understood in the classical case of representations rep(G) of a finite group
scheme (see for example [10, 43, 15, 14]).

In this work we consider a class of finite-dimensional Hopf algebras which are
smoothly integrable (see Definition 2.1). These include many familiar objects such
as small quantum groups, restricted enveloping algebras, and Drinfeld doubles of
certain finite group schemes. For our tensor triangular aspirations, smooth in-
tegrability turns out to be the right noncommutative analogue of the complete
intersection property for commutative algebras. Building on the ideas of Avramov-
Buchweitz [5] and Avramov-Iyengar [9], we introduce an alternative notion of a
rank variety formulated in terms of hypersurfaces on the smooth integration of the
algebra u (see Definition 6.7). In some fundamental cases we are able to identify
this new hypersurface support with the cohomological support. As an application,
we show that the tensor product property holds in various examples related to
solvable (quantum) groups (see Section 1.1). Precise results for the full quantum
group uq(g) should appear in a subsequent paper [67].

Let us now describe the technical content of this paper in more detail. Through-
out k is an algebraically closed base field of varying characteristic. Consider u a
finite-dimensional Hopf algebra, over k. We say that u is smoothly integrable, or just
integrable, if u admits a deformation U → u parametrized by a smooth, augmented,
central subalgebra Z ⊂ U such that (a) U is a Noetherian Hopf algebra of finite
global dimension, and U → u is a Hopf map, and (b) Z is a coideal subalgebra in
U . By smoothness we mean that Z is smooth over our given base field k, and in
particular of finite type over k.

For example, the De Concini-Kac algebra UDKq (g) integrates the quantum group

uq(g), and we have a similar deformation for the quantum Borel UDKq (b)→ uq(b).
A restricted enveloping algebra ures(g), in finite characteristic, is smoothly inte-
grated by the associated universal enveloping algebra U(g)→ ures(g). For G a finite
group scheme, any choice of embedding G → H into a smooth connected algebraic
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group H provides a smooth integration O(H)→ O(G) of functions on G. The last

two examples can be combined to produce a smooth integration D̃(G) → D(G)
of the Drinfeld double of an infinitesimal height 1 group scheme which admits a
normal embedding into a smooth algebraic group. See Section 2 for more details.

Starting with a smooth integration Z → U→ u we develop a dg version of Koszul
duality for the algebras Sym((mZ/m

2
Z)∗) and ∧(mZ/m

2
Z), where mZ is the kernel of

the augmentation on Z, inspired by the ideas of Bezrukavnikov-Ginzburg [21]. This
culminates in the main general technical result of the paper, Theorem 4.3. The first
application, which is an immediate corollary, is the finite generation of cohomology
of u. We adopt the following terminology (cf. [68]): A finite-dimensional Hopf
algebra u, over a field k, is said to have finitely generated cohomology if the self-
extensions Ext∗u(k, k) are a finitely generated algebra and, for any finite-dimensional
u-representation V , the extensions Ext∗u(k, V ) are a finite module over Ext∗u(k, k).

Theorem (4.8). If a Hopf algebra u is integrable, then u has finitely generated
cohomology.

The above theorem recovers finite generation for all of the examples above [39, 47,
37], although it does not give information on the spectrum of cohomology beyond
the embedding dimension. (Our results for height 1 doubles are slightly stronger
than those of [37].) We hope that the existence of such a general proof, which covers
a lot of known cases of finite generation of cohomology in one swipe, illustrates that
the notion of smooth integrability captures, in a uniform manner, some fundamental
properties of these Hopf algebras.

Once we establish that Ext∗u(k, k) is of finite type, we introduce the cohomological
support for a finite-dimensional u-representation V :

suppY(V ) := SuppY Ext∗u(V, V )∼, (2)

where Y is the reduced projective spectrum Proj(Ext∗u(k, k)
)

red
and (−)∼ denotes

the sheaf on Y associated to a given graded Ext∗u(k, k)-module.
The existence of smooth integration Z → U→ u also supplies a map of varieties

κ : Y = Proj(Ext∗u(k, k)
)

red
→ P(mZ/m

2
Z), (3)

with finite fibers. Moreover, in a number of important examples [39, 47, 37], κ is a
closed embedding. The second application of Theorem 4.3 is to show that the map
κ identifies cohomological support suppY(V ) with the hypersurface support which
we now describe (see also Definition 6.7).

Let Z → U → u be a smooth integration. Let c be a point in mZ/m
2
Z − {0}.

Any choice of section τ : mZ/m
2
Z → mZ specifies a corresponding “noncommutative

hypersurface” Uc = U/(τ(c)). As the algebra Uc depends only on c up to a scaling,
we may instead consider the Uc as associated to points in the projectivization
c ∈ P(mZ/m

2
Z). In what follows we say that M , a finitely generated module for

Uc, is perfect if it has finite projective dimension. For V a u-representation we are
interested in whether V is, or is not, perfect when restricted to a given hypersurface
Uc. The following theorem is a noncommutative variant of a result of Avramov and
Buchweitz [5].

Theorem (7.2). Suppose that u is smoothly integrable, with corresponding defor-
mation U → u and parametrizing subalgebra Z. Then for any V in rep(u), and any
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choice of section τ : mZ/m
2
Z → mZ , we have

κ
(

suppY(V )
)

= {c ∈ P(mZ/m
2
Z) : V is not perfect when restricted to Uc},

where κ is as in (3). In particular, when κ is a closed embedding there is an equality

suppY(V ) = {c ∈ P(mZ/m
2
Z) : V is not perfect when restricted to Uc}. (4)

Implicit in the statement above is the fact that perfection of a given u-representation
over Uc, at some c ∈ P(mZ/m

2
Z), depends only on the point c, not on the choice of

section τ : mZ/m
2
Z → mZ . This fact is proved independently in Corollary 5.3.

We use the hypersurface expression (4) to provide a stronger analysis of sup-
port for certain “solvable” Hopf algebras. As discussed above, we are particularly
interested in the so-called tensor product property for support,

suppY(V ⊗W )
question

= suppY(V ) ∩ suppY(W ). (5)

This relation suggests, in the cases in which it applies, that cohomology actually
“understands” something about the tensor structure on the category rep(u). As we
also mentioned above, it is known via work of Witherspoon and coauthors, that for
Hopf algebras which are sufficiently noncocommutative, so that rep(u) is sufficiently
non-symmetric, the tensor product property will not hold [17, 72].

In the present work we consider certain centralizing hypotheses on objects, and
(co)normality hypotheses on the integration U → u, when studying support for
tensor products of objects (see Section 10.4). We discuss some of our examples
below.

1.1. Applications. We first consider rings of regular functions O(G) on finite
group schemes in finite characteristic, where we have rep(O(G)) = Coh(G).

Theorem (10.5). Let G be a connected finite group scheme, in finite characteristic.
Then cohomological support for Coh(G) satisfies the tensor product property

suppY(V ⊗W ) = suppY(V ) ∩ suppY(W ).

There are some referential points to take into account here, as we explain in the
preamble to Section 10 and Remark 10.7.

It is clear, from work of Plavnik and Witherspoon [72] (see also Example 10.2),
that the precise tensor product property (5) does not hold for coherent sheaves
on general non-connected G. However, we provide a version of the tensor prod-
uct property for arbitrary finite group schemes by considering certain centralizing
structures on objects in Coh(G) (cf. 10.4).

Theorem (10.8). Let G be an arbitrary finite group scheme with π = π0(G) its
subgroup of connected components. For W in Coh(G), and V in the Drinfeld cen-
tralizer ZCoh(π)(Coh(G)) of Coh(π), we have

suppY(F (V )⊗W ) = suppY(F (V )) ∩ suppY(W ).

Here ZCoh(π)(Coh(G)) is the category of objects in Coh(G) which centralize the
fusion subcategory Coh(π) ⊂ Coh(G) of semisimple objects. More specifically,
ZCoh(π)(Coh(G)) is the category of objects which admit a centralizing structure
against this distinguished subcategory, and F : ZCoh(π)(Coh(G)) → Coh(G) is the
functor forgetting the specific choice of centralizing structure (see Definition 8.1).
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In a non-classical setting, over C, one can consider a truncated skew polynomial
ring

a+
q = a+

q (P ) = C〈x1, . . . , xn〉/(xixj − qijxjxi, xli),
which is often referred to as a quantum complete intersection, or quantum linear
space, in the literature. Here q is a root of unity of odd order l and P = [aij ]
is a skew-symmetric matrix specifying the parameters qij = qaij . The algebra a+

q

has the natural structure of a Hopf algebra in a certain braided fusion category
rep(Λ), where Λ is the group ring of a finite abelian group. One then obtains, via
a standard bosonization procedure, a usual Hopf algebra aq := a+

q oΛ. We refer to
the Hopf algebra aq as a bosonized quantum complete intersection.

Theorem (11.3). Consider aq = aq(P ) a bosonized quantum complete intersection,
with generic parameters q and P . Cohomological support for rep(aq) satisfies the
tensor product property

suppY(V ⊗W ) = suppY(V ) ∩ suppY(W ).

By “generic” parameters we mean precisely that the determinant of the matrix
P = [aij ] is a unit mod l. We prove in Theorem 11.6 that, at arbitrary q and
P , representation of aq still satisfy a version of the tensor product property where
one again employs centralizers, exactly as in the case of sheaves Coh(G) on a non-
connected group scheme G.

At Theorem 13.2, we reprove the tensor product property for rep(ures(n)) via
hypersurfaces, where n is a nilpotent restricted Lie algebra in large characteristic.
This is a fundamental result of Friedlander and Parshall [41, Theorem 2.7], which
precedes the π-point approach to support for finite group schemes [40, 77, 43]. We
consider also Drinfeld doubles D(B(1)) for B(1) the first Frobenius kernel of a Borel
B ⊂ G in an almost-simple algebraic group G.

Theorem (13.3). Consider G an almost-simple algebraic group over Fp, and let B
be a Borel subgroup in G. If p > dim(B) + 1, then cohomological support for the
Drinfeld double D(B(1)) satisfies the tensor product property.

We consider, finally, the small quantum Borel uq(b) in a quantum group uq(g),
over C. This algebra, and its full counterpart uq(g), are the most important char-
acteristic 0 examples for which cohomological support is not understood at this
point. We address the quantum Borel in type A.

Theorem (13.8). Consider uq(b) the quantum Borel in type An, at q of odd order
> h. Cohomological support for uq(b) satisfies the tensor product property.

In the above statement n is arbitrary and h denotes the Coxeter number for An,
which is just n+ 1. We observe in Corollary 7.6 that, for the quantum Borel uq(b)
in any Dynkin type, there is at least a containment

suppY(V ⊗W ) ⊂ (suppY(V ) ∩ suppY(W )) .

We conjecture, at Conjecture 13.11 below, that this containment is an equality in
all Dynkin types.

1.2. Snashall-Solberg support for associative algebras. There is a theory
of support for finite-dimensional (non-Hopf) algebras R, introduced by Snashall
and Solberg [74, 34], which utilizes the map from Hochschild cohomology to the
center of the derived category − ⊗L

R id : HH∗(R) → Z(Db(R)). The materials of
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Sections 4 and 6 are presented in the general setting of a finite-dimensional algebra
R with a Noetherian deformation Q→ R of finite global dimension. We observe at
Theorem 6.11 that the Snashall-Solberg type support in this case is identified with
the corresponding support defined via hypersurfaces. That is to say, we show that
the proper analog of equation (4) holds in this context.

1.3. Related works. In [22] Boe, Kujawa, and Nakano propose an extremal ver-
sion of the tensor product property for (possibly infinite-dimensional) modules over
uq(b), at odd order parameter with ord(q) > h. Specifically, the authors suggest
that for modules M and N over uq(b), the support of the product M ⊗N vanishes
if and only if the supports for M and N have trivial intersection. The approach
of [22] involves reductions to an associated graded algebra gruq(g) with respect to
a root vector filtration of De Concini and Kac [29].

In [19] and [70, 71], Benson-Erdmann-Holloway and Pevtsova-Witherspoon, re-
spectively, consider support for the (bosonized) quantum complete intersections aq
with constant parameter qij = q12, for all i < j. (To be clear, in [19] the tensor
structure is not considered, and in [70, 71] the skewing parameter is taken to be of
constant value 1.) In [19] certain rank varieties are also constructed for aq with ar-
bitrary parameters by reducing, via a sequence of C-linear functors, i.e. non-tensor
functors, to the constant parameter case [19, Definition 4.4].

One can view the materials of this paper as an approach to support theory
which is an “inversion” of the canonical π-point approach to support for finite
group schemes [77, 43, 32, 16]. A strictly categorical reinterpretation of the π-point
approach to support can be found in work of Balmer, Krause, and Stevenson [12, 11].

1.4. A basic outline. The paper essentially has two interlocking halves. In Sec-
tions 3–7 we construct a dg-version of Koszul duality for the smooth integration
Z → U→ u leading to the main technical result in Theorem 4.3, then show how it
implies strong finiteness conditions on cohomology in Theorem 4.8. We then develop
the fundamentals regarding hypersurface support. Sections 8–13 are dedicated to
examples and applications. Addressing the tensor product property for these ex-
amples does require the cultivation of certain additional tools, and in particular
requires an analysis of derived categories for noncommutative local hypersurface
rings (see Lemma 9.1).
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2. Examples of integrable Hopf algebras

Throughout k is an algebraically closed field of varying characteristic, and all
algebras are algebras over k. We repeat the definition from the introduction before
giving a long list of examples of smoothly integrable Hopf algebras.

Recall that a deformation of an algebra u, parametrized by an affine scheme
Spec(Z) with choice of distinguished closed point x ∈ Spec(Z), is the information
of a flat Z-algebra U equipped with an algebra map U → u which reduces to an
isomorphism k ⊗Z U ∼= u. Here we reduce along the given point x : Z → k. Such
a deformation can be represented via the corresponding sequence of algebra maps
Z → U → u, which we refer to informally as a deformation sequence.

Definition 2.1. A finite-dimensional Hopf algebra u is said to be smoothly in-
tegrable, or just integrable, if u admits a deformation U → u parametrized by a
smooth central subalgebra Z ⊂ U such that

(a) U is a Noetherian Hopf algebra of finite global dimension, and U → u is a
map of Hopf algebras.

(b) Z is a coideal subalgebra in U .

Under these conditions, U is called a smooth integration of u parametrized by Z.

We suppose specifically that Z is a right coideal subalgebra in U , so that the
comultiplication on U restricts to a coaction ∆ : Z → Z ⊗ U .

Remark 2.2. Our choice of right versus left is irrelevant. If U → u is a smooth
integration with parametrizing algebra Z a right coideal subalgebra, then U is also
flat over the left coideal subalgebra S(Z) and k ⊗S(Z) U = u.

Implicit in Definition 2.1 is the assumption that Z is of finite type over k. Al-
though all of our examples arrive in such a finite type flavor, it is convenient to
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complete and work with a formal version of integrability. We elaborate on the
formal setting in Section 2.2 below, after giving our examples.

We note that for an integration f : U → u of a finite-dimensional Hopf algebra u,
as in Definition 2.1, Z is contained in the u-coinvariants in U under the left coaction
(f⊗1)∆ : U → u⊗U . Indeed, Z must be equal to the u-coinvariants Z = Uu in this
case [79, Theorem 1]. So the parametrization space Spec(Z) is determined uniquely
by the Hopf surjection U → u.

2.1. Examples of smooth integration, and an anti-example.

Example 2.3 (Finite abelian groups). Any finite abelian group A admits a sur-
jective group map from a free abelian group of finite rank, p : Zr → A. Let A′

be the kernel of p. Note that A′ is a free abelian group of finite rank as well. We
take group rings kA′ → k(Zr) → kA, over an arbitrary field, to obtain a smooth
integration of kA.

Example 2.4 (Rings of regular functions on a finite group scheme). Take k = Fp,
and let G be a smooth connected algebraic group. Denote by G(r) the rth Frobenius
twist of G and let G = G(r) be the rth Frobenius kernel of G, that is, the kernel

of the rth iteration of the Frobenius map F r : G→ G(r). The algebra of functions
O(G) is a complete intersection, and in this instance we get a deformation sequence

O(G(r))→ O(G)→ O(G),

so that O(G) is smoothly integrated by O(G).
Frobenius kernels are examples of finite connected group schemes. More gener-

ally, for G any finite group scheme, we choose an embedding G → H into a smooth
connected algebraic group. Any faithful representation V for G provides an em-
bedding into H = GL(V ), for example. Then we have the deformation sequence
O(H/G)→ O(H)→ O(G), and find that O(H) integrates O(G). (Recall that H/G
is smooth [60, Corollary 5.26].) When G is not normal in H, O(H/G) is not a Hopf
subalgebra in O(H), but a O(H)-coideal subalgebra. Indeed, functions on H/G are,
essentially by definition, the O(G)-coinvariants in O(H).

Example 2.5 (Restricted enveloping algebras). Take k = Fp and g a restricted
Lie algebra. We have the surjection U(g) → ures(g) onto the restricted enveloping
algebra, and consider the Zassenhaus subalgebra, or p-center, Z0(g) of U(g). This
is the central subalgebra generated by the differences xp − x[p] at arbitrary x ∈
g [82, 51]. The algebra Z0(g) is a Hopf subalgebra in U(g) which is isomorphic to a
polynomial ring, and k⊗Z0(g)U(g) = ures(g), so that ures(g) is seen to be smoothly
integrated by the standard universal enveloping algebra.

Example 2.6 (Height 1 doubles). Consider again H a smooth connected algebraic
group over Fp, and G ⊂ H a normally embedded, finite, connected subgroup scheme
of height 1. Recall that a connected finite group scheme G is of height 1 if the pth

power of any element in the augmentation ideal of O(G) vanishes. Equivalently, G
is a subgroup scheme of H(1), the first Frobenius kernel of H (see [52]). Let g denote
the restricted Lie algebra for G. We denote by kG the group algebra of G, which
is the linear dual of the algebra of regular functions O(G). Since G is of height 1,
there is an identification kG = ures(g) ([52, I.9.6]). Then kG acts on O(G) via the
adjoint representation and we consider the Drinfeld double

D(G) = O(G) oad kG.
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This algebra is integrated by the smash product O(H) oad U(g), where U(g) acts
on O(H) via the projection U(g)→ kG (using the isomorphism kG ∼= ures(g)) and
adjoint action of G on H. The parametrization space in this case is provided by
the product O(H/G) ⊗ Z0(g). The relative double D(H1,G) := O(H1) oad kG is
similarly integrated by O(H) oad U(g).

Example 2.7 (Small quantum groups). Consider the De Concini-Kac quantum
enveloping algebra UDKq (g) at q a root of unity of odd order l. We have the
standard sequence

Z0 → UDKq (g)→ uq(g),

where Z0 is the subalgebra generated by the l-th powers E
lγ
γ , F

lγ
γ , Klα

α [29, Section
3], [30, Proposition 5.6]. By filtering by a normal ordering on the root vectors
and considering the associated graded algebra (cf. [29]), we find that UDKq (g) is of
finite global dimension [28, Corollary 3.1.2]. Hence uq(g) is smoothly integrated
by UDKq (g). Similarly, the quantum Borel uq(b) is integrated by UDKq (b). For the

quantum Borel, however, we consider the De Concini-Kac algebra UDKq (b) with the
same (torsion) group of grouplikes as its small counterpart uq(b).

In each of the above examples, faithful flatness of the extension Z → U is well-
known. However, it is also the case that any extension Z → U of a commutative
coideal subalgebra Z whatsoever is faithfully flat [4, Proposition 3.12]. (There is a
problem with the proof given in [4], but the result is nonetheless correct [45].)

Example 2.8 (Anti-example). The group ring k(GLn)(2) of the second Frobenius

kernel in GLn, over Fp, should not be integrable. This is due to the presence of
divided powers in the algebra.

2.2. Formality and deformations. In considering deformations of Hopf algebras,
it is often advantageous to suppose that the parametrizing subalgebra Z is not
smooth, but formally smooth.

Definition 2.9. A finite-dimensional Hopf algebra u is said to be formally smoothly
integrable if u admits a deformation U → u parametrized by a central subalgebra
Z ⊂ U such that

(z) Z is isomorphic to a power series algebra k[[y1, . . . , yn]].
(a) U is a Noetherian Hopf algebra of finite global dimension, and U → u is a

map of Hopf algebras.
(b) Z is a (right) coideal subalgebra in U.

In this case we call U a formally smooth integration of u.

Abstractly, a commutative algebra Z is isomorphic to such a power series pro-
vided Z is formally smooth and complete local, with finite-dimensional cotangent
space mZ/m

2
Z at the unique maximal ideal mZ . Such a formally smooth inte-

gration U, which is necessarily a finite Z-module, is complete with respect to the
mZ-adic topology. We therefore consider U as a complete linear topological alge-
bra. By a “Hopf algebra” in this case we mean a Hopf algebra in the symmetric
category of complete, linear topological, vector spaces. This simply means that the
comultiplication on U is a map to the completed tensor product ∆ : U→ U⊗̂U.

To distinguish between the finite type and formal setting we generally employ
a sans serif font U when we intend for our deformation to be complete. We note
that the formal situation is preferable simply because the parametrizing subalgebra
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Z is local in this case. As we explain below, any finite type integration U → u
determines a formal integration U → u. Unless confusion will arise, we drop the
modifier “formal” in our presentation and speak only of integrable Hopf algebras
and (implied, formally smooth) integrations U→ u.

Now, given a deformation U → u parameterized by a smooth, finite type, k-
algebra Z, one produces a corresponding formal deformation by completing at the
distinguished maximal ideal mZ ,

U→ u, U := Ẑ ⊗Z U.
Since mZU is the kernel of the Hopf map U → u it is a Hopf ideal in U , and the
completion U = lim←−n U/m

n
ZU is a complete, linear topological Hopf algebra.

Lemma 2.10. Suppose that u is (finite-dimensional and) integrable, Z → U → u
is a smooth integration with Z of finite type over k, and that U is Noetherian and

of finite global dimension. Then the completion Ẑ ⊗Z U is also Noetherian and of
finite global dimension.

Proof. Take U = Ẑ ⊗Z U the completion. Noetherianity of U follows from the fact

that U is finite over the Noetherian algebra Ẑ. We have that U is semi-local, and
all of the simples are restricted from simples over u. So U/ Jac(U) = u/ Jac(u) is a
finite sum of finite-dimensional modules which are annihilated by the augmentation

ideal of Ẑ. Take Λ = U/ Jac(U) the sum of the simples.

By applying the faithful and exact functor Ẑ ⊗Z − to any flat resolution of Λ
over U we obtain a resolution over U, and so find that TorU∗ (Λ,−) = TorU∗ (Λ,−).

By our assumption that U is of finite global dimension, we have TorU>d(Λ,−) = 0

for d = gldim(U), and so observe TorU>d(Λ,−) = 0.
By considering minimal resolutions of modules over U, we see that the projec-

tive dimension of any finitely generated U-module M is the minimal d(M) so that

TorU>d(M)(Λ,M) = 0. So all finitely generated U-modules are of projective dimen-
sion ≤ d. It follows that U is of global dimension ≤ d, and in particular of finite
global dimension [81, Theorem 4.1.2]. �

3. Basics for deformations of associative algebras

We consider for the moment deformations of associative algebras, without any
assumed Hopf structure. Below we explain how such deformations provide specific
approaches to cohomology which leverage the deforming algebra as a realization
of its corresponding classes in Hochschild cohomology. After providing a relatively
general analysis of cohomology, in the present section and Section 6, we give the
necessary implications for Hopf algebras in Section 7.

The materials of the present section are basically a review of work of Bezrukavnikov
and Ginzburg [21], and provide the technical foundations of our study. We employ
standard constructions for dg modules, which can be found throughout the litera-
ture (e.g. [58, Chapter III] or [31]).

3.1. The setup. In Sections 3–7 we work with a deformation sequence Z → Q→ R
satisfying the following:

• Z is complete local, formally smooth, and essentially of finite type, i.e.
isomorphic to k[[y1, . . . , yn]] in coordinates.
• Q is finite and flat over Z.
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• The reduction k ⊗Z Q ∼= R is finite-dimensional.

The third point here is obviously a consequence of the second. Note that in this
situation Q is also Noetherian, since it is finite over the Noetherian subalgebra Z.
We always let 1 ∈ Spf(Z) denote the distinguished (and unique) closed point in
Spf(Z) at which the fiber of Q is identified with R. Here Q and R are not assumed
to be Hopf algebras.

Remark 3.1. Our use of the formal spectrum Spf(Z) [49, Definition 10.1.2] rather
than the usual spectrum of Z is simply a matter of preference. In our case Spf(Z)
is just a single point, corresponding to the maximal ideal mZ , over which Z lives
as the global sections. The object Spf(Z) is also referred to as a formal disk.

Remark 3.2. One can replace the finiteness conditions in the above setup with
the assumption that Q is finite over its center. Specifically, one should consider
a deformation Q which is finite over a central subalgebra T such that T contains
Z, is complete local, and is essentially of finite type over k (cf. Remark 11.4). Of
course, in this more general setting one must augment the results of Sections 4–7
in the expected manner. For example, in the statement of Theorem 4.3 one should
consider instead finiteness over T ⊗BZ and T ⊗AZ .

3.2. Dg algebras, dg modules and semi-projective resolutions. Consider a
dg algebra K over T , where T is a commutative algebra. (Usually for us T will
be Z, the parametrizing subalgebra of 3.1.) We consider K-dgmod the category of
left dg modules over K, and let D(K) denote the corresponding derived category,
D(K) = (K-dgmod)[quis−1]. When T is Noetherian, which is always the case for
us, we take

Dcoh(K) =

{
The full subcategory of dg modules in D(K)
with finitely generated cohomology over T

}
When T = k we write Dfin(K) for Dcoh(K), the category of dg modules with
finite-dimensional cohomology. Note that when K is a finite-dimensional algebra
Dfin(K) is just the bounded derived category of finite K-modules.

We say that a dg K-module M is semi-projective if it has a dg filtration

0 ⊂ F0M ⊆ F1M ⊆ . . . ⊆M
such that each FnM/Fn−1M is a direct summand of a direct sum of shifts ofK. (See
for example [56, §3.1], where such modules are referred to as having property (P).)
We call a semi-projective dg module semi-free if each subquotient FnM/Fn−1M
is exactly a sum of shifts of K. For a dg module N , we call a quasi-isomorphism
M
∼→ N from a semi-projective dg module M a semi-projective resolution of N . As

shown, for example, in [56, Theorem 3.1] or [76, Lemma 20.4], such semi-projective
resolutions always exist. Following the usual procedures, we derive tensor products
and Hom functors by employing semi-projective resolutions.

For M a dg module (over k) we let M∗ denote the corresponding dual dg mod-
ule M∗ = Homk(M,k). Here Homk is the standard Hom complex, so that the
underlying graded space for M∗ is the sum ⊕n∈Z(M−n)∗.

3.3. Deformations, Koszul resolutions, and the Koszul dual pair (AZ , BZ).
Consider Z → Q → R a sequence as in 3.1. A choice of coordinates for Z is
equivalent to a choice of section τ : mZ/m

2
Z → mZ from the cotangent space at

1. From τ we can explicitly define the Koszul complex KZ , which is a dg algebra
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resolving k over Z. Specifically, we take KZ to be the dg Z-algebra ∧∗ZΩZ with
differential specified on the generating submodule ΩZ by dyi 7→ yi. Here {yi}ni=1 is

any choice of basis for the image of τ in mZ . The quasi-isomorphism KZ
∼→ k is

given by the augmentation on Z in degree 0.

Remark 3.3. Different choices of sections τ result in resolutions which are iso-
morphic, as dg Z-algebras, but not literally equal. However, one can check directly
that the definition of KZ is completely independent of the choice of basis {yi}ni=1.
We employ the basis {yi}i only for clarity of presentation.

We change base along the extension Z → Q to obtain, from KZ , a complex

KQ := Q⊗Z KZ

which provides a resolution of R by a dg algebra which is finite and flat over Z:

KQ
∼→ Q⊗Z k = R.

We refer to KQ as the Koszul resolution of R associated to the deformation Q→ R.

Lemma 3.4. The resolution KQ is finite and free over Q.

Proof. This follows from the fact that KZ is finite and free over Z. �

Given a deformation Q → R as above, we make repeated use of the (graded)
commutative dg algebras

BZ := Sym(Σ(mZ/m
2
Z)) and AZ := Sym(Σ−2(mZ/m

2
Z)∗). (6)

Since we are in the dg context BZ is, as an associative algebra, actually an exterior
algebra. The two algebras BZ and AZ are generated by the shifted cotangent space
(in degree -1) and tangent space (in degree 2) of Spf(Z) at 1, respectively, and can
therefore be viewed as functions on corresponding linear dg schemes.

An important point about these two algebras is that they are Koszul dual, in
the usual dg sense. In particular, RHomBZ (k, k) ∼= AZ and RHomAZ (k, k) ∼= BZ
(see, for example, [48] [3, Section 3.3]).

3.4. Koszul resolutions and a map to the center of Dfin(R) [21]. We fix

a deformation Q → R as in Section 3.1. Since the Koszul resolution KQ
∼→ R

is a quasi-isomorphism of dg algebras, reduction and restriction provide mutually
inverse equivalences of triangulated categories

k ⊗L
KZ − : D(KQ)

∼−→ D(R), res : D(R)
∼−→ D(KQ). (7)

These equivalences restrict to equivalences on the full subcategories of dg modules
with coherent (finitely generated) cohomology over Z and k respectively,

k ⊗L
KZ − : Dcoh(KQ)

∼−→ Dfin(R), res : Dfin(R)
∼−→ Dcoh(KQ).

Note that Dcoh(KQ) and Dfin(R) can be identified with the respective derived
categories of finitely generated dg modules.

Consider now dg modules M and N over KQ, and the algebra of extensions

Ext∗KQ(M,N) = ⊕i∈Z Homi
D(KQ)(M,ΣiN).

Consider also the Koszul dual dg algebras BZ and AZ of (6).
Let us explicitly choose coordinates τ : mZ/m

2
Z → mZ here, and consider the

Koszul complex KZ defined precisely as in Section 3.3. We enumerate a basis
{yi}ni=1 for the image of the section τ , and have the corresponding basis {ȳi}ni=1
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of mZ/m
2
Z . Recall that the algebra BZ is generated by the cotangent space

T ∗1 Spf(Z) = mZ/m
2
Z , so that the basis {ȳi}i provides a set of generators for this

algebra as well.
Consider the product KZ ⊗Z KQ, which is a dg algebra over Z. As explained

in [21, Lemma 2.4.2], one has a flat extension of dg algebras jτ : BZ → KZ ⊗Z KQ

defined as follows: by definition KZ = ∧∗ZΩZ , with differential dyi 7→ yi, and we
take

jτ : BZ → KZ ⊗Z KQ, jτ (ȳi) = dyi ⊗ 1− 1⊗ dyi . (8)

We may view KZ ⊗ZKQ = KQ⊗QKQ as a KQ-bimodule, with commuting BZ-
action provided by the aforementioned algebra map. Flatness of KZ ⊗Z KQ over
BZ implies that the induction functor (KZ ⊗Z KQ)⊗BZ − from dg BZ-modules to
dg KQ-bimodules is exact, and hence is derived simply as

(KZ ⊗Z KQ)⊗L
BZ − = (KZ ⊗Z KQ)⊗BZ − : D(BZ)→ D(KQ ⊗Kop

Q ) (9)

One calculates directly (KZ⊗ZKQ)⊗BZ k = Q⊗Z (KZ⊗KZ)⊗BZ k = Q⊗ZKZ =
KQ (where the middle equality is by [21, Lemma 2.4.2]) to see that the above
functor induces a map to Hochschild cohomology

iτ : AZ = Ext∗BZ (k, k)→ HH∗(KQ).

Remark 3.5. One is free to view the functor (KZ ⊗Z KQ)⊗BZ − as having image
in the category of dg KZ ⊗Z Kop

Q -modules, or in the category of dg KQ-bimodules.

This depends on whether one views KZ ⊗Z KQ as a Z-central (KZ ,KQ)-bimodule
or a KQ-bimodule. One advantage of the KQ-bimodule perspective is that we can
then use the quasi-isomorphism KQ → R to pass from D(KQ⊗Kop

Q ) to D(R⊗Rop)
and, hence, to identify the Hochschild cohomologies HH∗(KQ) and HH∗(R) as we
do below.

Recall that the center Z(Dcoh(KQ)) of the derived category Dcoh(KQ) is the
graded algebra of natural transformations from the identity functor on Dcoh(KQ)
to its shifts

Z(Dcoh(KQ)) = ⊕n∈Z HomFun(id,Σn),

and recall also the map from Hochschild cohomology to the center. This map takes
a class in HH∗(KQ), which is some map f : KQ → ΣnKQ in the derived category
of bimodules, to the transformation f ⊗KQ − : id → Σn. So from iτ we obtain a
map to the center ιτ : AZ → Z(Dcoh(KQ)), i.e. an action of AZ on the derived
category of KQ-modules.

We elaborate on this final point. From the maps Z(Dcoh(KQ))→ Ext∗KQ(M,M),
ξ 7→ ξM , we obtain a natural action of AZ on arbitrary objects M in the derived
category via restricting along ιτ . Through these actions on objects we obtain,
in principle, two actions of AZ on each graded extension group Ext∗KQ(M,N),
one through M and one through N . Naturality tells us that these two actions
agree, and in the case M = N we find that the corresponding algebra map AZ →
Ext∗KQ(M,M) has central image.

Theorem 3.6 ([21]). The algebra map iτ : AZ → HH∗(KQ) is independent of the
choice of section τ : mZ/m

2
Z → mZ . In particular, the restriction to the generators

iτ : (AZ)2 = (mZ/m
2
Z)∗ → HH2(KQ) ∼= HH2(R) is the usual deformation map

of [46, 21, 37].
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Since the iτ are independent of the choice of section τ , we can speak of the
algebra map AZ → HH∗(R) determined by the deformation Q→ R, parametrized
by Spf(Z), and the corresponding action of AZ on Dcoh(KQ) ∼= Dfin(R).

Definition 3.7. We fix iQ : AZ → HH∗(R) the algebra map associated to a
given deformation sequence Z → Q → R, and view all extensions Ext∗R(M,N) as
AZ-modules via iQ.

4. Deformations and finiteness conditions on cohomology

For this section we fix a deformation Q → R as in 3.1. We provide a general
finite generation result at Theorem 4.3 (see also Lemma 4.2). We then apply
Theorem 4.3 to recover, in a uniform manner, finite generation results of [39, 47, 37]
in Subsection 4.6. In particular, we find that any integrable Hopf algebra u has
finitely generated cohomology.

The key observation of this section is that RHomR(V,W ) with its AZ-action as
described in 3.6 and RHomQ(V,W ) with a natural BZ-action are related by a dg
version of Koszul duality for AZ and BZ , see Lemma 4.2 as the main technical
result. Since Koszul duality preserves finiteness conditions (see [7, 6]), it allows
us to translate between finite generation of Ext∗R(V,W ) as AZ-module and finite
generation of Ext∗Q(V,W ) as BZ-module, as done in Theorem 4.3. Finally, for
our applications to integrable Hopf algebras, one observes that finite generation of
Ext∗Q(V,W ) as a BZ-module is equivalent to finite-dimensionality which, in turn,
follows from the assumption that Q has final global dimension.

4.1. Technicalities. Consider dual bases {yi}i and {yi}i for the tangent space and
cotangent space of Spf(Z), and consider AZ ⊗ BZ as a dg algebra with vanishing
differential. We define the functor

AZ ⊗t − : BZ-dgmod→ AZ ⊗BZ-dgmod,
AZ ⊗tM := (AZ ⊗M, 1⊗ dM +

∑
i y
i ⊗ yi).

(10)

The functor AZ ⊗t − respects quasi-isomorphisms on the category BZ-dgmod+ of
bounded below dg B-modules, as it is identified with the functor HomBZ (F,−),
where F = (BZ ⊗ (AZ)∗, dF ) is the Koszul resolution of k over BZ . So we have the
derivation AZ ⊗t − = L(AZ ⊗t −) on D+(BZ) (see, for example, [63, Section 4],
[7]).

Recall that a dg module N over a dg algebra A is called K-flat if the functor
− ⊗A N preserves acyclic objects [75]. For K-flat N the derived and underived
tensor products can be identified −⊗L

A N = −⊗A N .

Lemma 4.1. For any dg BZ-module M , the twisted product AZ ⊗t M is K-flat
over AZ .

Proof. Consider an acyclic right dg AZ-module L. We have

L⊗AZ (AZ ⊗tM) = L⊗tM,

where the latter object is the linear product L⊗M equipped with the differential
dL⊗1+1⊗dM +

∑
i yi⊗yi. This complex has a bounded filtration provided by the

mBZ -adic filtration on M , and the associated graded complex is the linear product

gr(L⊗tM) = L⊗ (grM).
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As any complex of k-vector spaces is K-flat over k, we see that the associated graded
complex for L⊗tM is acyclic. By considering the spectral sequence associated to
this filtration, it follows that L⊗tM is in fact acyclic. �

We recall also, from the materials of Section 3.4, that ExtR ∼= ExtKQ naturally
takes values in the category of dg AZ-modules. Furthermore, by resolving R-
modules by KQ-modules M → V which are projective over Q, we see that the
functor ExtQ from R-modules naturally takes values in the category of dg BZ-
modules.

4.2. Finite generation results. As we argue below, one can lift the natural ac-
tions of AZ on Ext∗KQ(M,N) described in Section 3.4 to the dg level, i.e. to an

action of AZ on RHomKQ(M,N). The action of BZ on Ext∗Q(M,N) also lifts to
the dg level, at least when N is replaced with an (quasi-isomorphic) dg R-module.
After translating from KQ to R, we establish the following.

Lemma 4.2. (1) Let V and W be in Dfin(R). Then RHomR(V,W ) has a
natural structure of a dg AZ ⊗ BZ-module which lifts the action of AZ on
Ext∗R(V,W ) of Definition 3.7.

(2) There is a natural isomorphism

RHomR
∼= AZ ⊗t RHomQ

of functors from Dfin(R)op × Dfin(R) to D(AZ ⊗ BZ), where ⊗t is as
defined in (10).

The proof of Lemma 4.2 is given in Section 4.4. In Section 4.5 we prove the
following result.

Theorem 4.3 (cf. [8, Theorem 4.2]). Consider a deformation sequence Z → Q→
R as in Section 3.1. For finite R-modules V and W the following are equivalent:

(a) Ext∗Q(V,W ) is finite over BZ .
(b) Ext∗R(V,W ) is finite over AZ .

Note that finiteness of Ext∗Q(V,W ) over BZ is equivalent to boundedness of
Ext∗Q(V,W ), since BZ is concentrated in finitely many degrees. Theorem 4.3 follows
by a basic understanding of the category of dg modules over AZ (Lemma 4.5) and
a direct application of Lemma 4.2.

We apply Theorem 4.3 to recover a number of essential finite generation results
for Hopf cohomology, in Section 4.6.

4.3. Interpretation via noncommutative complete intersections. One can
see Theorem 4.3 as a noncommutative variant of results of Gulliksen and Avramov-
Gasharov-Peeva [50, 8] which concern the cohomology of local complete intersec-
tions (see also [57]). From the complete intersection perspective [50, 33], AZ is the
“algebra of cohomological operators” deduced from the “noncommutative complete
intersection” Q→ R (cf. [57]).

4.4. Proof of Lemma 4.2.

Lemma 4.4. If M is a dg KQ-module which is semi-projective over Q, then (KZ⊗Z
KZ)⊗KZ M is semi-projective over KQ.

To be clear, KQ acts on (KZ⊗ZKZ)⊗KZM via the KZ action on the left factor
of KZ ⊗Z KZ and the Q-action on M .
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Proof. We have by definition a filtration M = ∪i≥0FiM by dg Q-modules so that
each quotient FiM/Fi−1M is a summand of a free dg module over Q (recall that
we consider Q as a dg algebra concentrated in degree 0). Since KZ is a bounded
complex of flat Z-modules, the functor

(KZ ⊗Z KZ)⊗KZ − = KZ ⊗Z − : D(KQ)→ D(KQ)

is exact. Hence,

KZ ⊗Z (FiM/Fi−1M) ∼=
KZ ⊗Z FiM
KZ ⊗Z Fi−1M

.

Since each FiM/Fi−1M is a summand of a free dg Q-module, it follows that KZ⊗Z
(FiM/Fi−1M) is a summand of a free dg KQ-module (that is, direct sum of shifts
of KQ). We consider the filtration ∪i≥0KZ ⊗Z FiM on (KZ ⊗Z KZ) ⊗KZ M to
observe a semi-projective structure of this dg module over KQ. �

We can now prove our essential lemma.

Proof/Construction of Lemma 4.2. Let V and W be finite complexes of R-modules
which we consider as dg KQ-modules via the restriction functor (7). We first
construct an action of AZ ⊗BZ on RHomKQ(V,W ) which lifts the action of AZ on
ExtR(V,W ) ∼= ExtKQ(V,W ) of Definition 3.7 to the dg level.

Choose a resolution M → V by a dg KQ-module which is bounded above and
projective over Q in each degree. (We may assume the resolution M is bounded
when Q is of finite global dimension.) Let F = BZ ⊗t A∗Z be the Koszul resolution
of k over BZ , and consider the induction

F ind = (KZ ⊗Z KZ)⊗BZ F
along the dg map (8). Since (KZ ⊗Z KZ) ⊗BZ k ∼= KZ (see [21, Lemma 2.4.2]),
and F is the Koszul resolution of k over BZ , we conclude that

F ind ∼→ KZ

is a semi-free resolution of KZ over KZ ⊗Z KZ . Therefore, F ind ⊗KZ M is a
semi-projective resolution of V over KQ, by Lemma 4.4. We have specifically the
quasi-isomorphism

F ind ⊗KZ M
∼→ KZ ⊗KZ M = M

∼→ V.

Since F = BZ⊗tA∗Z is a dg (BZ , AZ)-bimodule, the induction F ind admits com-
muting actions of KZ⊗ZKZ and AZ , and the product F ind⊗KZM has commuting
actions of KZ and AZ . Specifically, we employ the KZ action on M , and the AZ-
action on F ind to obtain the action of AZ ⊗ KZ on F ind ⊗KZ M . The action of
AZ ⊗KZ on F ind ⊗KZ M induces a natural action of AZ ⊗BZ = k⊗Z (AZ ⊗KZ)
on the complex

RHomKQ(V,W ) = HomKQ(F ind ⊗KZ M,W ).

A direct comparison verifies that this dg-level action lifts the action of Definition 3.7.
We have the sequence of natural isomorphisms

RHomKQ(V,W ) = HomKQ(F ind ⊗KZ M,W )
= HomKZ⊗ZKZ (F ind,HomQ(M,W )) (adjunction)
= HomKZ⊗ZKZ

(
(KZ ⊗Z KZ)⊗BZ F,HomQ(M,W )

)
= HomBZ (F,HomQ(M,W )). (adjunction)
= AZ ⊗t HomQ(M,W ).
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The final expression is AZ ⊗tRHomQ(V,W ), and we obtain the claimed result. �

4.5. Proof of Theorem 4.3. We first give a basic lemma on dg modules over
regular dg algebras.

Lemma 4.5. Consider a non-negatively graded dg algebra S with vanishing differ-
ential. Suppose also that S is Noetherian and has finite global dimension, as an
associative algebra. For any dg S-module M the following are equivalent

(1) The cohomology H∗(M) is finitely generated over S.
(2) M admits a resolution M ′ → M by a finitely generated semi-projective dg

S-module M ′.

Proof. The existence of such a resolution implies coherence of cohomology, since S
is Noetherian. Suppose now that the cohomology H∗(M) is finitely generated. We
prove the existence of the appropriate resolution M by induction on the projective
dimension of H∗(M), the projective dimension 0 case being clear. Suppose now that
H∗(M) has projective dimension r, and that the desired result holds for bounded
below dg modules with cohomology of projective dimension < r. Take P → H∗(M)
a surjection from a finitely generated (graded) projective S-module, and φ : P →
Z∗(M) ⊂M any lift of this surjection to the submodule of cocycles. Let C denote
the mapping cone of this lift.

By a spectral sequence argument one sees that

H∗(C) ∼= H∗(cone(P → H∗(M))) = Ω1H∗(M),

and hence that H∗(C) is finite over S and of projective dimension r − 1. Let
ψ : M ′′ → Σ−1C be a semi-projective resolution by a finite dg S-module. Then the
mapping cone M ′ = cone(M ′′ → P ) of the composite M ′′ → Σ−1C → P , along
with the morphism of dg modules M ′ →M induced by the graded S-module maps
ψ̄ : M ′′ →M and φ : P →M , provides the desired resolution. �

Remark 4.6. The lemma essentially identifies the categoriesDcoh(S) and thickS(S)
(as defined in, for example, [7]) allowing us to use the conditions interchangeably.

Recall that the symmetric algebraAZ is of (finite) global dimension dim(mZ/m
2
Z).

So the above result applies to dg modules over AZ . We now offer a proof of our
theorem.

Proof of Theorem 4.3. Suppose that RHomQ(V,W ) has finitely generated cohomol-

ogy overBZ . Then RHomQ(V,W ) admits a quasi-isomorphismN
∼→ RHomQ(V,W )

from a bounded dg BZ-module. We have then

RHomR(V,W ) = AZ ⊗t RHomQ(V,W )
∼← AZ ⊗t N.

The dg module on the right is coherent over AZ , and thus has coherent cohomology.
Suppose now that Ext∗R(V,W ) is finite over AZ . Then RHom∗R(V,W ) admits a

resolution M → RHomR(V,W ) by a semi-projective, coherent, dg module over AZ ,
by Lemma 4.5. It follows that the cohomology of the fiber

k ⊗L
AZ RHomR(V,W ) ∼= k ⊗AZ M

is finite-dimensional. We have an identification

k ⊗L
AZ

RHomR(V,W ) = k ⊗L
AZ

(AZ ⊗t RHomQ(V,W )) (Lemma 4.2)
= k ⊗AZ (AZ ⊗t RHomQ(V,W )) (Lemma 4.1)
= RHomQ(V,W ).
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Thus

Ext∗Q(V,W ) ∼= H∗(RHomQ(V,W )) ∼= H∗(k ⊗L
AZ RHomR(V,W ))

is finite-dimensional, and subsequently finite over BZ . �

As a corollary to Theorem 4.3 we have the following

Corollary 4.7. Suppose Q is of finite global dimension, and that Z → Q→ R is a
deformation sequence as in Section 3.1. Then for any finite R-modules V and W ,
Ext∗R(V,W ) is a finite AZ-module.

4.6. Implications for Hopf cohomology. Suppose that u is a finite-dimensional
Hopf algebra which admits a smooth integration U → u, as in the examples of
Section 2. We have the algebra map

AZ
iU−→ HH∗(u)

−⊗L
u k−→ Ext∗u(k, k). (11)

Theorem 4.8. In the above situation, (11) is a finite algebra map, so that Ext∗u(k, k)
is a finitely generated algebra. Furthermore, for finite-dimensional u-modules V
and W , Ext∗u(V,W ) is a finite Ext∗u(k, k)-module via the tensor action W ⊗ − :
Ext∗u(k, k)→ Ext∗u(W,W ).

Proof. Corollary 4.7 says directly that Ext∗u(k, k) is finite over AZ in this case. For
modules, we have Ext∗u(V,W ) = Ext∗u(W ∗ ⊗ V, k), as an Ext∗u(k, k)-module. So it
suffices to assume W = k. But in this case the actions of AZ on Ext∗u(V, k) factors
through Ext∗u(k, k). So finiteness over AZ , which holds by Theorem 4.3, implies
finiteness over Ext∗u(k, k). �

At this point we recover a number of finite generation results, uniformly, via
application of Theorem 4.8.

Corollary 4.9. The following Hopf algebras have finitely generated cohomology, in
the strong sense described in the introduction:

(1) The quantum group uq(g) [47, 13] (char(k) = 0).
(2) The quantum Borel uq(b) [47, 13] (char(k) = 0).
(3) Restricted enveloping algebras ures(g) [39] (char(k) <∞).
(4) Algebras of functions O(G) on arbitrary finite group schemes [80] (char(k) <
∞).

(5) Drinfeld doubles D(G), and relative doubles D(Hr,G), for G a height 1
connected group scheme which embeds normally in a smooth algebraic group
H [37] (char(k) <∞).

Our finite generation results for quantum groups are stronger than those of [47],
as we allow q to be of small (odd) order. (Finite generation at arbitrary q was
already known, however, and can be found in the text [13].) Our results for doubles
are also slightly stronger than those of [37], in the height 1 case, although [37] also
addresses doubles of group schemes of height > 1.

5. A meditation on hypersurfaces

We explain the particular implications of the results of Section 4 in the cases in
which Q is (homologically) smooth, or of finite global dimension, and subsequently
when Q is a “noncommutative hypersurface” in such a smooth algebra.
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In this section, and all sections that follow, by a perfect module over a Noetherian
algebra we simply mean a finitely generated module which is of finite projective
dimension. This is equivalent to perfection of such a module in the corresponding
derived category, and we adopt the derived language as it is still meaningful in a
dg context.

5.1. Smooth deformations, finiteness, and naturality. Fix Z → Q → R a
deformation sequence as in Section 3.1 with Q of finite global dimension. Corol-
lary 4.7 tells us that each Ext∗R(M,N) is a finite module over AZ in this case. So
we may view extensions as a bifunctor

Ext∗R : (R-modfg)
op × (R-modfg)→ AZ-dgmodfg.

Let f ∈ mZ be any function with nonvanishing reduction f̄ ∈ mZ/m
2
Z . We then

have the diagram of deformation sequences

Z //

πZ

��

Q //

πQ

��

R

=

��
Z/(f) // Q/(f) // R,

where the π# are the obvious projections. The projection Z → Z/(f) also induces
an inclusion of tangent spaces (m(Z/f)/m

2
(Z/f))

∗ → (mZ/m
2
Z)∗ and subsequent

algebra inclusion

A(Z/f) → AZ .

We note that the image of this inclusion depends only on the class of f in the
cotangent space, and not on the choice of f itself. Consider now the possibly
non-commuting diagram

A(Z/f)

incl

��

iQ/f // HH∗(R)

=

��
AZ

iQ // HH∗(R).

(12)

Lemma 5.1. The diagram (12) does in fact commute.

We view the above diagram as a type of naturality property for our setup 3.1.

Proof. Consider any deformation situation Z ′ → Q′ → R′. The image of a tangent
vector ξ ∈ (m/m2)∗ in Hochschild cohomology is the class of the deformation

Q′ ⊗Z′ k[εξ],

where the k[εξ] is k[ε] = k[ε]/(ε2) equipped with the algebra map Z ′ → k[ε] which
annihilates m2 and is defined on the quotient Z/m2 → k[ε] by the function ε · ξ :
m/m2 → kε. Take Qf = Q/(f) and Zf = Z/(f). Using this description, one finds
that for ξ ∈ (mZf /mZf )∗ ⊂ (mZ/m

2
Z)∗, i.e. for any function ξ : mZ/m

2
Z → k which

vanishes in f̄ , the projection Q→ Qf induces an isomorphism of deformations

Q⊗Z k[εξ] ∼= Qf ⊗Zf k[εξ].

That is to say, the diagram (12) commutes when restricted to the generators, and
thus commutes on all of A(Z/f). �
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5.2. Perfection of modules over hypersurfaces. Commutativity of (12) im-
plies the following.

Corollary 5.2. Consider f, g ∈ mZ elements with equivalent, nonzero, reductions
f̄ = ḡ in mZ/m

2
Z . Then for finite R-modules V and W ,

Ext∗Q/(f)(V,W ) vanishes in high degree ⇔ Ext∗Q/(g)(V,W ) vanishes in high degree.

Proof. By considering Q in Theorem 4.3 to be either of the deformations Q/(f) or
Q/(g) of R, the result is a consequence of Theorem 4.3 and Lemma 5.1. �

Locality of Z tells us that all of the finitely generated simples overQ are restricted
from simple R-modules along the quotient Q → R. We take Λ = R/ Jac(R) =
Q/ Jac(Q) to find, for any finitely generated module M over Q,

M is perfect over Q ⇔ Ext�0
Q (M,Λ) = 0.

By taking W = Λ in Corollary 5.2 we therefore obtain

Corollary 5.3. Consider f, g ∈ mZ elements with equivalent, nonzero, reductions
f̄ = ḡ in mZ/m

2
Z . Then a finite R-module V is perfect over Q/(f) if and only if

V is perfect over Q/(g).

6. Cohomological supports and hypersurfaces

We show that the cohomological support for R, defined via the action of AZ on
extension Ext∗R(V,W ), can be identified with a certain hypersurface support. The
hypersurface support for a module V is defined by considering (non-)perfection of V
over hypersurfaces Q/(f), for varying f ∈ mZ . (See Definition 6.7 and Corollary 7.2
below.) We then discuss consequences for support in a Hopf theoretic context in
Section 7. Throughout Z → Q→ R is a deformation sequence as in 3.1.

Remark 6.1. The results of this section are noncommutative analogs of results of
Avramov-Buchweitz [5].

6.1. Graded Nakayama. The following graded version of Nakayama’s lemma is
standard.

Lemma 6.2. Let S be a Z≥0-graded algebra, and N be a bounded below graded
S-module. Then N is 0 if and only if S0 ⊗S N = 0.

Note that we have imposed no finiteness conditions on N .

Proof. Suppose that N is nonzero and that the fiber S0⊗SN vanishes. We have that
the minimal degree Nmin survives in the fiber Nmin ⊂ S0 ⊗S N . Hence vanishing
of the fiber implies Nmin = 0, which is nonsense. �

Corollary 6.3. For S and N as in Lemma 6.2, N is generated by any graded
S0-submodule Nω ⊂ N which surjects onto the fiber S0 ⊗S N . In particular, if the
fiber S0 ⊗S N is finite over S0 then N is finite over S.

Proof. Take such a lift Nω ⊂ N and consider the graded S-module map S⊗S0Nω →
N induced by the action of S on N . Let M denote the cokernel, so that we have
an exact sequence S ⊗S0

Nω → N → M → 0. By right exactness of S0 ⊗S −, we
obtain an exact sequence Nω → S0⊗SN → S0⊗SM → 0, from which we conclude
that S0 ⊗S M vanishes, and hence that M vanishes. So the result holds. �
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6.2. Supports! In anticipation of the Hopf case, we now impose the following
conditions on our deformation Q→ R:

(A) Q is of finite global dimension and augmented.
(B) Q-modfg comes equipped with a Z-linear endofunctor σ such that, for any

finite R-module V and f ∈ mZ , V is perfect over Q/(f) if and only if
Ext�0

Q/(f)(σV, k) = 0.

Note that Z-linearity of σ implies that σ restricts to an endofunctor on each
full subcategory Q/IQ-modfg, for any ideal I ⊂ Z, as this category is simply the
subcategory of Q-modules for which the action Z → EndQ(M,M) vanishes on I.

Example 6.4 (Hopf deformations). Suppose that u is a finite-dimensional Hopf
algebra with an integration U→ u. Then for the sum of the simples Λ = u/ Jac(u)
we may take σ = Λ⊗− : U-modfg → U-modfg.

In the given context, each Ext∗R(V,W ) is finite over AZ , by Corollary 4.7. We
fix

P := P(mZ/m
2
Z) = Proj(AZ).

(In a more geometric notation, one could write P = P
(
T ∗1 Spf(Z)

)
.) For a graded

module N over AZ we let N∼ denote the associated sheaf on P.
For a deformation Q → R as above we define two cohomological supports as

follows.

Definition 6.5. For V finite over R, define the cohomological support in P as

suppP(V ) := SuppP Ext∗R(V,Λ)∼,

where Λ = R/ Jac(R) is the sum of the simples for R. We define the cohomological
σ-support as

suppσP(V ) := SuppP Ext∗R(σV, k)∼.

Remark 6.6. The reader should note that the supports suppP and suppσP depend
on the choice of deformation Q for R.

For a closed point c ∈ P we let Qc denote any quotient Q/(fc) where fc ∈ mZ

is any lift of an element in the corresponding line c ⊂ mZ/m
2
Z − {0}. Recall

that the algebra AZ/(fc) and its corresponding map to Hochschild cohomology are
independent of the choice of lift fc, by Lemma 5.1. We take

Ac := A(Z/fcZ), for any lift fc of c ∈ P(mZ/m
2
Z). (13)

By Corollary 5.3, for any other choice of lift gc, and R-module V , perfection of
V over Q/(fc) is equivalent to perfection over Q/(gc). We may therefore speak
unambiguously of perfection of V over Qc.

Definition 6.7. For V a finite R-module, we define the hypersurface support as

supphypP (V ) := {c ∈ P(mZ/m
2
Z) : V is not perfect over Qc}−,

where the final bar denotes the closure in P, and c runs over all closed points in
projective space.
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6.3. Equating cohomological and hypersurface supports. We maintain the
assumptions of the previous subsection. Closed points c ∈ P(mZ/m

2
Z) correspond

to graded algebra surjections φc : AZ → k[t], where t is given degree 2, and two
maps are taken to be equivalent if they differ by a graded automorphism of k[t],
i.e. a nonzero scaling of t. Taking the fiber k[t] ⊗AZ − along any point c is then
identified with the reduction

k[t]⊗AZ − ∼= k ⊗Ac −, (14)

where Ac ⊂ AZ is the subalgebra generated by ker(φc|A2
Z

). One sees directly that

the generating subspace ker(φc|A2
Z

) ⊂ (mZ/m
2
Z)∗ is the kernel of the associated map

c : (mZ/m
2
Z)∗ → k, or rather of the map associated to any choice of representative

for c ∈ P(mZ/m
2
Z), so that Ac is precisely the subalgebra of (13).

Lemma 6.8. Consider a deformation Q → R as in Section 3.1. Then for any
closed point c ∈ P(mZ/m

2
Z), and any finite-dimensional R-modules V and W , the

following are equivalent:

(a) Ext�0
Qc

(V,W ) = 0.

(b) The base change k[t] ⊗AZ Ext∗R(V,W ) along the map φc : AZ → k[t] is
finite-dimensional.

(c) The base change k[t, t−1] ⊗AZ Ext∗R(V,W ) along the localized map φc,loc :
AZ → k[t, t−1] vanishes.

Proof. Suppose (a) holds. Then Theorem 4.3 implies that Ext∗R(V,W ) is a finitely
generated Ac-module, and hence the fiber

k[t]⊗AZ Ext∗R(V,W ) ∼= k ⊗Ac Ext∗R(V,W )

is finite-dimensional. So we see (a) implies (b). Conversely, if the above fiber is
finite-dimensional then Ext∗R(V,W ) is finitely generated over Ac, by Corollary 6.3.
Theorem 4.3 then tells us that Ext�0

Qc
(V,W ) = 0, providing (a).

For the equivalence between (b) and (c), we note that Ext∗R(V,W ) is finitely-
generated over AZ , by Theorem 4.3, so that k[t] ⊗AZ Ext∗R(V,W ) is a finitely-
generated k[t]-module. We recall that a finitely generated, graded, k[t]-module
is t-torsion if and only if it is finite-dimensional. So we see that the localiza-
tion k[t, t−1]⊗AZ Ext∗R(V,W ) vanishes if and only if k[t]⊗AZ Ext∗R(V,W ) is finite-
dimensional. �

Theorem 6.9. Suppose Q → R is a deformation satisfying (A) and (B) from
Section 6.2. Then for V any finitely generated R-module we have an identification
of supports

suppσP(V ) = supphypP (V ).

Proof. It suffices to show that the closed points of suppσP(V ) are equal to the col-
lection of closed points c ∈ P at which V is not perfect over Qc, in which case
taking the closure of this final set recovers suppP(V ). Equivalently, it suffices to
show that the complements of these collections of closed points agree. Recalling
our assumption (B), we have

V is not perfect over Qc ⇔ Ext�0
Qc

(σV, k) = 0.

By Lemma 6.8 we therefore find that V is not perfect over Qc if and only if the
base change of Ext∗R(σV, k) along the localized map φc : AZ → k[t, t−1] vanishes,

k[t, t−1]⊗AZ Ext∗R(σV, k) = 0.
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This gives the collection of all closed points c ∈ P at which V is not perfect as the
complement of the support of the coherent OP-module associated to Ext∗R(σV, k),

and thus supphypP (V ) = suppσP(V ). �

As one sees from the proof, the closed points of suppσP(V ) agree precisely with
those (closed) points c of P at which V is non-perfect over the hypersurface Qc. So
we have as a corollary to the proof

Corollary 6.10. The closed points of suppσP(V ) in P are exactly the set {c ∈ P :
V is not perfect over Qc}. In particular, this set is already closed (in the topological
subspace of k-points) in P.

The same arguments apply verbatim to the support suppP(V ) = SuppP ExtR(V,Λ)∼

in P, so that we may identify this cohomological and hypersurface support.

Theorem 6.11 (cf. [5, Theorem 2.5]). For V any finite R-module, there is an

identification of supports suppP(V ) = supphypP (V ).

Remark 6.12. The cohomological support suppP does not play a significant role
in our study. However, it is the appropriate object to consider if one is interested in
Snashall and Solberg’s support theory for associative algebras via Hochschild coho-
mology [74]. All un-superscripted supports supp? which appear in the complement
of this section are Hopfy cohomological supports, as defined in Section 7.2 below.

7. Hopfy support and hypersurfaces

We give a precise relation between hypersurface support, defined as in Definition
6.7, and the usual cohomological support for integrable Hopf algebras.

7.1. Choose a side. In deciding, in 3.1, that the parametrizing algebra Z for an
integration U → u is a right coideal subalgebra in U, we have chosen that rep(u)
acts on the left of the hypersurface categories U/(f)-modfg (see Section 8.1). So the
endomorphism σ : U/(f)-modfg → U/(f)-modfg considered in the Hopf situation
of Example 6.4 must be tensoring with the simples Λ on the left, σ = Λ⊗−.

To produce consistency with these choices, we consider Hopfy cohomological
support according to the algebra maps

V ⊗− : Ext∗u(k, k)→ Ext∗u(V, V ) (15)

provided by the left action of rep(u) on itself.
These particular right/left choices do not really matter. What matters, however,

is that one does not switch from a “right handed support” to a “left handed support”
in a willy-nilly manner. So, we stick to the handedness proposed in Section 3.1,
unless explicitly stated otherwise.

7.2. Hypersurface support and Hopf algebras. We consider again u a finite-
dimensional, integrable, Hopf algebra with chosen integration U → u. We observe
the algebra map AZ → Ext∗u(k, k) of equation (11). Fix Y := Proj (Ext∗u(k, k))red

and

κ : Y → P(mZ/m
2
Z) (16)

the map of varieties dual to (11). When Z ⊂ U is specifically not a Hopf sub-
algebra, we may consider the alternate parametrizing subalgebra Z ′ = S(Z) and
corresponding map κ′ : Y → P(mZ/m

2
Z).
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Recall the standard Hopfy cohomological support

suppY(V ) := SuppY Ext∗u(V, V )∼,

where we calculate the sheaf Ext∗u(V, V )∼ according to the (graded) action of
Ext∗u(k, k) on Ext∗u(V, V ) provided by the algebra map (15).

Theorem 7.1. Consider u a Hopf algebra which admits an integration U → u.
Then the Hopfy cohomological support and hypersurface support satisfy

κ
(

suppY(V )
)

= supphypP (V ),

where κ : Y → P is as above.

Proof. For σ = Λ⊗− we have κ(suppY(V )) = suppσP(V ). Specifically, the modules
Ext∗u(V, V ) and Ext∗u(Λ ⊗ V, k) have the same support over Ext∗u(k, k) [18, §5.7].
By commutative algebra, when we restrict along the (finite) algebra map AZ →
Ext∗u(k, k), the support of the given module over AZ is the image of the support in
Spec(Ext∗u(k, k))red along the map i∗U to Spec(AZ) = A(mZ/m

2
Z). These supports

are conical subvarieties in the given Gm-equivariant varieties, and we projectivize
to obtain the claimed identification of κ(suppY(V )) with suppσP(V ). So the result
follows by Theorems 6.9 and 6.11. �

If we suppose, furthermore, that κ : Y → P is a closed embedding then the Hopfy
support can be seen as a support theory valued in closed subvarieties in P.

Corollary 7.2. If the map κ : Y → P of (16) is a closed embedding, then

suppY(V ) = supphypP (V ).

In particular, the hypersurface support vanishes on the open complement P− Y.

7.3. A weak tensor product property. We consider again an integrable Hopf
algebra u with chosen integration U → u. We consider the following additional
conditions:

(S1) Z is a Hopf subalgebra in U.
(S2) u is local.
(S3) rep(u) is braided.

Recall that a braiding on rep(u) is a choice of natural swap operation cV,W : V ⊗
W
∼→ W ⊗ V on products of u-representations. The cV,W here are assumed to be

natural in both V and W , so that in total we have a natural isomorphism c−,−
between the tensor product on rep(u) and its opposite, and are also assumed to
satisfy the braid relations [53, §1].

Proposition 7.3. Suppose that the integration U → u satisfies any one of the
conditions (S1)–(S3) above. Then for arbitrary V and W in rep(u), hypersurface
support satisfies the following:

(1) supphypP (V ⊗W ) ⊂
(

supphypP (V ) ∩ supphypP (W )
)
.

(2) supphypP (V ) = supphypP (V ∗).

In the proof we employ the notion of a thick subcategory in a triangulated
category. The definition of such a subcategory is recalled in Section 9 below.
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Proof. In the local case (S2) we have that V ⊗W is in the thick subcategory gener-
ated by V and also the thick subcategory generated by W , where here we consider
specifically the thick subcategories in Dcoh(U/(f)) for varying hypersurface. This
implies the inclusion (1).

Consider now the braided case (S3). We note that at any function f ∈ mZ the
category U/(f)-modfg is a left rep(u)-module category, in the sense that for any V
in rep(u), and U/(f)-module M , the action of U on V ⊗M descends to an action
of U/(f). The duality

HomU/(f)(V ⊗M,−) ∼= HomU/(f)(M, ∗V ⊗−)

implies that the endomorphism V ⊗ − : U/(f)-modfg → U/(f)-modfg associated
to any object in rep(u) preserves perfection. Here ∗V is the linear dual of V with
u acting via the inverse antipode S−1 (see [36, §2.10]). So we see that

supphypP (V ⊗W ) ⊂ supphypP (W ).

Since V ⊗W ∼= W ⊗ V in this case, we also have an inclusion into supphypP (V ),
establishing (1).

Suppose now that Z is a Hopf subalgebra in U, as in (S1). In this case rep(u)
acts on both the left and the right of the category U/(f)-modfg. So one again
employs dualities, as in the braided case, to obtain (1).

Point (1) now implies, for u satisfying any of the (S#), that any object L which

is a summand of a product W ⊗ V ⊗ W ′, there is an inclusion supphypP (L) ⊂
supphypP (V ). In particular, supphypP (V ∗) ⊂ supphypP (V ), as V ∗ is a summand of the
product V ⊗ V ∗ ⊗ V , by definition of the dual ∗(V ∗) ∼= V [36, Definition 2.10.1].
One obtains the opposite inclusion similarly. So we have (2). �

The analogous equations (1) and (2), for cohomological support suppY, are
known to hold in both the local and braided cases (S2) & (S3). However, in the
case (S1) we obtain something new. We apply Corollary 7.2 to obtain the following
from Proposition 7.3.

Corollary 7.4. Suppose that u admits an integration U → u for which Z is a
Hopf subalgebra in U and that the map κ of (16) is a closed embedding. Then
cohomological support for rep(u) satisfies the following:

(1) suppY(V ⊗W ) ⊂
(

suppY(V ) ∩ suppY(W )
)
.

(2) suppY(V ) = suppY(V ∗).

We note that the relations of Corollary 7.4 are not obvious when rep(u) is not
braided, and not even true in general. One can see Example 10.2 below, or [72] for
a more extensive exposition.

Lemma 7.5. If u is such that the reduced spectrum Spec(Ext∗u(k, k))red is isomor-
phic to an affine space Ank , then the map κ : Y → P(mZ/m

2
Z) of (16) is a closed

embedding.

Proof. Take E = Ext∗u(k, k)red and take E′ the subalgebra generated by E2. By
assumption, E is isomorphic to a polynomial ring. Since E is graded, we may take
homogenous generators ξi, deg(ξi) = di, and have E = k[ξ1, . . . , ξd]. We know that
the deformation map

Sym(Σ−2(mZ/m
2
Z)∗) = AZ → E (17)
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is finite, by Theorem 4.8. We note that AZ has image in the subalgebra E′ generated
in degree 2, so that E must be finite over E′, and E′ must be finite over the image of
AZ . We have k⊗AZE′ = Sym(E2/im(mZ/m

2
Z)∗) and k⊗E′E = k[ξj : deg(ξj) > 2].

Finiteness of these fibers forces E2 = im(mZ/m
2
Z)∗, and E′ = E. Hence we have

surjectivity of (17). �

One applies Lemma 7.5 to see that the relations of Corollary 7.4 hold in a number
of “unipotent” and “solvable” settings. We just remark on one.

Corollary 7.6. For uq(b) the small quantum Borel, in arbitrary Dynkin type, at q
of odd order greater than the associated Coxeter number h, cohomological support
satisfies

suppY(V ⊗W ) ⊂
(

suppY(V ) ∩ suppY(W )
)

and also suppY(V ) = suppY(V ∗).

Proof. The distinguished subalgebra Z0 in UDKq (b) is a Hopf subalgebra and,
by [47], the algebra of extensions Ext∗uq(b)(C,C) is a polynomial ring in this case.
So the result follows by Lemma 7.5 and Corollary 7.4. �

Remark 7.7. For u the restricted enveloping algebra ures(L) of reductive L in
large characteristic, we expect the map κ is simply the embedding of the (twisted)
nilpotent cone N (1) into L(1), or rather the projectivization of this map. Similarly,
for the quantum group uq(g) at large order q, κ should also be the projectivized
embedding of the nilpotent cone into g. So, in particular, the hypersurface and
cohomological supports should agree here. In the finite characteristic setting, one
could explicitly prove this result by identifying the Hochschild map employed in
[39], [38, Proposition 5.2], with our deformation map of (11).

Remark 7.8. In Section 13 we will be rather precise in our definition of the quan-
tum Borel. In particular, we acknowledge that there are varying choices of Borels
with varying groups of grouplikes. In Corollary 7.6 the particular choice of group-
likes for uq(b) does not matter.

8. Background: a preamble to examples

We now move on to the second phase in this work. In the following sections we
use hypersurface support to prove the tensor product property for cohomological
support in a number of “solvable” examples. We explain what precisely counts as
a “solvable” Hopf algebra in Section 8.4 below. The proofs of the tensor product
property in these varied contexts rely on certain recurring arguments which are
both homological and (mildly) tensor categorical in nature. We provide here the
backgrounds needed to understand the examples considered in the latter sections
of the text.

We recall that a tensor category is a k-linear, abelian, rigid monoidal [36,
§2.10] category C in which all objects are of finite length and Hom sets are finite-
dimensional. We also require that the unit 1 ∈ C is simple. A tensor category C
is finite if it has finitely many simples and enough projectives, and C is fusion if
it is finite and semisimple. The only tensor categories we are interested are those
of the form rep(u) for a finite-dimensional Hopf algebra u (in which case rep(u) is
finite), so one needn’t concern themselves with the intricacies of theory of tensor
categories here. We would claim, however, that the language and philosophies from
the subject are useful.
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We are also interested in braided tensor categories, which, just as in the case of
rep(u) discussed in Section 7.3, are tensor categories C equipped with a natural

swap operation cV,W : V ⊗W ∼→W ⊗ V on objects [53, §1].

8.1. Module categories. We refer the reader to [69, Definition 6.2] for a precise
definition of a module category. Basically, a (left) module category over a tensor
category C is a k-linear abelian category M with a biexact action functor ⊗ :
C ×M →M which is compatible with the tensor structure on C , in the obvious
ways. One has the analogous notion of a bimodule category.

We have already encountered our primary source of examples: Given rep(u) for
a Hopf algebra u, and B a (left) u-comodule algebra, we obtain an action of rep(u)
on B-mod. In particular, for arbitrary V in rep(u) and M in B-mod, we employing
the coaction B → u⊗B to provide a natural B-action on the tensor products V ⊗B.
In this way, the linear tensor product ⊗ = ⊗k provides our exact action functor
⊗ : rep(u) × B-mod → B-mod, endowing B-mod with a rep(u)-module category
structure. When B is a u-bicomodule, we similarly find that B-mod is a bimodule
category over rep(u).

By considering the adjunction HomB(V ⊗M,−) = HomB(M, ∗V ⊗ −) we see
that the action of rep(u) on such B-mod preserves the subcategory of compact
objects, i.e. finitely presented modules. So, when B is Noetherian, we have that
B-modfg is a rep(u)-module subcategory in B-mod. The analogous claims hold in
the bicomodule/rep(u)-bimodule setting. Such duality arguments also show that
the action(s) of rep(u) on B-mod preserves perfect objects.

8.2. Drinfeld centeralizers.

Definition 8.1 ([62]). Given a tensor subcategory D in a tensor category C , we
define the Drinfeld centralizer ZD(C ) to be the category of pairs (V, γV ) where V is
an object in C and γV is a half braiding against D . Specifically, γV : V ⊗− → −⊗V
is a natural isomorphism between the functors −⊗V, V ⊗− : D → C which satisfies
the appropriate braid relations.

The Drinfeld center Z(C ) of C is the centralizer of C against itself, i.e. the
category of pairs of an object V with a global half braiding γV : V ⊗− → −⊗ V .

Both ZD(C ) and Z(C ) inherit obvious tensor structures (V, γV ) ⊗ (W,γW ) =
(V ⊗W, (γV ⊗ 1)(1⊗ γW )) from C , and we have a surjective tensor functor

Forget : ZD(C )→ C (18)

given by forgetting the half braiding [35, Proposition 3.39]. By surjective we mean
that all objects of C are obtained by taking subquotients of objects from ZD(C ).

In the Hopf setting, Z(rep(u)) is equivalent to the category of modules over
the Drinfeld double D(u) = u ./ u∗ (see e.g. [61, 54]). For rep(Λ) → rep(u) the
tensor inclusion corresponding to a Hopf quotient u → Λ, the Drinfeld centralizer
is identified with representations over the Hopf subalgebra u./Λ∗ in D(u).

We prefer the categorical expression ZD(C ) to the algebraic one as we mean to
emphasize a single point here: It is natural to consider, in some specific contexts,
objects V in rep(u) with a uniform means of moving V past a chosen class of other
objects in rep(u), under the tensor action.
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8.3. Bosonization and half-braidings. Consider u+ a finite-dimensional Hopf
algebra in a braided tensor category rep(Λ) which, as the notation suggests, is the
representation category of a quasitriangular Hopf algebra Λ. Then the category
repΛ(u+) of finite-dimensional left u+-modules in rep(Λ) forms a tensor category
for which the composition

repΛ(u+)
forget→ rep(Λ)→ V ect

provides a canonical fiber functor. Such modules are simply u+-modules with a
compatible action of Λ, i.e. modules over the smash product u = u+ o Λ, and
the tensor structure on repΛ(u+) induces a Hopf structure on u under which the
subalgebra u+ is a left u-comodule algebra. The algebra u, with its given Hopf
structure, is the bosonization of u+. We consider the explicit examples of bosonized
quantum complete intersections in Section 11 below.

One can endow all objects in rep(Λ) with the trivial u+-action, via the counit
u+ → 1, to obtain a tensor embedding

rep(Λ)→ repΛ(u+) = rep(u).

When u+ is local, and Λ is semisimple, this map is an equivalence onto the fusion
subcategory of semisimple objects in rep(u). In the statement of the following
lemma c denotes the braiding on rep(Λ).

Lemma 8.2. For u a bosonized Hopf algebra u = u+ o Λ as above, there is a
canonical tensor functor rep(u)→ Zrep(Λ)(rep(u)) which is a section of the forgetful
functor. Specifically, for V in rep(u) and L in rep(Λ), the isomorphisms

γV,L : V ⊗ L→ L⊗ V
given by the braiding γV,L := cV,L on rep(Λ) provide a rep(Λ)-centralizing structure
on all objects in rep(u), and the operations γV,L are natural in V and L.

Proof. Both V ⊗ L and L⊗ V have well-defined u-actions, and the braiding γ = c
is a map of Λ-modules by construction. So we need only check u+-linearity. Since
u+ acts trivially on L, the action of u+ on V ⊗ L is just induced by the action on
V , and the action on L⊗ V employs the braiding

actL⊗V = (1⊗ actV )(cu+,L ⊗ 1) : u+ ⊗ L⊗ V → L⊗ V.
Naturality of the braiding, and the braid relation, then imply commutativity of the
diagram

u+ ⊗ V ⊗ L 1⊗c //

actV⊗L

��

u+ ⊗ L⊗ V

actL⊗V

��
V ⊗ L c // L⊗ V.

The above diagram implies that γV,L = cV,L is a map of u+, and hence u, represen-
tations. �

8.4. Geometrically Chevalley algebras. In the following definition we let Rep(Λ)
denote the monoidal category of infinite-dimensional representations for a finite-
dimensional Hopf algebra Λ.

Definition 8.3. Call an integrable Hopf algebra u geometrically Chevalley if

(a) u is the bosonization u = u+oΛ of a local Hopf algebra u+ in a (semisimple!)
braided fusion category rep(Λ).
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(b) u+ admits a deformation sequence Z → U+ → u+ via algebras in Rep(Λ)
such that
(b1) U+ is a local Hopf algebra in Rep(Λ) which is of finite global dimension,

as an associative algebra.
(b2) Z is a central Hopf subalgebra in U+ which has trivial Λ-action and

admits an algebra isomorphism Z ∼= k[[y1, . . . , yn]].

We call U = U+ o Λ the corresponding Chevalley integration of u, and have the
corresponding integration U→ u parametrized by the Hopf subalgebra Z in U.

Examples of geometrically Chevalley algebras include bosonized quantum com-
plete intersections, quantum Borels, and also the Drinfeld doubles D(B(1)) for Borel
subgroups B ⊂ G in almost-simple algebraic group G (in particular characteristics).
Restricted enveloping algebras ures(n) of nilpotent restricted Lie algebras are also
geometrically Chevalley, with Λ = k. In the case of D(B(1)) we take Λ = kT1,
where T ⊂ B is the torus, and the braiding on rep(Λ) = rep(T1) is the standard
(trivial) symmetry. These examples are all considered in detail in Sections 11 and
13 below.

By Lemma 8.2, all objects in rep(u) centralize the simples rep(Λ) in this case,
and we have a canonical section rep(u) → Zrep(Λ)(rep(u)) for any geometrically
Chevalley u.

9. Noncommutative Hopkins’ lemma for hypersurfaces

Let T be a triangulated category. Recall that a thick subcategory in T is a full
triangulated subcategory which is closed under taking summands in T , and the
thick subcategory 〈Xi : i ∈ I〉 generated by a collection of objects {Xi}i∈I in T
is the smallest thick subcategory in T which contains all the Xi. The most basic
example of a thick subcategory for us is that of perfect complexes perf(Q) = 〈Q〉
in the derived category of modules over a given algebra Q.

Here we suggest an analysis of thick subcategories for the hypersurface categories
Dcoh(U/(f))–or rather, Dcoh(U+/(f)) in the geometrically Chevalley instance–
which provides a technical foundation for the work that follows.

9.1. Hopkins’ lemma and noncommutative hypersurfaces. Consider Q a
commutative, regular, local algebra and Q/(f) a hypersurface algebra. Then a
version of Hopkins’ lemma [26, Proposition 5.8] implies that, for M non-perfect
over Q/(f), the trivial module k is in the thick subcategory 〈M〉 generated by M
in the derived category of Q/(f). It seems clear that this precise result does not
hold for a noncommutative hypersurface algebra Q/(f), as one needs to properly
account for the noncommutativity in this case.

In a geometrically Chevalley setting U+ → u+, we consider an alternative impli-
cation:

M non-perfect in U+/(f)-modfg
question⇒ k ∈ 〈λ⊗M : λ ∈ Irrep(Λ)〉. (19)

We act on the left of U+/(f)-mod via the left u, and hence Λ, comodule structure.
More generally, one may replace the λ in Irrep(Λ) with objects in an arbitrary tensor
subcategory D ⊂ rep(u). Our main approach to the tensor product property for the
examples considered in Section 10–13 below is to show that the implication (19)
does hold in these cases, and use this implication to deduce the tensor product
property for support.
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Lemma 9.1. Consider u geometrically Chevalley, with Chevalley integration U→
u. Fix D ⊂ rep(u) an arbitrary tensor subcategory, and consider functions f ∈ mZ

with non-trivial reduction to mZ/m
2
Z .

Suppose that for any non-perfect, finitely generated, module M over a hypersur-
face U+/(f), k is in the thick subcategory 〈λ⊗M : λ ∈ D〉 generated by the D-orbit

of M in Dcoh(U+/(f)). Then the hypersurface support supphypP on Dfin(u) satisfies
the tensor product property

supphypP (V ⊗W ) = supphypP (V ) ∩ supphypP (W ).

The analogous result holds when u is local and admits an integration U → u by a
local Hopf algebra (U+ =)U.

Proof. In what follows, for local u we take Λ = k, rep(Λ) = V ect. In both the

geometrically Chevalley and local case we have an inclusion of supports supphypP (V ⊗
W ) ⊂ supphypP (V ) ∩ supphypP (W ), by Proposition 7.3. So, we need only establish
opposite inclusion.

Since the positive subalgebra u+ is local, by hypothesis, the inclusion rep(Λ)→
rep(u) is an isomorphism onto the fusion subcategory of semisimple modules. Fur-
thermore, this fusion subcategory generates rep(u) under extension. Therefore, for
any D as in the statement we have

〈λ⊗M : λ ∈ D〉 ⊂ 〈λ⊗M : λ ∈ Irrep(Λ)〉.

So it suffices to prove the result when D = rep(Λ).
We must prove the following: If U/(f) is a hypersurface along which W is non-

perfect, and the product V ⊗W is perfect, then V must be perfect. (Here f is a
function in the parametrizing algebra Z with non-vanishing linear part.) Now, im-
perfection of a module over U/(f) = (U+/(f))oΛ is equivalent to imperfection over
the subalgebra U+/(f). So we are free to replace U/(f) with this local subalgebra
U+/(f), and attempt to establish the same claims regarding imperfection.

By locality of U+/(f), imperfection of a finitely generated moduleM over U+/(f)
is equivalent to nonvanishing of Ext∗U+/(f)(M,k) in arbitrarily high degrees. We

recall also that the u-comodule structure on U+/(f) implies a (left) action of rep(u)
on U+/(f)-mod.

Consider such f , V , and W as prescribed. As W is non-perfect along U+/(f)
we have

k ∈ 〈λ⊗W : λ ∈ Irrep(Λ)〉 ⊂ Dcoh(U+/(f)),

by hypothesis. Applying the endofunctor V ⊗ − : Dcoh(U+/(f)) → Dcoh(U+/(f))
and the centrality claim of Lemma 8.2 gives then

V ∈ 〈V ⊗ λ⊗W : λ ∈ Irrep(Λ)〉 = 〈λ⊗ V ⊗W : λ ∈ Irrep(Λ)〉.

Since V ⊗W is perfect, this final thick subcategory is contained in perf(U+/(f)),
so that V must be perfect. �

Remark 9.2. It suffices to work stably, so that one may replace the thick subcat-
egory generated by the λ⊗M with the thick subcategory generated by the λ⊗M
and U+/(f) in equations (19) and Lemma 9.1 above.

Remark 9.3. It is possible that (19) holds in general, although we would not claim
such a result at this time.
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10. The tensor product property for functions on finite group
schemes

We consider representations of O(G), for a finite group scheme G. In this case
we have rep(O(G)) = Coh(G), and we employ the latter notation for the sake of
expediency. We prove in Theorem 10.5 below that (Hopfy) cohomological support
for Coh(G) has the tensor product property whenever G is connected. In the case
in which G is not connected, the tensor product property for Coh(G) simply does
not hold (see Example 10.2). However, we prove in Corollary 10.8 a variant of the
tensor product property for non-connected G which is, in a global sense, optimal.

Arguably, the case of Coh(G) is not the most interesting application of the
methods developed in this paper. Indeed, many of the issues we’ve addressed
in the present document are well-established in the commutative setting (see Re-
mark 10.7). However, this very natural class of examples provides an excellent
case study from which one can observe a number of important phenomenon. We
consider more novel situations in Sections 11 and 13 below.

10.1. Reducing to the connected component I. Consider G a finite group
scheme, with identity component Go. We note that in this case the cohomology
rings Ext∗O(G)(k, k) and Ext∗O(Go)(k, k) for the algebras of functions agree. So we
write unambiguously Y for the reduced projective spectrum of either of these rings.
The following lemma can be deduced from work of Plavnik and Witherspoon [72],
and we omit the proof.

Lemma 10.1 ([72, Theorem 3.2]). Let G be a finite group scheme, with identity
component Go ⊂ G and subgroup of closed points π = π0(G). The following are
equivalent:

(a) Cohomological support for Coh(G) has the tensor product property.
(b) Cohomological support for the identity component Coh(Go) has the tensor

product property and the group of closed points π ⊂ G acts trivially on Y,
under the adjoint action.

It is easy to construct examples of G = Go o π for which π acts non-trivially on
cohomology for Go. Indeed, one deduces from such pairs (Go, π) examples of tensor
categories for which one has no such inclusion

suppY(V ⊗W ) *
(

suppY(V ) ∩ suppY(W )
)
.

One can compare the following example with Corollary 7.4.

Example 10.2 (cf. [17]). Take k = Fp. Consider Z2 acting on Ga(1) × Ga(1) by

swapping the factors. Take Go = Ga(1) × Ga(1) and G = Go o Z2. Let suppGo

and suppG denote the corresponding supports. Since O(Go) is cocommutative, its
support suppGo is known to have the tensor product property [44].

Consider V and V ′ the O(Go) representations given by projecting onto the second
and first factor of O(Ga(1)) respectively. Then one has

Ext∗O(Go)(k, k)red = k[x, y], Ext∗O(Go)(k, V ) = k[x], Ext∗O(Go)(k, V
′) = k[y].

We also have V ′ = Adσ(V) in Coh(G), where Z/2Z = {1, σ}. Thus

suppG(V ) = ptx, suppG(σ ⊕ k) = P1,

and
suppG(V ⊗ (σ ⊕ k)) = suppG(V ′ ⊕ V ) = ptx ∪ pty,
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where P1 is identified with the projective spectrum of k[x, y] = Ext∗(k, k)red and
ptx and pty are the images of the coordinate axes for x and y. In particular, if we
take suppY the cohomological support for O(G), V as above and W = σ ⊕ k, then

ptx ∪ pty = suppY(V ⊗W ) *
(

suppY(V ) ∩ suppY(W )
)

= ptx.

We note finally that the Hopfy support and hypersurface support agree for this
example, by Lemma 10.4, so that the tensor product property for hypersurface
support also fails to hold in this case.

One can similarly consider an n-fold product of Ga(1)’s equipped with the per-
mutation action of Sn, and observe an explicit obstruction to the tensor product
property in these cases as well. A generalization of the above example, where O(G)
is replaced with an arbitrary Hopf algebra, can be found in [72, Proof of Corollary
3.4].

10.2. Reducing to the connected component II. We consider a finite group
scheme G with connected component Go. Suppose that support for Coh(Go) satisfies
the tensor product property, which is in fact the case by Theorem 10.5 below.

We have the action of the finite group π = π0(G) of closed points, i.e. simple
O(G)-representations, on Coh(G) via conjugation Adλ(V) = λ ⊗ V ⊗ λ−1. This
action corresponds to the adjoint action of π on the scheme G, in the sense that
the tensor adjoint action permutes sheaves on G via pushforward along the adjoint
action automorphisms Adλ : G → G.

To say that an object V in Coh(G) is equivariant with respect to this conjugation
action of π is to say that there is a compatible collection of natural isomorphisms
V ⊗ λ ∼= λ⊗ V for all λ ∈ π. So we observe that a π-equivariant structure on V is
equivalent to a rep(π)-centralizing structure, i.e. half-braiding, on V .

In the following theorem we consider non-connected G, and let suppY denote the
cohomological support for Coh(G). We take F : ZCoh(π)(Coh(G)) → Coh(G) the
forgetful functor.

Lemma 10.3 (cf. [72]). Let G be a finite group scheme and suppose that support
for the identity component Coh(Go) satisfies the tensor product property. Take
π = π0(G) the group of closed points.

For arbitrary W in Coh(G), and V in the Drinfeld centralizer of Coh(π) in
Coh(G), there is an identification of supports

suppY(F (V )⊗W ) = suppY(F (V )) ∩ suppY(W ).

Proof. We may write V = ⊕λ(Vλ ⊗ λ) = ⊕λ(λ ⊗ λV ) for representations Vλ and

λV supported on Go, and adopt similar expressions for W . (Here the sums run over
the simples λ ∈ π.) Let suppG and suppGo denote the cohomological supports for
Coh(G) and Coh(Go) respectively. We have

suppG(V ) = ∪λ suppGo(λV ), suppG(W ) = ∪λ suppGo(λW ).

We are assuming that V centralizes the simples. This implies an identification of
the right handed and left handed supports for V ,

∪λ suppGo(λV ) = suppG(V ) = ∪λ suppGo(Vλ) (20)
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We have that suppG(V ⊗W ) is the support of cohomology

Ext∗CohG(k,
⊕

λ λ⊗ (V ⊗W )) ∼= Ext∗CohG(k,
⊕

λ(V ⊗ λ⊗W ))
=
⊕

λ,µ Ext∗CohGo(k, Vµ ⊗ (µλ)−1W ),

=
⊕

λ,µ Ext∗CohGo(k, Vµ ⊗ λW )

where the sum runs over all invertibles λ ∈ π. We employ the tensor product
property for Go and equation (20) to obtain

suppG(V ⊗W ) =
⋃
λ,µ suppGo(Vµ ⊗ λW )

=
⋃
λ,µ

(
suppGo(Vµ) ∩ suppGo(λW )

)
=
(⋃

µ suppGo(Vµ)
)
∩ suppG(W ) = suppG(V ) ∩ suppG(W ).

�

10.3. Support for coherent sheaves on finite group schemes. Recall that
a finite group scheme G is called infinitesimal if it is connected. Equivalently,
G is infinitesimal if O(G) is local. Recall also that for any embedding G → H
into smooth H, we have the corresponding deformation sequence ÔH/G → ÔH →
O(G) (see Example 2.4). We take in this instance Z = ÔH/G , and as usual Y =
Proj(ExtCoh(G)(k, k))red.

Lemma 10.4. Let G be an infinitesimal group scheme, with chosen embedding
G → H into a smooth algebraic group. Then the associated map κ : Y → P(mZ/m

2
Z)

of (16) is a closed embedding.

Proof. Take E = Ext∗Coh(G)(k, k)red. We have an algebra isomorphism O(G) ∼=
k[x1, . . . , xn]/(xdii : 1 ≤ i ≤ n), abstractly [80], so that E is a graded polynomial
ring generated in degree 2, E = Sym(E2). Therefore κ is a closed embedding by
Lemma 7.5. �

Theorem 10.5. Let G be an infinitesimal group scheme. Then for arbitrary V and
W in Coh(G) we have

suppY(V ⊗W ) = suppY(V ) ∩ suppY(W ),

where suppY denotes the cohomological support.

Proof. Fix an embedding G → H into a smooth algebraic group. By the weak
tensor product property (and Lemma 10.4) we have a containment

suppY(V ⊗W ) ⊂
(

suppY(V ) ∩ suppY(W )
)
.

We want to show now that if a given closed point in Y is in both suppY(V ) and
suppY(W ), then it is in suppY(V ⊗W ). Equivalently, according to Corollary 7.2,

we want to show that if ÔH/(f) is a hypersurface along which both V and W are

non-perfect, then the product V ⊗W is also non-perfect over ÔH/(f).

Let us fix such a function f ∈ ÔH/G and take O = ÔH. It is well-known
that imperfection of an object M over the local (commutative) hypersurface O/(f)
implies that the trivial module k is in the thick subcategory 〈M〉 generated by
M , in Dcoh(O) (see e.g. [78]). By exactness of the operation V ⊗ − this implies
V ∈ 〈V ⊗M〉. Hence, perfection of the product V ⊗M implies

V ∈ 〈V ⊗M〉 ⊂ perf(O/(f)),
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so that V is seen to be perfect. Considering the case M = W , we observe the
desired implication

x ∈ suppY(W ) while x /∈ suppY(V ⊗W ) ⇒ x /∈ suppY(V ),

i.e. if W is not perfect over a given hypersurface, while V ⊗W is perfect, then V
must be perfect over that hypersurface. �

Remark 10.6. In the proof, one can provide a more direct argument to find that
k ∈ 〈M〉 whenever M is non-perfect over a commutative local hypersurface, using
arguments of Carlson-Iyengar [26]. We will follow such a line of reasoning in the
proof of Theorem 11.3 below (see also Remark 11.5).

Remark 10.7. Theorem 10.5 can alternatively be proved by employing the classi-
fication of thick subcategories in Coh(G) [26]. One uses this classification to reduce
to the case of a product of Carlson modules, then observes the desired result by
applying [70, Corollary 4.1].

By applying Lemma 10.3 we obtain a result for general finite group schemes.

Corollary 10.8. Let G be an arbitrary finite group scheme, and let π denote the
discrete subgroup of closed points in G. For W arbitrary in Coh(G), and V in the
Drinfeld centralizer ZCoh(π)(Coh(G)), we have an identification

suppY(F (V )⊗W ) = suppY(F (V )) ∩ suppY(W ), (21)

where suppY denotes the cohomological support for Coh(G) and F is the forgetful
functor (18).

We would suggest from examples such as Example 10.2 that the conditions on
V in the above result are, in a global sense, optimal. More specifically, the tensor
product property simply cannot hold in the non-connected case, and the above
corollary gives (arguably) the strongest sense in which the tensor product property
does hold for coherent sheaves on arbitrary G.

Remark 10.9. Due to our particular left/right conventions (see Section 7.1), the
rep(π)-centralizing object V in Corollary 10.8 must appear on the left. However, if
we take V in the full Drinfeld center Z(Coh(G)), then the analogous claim (21) is
side-independent.

10.4. A remark on centrality and nonbraided TPP. We propose an alter-
nate version of the tensor product property which is more robust that the usual
version (5), and is satisfied by all examples which currently appear in the literature.
Our particular framing here is informed by 4-dimensional topological field theory
[25, 24], although we don’t elaborate on this point here. From a more pragmatic
perspective, we want to provide a version of the tensor product property which is
satisfied by the examples Coh(G) considered above.

One can view any nonbraided tensor category C as a tensor category over its
Drinfeld center Z(C ). We recall that a tensor category C over a given braided tensor
category Z is a tensor category equipped with a central tensor functor F : Z → C .
Formally, such central F consists of a choice of tensor functor F0 : Z → C and
a braided lift of this functor to the Drinfeld center F1 : Z → Z(C ). Informally,
we simply mean that for arbitrary V in Z and W in C there is a commutativity
relation F (V )⊗W ∼= W ⊗ F (V ) which is natural in V and W .
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Example 10.10. For the quantum Borel uq(b), the forgetful functor repuq(g) →
repuq(b) from the associated quantum group admits a central structure repuq(g)→
Z(repuq(b)). This follows from the explicit form of the R-matrix for uq(g).

For nonbraided C we consider again the support suppY(V ) = SuppY Ext∗C (V, V )∼,
but now adopt a tensor relation which expresses a “linearity” property with respect
to the action of the Drinfeld center Z(C ),

suppY(F (V )⊗W )
question

= suppY(F (V )) ∩ suppY(W ). (22)

Here V is in Z(C ), W is in C , and F : Z(C ) → C is the forgetful functor. The
implicit half-braiding on objects in Z(C ) implies that there is no sidedness in the
expression (22). One considers the relation (22) as a replacement for the usual
tensor product property (5).

More generally, for F : Z → C any central tensor functor we can consider the
relation analogous to (22) for Z acting on C . We leave the proof of the following
Lemma to the interested reader.

Lemma 10.11. The following are equivalent:

(1) The relation (22) holds for all V in Z(C ) and W in C .
(2) The analogous relation (22) holds for any braided Z equipped with a central

tensor functor F : Z → C .

Furthermore, when C itself admits a braiding then either of the above two points
are equivalent to the usual tensor product property (5) for C .

Definition 10.12. We say that support for a tensor category C satisfies the cen-
tralized tensor product property if equation (22) holds at all V in Z(C ) and W in
C .

Corollary 10.8 implies that, for sheaves on non-connected G for example, the
standard tensor product property (5) generally fails while the central version (22)
still holds. More explicitly, support for the category Coh(G) of coherent sheaves on
the smash product G = (Ga(1) × Ga(1)) o Z/2Z was shown to not have the tensor
product property (5), in Example 10.2. But we have shown that support for Coh(G),
for this particular G, does have the central tensor product property outlined above.
This alternate tensor product property also holds in all of the (counter)examples
considered in [17, 72], where the standard tensor product property was shown to
fail.

Furthermore, for pointed Hopf algebras with a “bad” choice of grouplikes the
centralized tensor product property (22) is, seemingly, a more appropriate relation
to consider, in comparing with the usual version (5). One can see our explicit
analysis of quantum complete intersections with various choices of grouplikes given
in Theorems 11.3 and 11.6 below.

Remark 10.13. From a more minimalist perspective, one can replace the Drinfeld
center Z(C ) with the centralizer of the simples in C in the above presentation.
See, for example, [65, §5 & 6]. The main point is that one should employ some
centralization hypotheses when dealing with support in a non-braided context.
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11. Bosonized quantum complete intersections

We consider support for some non-classical analogs of functions on infinitesimal
group schemes, over the complex numbers. We focus on a class of examples as-
sociated to skew polynomial rings with odd order skewing parameters. We refer
to these examples as quantum complete intersections, although the nomenclature
quantum linear spaces is also common [1, 23].

11.1. Bosonized quantum complete intersections. Consider a skew polyno-
mial ring

U+ = C〈〈x1, . . . , xn〉〉/(xixj − qijxjxi : i 6= j), qij = qaij ,

defined by a choice of root of unity q of odd order, and an integer matrix [aij ] which
is skew symmetric away from the diagonal aij = −aji and of constant value aii = 1
along the diagonal. Fix l = ord(q).

Take now G∨ a finite abelian group equipped with a bilinear form q(−,−) : G∨×
G∨ → C× such that, for distinguished elements e1, . . . , en and χ1, . . . , χn in G∨,
we have

q(ei,ej) = qaij and q(ei,χj) = q(ei,ej)alt ∀ 1 ≤ i ≤ n. (23)

Here (−,−)alt is the alternating form (ei, ej)alt = 1
2 (aij − aji).

One can construct such G∨ by simply considering a rank 2n elementary abelian
l-group with free generators e1, . . . , en, χ1, . . . , χn, and form defined on these gen-
erators as above. On the other hand, when the determinant of the matrix [aij ] is
invertible mod l, the required elements χj already exist in the rank n elementary
abelian l-group generated by the ei, with form defined in accordance with (23).

In any case, we fix G∨ as above and take Λ = CG the group ring of the char-
acter group for G∨. The form on G∨ endows the tensor category rep(Λ) with a
braided structure. In terms of homogeneous vectors, the braiding on rep(Λ) is given
explicitly by

cV,W : V ⊗W →W ⊗ V, v ⊗ w 7→ q(deg v,degw)w ⊗ v.

The algebra U+ then becomes an algebra in rep(Λ), or rather in its Ind-completion
Rep(Λ), by taking each generator xi ∈ U+ to be of G∨-degree ei.

The coproduct ∆(xi) = xi ⊗ 1 + 1⊗ xi on U+ endows it with the structure of a
Hopf algebra in Rep(Λ), and we have the quotient Hopf algebra

u+ = U+/(xli : 1 ≤ i ≤ n)

in rep(Λ). By applying bosonization (Section 8.3) we obtain Hopf algebras U =
U+ oΛ and u = u+ oΛ, in V ect, and the quotient map U→ u deforms u along the
trivial commutative Hopf subalgebra Z = C[[xl1, . . . , x

l
n]]. (By trivial, we mean that

Λ acts trivially on Z.) So u is geometrically Chevalley with Chevalley integration
U → u. We refer to u constructed in this manner as a bosonized algebra of func-
tions on a quantum complete intersection, or just a bosonized quantum complete
intersection.

To be clear, as an algebra

u =
(
C〈x1, . . . , xn〉/(xixj − qijxjxi, xli)i,j

)
o Λ (24)

and the coproduct is given by the formula ∆(xi) = xi ⊗ 1 + Ki ⊗ xi, where Ki is
the character Ki = q(ei,−) : G∨ → C×.
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Remark 11.1. The name “quantum complete intersection” is somewhat unsatis-
factory, as it does not reference the Hopf structure on this algebra. Such algebras
are probably more accurately understood as q-analogs of functions on first Frobe-
nius kernels (Gna)(1) in additive group schemes Gna of varying rank.

Remark 11.2. There is some ambiguity in our presentation of the Hopf algebras u,
as we only specify the grouplikes within a certain range of parameters. We consider
the “standard” choice of grouplikes for such a quantum complete intersection in
Section 11.3 below.

Theorem 11.3. Consider u a bosonized quantum complete intersection, with grou-
plikes G as above. Then for arbitrary V and W in rep(u), we have

suppY(V ⊗W ) = suppY(V ) ∩ suppY(W ).

We prove Theorem 11.3 in Section 11.2 below. Before giving the proof, let us
compare the above result with our findings for functions on non-connected group
schemes O(G), Corollary 10.8. We refer to the situation considered in the present
section as the “q-symmetric” situation.

In both the non-connected case of Corollary 10.8 and the q-symmetric case, orbits
of objects under the tensor-action of the simples appear in the proof. Furthermore,
the centralizing category Zrep(Λ)(rep(u)) also appears in the proof of Theorem 11.3
(and in the statements of Theorem 11.6 below). There is, however, a fundamen-
tal distinction between these two cases. Namely, in the q-symmetric setting, the
parametrizing subalgebra Z ⊂ U is a Hopf subalgebra in U. This implies that
modules over each hypersurfaces U/(f) have a bimodule structure over u. Such
normality does not hold in the case of functions on a non-connected group scheme,
in general.

Indeed, in the case of non-connected G the “hard” inclusion(
suppY(V ) ∩ suppY(W )

)
⊂ suppY(V ⊗W )

still holds on Coh(G). It is the opposite inclusion that fails to hold. The opposite
inclusion in the q-symmetric setting is forced by (co)normality of the deformation
U → u (Corollary 7.4). In considering Theorem 11.6 below, which makes a claim
mirroring almost exactly that of Corollary 10.8, we would still propose that the
situations of 11.6 and 10.8 are rather dissimilar. And so, we view the uniform
nature of Corollary 10.8 and Theorem 11.6 as a testament to the general framework
outlined in Section 10.4.

11.2. Proof of Theorem 11.3.

Proof of Theorem 11.3. We first note that Ext∗u(C,C)red is a polynomial ring [20],
so that the map κ : Y → P is a closed embedding by Lemma 7.5. Hence we have an
inclusion of supports suppY(V ⊗W ) ⊂

(
suppY(V ) ∩ suppY(W )

)
, by Corollary 7.4.

We seek the opposite inclusion.
Fix f ∈ mZ with non-trivial linear component. According to Lemma 9.1, it

suffices to prove that C is in the thick subcategory 〈λ⊗M : λ ∈ Irrep(Λ)〉 for finite
non-perfect M over U+/(f). Fix R = U+/(f), Q = U+, Z = C[[f ]], and consider
the corresponding deformation sequence Z → Q→ R. Fix also T to be the central
subalgebra C[[xl1, . . . , x

l
n]] in Q.

Take KQ = Q⊗Z KZ the corresponding dg resolution of R, with KZ the Koszul
resolution of k over Z, as in Section 3.3. We have the reduction C ⊗Q KQ, which
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is isomorphic to the dual numbers C[ε] = C[df ]/(d2
f ) with generator in degree −1,

and may consider the reduction

C⊗L
Q − : KQ-dgmod→ C[ε]-dgmod.

We consider here, specifically, dg KQ-modules with finite cohomology over T and
dg C[ε]-modules with finite-dimensional cohomology.

By adjunction we see that

Ext∗KQ(M,C) = Ext∗C[ε](C⊗L
QM,C)

so that C ⊗L
Q M is non-perfect over the dual numbers whenever M is non-perfect

over KQ. By a dg version of Hopkins’ Theorem [26, Theorem 4.4] for C[ε], we have
then

C ∈ 〈C⊗L
QM〉 whenever M is non-perfect over KQ, (25)

where 〈L〉 denotes the thick subcategory in Dfin(C[ε]) generated by the given object
L. We claim that this implies

C ∈ 〈λ⊗M : λ ∈ Irrep(Λ)〉 ⊂ Dcoh(KQ).

Let us prove this claim.
We have the q-exterior dg algebra

E = ∧∗qC{dx1
, . . . , dxn} = C〈dxi : 1 ≤ i ≤ n〉/(dxidxj + qijdxjdxi , d

2
xi)

in the braided category of chain complexes over rep(Λ), where the dxi are of coho-
mological degree −1 and respective G∨-degree ei. We consider the corresponding
Koszul resolution F = (E ⊗Q, dF ) of C over Q, with explicit differential

dF (dxir . . . dxi1 ⊗ a) =
∑
j

(−1)j+1(
∏
t<j

qijit)dxir . . . d̂xij . . . dxi1 ⊗ xija.

This complex is in fact a dg bimodule over Q via symmetry of Q. Namely, we have
the well-defined left action of Q on F given by the formula

b · (v ⊗ w) := q(deg(b),deg(v))altv ⊗ bw = q(deg(b),χv)v ⊗ bw, (26)

where (−,−)alt is as in (23) and χv =
∑
j χij for v =

∏
j dxij . Hence tensoring by

F provides an endofunctor

F ⊗L
Q − = F ⊗Q − : Dcoh(KQ)→ Dcoh(KQ)

which is isomorphic to the endofunctor C⊗L
Q −, which we interpret as the compo-

sition of the reduction to C[ε] composed with restriction Dfin(C[ε])→ Dcoh(KQ).
Let D ⊂ rep(Λ) denote the tensor subcategory generated by the simples associ-

ated to the characters χj . By construction of F and equation (26), we have for any
dg KQ-module M ,

C⊗L
QM

∼= F ⊗L
QM ∈ 〈Ei ⊗M : 0 ≤ i ≤ n〉

⊂ 〈χ⊗M : χ a simples in D〉
⊂ 〈λ⊗M : λ a simples in rep(Λ)〉

By (25), imperfection of M over KQ then implies

C ∈ 〈λ⊗M : λ ∈ Irrep(Λ)〉,

as desired. The tensor product property now follows as an application of Lemma 9.1.
�
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Remark 11.4. The deformation Q → R employed in the proof does not fit into
the setup of Section 3.1, as Q is not finite over the parametrizing algebra Z = k[[f ]]
in this case. (Although, Q is finite over complete local central subalgebra T ⊃ Z.)
However, all we use in this case is the associated Koszul resolution KQ → R, which
is a valid construction for any deformation Q→ R with complete, formally smooth
parametrizing algebra Z.

Remark 11.5. By considering Koszul duality Dfin(C[ε]) ∼= Dcoh(C[t]), deg(t) =
2, and the fact that C[t] is a PID, one can basically classify thick subcategories
in Dfin(C[ε]) by hand. (The classification is rather easy for the stable category
Dsing(C[ε]), which is sufficient for our needs.) That is to say, one doesn’t actually
have to understand the dg version of Hopkins’ theorem, in full regalia, in order to
prove of Theorem 11.3.

11.3. Changing grouplikes (standard QCIs). Consider again the positive al-
gebras of Section 11.1, which we relabel as

A+
q (P ) = C〈〈x1, . . . , xn〉〉/(xixj − qijxjxi)i,j

and a+
q (P ) = C〈x1, . . . , xn〉/(xixj − qijxjxi, xli)i,j .

Here q is a root of unity of odd order l and P = [aij ] is an integer matrix for which
qij = qaij . As before we assume aij = −aji off the diagonal, and all aii = 1. Having
fixed such P , we adopt the more efficient notation A+

q = A+
q (P ) and a+

q = a+
q (P ).

Consider Gst the rank n elementary abelian l-group with generators Ki, and let
Gst act on A+

q and a+
q in the expected way Ki ·xj = qijxj . Then the smash products

Aq = A+
q oGst and aq = a+

q oGst

become Hopf algebras under the coproduct ∆(xi) = xi ⊗ 1 +Ki ⊗ xi.
The Hopf algebra Aq integrates aq, with parametrizing Hopf subalgebra Z =

C[[xl1, . . . , x
l
n]], and the positive (coideal) subalgebra A+

q deforms a+
q along Spf(Z)

as well.
The Hopf algebra(s) aq constructed as above are what most people would refer

to as the bosonized quantum complete intersection, or the quantum linear space,
associated to a root of unity q and matrix [aij ]. The algebras u of Section 11.1 and
aq of course differ only in the choice of grouplikes and, by considering the delta

characters δj = q(−,ej)χ−1
j in G∨, we see that there are Hopf inclusion

incl : Aq → U and incl : aq → u.

These inclusions are the identity on their respective positive parts, and send the
Ki in Gst to the Ki in G.

We let Λst and Λ denote the group rings of Gst and G respectively, where G is
as in Section 11.1.

Theorem 11.6. Consider aq = aq(P ) the bosonized quantum complete intersec-
tion associated to given odd order q and matrix P = [aij ]. For V in the Drinfeld

centralizer Zrep(Λst)(rep aq), and arbitrary W in rep(aq), we have

suppY(F (V )⊗W ) = suppY(F (V )) ∩ suppY(W ).

As before, F : Zrep(Λst)(rep aq)→ rep(aq) is the forgetful functor.
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Proof. We further simplify our notation and take A = Aq(P ) and A+ = A+
q (P ).

The comultiplication on A provides A+ with a Λst-comodule algebra structure,

ρ : A+ ∆−→ A⊗ A+ π⊗1−→ Λst ⊗ A+.

This coaction descends to a coaction on all hypersurface algebras A+/(f), for f ∈
mZ . Via this coaction we get a rep(Λst)-action on the category of modules over
any hypersurface algebra A+/(f), as well as its corresponding derived category.

Consider f ∈ mZ with nonvanishing reduction in mZ/m
2
Z . We claim that any

non-perfect, finite, M over A+/(f) is such that

C ∈ 〈µ⊗M : µ ∈ Irrep(Λst)〉 ⊂ Dcoh(A+/(f)). (27)

It was already shown in the proof of Theorem 11.3 that for such M

C ∈ 〈λ⊗M : λ ∈ Irrep(Λ)〉 ⊂ Dcoh(U+/(f)) = Dcoh(A+/(f)). (28)

Now, we have the restriction map rep(Λ)→ rep(Λst), and claim that for any char-
acter λ ∈ Irrep(Λ) with restriction µ ∈ Irrep(Λst), the A+ = U+-modules λ⊗M and
µ⊗M are literally equal. Indeed, this just follows from the fact that the comultipli-
cation on U sends the positive subalgebra U+ into the subalgebra (U+ oGst)⊗U+,
so that the each endofunctor λ ⊗ − of U+-mod depends only on the restriction of
λ to Gst. (The point here is that the grouplikes Ki live in the subgroup Gst ⊂ G.)

Consider finally a product V ⊗ W of a rep(Λst)-centralizing representation V
with an arbitrary representation W over aq. Suppose that W is non-perfect over
a given hypersurface A/(f) while V ⊗ W is perfect. One uses (27), and argues
as in Lemma 9.1, to see that V must be perfect in this case. Rather, we find
that hypersurface support for aq satisfies the stated tensor product property. Since
(reduced) cohomology for aq is an affine space, cohomological support also satisfies
this tensor product property. �

12. (q-)Regular sequences

We consider a particular noncommutativization of the notion of a regular se-
quence. Such sequences are employed in proofs of the tensor product property for
cohomological support, in the examples of Section 13.

12.1. A choice of ambient braided fusion category D. Fix G∨ a finite abelian
group with a chosen (exponentiated) form q(−,−) : G∨ ×G∨ → k×. We are free to
assume ord(q)| exp(G∨) and the form (−,−) can be seen as an additive form which
takes values in Z/ exp(G∨)Z. We view G∨ as the group of characters for its dual
group in characteristic 0, or for the dual Hopf algebra in finite characteristic.

We fix

D = The braided fusion category V ectG∨ , with braiding given by the form q(−,−).

Recall that V ectG∨ is the fusion category of G∨-graded vector spaces. The irre-
ducibles in D are explicitly the 1-dimensional vector spaces supported at a given
character. As before, in terms of homogeneous vectors, the braiding on D is given
by

cV,W : V ⊗W →W ⊗ V, v ⊗ w 7→ q(deg v,degw)w ⊗ v.
We impose no symmetry condition on the form (−,−), and we remark that the
case D = V ect, G = {1}, is still of interest.
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12.2. Regular sequences. Consider A a dg algebra in D , or more precisely the
category of complexes over the Ind-category Ind D of possibly infinite-dimensional
G∨-graded vector spaces. So, we allow A to be infinite-dimensional, provided it
splits into character spaces A = ⊕χAχ.

We let D(A) denote the derived category of arbitrary dg modules. When A is
finite over a central Noetherian subalgebra T of cocycles, one can replace D(A)
with Dcoh(A), the subcategory of dg modules with finitely generated cohomology
over T , in all of the results of this section.

Definition 12.1 ([57]). A q-regular sequence x1, . . . , xn in A is a sequence such
that

(a) the xi are homogenous cocycles, with respect to the character and cohomo-
logical gradings, and

(b) for each 1 ≤ j ≤ n, xj is a non-zero divisor in A/(xj+1, . . . , xn) which is
χj-central for some character χj , in the sense that

bxj = ± q(deg b,χj)xjb

for all (homogenous) b ∈ A/(xj+1, . . . , xn), where ± = (−1)|xj ||b|.

In the case D = V ect, q = 1, we refer to such a sequence simply as a regular
sequence.

Given suchA with fixed q-regular sequence {x1, . . . , xn} we takeAj = A/(xj+1, . . . , xn),
and have a sequence of projections

A0 ← A1 ← · · · ← An

of dg algebra objects in D .
We consider the categories of dg (bi)modules over the Aj . For any object V in

D , and dg Aj-bimodule M , we have the new bimodule V ⊗M with right action
induced by that of M and left action given by

a · (v ⊗ b) = q(deg a,deg v)v ⊗ ab.
Similarly, for any left dg module M we have the new module V ⊗M . In this way
Aj-dgmod and Aj-dgbimod become left module categories over D . Similarly, D
acts on the derived categories D(Aj).

Lemma 12.2. For any r ≤ s, the reduction Ar ⊗As − : As-dgmod → Ar-dgmod
can be given a D-linear structure, so that it is a map of D-module categories, as
can be its derived counterpart Ar ⊗L

As
− : D(As)→ D(Ar).

By a D-linear structure on a functor F : M → N between D-module categories
we mean a choice of natural isomorphism of functors F (V ⊗ −) ∼= V ⊗ F (−), for
each V in D , which is additionally associative and natural in V . Formally speaking,
triangulated categories cannot serve as module categories over D , as they are not
abelian. However, by an action of D on a triangulated category T here we just
mean a choice of associative action map ⊗ : D ×T → T which preserves triangles
in T and sends exact sequences in D to triangles in T . We would refer to such T
simply as triangulated module categories.

Proof of Lemma 12.2. For any V in D and dg As-module M , we have the natural
map

V ⊗ (Ar ⊗M)→ Ar ⊗As (V ⊗M), v ⊗ (a⊗m) 7→ q−(deg a,deg v)a⊗ (v ⊗m).
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Since the quotient As → Ar is a map in D , and thus preserves the character grading,
the above natural isomorphism respects the relations of the tensor product over As,
and hence descends to a well-defined map

V ⊗ (Ar ⊗As M)
∼→ Ar ⊗As (V ⊗M). (29)

One similarly constructs the inverse to see that (29) is an isomorphism. This
isomorphism is seen to be natural in V andM , and also respects the tensor structure
on D , so that we embue the reduction functors Fr,s = Ar ⊗As − with the structure
of a map of D-module categories. One proves the result for the derived categories
similarly. �

12.3. Regular sequences and thick subcategories. Take A as in Section 12.2,
with a fixed q-regular sequence {x1, . . . , xn}. For an object M in Aj-dgmod we let
〈M〉 denote the thick subcategory in D(Aj) generated by M . We let

ressr : D(Ar)→ D(As)

denote the restriction functor along the projection As → Ar, for r < s. It is
apparent that restriction commutes with the operators V ⊗−, for V in D , so that
each ressr is a map of D-module categories.

Lemma 12.3. Consider A as in Section 12.2 with fixed q-regular sequence. For
arbitrary M in D(Ar), there is a containment

〈resrr−1(Ar−1 ⊗L
Ar M)〉 ⊂ 〈λ⊗M : λ ∈ Irred(D)〉.

of thick subcategories in D(Ar).

Proof. Take λr = k1r the irreducible in D corresponding to the character χr, and
take m the cohomological degree of xr. Consider the complex of Ar-bimodules

Kr
r−1 =

(
Σm+1(λr ⊗Ar)→ Ar, d

)
, d(1r) = xr.

The fact that the differential is Ar-linear on the left follows by the commutativity
hypothesis imposed on xr, by the defintion of a q-regular sequence. Note that
Kr
r−1 is semi-free over Ar on the right, and hence the endomorphism Kr

r−1 ⊗Ar −
on Ar-dgmod preserves quasi-isomorphisms.

Since xr is a non-zero divisor in Ar, the reduction Ar → Ar−1 induces a quasi-
isomorphism Kr−1 → Ar−1 of dg Ar-bimodules. It follows that we have a natural
isomorphism

resrr−1 ◦(Ar−1 ⊗L
Ar −) ∼= Kr

r−1 ⊗L
Ar − ∼= Kr

r−1 ⊗Ar −
of triangulated endomorphisms of D(Ar). Since

Kr
r−1 ⊗Ar M = cone(λr ⊗M

d→M),

we have

resrr−1(Ar−1 ⊗L
Ar M) ∼= Kr

r−1 ⊗M ∈ 〈λ⊗M : λ ∈ Irred D〉.
The proposed containment of thick subcategories follows. �

Lemma 12.4. Consider A as in Section 12.2 with fixed q-regular sequence, and let
res denote the restriction functor along the projection A→ A0. For arbitrary M in
A-dgmod, there is a containment

〈res(A0 ⊗L
AM)〉 ⊂ 〈λ⊗M : λ ∈ Irred(D)〉.
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Proof. We claim that there is such a containment

〈ressr(Ar ⊗L
As M)〉 ⊂ 〈λ⊗M : λ ∈ Irred(D)〉

for arbitrary r < s and M over As. We proceed by induction on the difference s−r.
The base case r = s−1 is covered by Lemma 12.3. Suppose now that the result holds
for ressr(Ar ⊗L

As
M) and consider the desired containment for ressr−1(Ar−1⊗L

As
M).

Take N = Ar ⊗L
As
M . Then

Ar−1 ⊗L
As M

∼= Ar−1 ⊗L
Ar N.

and resrr−1(Ar−1⊗L
As
M) ∈ 〈λ⊗N : λ ∈ Irred D〉, by Lemma 12.3. By Lemma 12.2

we have

〈λ⊗N : λ ∈ Irred D〉 = 〈Ar ⊗L
As (λ⊗M) : λ ∈ Irred D〉

so that resrr−1(Ar−1⊗L
As
M) ∈ 〈Ar ⊗L

As
(λ⊗M)〉λ. By restricting further to As we

find, by our induction hypothesis,

ressr−1(Ar−1 ⊗L
As
M) ∈ 〈ressr Ar ⊗L

As
(λ⊗M) : λ ∈ Irred D〉

⊂ 〈µ⊗ λ⊗M : λ, µ ∈ Irred D〉 = 〈λ⊗M : λ ∈ Irred D〉.
So we have the proposed containment. �

12.4. Regular sequences and deformations. Consider Z → Q → R a defor-
mation sequence. Suppose additionally that all of the given algebras are algebras
in D , and that Z is trivial in the sense that Z is supported at the identity in G∨.
Then the Koszul resolution KQ is a dg algebra in D .

Lemma 12.5. If {x1, . . . , xn} is a q-regular sequence in Q, then {x1, . . . , xn} is
also a q-regular sequence in the Koszul resolution KQ of R.

Proof. Certainly the xj remain homogenous cocycles in KQ, and have the same
commutativity relations in KQ/(xj+1, . . . , xn), so we need only verify that each xj
is a non-zero divisor in the corresponding quotient. This final property only has to
do with the (non-dg) algebra structure of KQ. If we take Qj = Q/(xj+1, . . . , xn),
then as an algebra we have

KQ/(xj+1, . . . , xn) ∼= Qj ⊗ ∧∗(mZ/m
2
Z),

and xj is seen to be a non-zero divisor in this algebra as it is a free module over
Qj . �

13. Restricted enveloping algebras, height 1 doubles, and the
quantum Borel

We employ regular sequences, in conjunction with hypersurface support, to ob-
tain the tensor product property for cohomological support in a number of geomet-
rically Chevalley examples (see Section 8.4).

13.1. A general lemma. The following general result was essentially argued in
the proof of Theorem 11.3, and can be seen as a reduction of the materials of
Section 9.1.

Lemma 13.1. Consider u geometrically Chevalley, with Chevalley integration U→
u. Fix D an arbitrary tensor subcategory in rep(u). For f ∈ mZ with non-trivial
reduction to mZ/m

2
Z , let Kf denote the corresponding Koszul resolution of the

hypersurface U+/(f).
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Suppose that, at arbitrary such f ∈ mZ , the endomorphism

k ⊗L
U+ − : D(Kf )→ D(Kf )

is such that k⊗L
U+ M ∈ 〈λ⊗M : λ ∈ D〉, for each M in D(Kf ). Then hypersurface

support for Dfin(u) satisfies the tensor product property

supphypP (V ⊗W ) = supphypP (V ) ∩ supphypP (W ).

The same result holds when u is local and admits a local integration (U+ =)U→ u.

Proof. We claim that the inclusion k ⊗L
U+ M ∈ 〈λ ⊗M : λ ∈ D〉, at arbitrary dg

modules M , implies the necessary inclusion k ∈ 〈λ ⊗M : λ ∈ D〉 whenever M is
non-perfect over the hypersurface U+/(f). One then applies Lemma 9.1 to obtain
the result.

Via the equivalence Dcoh(U+/(f)) → Dcoh(Kf ) provided by restriction, it suf-
fices to show that the given inclusion implies k ∈ 〈λ⊗M : λ ∈ D〉 for non-perfect
M in Dcoh(Kf ). Take such non-perfect M . As in the proof of Theorem 11.3, one
factors the reduction k ⊗L

U+ − as the composite

Dcoh(Kf )
k⊗L

U+
−

−→ Dfin(k[ε])
res→ Dcoh(Kf )

and employs the understanding of thick ideals in Dfin(k[ε]) from [26, Theorem 4.4]
to find that

k ∈ 〈k ⊗L
U+ M〉 ⊂ Dcoh(Kf )

at non-perfect M . Our assumption now implies the desired inclusion k ∈ 〈λ⊗M :
λ ∈ D〉 at non-perfect M . �

13.2. Nilpotent restricted Lie algebras over Fp. Consider n a nilpotent Lie
algebra with a restricted structure, in finite characteristic. Consider any basis
x1, . . . , xn of n which is compatible with the lower central series n ⊃ n1 ⊃ · · · ⊃
nd = 0, in the sense that the final md−1 elements form a basis for nd−1, the fol-
lowing md−2 + md−1 elements form a basis for nd−2, etc. Then, each element xr
is a central non-zero divisor in U(n)r = U(n)/(xr+1, . . . , xn), and also in the com-

pletion Û(n) along the kernel of the projection U(n)→ ures(n). Hence the ordered

sequence {x1, . . . , xn} is a regular sequence in Û(n) which generates the kernel of

the augmentation Û(n)→ k.
We now recover an essential result of Friedlander and Parshall.

Theorem 13.2 ([41, 77]). For an arbitrary nilpotent restricted Lie algebra n, the

hypersurface support supphypP on rep(ures(n)) has the tensor product property. Sup-
posing additionally that the reduced spectrum of cohomology for ures(n) is an affine
space (e.g. supposing the p-th power map on n is 0), then the cohomological support
for ures(n) has the tensor product property

suppY(V ⊗W ) = suppY(V ) ∩ suppY(W ).

Proof. The fact that the augmentation ideal in Û is generated by a regular sequence
implies a containment

k ⊗L
Û
M ∈ 〈M〉 ⊂ Dcoh(Kf ),

at arbitrary dg modules M over the resolution Kf of any hypersurface Û/(f), by
Lemma 12.4. So Lemma 13.1, considered in the case D = V ect, gives us the
tensor product property for hypersurface support. In the case that the spectrum
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of cohomology is an affine space, the cohomological support is identified with the
hypersurface support by Lemma 10.4. �

13.3. Solvable height 1 doubles over Fp. Consider U a smooth unipotent group

scheme over k = Fp. Suppose that U is normal in a larger group B which admits
a quasi-logarithm. We recall that a quasi-logarithm is the information of an iso-

morphism of b = Lie(B)-algebras ÔB,1 ∼= k[[b∗]], so that we have an isomorphism
of algebras (see Example 2.6)

D̂(U(1)) := ÔB o Û(n) ∼= k[[b∗]] o Û(n),

where U(n) acts via the coadjoint action of ures(n) on the generators b∗ (see
e.g. [55]). We may filter b∗ by subrepresentations b∗ ⊃ F−1b

∗ ⊃ · · · ⊃ F−db
∗ = 0

so that each subquotient is a trivial n-representation, and consider a correspond-
ing ordered basis y1, . . . , yn for b∗ with the final md elements providing a basis for
F−d+1b

∗, the final md−1 +md elements forming a basis for F−d+2b
∗, etc. We choose

also a basis x1, . . . , xm for n as in Section 13.2.

Then the sequence x1, . . . , xn, y1, . . . , yn forms a regular sequence in D̂(U(1))

which generates the kernel of the augmentation D̂(U(1))→ k. An instance in which
the ambient group B admits a quasi-logarithm is the case in which B is a Borel
of an almost-simple (smooth) algebraic group G [37, Corollary 6.4], in very good
characteristic for G.

Theorem 13.3. Let U be a unipotent subgroup in an almost-simple algebraic group
G over Fp, which is normalized by a maximal torus. If p is very good for G then
the hypersurface support for the height 1 double D(U(1)) satisfies the tensor product
property. If p − 1 > dim(U) then the cohomological support satisfies the tensor
product property

suppY(V ⊗W ) = suppY(V ) ∩ suppY(W ).

Proof. In the case of very good p we have a quasi-logarithm, and hence the augmen-

tation ideal for D̂ is generated by a regular sequence. It follows that for arbitrary
M over the Koszul resolution KD̂ we have k ⊗L

D̂
M ∈ 〈M〉, by Lemma 12.4. So by

Lemma 13.1 the hypersurface support for the double D(U(1)) satisfies the tensor
product property. When p−1 > dim(U) the reduced spectrum of cohomology is an
affine space [37, Theorem 6.10]. So the hypersurface support and the cohomological
support agree, by Lemma 10.4. �

Consider now B ⊂ G a Borel subgroup in almost-simple G. We have D(B(1)) =
(O(B(1))okU(1))okGrm(1), where U is the unipotent radical in B. We can consider

the integration

D̂(B(1)) :=
(
ÔB o Û(n)

)
o kGrm(1)

of D(B(1)). We note that rep(Grm(1)) = V ectG∨ as a braided (symmetric) cate-

gory, for G∨ a rank r elementary abelian p-group with trivial form. So D(B(1))
is geometrically Chevalley and, with D = rep(Grm(1)), fits into the framework of

Section 12.2.

Theorem 13.4. Let B be a Borel subgroup in an almost-simple algebraic group
G over Fp. If p is very good for G, then the hypersurface support for the height 1
double D(B(1)) satisfies the tensor product property. If p − 1 > dim(B), then the
cohomological support satisfies the tensor product property as well.
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Proof. As remarked above, when p is very good for G, B admits a quasi-logarithm,
and when p − 1 > dim(B) the reduced cohomology ring for D(B(1)) is a polyno-
mial ring [37, Theorem 6.10]. So, by Lemma 10.4, we need only show that the
hypersurface support satisfies the tensor product property. By semisimplicity of

kGrm(1), a D̂-module is perfect if and only if its restriction to the Hopf subalgebra

D̂+ = Ô o Û(n) is perfect. One now proceeds as in the proof of Theorem 13.3. �

13.4. The quantum Borel in small quantum SLn. Take q ∈ C× of odd order
l. We first consider the simply-connected form of the quantum Borel, then deal
with general quantum Borels in type A in Section 13.6.

By the simply-connected form of the quantum Borel uq(b) we mean the non-
negative subalgebra in the small quantum group uq(sln) = uq(SLn). (See [64] and
in particular [64, Section 9].) So, uq(b) has its usual positive generators Eα, and
the grouplikes are given by the character group G = (P/lQ)∨ of the quotient P/lQ
of the weight lattice by the l-th scaling of the root lattice. The standard toral
elements Kα are precisely the function Kα = q(α,−) : P/lQ→ C×, where (−,−) is
the normalized Killing form, (α, β) = dα〈α, β〉, dα = |α|2/|short root|2. (It happens
to be the case that all roots are the same length here, so that all dα = 1.)

Let us consider first the situation in type A2. For uq(b) the quantum Borel in
uq(sl3) we have the standard basis of the positive subalgebras uq(n) and UDKq (n)
provided by ordered monomials in the root vectors

Eα, Eβ , Eα+β := EαEβ − q−1EβEα

[59, 29]. One can check by hand, via the Serre relations, that Eα+β is χ-central in
UDKq (n), for the character χ of the grouplikes given by χ(Kα) = q, χ(Kβ) = q−1.
In terms of classes {ω̄α}α of the fundamental weights {ωα}α in P/lQ, χ = ω̄α− ω̄β .
So, by considering the monomial basis of UDKq (n) in terms of the Eγ , we see that the

sequence {Eα, Eβ , Eα+β} provides a q-regular sequence in UDKq (n) which generates
the kernel of the augmentation ideal. The root vectors also provide a q-regular

sequence for the completion ÛDKq (n) with respect to degree.
The above argument generalizes in type A to provide the following.

Lemma 13.5 ([2]). The augmentation ideal in the completed De Concini-Kac al-

gebra ÛDKq (n) ⊂ ÛDKq (b) in type A, at arbitrary odd order q, is generated by a
q-regular sequence.

Proof. We have the standard generators Ei,i+1 := Eαi of UDKq (n) and explicitly
define the root vectors Ei,j , 1 ≤ i < j ≤ n, by

Ei,j = Ei,j−1Ej−1,j − q(γ,ν)Ej−1,jEi,j−1,

where Ei,j and Ei,j−1 are of respective degrees γ and ν under the root lattice
grading. We order the set of roots {Ei,j : 1 ≤ i < j ≤ n} with respect to the
lex(icographic) order, so that Ei,j < Ei′,j′ whenever i < i′ or i = i′ and j < j′.

Having established the above explicit expressions, and ordering, we let Eγ denote
the unique such vector Ei,j of Q-degree γ, for γ a positive root, and adopt the lex
ordering on the set {Eγ : γ ∈ Φ+} established above. In [2, Lemmas 6.4, 6.7, 6.8]
Andruskiewitsch and Schneider calculate explicitly the q-commutators of the root
vectors to find

EγEν−q(γ,ν)EγEν ∈ the ideal in UDKq (n) generated by Eξ with ht(ξ) > ht(γ), ht(ν),
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whenever Eγ < Eν in the lex ordering. (See in particular [2, Equations (6-19) and
(6-25)].) By considering the basis of UDKq (n) in terms of monomials in the root
vectors, it follows that any ordering {Eγ1 , . . . , Eγm} of the root vectors which is
compatible with the height, in the sense that ht(γi) ≤ ht(γi+1), provides a q-regular
sequence in UDKq (n) which generates the kernel of the augmentation UDKq (n) →
C. The specific character χγ associated to Eγ is the explicit sum of fundamental
weights

χγ =
∑

α with Eα<Eγ

(α, γ)ω̄α −
∑

β with Eγ<Eβ

(β, γ)ω̄β ∈ G∨.

By exactness of completion C[[Elγ : γ ∈ Φ+]] ⊗C[Elγ :γ∈Φ+] −, it follows that the or-

dered set {Eγ1 , . . . , Eγn} also provides a q-regular sequence in the completed algebra

ÛDKq (n) which generates the kernel of the augmentation. �

One now applies Lemma 12.4 and Lemma 13.1 to find the following.

Theorem 13.6. For uq(b) the (simply-connected) quantum Borel in type An, at

arbitrary odd order q, the hypersurface support supphypP for rep(uq(b)) satisfies the
tensor product property

supphypP (V ⊗W ) = supphypP (V ) ∩ supphypP (W ).

We recall that at q of order greater than the Coxeter number h for sln+1, the
cohomology ring for uq(b) is isomorphic to functions on the nilpotent radical n ∼=
A|Φ

+|
C [47]. Indeed, in this case κ is actually an isomorphism from Y onto P. So

we obtain the tensor product for cohomological support at such parameters q, by
applying Lemma 7.5 and Corollary 7.2.

Corollary 13.7. Consider uq(b) the (simply-connected) quantum Borel in type An,
at q of odd order > h. For arbitrary V and W in rep(uq(b)) we have

suppY(V ⊗W ) = suppY(V ) ∩ suppY(W ). (30)

We note that the arguments employed in the proof of Theorem 13.6 are specific
to type A. In particular, direct calculation indicates that none of the root vectors
{Eγ : γ ∈ Φ+} ⊂ UDKq (b), in types D4 and B2, are skew central, and so no ordering
of the positive roots produces a q-regular sequence. One therefore needs a more
robust approach to the quantum Borel in other Dynkin type.

13.5. Arbitrary Borels in type A. Consider X any intermediate lattice Q ⊂
X ⊂ P between the root and weight lattice in type A, and take XM the radical of
the q-exponentiated Killing form q(−,−) on X. Let G be the corresponding algebraic
group for X, and B be the positive Borel in G.

We have the corresponding small quantum group uq(G) [64, Section 9] and the
quantum Borel uq(B) in uq(G), which is explicitly the smash product of the nilpo-
tent subalgebra uq(n) with the character group (X/XM )∨ of the quotient X/XM .
As stated above, we have taken uq(b)(= uq(Bsc)) to be the quantum Borel in the
simply-connected form uq(SLn).

Theorem 13.8. Consider G an arbitrary almost-simple algebraic group in type
A, q an odd order root of unity, and uq(B) the quantum Borel in uq(G). Then
hypersurface support for uq(B) satisfies the tensor product property. Furthermore,
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when ord(q) > h cohomological support for uq(B) also satisfies the tensor product
property

suppY(V ⊗W ) = suppY(V ) ∩ suppY(W ).

Before giving the proof of Theorem 13.8, we provide the following lemma, which
reframes our analysis of support for the simply-connected form uq(b).

Lemma 13.9. Consider Usc = ÛDKq (b) the (completed) De Concini-Kac integra-
tion of the simply-connected form uq(b) in type A, and f ∈ mZ with non-trivial
reduction to mZ/m

2
Z . Then for M finitely generated and non-perfect over Usc/(f)

we have

k ∈ 〈λ⊗M : λ ∈ Irrep(Gsc)〉 ⊂ Dcoh(Usc/(f)). (31)

The point here is that we have replaced the positive subalgebra U+ with the
Hopf algebra Usc in our analysis of support for hypersurfaces (cf. Lemma 9.1).

Proof. Fix f as in the statement of the lemma, and let Gsc denote the grouplikes
in uq(b). Let M ′ be a finite and non-perfect module over U+/(f), which we view
also as a dg module over the corresponding Koszul resolution Kf . Consider the
reduction Kf → k ⊗U+ Kf = k[ε]. The dg version of Hopkins’ lemma employed in
the proof of Theorem 11.3, [26, Theorem 4.4], therefore implies that

k ∈ 〈k ⊗U+ M ′〉 ⊂ Dfin(k[ε]).

By Lemmas 13.5 and 12.5, the kernel of the reduction Kf → k[ε] is generated by a
q-regular sequence. So by Lemma 12.4 we have that

k ∈ 〈λ⊗M ′ : λ ∈ Irrep(Gsc)〉 ⊂ Dcoh(U+/(f)).

We consider the right adjoint

R : U+/(f)-modfg → Usc/(f)-modfg

to the restriction functor T : Usc/(f)-modfg → U+/(f)-modfg. Note that both T
and R are exact maps of left rep(Gsc)-module categories [35, §3.3]. When M ′ is
the restriction M ′ = TM of a Usc/(f)-module M we have

R(TM) = ⊕λ′∈Irrep(Gsc)M ⊗ λ
′ ∼= ⊕λ′∈Irrep(Gsc)λ

′ ⊗M,

where for the final identity we use the centralizing property of Usc-modules against
the irreducibles (Lemma 8.2). So by considering the derived functorR : Dcoh(U+/(f))→
Dcoh(Usc/(f)) we find for non-perfect M over Usc/(f)

⊕λ∈Irrep(Gsc)λ = R(k) ∈ R(〈λ⊗ TM : λ ∈ Irrep(Gsc)〉)
⊂ 〈R(λ⊗ TM) : λ ∈ Irrep(Gsc)〉
= 〈λ⊗ λ′ ⊗M : λ, λ′ ∈ Irrep(Gsc)〉
= 〈λ⊗M : λ ∈ Irrep(Gsc)〉 ⊂ Dcoh(Usc/(f)).

Since thick subcategories are closed under taking summands we have finally

k ∈ 〈λ⊗M : λ ∈ Irrep(Gsc)〉 ⊂ Dcoh(Usc/(f))

whenever M is non-perfect over Usc/(f). �

We now prove our theorem.
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Proof of Theorem 13.8. Write Gsc for the grouplikes in uq(b) and G for the grou-
plikes in uq(B). Since the q-exponentiated Killing form on P × lQ is identically 1,
we have an inclusion lQ ⊂ XM . So we observe group maps

X/lQ
incl //

surj
vv

P/lQ

X/XM

∨
 Gsc

surj // G′

G,

incl
ff

where G′ is the character group of X/lQ. For u′ the Hopf algebra uq(n) o G′, we
then have a corresponding surjection uq(b)→ u′ and inclusion uq(B)→ u′.

Note that the Killing form on P/lQ restricts to a form on the intermediate
quotient X/lQ, and that the kernel of the quotient X/lQ → X/XM is the radical
of this form on X/lQ. So each of the Hopf algebras uq(b), u′, and uq(B) are
constructed via a uniform bosonization process, using the q-exponentiated Killing
form. These Hopf algebras also have consistent integrations provided by taking

the appropriate smash product with U+ = ÛDKq (n). Finally, when ord(q) > h the
spectrum of cohomology for each of these Hopf algebras is an affine space [47], so
that the hypersurface and cohomological supports agree in this case. Therefore to
prove our result it suffices to show that hypersurface support for uq(B) splits over
tensor products.

Write Usc, U′, and U for the integrations of uq(b), u′, and uq(B) respectively.
Consider f ∈ mZ any function with nonzero reduction to mZ/m

2
Z .

ConsiderM non-perfect over the algebra U′/(f), and restrict along the projection
Usc/(f) → U′/(f) to consider M as a non-perfect Usc/(f)-module. We have the
map

L = CG⊗CGsc − : Usc/(f)-modfg → U′/(f)-modfg

which is an exact adjoint to restriction. This functor simply sends a Usc/(f)-
module, which is graded by P/lQ, to its U′/(f)-summand which is supported on
the subgroup X/lQ. So, in particular, for M restricted from a U′/(f)-module we
have

L(λ⊗M) =

{
λ⊗M if λ ∈ X/lQ
0 otherwise.

Applying L to the formula (31) of Lemma 13.9 then gives, for such non-perfect M ,

k ∈ 〈µ⊗M : µ ∈ Irrep(G′)〉 ⊂ Dcoh(U′/(f)). (32)

One therefore argues as in the proof of Lemma 9.1 to find that hypersurface support
for the intermediate algebra u′ satisfies the tensor product property.

We consider now the inclusion uq(B) → u′. One can argue exactly as in the
proof of Theorem 11.6 to see that hypersurface support for uq(B) satisfies the
tensor product property. In particular, we observe that the formula (32) implies
the analogous formula with U′ replaced by the positive subalgebra U+, and follows
precisely the arguments of Theorem 11.6. �

Remark 13.10. Supposing that hypersurface support for the simply-connected
form uq(b), in arbitrary Dynkin type, satisfies the tensor product property, the
arguments of Theorem 13.8 show that supports for all Borels uq(B) away from the
simply-connected form also satisfy the tensor product property.
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13.6. A conjecture in general type. We conclude with the obvious conjecture.

Conjecture 13.11. Let G be an arbitrary almost-simple algebraic group, and uq(B)
be the quantum Borel in uq(G), at q of arbitrary odd order. Then cohomological
support suppY for rep(uq(B)) satisfies the tensor product property (30).

In the sequel [65] we expect to show that the conclusions of Theorem 13.8, in
type A, hold at q of arbitrary odd order. This informs our omission of a bound on
the order of q in the statement of Conjecture 13.11.
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categories. Ann. Sci. Éc. Norm. Supér., 41(4):575–621, 2008.

[16] D. Benson, S. B. Iyengar, H. Krause, and J. Pevtsova. Detecting nilpotence and projectivity
over finite unipotent supergroup schemes. Selecta Math., 27(2):1–59, 2021.

[17] D. Benson and S. Witherspoon. Examples of support varieties for Hopf algebras with non-

commutative tensor products. Arch. Math., 102(6):513–520, 2014.
[18] D. J. Benson. Representations and cohomology, volume 2. Cambridge university press, 1991.
[19] D. J. Benson, K. Erdmann, and M. Holloway. Rank varieties for a class of finite-dimensional

local algebras. J. Pure Appl. Algebra, 211(2):497–510, 2007.
[20] P. A. Bergh and S. Oppermann. Cohomology of twisted tensor products. J. Algebra,

320(8):3327–3338, 2008.

[21] R. Bezrukavnikov and V. Ginzburg. On deformations of associative algebras. Ann. of Math.,
pages 533–548, 2007.

[22] B. D. Boe, J. R. Kujawa, and D. K. Nakano. Tensor triangular geometry for quantum groups.

preprint arXiv:1702.01289.
[23] C.-G. Bontea and D. Nikshych. Pointed braided tensor categories. preprint arXiv:1701.00510.

http://arxiv.org/abs/1702.01289
http://arxiv.org/abs/1701.00510


SUPPORT FOR INTEGRABLE HOPF ALGEBRAS 51

[24] A. Brochier, D. Jordan, P. Safronov, and N. Snyder. Invertible braided tensor categories.

preprint arXiv:2003.13812.

[25] A. Brochier, D. Jordan, and N. Snyder. On dualizability of braided tensor categories. Com-
positio Math., 157(3):435–483, 2021.

[26] J. Carlson and S. Iyengar. Thick subcategories of the bounded derived category of a finite

group. Trans. Amer. Math. Soc., 367(4):2703–2717, April 2015.
[27] J. F. Carlson. The varieties and the cohomology ring of a module. J. Algebra, 85(1):104–143,

1983.

[28] S. Chemla. Rigid dualizing complex for quantum enveloping algebras and algebras of gener-
alized differential operators. J. Algebra, 276(1):80–102, 2004.

[29] C. De Concini and V. G. Kac. Representations of quantum groups at roots of 1. Modern

quantum field theory (Bombay, 1990), pages 333–335, 1991.
[30] C. De Concini, V. G. Kac, and C. Procesi. Quantum coadjoint action. J. Amer. Math. Soc.,

5(1):151–189, 1992.
[31] V. Drinfeld. DG quotients of DG categories. J. Algebra, 272(2):643–691, 2004.

[32] C. M. Drupieski and J. R. Kujawa. Support schemes for infinitesimal unipotent supergroups.

Adv. Math, 384:107754, 2021.
[33] D. Eisenbud. Homological algebra on a complete intersection, with an application to group

representations. Trans. Amer. Math. Soc., 260(1):35–64, 1980.

[34] K. Erdmann, M. Holloway, R. Taillefer, N. Snashall, and Ø. Solberg. Support varieties for
selfinjective algebras. K-theory, 33(1):67–87, 2004.

[35] P. Etingof and V. Ostrik. Finite tensor categories. Mosc. Math. J, 4(3):627–654, 2004.

[36] P. I. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor categories, volume 205. American
Mathematical Society, 2015.

[37] E. M. Friedlander and C. Negron. Cohomology for Drinfeld doubles of some infinitesimal

group schemes. Algebra Number Theory, 12(5):1281–1309, 2018.
[38] E. M. Friedlander and B. J. Parshall. On the cohomology of algebraic and related finite

groups. Invent. Math., 74(1):85–117, 1983.
[39] E. M. Friedlander and B. J. Parshall. Cohomology of Lie algebras and algebraic groups. Amer.

J. Math., 108(1):235–253, 1986.

[40] E. M. Friedlander and B. J. Parshall. Support varieties for restricted Lie algebras. Invent.
Math., 86(3):553–562, 1986.

[41] E. M. Friedlander and B. J. Parshall. Geometry of p-unipotent Lie algebras. J. Algebra,

109(1):25–45, 1987.
[42] E. M. Friedlander and J. Pevtsova. Representation-theoretic support spaces for finite group

schemes. Amer. J. Math., 127(2):379–420, 2005.

[43] E. M. Friedlander and J. Pevtsova. Π-supports for modules for finite group schemes. Duke
Math. J, 139(2):317–368, 2007.

[44] E. M. Friedlander and A. Suslin. Cohomology of finite group schemes over a field. Invent.

Math., 127(2):209–270, 1997.
[45] D. Gaitsgory. Personal communications.

[46] M. Gerstenhaber. On the deformation of rings and algebras. Ann. of Math., 79:59–103, 1964.
[47] V. Ginzburg and S. Kumar. Cohomology of quantum groups at roots of unity. Duke Math.

J, 69(1):179–198, 1993.

[48] M. Goresky, R. Kottwitz, and R. MacPherson. Equivariant cohomology, Koszul duality, and
the localization theorem. Invent. Math., 131(1):25–84, 1998.
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